1
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
2
|
Kapper C, Oppelt P, Ganhör C, Gyunesh AA, Arbeithuber B, Stelzl P, Rezk-Füreder M. Minerals and the Menstrual Cycle: Impacts on Ovulation and Endometrial Health. Nutrients 2024; 16:1008. [PMID: 38613041 PMCID: PMC11013220 DOI: 10.3390/nu16071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The role of minerals in female fertility, particularly in relation to the menstrual cycle, presents a complex area of study that underscores the interplay between nutrition and reproductive health. This narrative review aims to elucidate the impacts of minerals on key aspects of the reproductive system: hormonal regulation, ovarian function and ovulation, endometrial health, and oxidative stress. Despite the attention given to specific micronutrients in relation to reproductive disorders, there is a noticeable absence of a comprehensive review focusing on the impact of minerals throughout the menstrual cycle on female fertility. This narrative review aims to address this gap by examining the influence of minerals on reproductive health. Each mineral's contribution is explored in detail to provide a clearer picture of its importance in supporting female fertility. This comprehensive analysis not only enhances our knowledge of reproductive health but also offers clinicians valuable insights into potential therapeutic strategies and the recommended intake of minerals to promote female reproductive well-being, considering the menstrual cycle. This review stands as the first to offer such a detailed examination of minerals in the context of the menstrual cycle, aiming to elevate the understanding of their critical role in female fertility and reproductive health.
Collapse
Affiliation(s)
- Celine Kapper
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Peter Oppelt
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
- Department for Gynaecology, Obstetrics and Gynaecological Endocrinology, Kepler University Hospital, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Clara Ganhör
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Ayberk Alp Gyunesh
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Barbara Arbeithuber
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Patrick Stelzl
- Department for Gynaecology, Obstetrics and Gynaecological Endocrinology, Kepler University Hospital, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Marlene Rezk-Füreder
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| |
Collapse
|
3
|
Akizawa H, Lopes EM, Fissore RA. Zn 2+ is essential for Ca 2+ oscillations in mouse eggs. eLife 2023; 12:RP88082. [PMID: 38099643 PMCID: PMC10723796 DOI: 10.7554/elife.88082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Changes in the intracellular concentration of free calcium (Ca2+) underpin egg activation and initiation of development in animals and plants. In mammals, the Ca2+ release is periodical, known as Ca2+ oscillations, and mediated by the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). Another divalent cation, zinc (Zn2+), increases exponentially during oocyte maturation and is vital for meiotic transitions, arrests, and polyspermy prevention. It is unknown if these pivotal cations interplay during fertilization. Here, using mouse eggs, we showed that basal concentrations of labile Zn2+ are indispensable for sperm-initiated Ca2+ oscillations because Zn2+-deficient conditions induced by cell-permeable chelators abrogated Ca2+ responses evoked by fertilization and other physiological and pharmacological agonists. We also found that chemically or genetically generated eggs with lower levels of labile Zn2+ displayed reduced IP3R1 sensitivity and diminished ER Ca2+ leak despite the stable content of the stores and IP3R1 mass. Resupplying Zn2+ restarted Ca2+ oscillations, but excessive Zn2+ prevented and terminated them, hindering IP3R1 responsiveness. The findings suggest that a window of Zn2+ concentrations is required for Ca2+ responses and IP3R1 function in eggs, ensuring optimal response to fertilization and egg activation.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| | - Emily M Lopes
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of MassachusettsAmherstUnited States
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
4
|
Gonzalez-Castro RA, Carnevale EM. Phospholipase C Zeta 1 (PLCZ1): The Function and Potential for Fertility Assessment and In Vitro Embryo Production in Cattle and Horses. Vet Sci 2023; 10:698. [PMID: 38133249 PMCID: PMC10747197 DOI: 10.3390/vetsci10120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of oocyte activation failures in humans related to male infertility are associated with gene mutations and/or altered PLCZ1. Consequently, PLCZ1 evaluation could be an effective diagnostic marker and predictor of sperm fertilizing potential for in vivo and in vitro embryo production. The characterization of PLCZ1 has been principally investigated in men and mice, with less known about the PLCZ1 impact on assisted reproduction in other species, such as cattle and horses. In horses, sperm PLCZ1 varies among stallions, and sperm populations with high PLCZ1 are associated with cleavage after intracytoplasmic sperm injection (ICSI). In contrast, bull sperm is less able to initiate calcium oscillations and undergo nuclear remodeling, resulting in poor cleavage after ICSI. Advantageously, injections of PLCZ1 are able to rescue oocyte failure in mouse oocytes after ICSI, promoting full development and birth. However, further research is needed to optimize PLCZ1 diagnostic tests for consistent association with fertility and to determine whether PLCZ1 as an oocyte-activating treatment is a physiological, efficient, and safe method for improving assisted fertilization in cattle and horses.
Collapse
Affiliation(s)
| | - Elaine M. Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
5
|
Converse A, Genuise H, Bennett TL, Butler RM, Thomas P. The membrane androgen receptor ZIP9 (SCL39A9) maintains ovarian homeostasis by mediating post-ovulatory follicle breakdown in zebrafish. Gen Comp Endocrinol 2023; 340:114323. [PMID: 37247826 DOI: 10.1016/j.ygcen.2023.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
ZIP9 was recently characterized as a membrane androgen receptor in Atlantic croaker granulosa/theca (G/T) cells where it mediates androgen-induced apoptosis in vitro, but the physiological significance of this action has remained unclear. In the current study, we utilized ZIP9 knockout (zip9-/-) zebrafish to investigate the role of ZIP9-mediated androgen-induced G/T cell apoptosis in vivo. We first confirmed ZIP9 mediates apoptosis of zebrafish G/T cells in vitro. Testosterone increased apoptosis, intracellular free zinc, and expression of pro-apoptotic members bax and p53 in wildtype and zip9+/+ zebrafish G/T cells, but not in ZIP9 knockout and knockdown cell models. We hypothesized ZIP9-mediated G/T cell apoptosis may be involved in post-ovulatory follicle (POF) breakdown in vivo. Post ovulation, zip9, bax, and p53 were upregulated in zip9+/+ but not in zip9-/- ovaries. Immunoreactivity of cleaved caspase 3 was also higher in POFs from zip9+/+ ovaries compared to zip9-/-, and POF breakdown was significantly delayed in zip9-/- fish compared to zip9+/+ counterparts. To determine the detrimental consequences of delayed POF breakdown in the zip9-/- model, fish were challenged with repeated ovulation induction. After the challenge, zip9-/- fish exhibited abnormal ovarian lesions that contained debris consistent with atretic or necrotic cellular material. However, no abnormalities were observed in zip9+/+ fish ovaries, indicating that the abnormal phenotype is due to the loss of ZIP9. This study demonstrates an important role for ZIP9 in mediating POF breakdown and maintaining tissue remodeling and homeostasis in the teleost ovary and indicates a role for the ZIP9-mediated androgen-induced apoptotic response in vivo.
Collapse
Affiliation(s)
- Aubrey Converse
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA.
| | - Heather Genuise
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| | - Teresa L Bennett
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| | - Rebecca M Butler
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| | - Peter Thomas
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| |
Collapse
|
6
|
Camp OG, Bembenek JN, Goud PT, Awonuga AO, Abu-Soud HM. The Implications of Insufficient Zinc on the Generation of Oxidative Stress Leading to Decreased Oocyte Quality. Reprod Sci 2023; 30:2069-2078. [PMID: 36920672 PMCID: PMC11047769 DOI: 10.1007/s43032-023-01212-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Zinc is a transition metal that displays wide physiological implications ranging from participation in hundreds of enzymes and proteins to normal growth and development. In the reproductive tract of both sexes, zinc maintains a functional role in spermatogenesis, ovulation, fertilization, normal pregnancy, fetal development, and parturition. In this work, we review evidence to date regarding the importance of zinc in oocyte maturation and development, with emphasis on the role of key zinc-binding proteins, as well as examine the effects of zinc and reactive oxygen species (ROS) on oocyte quality and female fertility. We summarize our current knowledge about the participation of zinc in the developing oocyte bound to zinc finger proteins as well as loosely bound zinc ion in the intracellular and extracellular environments. These include aspects related to (1) the impact of zinc deficiency and overwhelming production of ROS under inflammatory conditions on the offset of the physiological antioxidant machinery disturbing biomolecules, proteins, and cellular processes, and their role in contributing to further oxidative stress; (2) the role of ROS in modulating damage to proteins containing zinc, such as zinc finger proteins and nitric oxide synthases (NOS), and expelling the zinc resulting in loss of protein function; and (3) clarify the different role of oxidative stress and zinc deficiency in the pathophysiology of infertility diseases with special emphasis on endometriosis-associated infertility.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Joshua N Bembenek
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Pravin T Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA
- Laurel Fertility Care, San Francisco, CA, 94109, USA
- California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Abdulsamad HMR, Murtaza ZF, AlMuhairi HM, Bafleh WS, AlMansoori SA, AlQubaisi SA, Hamdan H, Kashir J. The Therapeutic and Diagnostic Potential of Phospholipase C Zeta, Oocyte Activation, and Calcium in Treating Human Infertility. Pharmaceuticals (Basel) 2023; 16:441. [PMID: 36986540 PMCID: PMC10056371 DOI: 10.3390/ph16030441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Oocyte activation, a fundamental event during mammalian fertilisation, is initiated by concerted intracellular patterns of calcium (Ca2+) release, termed Ca2+ oscillations, predominantly driven by testis-specific phospholipase C zeta (PLCζ). Ca2+ exerts a pivotal role in not just regulating oocyte activation and driving fertilisation, but also in influencing the quality of embryogenesis. In humans, a failure of Ca2+ release, or defects in related mechanisms, have been reported to result in infertility. Furthermore, mutations in the PLCζ gene and abnormalities in sperm PLCζ protein and RNA, have been strongly associated with forms of male infertility where oocyte activation is deficient. Concurrently, specific patterns and profiles of PLCζ in human sperm have been linked to parameters of semen quality, suggesting the potential for PLCζ as a powerful target for both therapeutics and diagnostics of human fertility. However, further to PLCζ and given the strong role played by Ca2+ in fertilisation, targets down- and up-stream of this process may also present a significantly similar level of promise. Herein, we systematically summarise recent advancements and controversies in the field to update expanding clinical associations between Ca2+-release, PLCζ, oocyte activation and human fertility. We discuss how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic avenues presented by oocyte activation for the diagnosis and treatment of human infertility.
Collapse
Affiliation(s)
- Haia M. R. Abdulsamad
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Zoha F. Murtaza
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hessa M. AlMuhairi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Wjdan S. Bafleh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Salma A. AlMansoori
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Shaikha A. AlQubaisi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Junaid Kashir
- Department of Biology, College of Arts and Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia
| |
Collapse
|
8
|
Satouh Y, Sato K. Reorganization, specialization, and degradation of oocyte maternal components for early development. Reprod Med Biol 2023; 22:e12505. [PMID: 36726596 PMCID: PMC9884333 DOI: 10.1002/rmb2.12505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Background Oocyte components are maternally provided, solely determine oocyte quality, and coordinately determine embryo quality with zygotic gene expression. During oocyte maturation, maternal organelles are drastically reorganized and specialized to support oocyte characteristics. A large number of maternal components are actively degraded after fertilization and gradually replaced by zygotic gene products. The molecular basis and the significance of these processes on oocyte/embryo quality are not fully understood. Methods Firstly, recent findings in organelle characteristics of other cells or oocytes from model organisms are introduced for further understanding of oocyte organelle reorganization/specialization. Secondly, recent progress in studies on maternal components degradation and their molecular mechanisms are introduced. Finally, future applications of these advancements for predicting mammalian oocyte/embryo quality are discussed. Main findings The significance of cellular surface protein degradation via endocytosis for embryonic development, and involvement of biogenesis of lipid droplets in embryonic quality, were recently reported using mammalian model organisms. Conclusion Identifying key oocyte component characteristics and understanding their dynamics may lead to new applications in oocyte/embryo quality prediction and improvement. To implement these multidimensional concepts, development of new technical approaches that allow us to address the complexity and efficient studies using model organisms are required.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| |
Collapse
|
9
|
Zee DZ, MacRenaris KW, O'Halloran TV. Quantitative imaging approaches to understanding biological processing of metal ions. Curr Opin Chem Biol 2022; 69:102152. [PMID: 35561425 PMCID: PMC9329216 DOI: 10.1016/j.cbpa.2022.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Faster, more sensitive, and higher resolution quantitative instrumentation are aiding a deeper understanding of how inorganic chemistry regulates key biological processes. Researchers can now image and quantify metals with subcellular resolution, leading to a vast array of new discoveries in organismal development, pathology, and disease. Metals have recently been implicated in several diseases such as Parkinson's, Alzheimers, ischemic stroke, and colorectal cancer that would not be possible without these advancements. In this review, instead of focusing on instrumentation we focus on recent applications of label-free elemental imaging and quantification and how these tools can lead to a broader understanding of metals role in systems biology and human pathology.
Collapse
Affiliation(s)
- David Z Zee
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Keith W MacRenaris
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA; Department of Chemistry, Michigan State University, East Lansing, MI, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Department of Chemistry, Northwestern University, Evanston, IL, USA; Elemental Health Institute, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
11
|
Kageyama A, Suyama A, Kinoshita R, Ito J, Kashiwazaki N. Dynamic changes of intracellular zinc ion level during maturation, fertilization, activation, and development in mouse oocytes. Anim Sci J 2022; 93:e13759. [PMID: 35880318 DOI: 10.1111/asj.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
Although it is well known that calcium oscillations are required for fertilization in all mammalian species studied to date, recent studies also showed the ejection of zinc into the extracellular milieu in a series of coordinated events, called "zinc spark," during mammalian fertilization. These results led us to the hypothesis that a zinc ion-dependent signal is important for oocyte maturation, fertilization (activation), and further embryonic development. In this study, we evaluated the amounts and localization of intracellular zinc ions during maturation, fertilization, activation, and embryonic development in mouse oocytes. Our results show that abundant zinc ions are present in both immature and mature oocytes. After in vitro fertilization, the amounts of zinc ions were dramatically decreased at the pronuclear (PN) stage. Artificial activation by cycloheximide, SrCl2 , and TPEN also reduced the amounts of zinc ions in the PN stage. On the other hand, PN embryos derived from sperm injection still showed high level of zinc ions. However, the amounts of zinc ions rapidly increased at the blastocysts regardless of activation method. We showed here that the amounts of zinc ions dramatically changed during maturation, fertilization, activation, and development in mouse oocytes.
Collapse
Affiliation(s)
- Atsuko Kageyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Ayumi Suyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Ruka Kinoshita
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan.,School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan.,School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
12
|
Meshkini A. A Correlation Between Intracellular Zinc Content and Osteosarcoma. Biol Trace Elem Res 2021; 199:3222-3231. [PMID: 33150482 DOI: 10.1007/s12011-020-02466-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Zinc is a trace element in human body involved in many biological processes. It is critical for cell growth and acts as a cofactor for the structure and function of a wide range of cellular proteins such as enzymes. Mounting evidence has shown the involvement of intracellular zinc in the bone-related biological processes such as bone growth, homeostasis, and regeneration; however, the molecular mechanism(s) whereby zinc impels tumorigenesis in bone remains largely unexplored. In this article, selective outline related to the content of intracellular zinc in osteosarcoma cells was provided, and its correlation with signaling molecules that are activated and consequently guide the cells toward tumorigenesis or osteogenesis was discussed. Based on preclinical and clinical evidence, dysregulation of zinc homeostasis, both at intracellular and tissue level, has the main role in the pathogenesis of osteosarcoma. Based on the intracellular zinc content, this element could have a direct role in the dynamics of bone cell transformation and tumor development and play an indirect role in the modulation of the inflammatory and pro/antitumorigenic responses in immune cells. In this context, zinc transporters and the proteins containing zinc domain are regulated by the availability of zinc, playing a crucial role in bone cell transformation and differentiation. According to recent studies, it seems that intracellular zinc levels could be considered as an early prognosis marker. Besides, identification and targeting of zinc-dependent signaling molecules could tilt the balance of life and death toward the latter in chemoresistant malignant cells and may pave a way for designing of the novel osteosarcoma treatment strategies.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, P. O. Box 9177948974, Iran.
| |
Collapse
|
13
|
Seeler JF, Sharma A, Zaluzec NJ, Bleher R, Lai B, Schultz EG, Hoffman BM, LaBonne C, Woodruff TK, O'Halloran TV. Metal ion fluxes controlling amphibian fertilization. Nat Chem 2021; 13:683-691. [PMID: 34155376 PMCID: PMC8475775 DOI: 10.1038/s41557-021-00705-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/12/2021] [Indexed: 02/05/2023]
Abstract
Mammalian oocytes undergo major changes in zinc content and localization to be fertilized, the most striking being the rapid exocytosis of over 10 billion zinc ions in what are known as zinc sparks. Here, we report that fertilization of amphibian Xenopus laevis eggs also initiates a zinc spark that progresses across the cell surface in coordination with dynamic calcium waves. This zinc exocytosis is accompanied by a newly recognized loss of intracellular manganese. Synchrotron-based X-ray fluorescence and analytical electron microscopy reveal that zinc and manganese are sequestered in a system of cortical granules that are abundant at the animal pole. Through electron-nuclear double-resonance studies, we rule out Mn2+ complexation with phosphate or nitrogenous ligands in intact eggs, but the data are consistent with a carboxylate coordination environment. Our observations suggest that zinc and manganese fluxes are a conserved feature of fertilization in vertebrates and that they function as part of a physiological block to polyspermy.
Collapse
Affiliation(s)
- John F Seeler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Nestor J Zaluzec
- Photon Sciences Directorate, Argonne National Laboratory, Argonne, IL, USA
| | - Reiner Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Emma G Schultz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Brian M Hoffman
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Teresa K Woodruff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA.
| | - Thomas V O'Halloran
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
14
|
Hojitsiriyanont J, Chaibuth P, Boonkitpatarakul K, Ruangpornvisuti V, Palaga T, Chainok K, Sukwattanasinitt M. Effects of amino proton and denticity of quinoline-pyridine based dyes on Cd2+ and Zn2+ fluorescence sensing properties. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Lee HC, Edmonds ME, Duncan FE, O'Halloran TV, Woodruff TK. Zinc exocytosis is sensitive to myosin light chain kinase inhibition in mouse and human eggs. Mol Hum Reprod 2021; 26:228-239. [PMID: 32119740 DOI: 10.1093/molehr/gaaa017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
Zinc dynamics are essential for oocyte meiotic maturation, egg activation, and preimplantation embryo development. During fertilisation and egg activation, the egg releases billions of zinc atoms (Zn2+) in an exocytotic event termed the 'zinc spark'. We hypothesised that this zinc transport and exocytosis is dependent upon the intracellular trafficking of cortical granules (CG) which requires myosin-actin-dependent motors. Treatment of mature mouse and human eggs with ML-7, a myosin light chain kinase inhibitor (MLCK), resulted in an 80% reduction in zinc spark intensity compared to untreated controls when activated with ionomycin. Moreover, CG migration towards the plasma membrane was significantly decreased in ML-7-treated eggs compared with controls when activated parthenogenetically with ionomycin. In sperm-induced fertilisation via intracytoplasmic sperm injection (ICSI), ML-7-treated mouse eggs exhibited decreased labile zinc intensity and cortical CG staining. Collectively, these data demonstrate that ML-7 treatment impairs zinc release from both murine and human eggs after activation, demonstrating that zinc exocytosis requires myosin light chain kinase activity. Further, these results provide additional support that zinc is likely stored and released from CGs. These data underscore the importance of intracellular zinc trafficking as a crucial component of egg maturation necessary for egg activation and early embryo development.
Collapse
Affiliation(s)
- Hoi Chang Lee
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maxwell E Edmonds
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.,Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
16
|
Hu Q, Antipova OA, O’Halloran TV, Wolfner MF. X-ray fluorescence microscopy scanning of Drosophila oocytes and eggs. STAR Protoc 2021; 2:100247. [PMID: 33437967 PMCID: PMC7786125 DOI: 10.1016/j.xpro.2020.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
X-ray fluorescence microscopy (XFM) is a powerful tool for mapping and quantifying the spatial distribution of elemental composition of biological samples. Recently, it was reported that transition metal fluctuations occur during Drosophila reproduction, analogous to what is seen in mammals and nematodes, and may contribute to Drosophila female fertility. To further support XFM studies on Drosophila reproduction, we describe procedures for isolating oocytes and activated eggs and examining their elemental composition by XFM scanning and analysis. For complete details on the use and execution of this protocol, please refer to Hu et al. (2020).
Collapse
Affiliation(s)
- Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Olga A. Antipova
- X-ray Sciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Thomas V. O’Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Lee HC, Balough JL, Roth EW, Vaccari S, Duncan FE. A decellularized oocyte-derived scaffold provides a "sperm safe" to preserve mammalian spermatozoa. Andrology 2021; 9:922-932. [PMID: 33565255 DOI: 10.1111/andr.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although only one spermatozoon is needed to create a zygote, a significant challenge is the storage and recovery of germ cells when sperm counts are extremely low. OBJECTIVES We engineered an oocyte-derived biomaterial-the zona pellucida (ZP)-as a "sperm safe" for storing spermatozoon. The ZP is a glycoprotein matrix that surrounds the mammalian oocyte. MATERIALS AND METHODS We made a hole in the ZPs using a Piezo drill and mechanically separated them from the oocyte cytoplasm. A subset of ZPs were further purified through decellularization. Using a modified ICSI approach, we injected sperm heads into purified ZPs and tested the efficacy of cryopreservation and recovery of spermatozoon as well as function. RESULTS Between 1-6 sperm heads were injected into purified ZPs (average 2.7 ± 1.7 sperm heads/ZP), which were then cryopreserved. Upon thawing, an average of 2.5 ± 1.4 sperm heads/ZP were observed, and in 11 of 12 thawed "sperm safes," we recovered all spermatozoa. Decellularized "sperm safes" maintained their three-dimensional structure and had a denser matrix relative to untreated controls as assessed by scanning and transmitted electron microscopy. The efficacy of "sperm safe" derived spermatozoon was evaluated by ICSI. Spermatozoon stored in either untreated or decellularized "sperm safes" elicited egg activation-associated calcium transients and zinc sparks when injected into eggs. Of the resulting zygotes, >80% of them formed pronuclei irrespective of the sperm source. 26.8 ± 4.6% and 18.1 ± 7.0% of the pre-implantation embryos generated from spermatozoon recovered from untreated or decellularized "sperm safes" developed to the blastocyst stage, respectively. Although this development was lower than that using fresh spermatozoon (59.3 ± 19.3%) or conventionally frozen-thawed spermatozoon (28.4 ± 1.7%), these differences were not significant. DISCUSSION AND CONCLUSION Purified ZPs represent a natural biomaterial for the efficient preservation and recovery of small sperm numbers.
Collapse
Affiliation(s)
- Hoi Chang Lee
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Julia L Balough
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eric W Roth
- NUANCE, Northwestern University, Evanston, IL, USA
| | - Sergio Vaccari
- Spring Fertility, San Francisco/Silicon Valley, East Bay, CA, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Styrpejko DJ, Cuajungco MP. Transmembrane 163 (TMEM163) Protein: A New Member of the Zinc Efflux Transporter Family. Biomedicines 2021; 9:biomedicines9020220. [PMID: 33670071 PMCID: PMC7926707 DOI: 10.3390/biomedicines9020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence continues to demonstrate the vital roles that zinc and its transporters play on human health. The mammalian solute carrier 30 (SLC30) family, with ten current members, controls zinc efflux transport in cells. TMEM163, a recently reported zinc transporter, has similar characteristics in both predicted transmembrane domain structure and function to the cation diffusion facilitator (CDF) protein superfamily. This review discusses past and present data indicating that TMEM163 is a zinc binding protein that transports zinc in cells. We provide a brief background on TMEM163’s discovery, transport feature, protein interactome, and similarities, as well as differences, with known SLC30 (ZnT) protein family. We also examine recent reports that implicate TMEM163 directly or indirectly in various human diseases such as Parkinson’s disease, Mucolipidosis type IV and diabetes. Overall, the role of TMEM163 protein in zinc metabolism is beginning to be realized, and based on current evidence, we propose that it is likely a new CDF member belonging to mammalian SLC30 (ZnT) zinc efflux transporter proteins.
Collapse
Affiliation(s)
- Daniel J. Styrpejko
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Math P. Cuajungco
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831, USA
- Correspondence:
| |
Collapse
|
19
|
Sethuram R, Bai D, Abu-Soud HM. Potential Role of Zinc in the COVID-19 Disease Process and its Probable Impact on Reproduction. Reprod Sci 2021; 29:1-6. [PMID: 33415646 PMCID: PMC7790357 DOI: 10.1007/s43032-020-00400-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
COVID-19 (coronavirus disease 2019) is the current world health crisis, producing extensive morbidity and mortality across all age groups. Given the established roles of zinc in combating oxidative damage and viral infections, zinc is being trialed as a treatment modality against COVID-19. Zinc also has confirmed roles in both male and female reproduction. The possible depletion of zinc with the oxidative events of COVID-19 is especially relevant to the fertility of affected couples. This review aims to present the pathophysiology of COVID-19, especially in relation to reproductive function; the role of zinc in the COVID-19 disease process; and how zinc depletion in concert with cytokine storm and reactive oxygen species production could affect reproduction. It also highlights research areas to better the understanding of COVID-19 and its impact on fertility and potential ways to mitigate the impact.
Collapse
Affiliation(s)
- Ramya Sethuram
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA. .,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
20
|
McLennan HJ, Sutton-McDowall ML, Heng S, Abell AD, Thompson JG. Time-lapse confocal imaging-induced calcium ion discharge from the cumulus-oocyte complex at the time of cattle oocyte activation. Reprod Fertil Dev 2020; 32:1223-1238. [PMID: 33027608 DOI: 10.1071/rd20143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Oocyte activation, the dynamic transformation of an oocyte into an embryo, is largely driven by Ca2+ oscillations that vary in duration and amplitude across species. Previous studies have analysed intraoocyte Ca2+ oscillations in the absence of the oocyte's supporting cumulus cells. Therefore, it is unknown whether cumulus cells also produce an ionic signal that reflects fertilisation success. Time-lapse confocal microscopy and image analysis on abattoir-derived cattle cumulus-oocyte complexes coincubated with spermatozoa revealed a distinct discharge of fluorescence from the cumulus vestment. This study demonstrated that this Ca2+ fluorescence discharge was an artefact induced by the imaging procedure independently of oocyte activation success. The fluorescence discharge was a direct result of cumulus cell membrane integrity loss, and future studies should consider the long-term effect of fluorescent labels on cells in time-lapse imaging. However, this study also demonstrated that the distinctive pattern of a coordinated fluorescence discharge was associated with both the presence of spermatozoa and subsequent embryo development to the morula stage, which was affected by Ca2+ chelation and a reduction in the active efflux of the fluorophore. This indicates that the cumulus vestment may have a relationship with oocyte activation at and beyond fertilisation that requires further investigation.
Collapse
Affiliation(s)
- Hanna J McLennan
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Australia; and Robinson Research Institute, Adelaide Medical School, University of Adelaide, SA 5005, Australia; and Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, SA 5005, Australia; and Corresponding author.
| | - Melanie L Sutton-McDowall
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Australia; and Robinson Research Institute, Adelaide Medical School, University of Adelaide, SA 5005, Australia; and Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, SA 5005, Australia
| | - Sabrina Heng
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Australia; and Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, SA 5005, Australia; and Department of Chemistry, School of Physical Sciences, University of Adelaide, SA 5005, Australia
| | - Andrew D Abell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Australia; and Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, SA 5005, Australia; and Department of Chemistry, School of Physical Sciences, University of Adelaide, SA 5005, Australia
| | - Jeremy G Thompson
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Australia; and Robinson Research Institute, Adelaide Medical School, University of Adelaide, SA 5005, Australia; and Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, SA 5005, Australia
| |
Collapse
|
21
|
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. General Aspects of Metal Ions as Signaling Agents in Health and Disease. Biomolecules 2020; 10:biom10101417. [PMID: 33036384 PMCID: PMC7600656 DOI: 10.3390/biom10101417] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction-the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also involved in a recently discovered type of programmed cell death, ferroptosis. The important differences in metal ion signaling, and its disease-leading alterations, are also discussed.
Collapse
Affiliation(s)
- Karolina Krzywoszyńska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Jolanta Świątek-Kozłowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Henryk Kozłowski
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| |
Collapse
|
22
|
Pratt EPS, Damon LJ, Anson KJ, Palmer AE. Tools and techniques for illuminating the cell biology of zinc. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118865. [PMID: 32980354 DOI: 10.1016/j.bbamcr.2020.118865] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Zinc (Zn2+) is an essential micronutrient that is required for a wide variety of cellular processes. Tools and methods have been instrumental in revealing the myriad roles of Zn2+ in cells. This review highlights recent developments fluorescent sensors to measure the labile Zn2+ pool, chelators to manipulate Zn2+ availability, and fluorescent tools and proteomics approaches for monitoring Zn2+-binding proteins in cells. Finally, we close with some highlights on the role of Zn2+ in regulating cell function and in cell signaling.
Collapse
Affiliation(s)
- Evan P S Pratt
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America
| | - Leah J Damon
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America
| | - Kelsie J Anson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America
| | - Amy E Palmer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America.
| |
Collapse
|
23
|
Converse A, Thomas P. The zinc transporter ZIP9 (Slc39a9) regulates zinc dynamics essential to egg activation in zebrafish. Sci Rep 2020; 10:15673. [PMID: 32973303 PMCID: PMC7518430 DOI: 10.1038/s41598-020-72515-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/02/2020] [Indexed: 01/22/2023] Open
Abstract
The zinc transporter ZIP9 (SLC39A9) was recently characterized as a membrane androgen receptor in various teleost and mammalian cell models. ZIP9 shows the highest expression in ovaries of teleosts, a tissue in which both androgen signaling and zinc dynamics have significant roles. To examine the role of ZIP9 in ovarian physiology, we generated a ZIP9-mutant zebrafish strain using a CRISPR/Cas9 system. zip9-/- females showed significant reductions in fecundity, embryo viability, and growth of their offspring compared to wildtype (WT) fish. Furthermore, a high proportion of zip9-/- eggs failed to undergo normal chorion elevation during activation. In WT eggs, zinc was detected in cortically-localized vesicles which underwent exocytosis upon activation. zip9-/- eggs showed abnormal cortical vesicle development and had a significantly depressed activation-induced zinc release compared to WT eggs. Moreover, pharmacologically sustained elevation of zinc in WT eggs prior to activation resulted in abnormal chorion elevation similar to that observed in zip9-/- eggs. These results indicate that ZIP9 is essential for proper zinc modulation during zebrafish egg activation and presents the first evidence of zinc modulation during egg activation in a non-mammalian species.
Collapse
Affiliation(s)
- Aubrey Converse
- Marine Science Institute, The University of Texas at Austin, 750 Channelview Dr., Port Aransas, TX, 78373, USA.
| | - Peter Thomas
- Marine Science Institute, The University of Texas at Austin, 750 Channelview Dr., Port Aransas, TX, 78373, USA
| |
Collapse
|
24
|
Sheng J, Olrichs NK, Gadella BM, Kaloyanova DV, Helms JB. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins. Int J Mol Sci 2020; 21:E6530. [PMID: 32906672 PMCID: PMC7554809 DOI: 10.3390/ijms21186530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.S.); (N.K.O.); (B.M.G.); (D.V.K.)
| |
Collapse
|
25
|
Nakai M, Ito J, Suyama A, Kageyama A, Tobari Y, Kashiwazaki N. Phospholipase Cζ (PLCζ) versus postacrosomal sheath WW domain-binding protein (PAWP): Which molecule will survive as a sperm factor? Anim Sci J 2020; 91:e13345. [PMID: 32219949 PMCID: PMC7140179 DOI: 10.1111/asj.13345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 11/27/2022]
Abstract
During mammalian fertilization, sperm is fused with the oocyte's membrane, triggering the resumption of meiosis from the metaphase II arrest, the extrusion of the second polar body, and the exocytosis of cortical granules; these events are collectively called 'oocyte activation.' In all species studied to date, the transient rise in the cytosolic level of calcium (in particular, the repeated calcium increases called 'calcium oscillations' in mammals) is required for these events. Researchers have focused on identifying the factor(s) that can induce calcium oscillations during fertilization. Sperm‐specific phospholipase C, i.e., PLC zeta (PLCζ), is a strong candidate of the factor(s), and several research groups using different species obtained evidence that PLCζ is a sperm factor that can induce calcium oscillations during fertilization. However, postacrosomal sheath Tryptophan‐Tryptophan (WW)—domain‐binding protein (PAWP) was recently shown to have a pivotal role in inducing calcium oscillations in some species. In this review, we focus on PLCζ and PAWP as sperm factors, and we discuss this controversy: Which of these two molecules survives as a sperm factor?
Collapse
Affiliation(s)
- Michiko Nakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Ayumi Suyama
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Atsuko Kageyama
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Yasuko Tobari
- Laboratory of Animal Genetics and Breeding, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| |
Collapse
|
26
|
Hu Q, Duncan FE, Nowakowski AB, Antipova OA, Woodruff TK, O'Halloran TV, Wolfner MF. Zinc Dynamics during Drosophila Oocyte Maturation and Egg Activation. iScience 2020; 23:101275. [PMID: 32615472 PMCID: PMC7330606 DOI: 10.1016/j.isci.2020.101275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Temporal fluctuations in zinc concentration are essential signals, including during oogenesis and early embryogenesis. In mammals, zinc accumulation and release are required for oocyte maturation and egg activation, respectively. Here, we demonstrate that zinc flux occurs in Drosophila oocytes and activated eggs, and that zinc is required for female fertility. Our synchrotron-based X-ray fluorescence microscopy reveals zinc as the most abundant transition metal in Drosophila oocytes. Its levels increase during oocyte maturation, accompanied by the appearance of zinc-enriched intracellular granules in the oocyte, which depend on transporters. Subsequently, in egg activation, which mediates the transition from oocyte to embryo, oocyte zinc levels decrease significantly, as does the number of zinc-enriched granules. This pattern of zinc dynamics in Drosophila oocytes follows a similar trajectory to that in mammals, extending the parallels in female gamete processes between Drosophila and mammals and establishing Drosophila as a model for dissecting reproductive roles of zinc.
Collapse
Affiliation(s)
- Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew B Nowakowski
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Olga A Antipova
- X-ray Sciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
27
|
Woodruff TK. Lessons from bioengineering the ovarian follicle: a personal perspective. Reproduction 2020; 158:F113-F126. [PMID: 31846436 DOI: 10.1530/rep-19-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
The ovarian follicle and its maturation captivated my imagination and inspired my scientific journey - what we know now about this remarkable structure is captured in this invited review. In the past decade, our knowledge of the ovarian follicle expanded dramatically as cross-disciplinary collaborations brought new perspectives to bear, ultimately leading to the development of extragonadal follicles as model systems with significant clinical implications. Follicle maturation in vitro in an 'artificial' ovary became possible by learning what the follicle is fundamentally and autonomously capable of - which turns out to be quite a lot. Progress in understanding and harnessing follicle biology has been aided by engineers and materials scientists who created hardware that enables tissue function for extended periods of time. The EVATAR system supports extracorporeal ovarian function in an engineered environment that mimics the endocrine environment of the reproductive tract. Finally, applying the tools of inorganic chemistry, we discovered that oocytes require zinc to mature over time - a truly new aspect of follicle biology with no antecedent other than the presence of zinc in sperm. Drawing on the tools and ideas from the fields of bioengineering, materials science and chemistry unlocked follicle biology in ways that we could not have known or even predicted. Similarly, how today's basic science discoveries regarding ovarian follicle maturation are translated to improve the experience of tomorrow's patients is yet to be determined.
Collapse
Affiliation(s)
- Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
28
|
Yahfoufi ZA, Bai D, Khan SN, Chatzicharalampous C, Kohan-Ghadr HR, Morris RT, Abu-Soud HM. Glyphosate Induces Metaphase II Oocyte Deterioration and Embryo Damage by Zinc Depletion and Overproduction of Reactive Oxygen Species. Toxicology 2020; 439:152466. [PMID: 32315717 DOI: 10.1016/j.tox.2020.152466] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Glyphosate is the most popular herbicide used in modern agriculture, and its use has been increasing substantially since its introduction. Accordingly, glyphosate exposure from food and water, the environment, and accidental and occupational venues has also increased. Recent studies have demonstrated a relationship between glyphosate exposure and a number of disorders such as cancer, immune and metabolic disorders, endocrine disruption, imbalance of intestinal flora, cardiovascular disease, and infertility; these results have given glyphosate a considerable amount of media and scientific attention. Notably, glyphosate is a powerful metal chelator, which could help explain some of its effects. Recently, our findings on 2,3-dimercapto-1-propanesulfonic acid, another metal chelator, showed deterioration of oocyte quality. Here, to generalize, we investigated the effects of glyphosate (0 - 300 μM) on metaphase II mouse oocyte quality and embryo damage to obtain insight on its mechanisms of cellular action and the tolerance of oocytes and embryos towards this chemical. Our work shows for the first time that glyphosate exposure impairs metaphase II mouse oocyte quality via two mechanisms: 1) disruption of the microtubule organizing center and chromosomes such as anomalous pericentrin formation, spindle fiber destruction and disappearance, and defective chromosomal alignment and 2) substantial depletion of intracellular zinc bioavailability and enhancement of reactive oxygen species accumulation. Similar effects were found in embryos. These results may help clarify the effects of glyphosate exposure on female fertility and provide counseling and preventative steps for excessive glyphosate intake and resulting oxidative stress and reduced zinc bioavailability.
Collapse
Affiliation(s)
- Zeina A Yahfoufi
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI,48201, United States
| | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Sana N Khan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Charalampos Chatzicharalampous
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Hamid-Reza Kohan-Ghadr
- Michigan State University, Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Grand Rapids, Michigan 45903, United States
| | - Robert T Morris
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States; Karmaros Cancer Institute, Detroit, MI, 48201, United States
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI,48201, United States; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, United States.
| |
Collapse
|
29
|
McLennan HJ, Saini A, Sylvia GM, Schartner EP, Dunning KR, Purdey MS, Monro TM, Abell AD, Thompson JG. A biophotonic approach to measure pH in small volumes in vitro: Quantifiable differences in metabolic flux around the cumulus-oocyte-complex (COC). JOURNAL OF BIOPHOTONICS 2020; 13:e201960038. [PMID: 31725948 DOI: 10.1002/jbio.201960038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Unfertilised eggs (oocytes) release chemical biomarkers into the medium surrounding them. This provides an opportunity to monitor cell health and development during assisted reproductive processes if detected in a non-invasive manner. Here we report the measurement of pH using an optical fibre probe, OFP1, in 5 μL drops of culture medium containing single mouse cumulus oocyte complexes (COCs). This allowed for the detection of statistically significant differences in pH between COCs in culture medium with no additives and those incubated with either a chemical (cobalt chloride) or hormonal treatment (follicle stimulating hormone); both of which serve to induce the release of lactic acid into the medium immediately surrounding the COC. Importantly, OFP1 was shown to be cell-safe with no inherent cell toxicity or light-induced phototoxicity indicated by negative DNA damage staining. Pre-measurement photobleaching of the probe reduced fluorescence signal variability, providing improved measurement precision (0.01-0.05 pH units) compared to previous studies. This optical technology presents a promising platform for the measurement of pH and the detection of other extracellular biomarkers to assess cell health during assisted reproduction.
Collapse
Affiliation(s)
- Hanna J McLennan
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Avishkar Saini
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Georgina M Sylvia
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Erik P Schartner
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie R Dunning
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Malcolm S Purdey
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
| | - Tanya M Monro
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Laser Physics and Photonic Devices Laboratories, School of Engineering, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jeremy G Thompson
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
30
|
Fahrenkamp E, Algarra B, Jovine L. Mammalian egg coat modifications and the block to polyspermy. Mol Reprod Dev 2020; 87:326-340. [PMID: 32003503 PMCID: PMC7155028 DOI: 10.1002/mrd.23320] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023]
Abstract
Fertilization by more than one sperm causes polyploidy, a condition that is generally lethal to the embryo in the majority of animal species. To prevent this occurrence, eggs have developed a series of mechanisms that block polyspermy at the level of the plasma membrane or their extracellular coat. In this review, we first introduce the mammalian egg coat, the zona pellucida (ZP), and summarize what is currently known about its composition, structure, and biological functions. We then describe how this specialized extracellular matrix is modified by the contents of cortical granules (CG), secretory organelles that are exocytosed by the egg after gamete fusion. This process releases proteases, glycosidases, lectins and zinc onto the ZP, resulting in a series of changes in the properties of the egg coat that are collectively referred to as hardening. By drawing parallels with comparable modifications of the vitelline envelope of nonmammalian eggs, we discuss how CG‐dependent modifications of the ZP are thought to contribute to the block to polyspermy. Moreover, we argue for the importance of obtaining more information on the architecture of the ZP, as well as systematically investigating the many facets of ZP hardening.
Collapse
Affiliation(s)
- Eileen Fahrenkamp
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
31
|
Trebichalská Z, Holubcová Z. Perfect date-the review of current research into molecular bases of mammalian fertilization. J Assist Reprod Genet 2020; 37:243-256. [PMID: 31909446 PMCID: PMC7056734 DOI: 10.1007/s10815-019-01679-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/22/2019] [Indexed: 12/21/2022] Open
Abstract
Fertilization is a multistep process during which two terminally differentiated haploid cells, an egg and a sperm, combine to produce a totipotent diploid zygote. In the early 1950s, it became possible to fertilize mammalian eggs in vitro and study the sequence of cellular and molecular events leading to embryo development. Despite all the achievements of assisted reproduction in the last four decades, remarkably little is known about the molecular aspects of human conception. Current fertility research in animal models is casting more light on the complexity of the process all our lives start with. This review article provides an update on the investigation of mammalian fertilization and highlights the practical implications of scientific discoveries in the context of human reproduction and reproductive medicine.
Collapse
Affiliation(s)
- Zuzana Trebichalská
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Zuzana Holubcová
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Kamenice 5, Brno, Czech Republic. .,Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic.
| |
Collapse
|
32
|
Garwin SA, Kelley MS, Sue AC, Que EL, Schatz GC, Woodruff TK, O'Halloran TV. Interrogating Intracellular Zinc Chemistry with a Long Stokes Shift Zinc Probe ZincBY-4. J Am Chem Soc 2019; 141:16696-16705. [PMID: 31550140 DOI: 10.1021/jacs.9b06442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous work has shown that fluctuations in zinc content and subcellular localization play key roles in regulating cell cycle progression; however, a deep mechanistic understanding requires the determination of when, where, and how labile zinc pools are concentrated into or released from stores. Labile zinc ions can be difficult to detect with probes that require hydrolysis of toxic protecting groups or application at high concentrations that negatively impact cell function. We previously reported a BODIPY-based zinc probe, ZincBY-1, that can be used at working concentrations that are 20-200-fold lower than concentrations employed with other probes. To better understand how zinc pools can be visualized at such low probe concentrations, we modulated the photophysical properties via changes at the 5-position of the BODIPY core. One of these, ZincBY-4, exhibits an order of magnitude higher affinity for zinc, an 8-fold increase in brightness in response to zinc, and a 100 nm Stokes shift within cells. The larger Stokes shift of ZincBY-4 presents a unique opportunity for simultaneous imaging with GFP or fluorescein sensors upon single excitation. Finally, by creating a proxy for the cellular environment in spectrometer experiments, we show that the ZincBY series are highly effective at 50 nM because they can pass membranes and accumulate in regions of high zinc concentration within a cell. These features of the ZincBY probe class have widespread applications in imaging and for understanding the regulatory roles of zinc fluxes in live cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine , Northwestern University , 250 E. Superior St., Suite 3-2303 , Chicago , Illinois 60611 , United States
| | | |
Collapse
|
33
|
Lee J, Lee HC, Kim SY, Cho GJ, Woodruff TK. Poorly-Controlled Type 1 Diabetes Mellitus Impairs LH-LHCGR Signaling in the Ovaries and Decreases Female Fertility in Mice. Yonsei Med J 2019; 60:667-678. [PMID: 31250581 PMCID: PMC6597468 DOI: 10.3349/ymj.2019.60.7.667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/23/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The aim of this study was to investigate how type I diabetes mellitus (T1D) affects the folliculogenesis and oocyte development, fertilization, and embryo development. MATERIALS AND METHODS A comparative animal study was conducted using two different mouse models of T1D, a genetic AKITA model and a streptozotocin-induced diabetes model. Ovarian function was assessed by gross observation, immunoblot, immunohistochemistry, oocyte counting, and ELISA for serum hormones (insulin, anti-Mullerian hormone, estradiol, testosterone, and progesterone). Maturation and developmental competence of metaphase II oocytes from control and T1D animals was evaluated by immunofluorescent and immunohistochemical detection of biomarkers and in vitro fertilization. RESULTS Animals from both T1D models showed increased blood glucose levels, while only streptozotocin (STZ)-injected mice showed reduced body weight. Folliculogenesis, oogenesis, and preimplantation embryogenesis were impaired in both T1D mouse models. Interestingly, exogenous streptozotocin injection to induce T1D led to marked decreases in ovary size, expression of luteinizing hormone/chorionic gonadotropin receptor in the ovaries, the number of corpora lutea per ovary, oocyte maturation, and serum progesterone levels. Both T1D models exhibited significantly reduced pre-implantation embryo quality compared with controls. There was no significant difference in embryo quality between STZ-injected and AKITA diabetic mice. CONCLUSION These results suggest that T1D affects folliculogenesis, oogenesis, and embryo development in mice. However, the physiological mechanisms underlying the observed reproductive effects of diabetes need to be further investigated.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Korea
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hoi Chang Lee
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - So Youn Kim
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
34
|
Sutovsky P, Kerns K, Zigo M, Zuidema D. Boar semen improvement through sperm capacitation management, with emphasis on zinc ion homeostasis. Theriogenology 2019; 137:50-55. [PMID: 31235187 DOI: 10.1016/j.theriogenology.2019.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Critical to fertilization success, sperm capacitation within the female oviductal sperm reservoir endows mammalian spermatozoa with hyperactivated motility and capacity to fertilize. An elaborate cascade of signaling events during capacitation guides the redistribution of sperm plasma membrane seminolipid and cholesterol, Ca-influx and increases tyrosine phosphorylation to promote hyperactivated motility. Such events result in the remodeling of the sperm acrosome, increased fluidity and fusability of the plasma membrane, shedding of surface-adsorbed seminal plasma proteins that glue sperm heads to the oviductal epithelium and ultimately the release of hyperactivated spermatozoa from the oviductal sperm reservoir. Discovered recently, the capacitation-induced sperm zinc ion efflux and resultant zinc signatures are reflective of sperm capacitation status and fertilizing ability, inspiring the retrospection of zinc ion functions in the physiology and fertility of boar sperm and that of other species. This review also highlights the merit of the domestic boar as a biomedical model for spermatology and fertilization research. Relevant to the quest for better fertility management in the livestock industries, the benefits of zinc ion supplementation through nutrition and direct addition to extended semen are discussed in the context of artificial insemination (AI). Ideas are shared on future technologies for zinc management in AI doses and research on the sperm zinc-interacting proteome.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, 65211-5300, USA.
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | - Dalen Zuidema
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| |
Collapse
|
35
|
Que EL, Duncan FE, Lee HC, Hornick JE, Vogt S, Fissore RA, O'Halloran TV, Woodruff TK. Bovine eggs release zinc in response to parthenogenetic and sperm-induced egg activation. Theriogenology 2018; 127:41-48. [PMID: 30639695 DOI: 10.1016/j.theriogenology.2018.12.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Upon fertilization or parthenogenesis, zinc is released into the extracellular space through a series of exocytic events termed zinc sparks, which are tightly coordinated with intracellular calcium transients. The zinc spark reduces the total amount of intracellular zinc, and this reduction is necessary and sufficient to induce egg activation even in the absence of calcium transients. In addition, this zinc release contributes to the block to polyspermy through modification of the zona pellucida. The zinc spark has been documented in all organisms examined to date including the mouse, two species of nonhuman primates, and human. Here we determined whether zinc sparks occur in the bovine, an important model of gamete development in mono-ovulatory mammalian species. We obtained metaphase II-arrested (MII) bovine eggs following in vitro maturation. Total zinc, assessed in single cells using X-Ray Fluorescence Microscopy, was significantly more abundant in the bovine egg compared to iron and copper. Studies with intracellular fluorescent probes revealed that labile zinc pools are localized to discrete cytoplasmic punctae enriched at the cortex. To determine whether zinc undergoes dynamic fluxes during egg activation, we parthenogenetically activated bovine eggs using two approaches: ionomycin or bovine phospholipase C zeta (bPlcζ). Both these methods induced zinc sparks coordinately with intracellular calcium transients. The zinc spark was also observed in bovine eggs following intracytoplasmic sperm injection. These results establish that zinc is the most abundant transition metal in the bovine egg, and zinc flux during egg activation - induced by chemical activation or sperm - is a highly conserved event across mammalian species.
Collapse
Affiliation(s)
- Emily L Que
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hoi Chang Lee
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jessica E Hornick
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Stefan Vogt
- X-ray Sciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Teresa K Woodruff
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
36
|
Jo YJ, Lee IW, Jung SM, Kwon J, Kim NH, Namgoong S. Spire localization via zinc finger-containing domain is crucial for the asymmetric division of mouse oocyte. FASEB J 2018; 33:4432-4447. [PMID: 30557038 DOI: 10.1096/fj.201801905r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Zinc plays an essential role in mammalian oocyte maturation, fertilization, and early embryogenesis, and depletion of zinc impairs cell cycle control, asymmetric division, and cytokinesis in oocyte. We report that zinc, via the actin nucleator Spire, acts as an essential regulator of the actin cytoskeleton remodeling during mouse oocyte maturation and fertilization. Depletion of zinc in the mouse oocyte impaired cortical and cytoplasmic actin formation. Spire is colocalized with zinc-containing vesicles via its zinc finger-containing Fab1, YOTB, Vac 1, EEA1 (FYVE) domain. Improper localization of Spire by zinc depletion or mutations in the FYVE domain impair cytoplasmic actin mesh formations and asymmetric division and cytokinesis of oocyte. All 3 major domains of the Spire are required for its proper localization and activity. After fertilization or parthenogenetic activation, Spire localization was dramatically altered following zinc release from the oocyte. Collectively, our data reveal novel roles for zinc in the regulation of the actin nucleator Spire by controlling its localization in mammalian oocyte.-Jo, Y.-J., Lee, I.-W., Jung, S.-M., Kwon, J., Kim, N.-H., Namgoong, S. Spire localization via zinc finger-containing domain is crucial for the asymmetric division of mouse oocyte.
Collapse
Affiliation(s)
- Yu-Jin Jo
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| | - In-Won Lee
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| | - Seung-Min Jung
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| | - JeongWoo Kwon
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| | - Suk Namgoong
- Department of Animal Science, Chungbuk National University, Cheongju, North Chungcheong, South Korea
| |
Collapse
|
37
|
Zhang X, Heng S, Pei J, Morey JR, McDevitt CA, Abell AD. A Liposomal Platform for Sensing of Extracellular Analytes Near Cells. BIOSENSORS-BASEL 2018; 8:bios8040117. [PMID: 30486256 PMCID: PMC6315562 DOI: 10.3390/bios8040117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023]
Abstract
Cell-permeable fluorescent chemosensors (calcein, monochlorobimane, and a recently reported spiropyran-based sensor SP2) have been incorporated into yeast total lipid extract-based liposomes to suppress inherent cell permeability to allow the detection of extracellular Ca2+, GSH, and Zn2+, respectively. The repurposed sensors have enhanced aqueous solubility and the ability to quantitatively measure biologically relevant concentrations of Ca2+ (0.25 mM–1 mM), Zn2+ (6.25 µM–50 µM), and GSH (0.25 mM–1 mM) by fluorescence in aqueous media. In addition, the liposomal sensors are nontoxic to HEK293 cells and have the ability to detect exogenously added Zn2+ (1 mM), Ca2+ (1 mM), or GSH (1 mM) near cells without internalisation. This new sensing platform provides a means to repurpose a range of intracellular fluorescent sensors to specifically detect extracellular analytes, while also improving biocompatibility for overall enhanced use in a wide range of biomedical applications.
Collapse
Affiliation(s)
- Xiaozhou Zhang
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Sabrina Heng
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Jinxin Pei
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
- Discipline of Physiology, Faculty of Health Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Jacqueline R Morey
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide SA 5005, Australia.
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide SA 5005, Australia.
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne VIC 3010, Australia.
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| |
Collapse
|
38
|
Anazodo A, Ataman-Millhouse L, Jayasinghe Y, Woodruff TK. Oncofertility-An emerging discipline rather than a special consideration. Pediatr Blood Cancer 2018; 65:e27297. [PMID: 29972282 PMCID: PMC6150802 DOI: 10.1002/pbc.27297] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
Abstract
Originally absent from the oncologist's consult, then placed in a 'quality of life' rubric, oncofertility should now be an essential part of a comprehensive cancer treatment plan in patients of reproductive age, including adolescents and young adults (AYAs). Oncofertility encompasses the endocrine health of the patient, as well as fertility management options. Thus, pubertal transitions in males and females, bone health, and menstrual health are all part of this discipline, enabling practitioners to work in interdisciplinary teams to solve problems in reproductive health. This review provides a summary of the essential considerations required for the assessement of reproductive risk and choice of fertility preservation options as well as considerations for developing oncofertility services for AYAs.
Collapse
Affiliation(s)
- Antoinette Anazodo
- Kids Cancer Centre, Sydney Children’s Hospital, Sydney, Australia
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, Australia
- School of Women’s and Children’s Hospital, University of New South Wales, Sydney
| | - Lauren Ataman-Millhouse
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yasmin Jayasinghe
- Department of Obstetrics & Gynaecology University of Melbourne Royal Women’s Hospital, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
39
|
de Macedo MP, Glanzner WG, Rissi VB, Gutierrez K, Currin L, Baldassarre H, Bordignon V. A fast and reliable protocol for activation of porcine oocytes. Theriogenology 2018; 123:22-29. [PMID: 30273737 DOI: 10.1016/j.theriogenology.2018.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/10/2018] [Accepted: 09/23/2018] [Indexed: 12/29/2022]
Abstract
Oocyte activation is physiologically triggered by the sperm during fertilization, however, production of porcine embryos by somatic cell nuclear transfer (SCNT), intracytoplasmic sperm injection (ICSI) or parthenogenetic activation (PA) requires artificial oocyte activation. Although effective protocols for artificial oocyte activation have been developed, current protocols require long exposures to non-specific inhibitors, which do not mimic the physiological process and may have detrimental consequences for embryo development. This study attempted to mimic the physiological activation events induced by fertilization, through the manipulation of Ca2+ and Zn2+ levels, and protein kinase C (PKC) as well as cyclin dependent kinase 1 (CDK1) activities, with the aim of developing an improved protocol for activation of porcine oocytes. In the first experiment, matured oocytes were exposed to ionomycin (Ion) for 5 min, and then treated with a specific CDK1 inhibitor (RO-3306) and/or PKC activator (OAG) for different time intervals. The highest rate of pronuclear (PN) formation (58.8%) was obtained when oocytes were treated with PKCa + CDK1i for 4 h. Second, PN formation and embryo development were evaluated in oocytes exposed for different times to a Zn2+ chelator (TPEN) following Ion treatment. This revealed that 15 min was the minimal exposure time to TPEN required to maximise oocyte activation and embryo development. Next, we observed that treatment with PKCa + CDK1i for 4 h after TPEN for 15 min decreased embryo development compared to TPEN alone. Lastly, we compared the efficiency of the Ion (5 min) plus TPEN (15 min) protocol (IT-20) with a control protocol used in our laboratory (CT-245) for production of PA, SCNT and ICSI embryos. In PA embryos, IT-20 resulted in higher cleavage (72% vs 49.2%) and blastocyst from cleaved embryos (65.5% vs 46.2%) compared to CT-245. In ICSI embryos, higher PN rates were obtained with the IT-20 protocol compared with CT-245 and the non-activated (N-A) group. Moreover, the two protocols were equally efficient for activation of SCNT embryos. Based on these findings, we propose that IT-20 is a fast and effective protocol for activation of porcine oocytes.
Collapse
Affiliation(s)
- Mariana P de Macedo
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Werner G Glanzner
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Vitor B Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada.
| |
Collapse
|
40
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
41
|
Tokuhiro K, Dean J. Glycan-Independent Gamete Recognition Triggers Egg Zinc Sparks and ZP2 Cleavage to Prevent Polyspermy. Dev Cell 2018; 46:627-640.e5. [PMID: 30122633 DOI: 10.1016/j.devcel.2018.07.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
The zona pellucida surrounding ovulated eggs regulates monospermic fertilization necessary for successful development. Using mouse transgenesis, we document that the N terminus of ZP2 is sufficient for sperm binding to the zona matrix and for in vivo fertility. Sperm binding is independent of ZP2 glycans and does not occur after complete cleavage of ZP2 by ovastacin, a zinc metalloendopeptidase stored in egg cortical granules. Immediately following fertilization, a rapid block to sperm penetration of the zona pellucida is established that precedes ZP2 cleavage but requires ovastacin enzymatic activity. This block to penetration is associated with release of zinc from cortical granules coincident with exocytosis. High levels of zinc affect forward motility of sperm to prevent their passage through the zona matrix. This transient, post-fertilization block to sperm penetration provides a temporal window to complete the cleavage of ZP2, which prevents sperm binding to ensure monospermy.
Collapse
Affiliation(s)
- Keizo Tokuhiro
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Abstract
Sperm capacitation, the ultimate maturation event preparing mammalian spermatozoa for fertilization, was first described in 1951, yet its regulatory mechanisms remain poorly understood. The capacitation process encompasses an influx of bicarbonate and calcium ions, removal of decapacitating factors, changes of pH and sperm proteasomal activities, and the increased protein tyrosine phosphorylation. Here, we document a novel biological phenomenon of a unique zinc (Zn2+) ion redistribution associated with mammalian sperm in vitro capacitation (IVC). Using image-based flow cytometry (IBFC), we identified four distinct types of sperm zinc ion distribution patterns (further zinc signature) and their changes during IVC. The zinc signature was altered after sperm capacitation, reduced by proteasomal inhibitors, removed by zinc chelators, and maintained with addition of external ZnCl2. These findings represent a fundamental shift in the understanding of mammalian fertilization, paving the way for improved semen analysis, in vitro fertilization (IVF), and artificial insemination (AI). During sperm capacitation physiological changes occur that are required for fertilization. Here, the authors describe four sperm zinc signatures during invitro capacitation that are indicative of sperm quality and capacity to fertilize.
Collapse
|
43
|
Que EL, Duncan FE, Bayer AR, Philips SJ, Roth EW, Bleher R, Gleber SC, Vogt S, Woodruff TK, O'Halloran TV. Zinc sparks induce physiochemical changes in the egg zona pellucida that prevent polyspermy. Integr Biol (Camb) 2017; 9:135-144. [PMID: 28102396 DOI: 10.1039/c6ib00212a] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During fertilization or chemically-induced egg activation, the mouse egg releases billions of zinc atoms in brief bursts known as 'zinc sparks.' The zona pellucida (ZP), a glycoprotein matrix surrounding the egg, is the first structure zinc ions encounter as they diffuse away from the plasma membrane. Following fertilization, the ZP undergoes changes described as 'hardening', which prevent multiple sperm from fertilizing the egg and thereby establish a block to polyspermy. A major event in zona hardening is cleavage of ZP2 proteins by ovastacin; however, the overall physiochemical changes contributing to zona hardening are not well understood. Using X-ray fluorescence microscopy, transmission and scanning electron microscopy, and biological function assays, we tested the hypothesis that zinc release contributes to ZP hardening. We found that the zinc content in the ZP increases by 300% following activation and that zinc exposure modulates the architecture of the ZP matrix. Importantly, zinc-induced structural changes of the ZP have a direct biological consequence; namely, they reduce the ability of sperm to bind to the ZP. These results provide a paradigm-shifting model in which fertilization-induced zinc sparks contribute to the polyspermy block by altering conformations of the ZP matrix. This adds a previously unrecognized factor, namely zinc, to the process of ZP hardening.
Collapse
Affiliation(s)
- Emily L Que
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 303 East Superior Street, Lurie 10-121, Chicago, IL 60611, USA.
| | - Amanda R Bayer
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Steven J Philips
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Eric W Roth
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Northwestern University Atomic and Nanoscale Characterization Experimental Center, Evanston, IL 60208, USA
| | - Reiner Bleher
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Northwestern University Atomic and Nanoscale Characterization Experimental Center, Evanston, IL 60208, USA
| | - Sophie C Gleber
- X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Teresa K Woodruff
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 303 East Superior Street, Lurie 10-121, Chicago, IL 60611, USA. and Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Department of Chemistry, Northwestern University, Evanston, IL 60208, USA and Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
44
|
Satouh Y, Nozawa K, Yamagata K, Fujimoto T, Ikawa M. Viable offspring after imaging of Ca2+ oscillations and visualization of the cortical reaction in mouse eggs. Biol Reprod 2017; 96:563-575. [PMID: 28339615 DOI: 10.1093/biolre/iox002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/27/2017] [Indexed: 11/14/2022] Open
Abstract
– During mammalian fertilization, egg Ca 2+ oscillations are known to play pivotal roles in triggering downstream events such as resumption of the cell cycle and the establishment of blocks to polyspermy. However, viable offspring have not been obtained after monitoring Ca 2+ oscillations, and their spatiotemporal links to subsequent events are still to be examined. Therefore, the development of imaging methods to avoid phototoxic damage while labeling these events is required. Here, we examined the usefulness of genetically encoded Ca 2+ indicators for optical imaging (GECOs), in combination with spinning-disk confocal imaging. The Ca 2+ imaging of fertilized mouse eggs with GEM-, G-, or R-GECO recorded successful oscillations (8.19 ± 0.31, 7.56 ± 0.23, or 7.53 ± 0.27 spikes in the first 2 h, respectively), similar to those obtained with chemical indicators. Then, in vitro viability tests revealed that imaging with G- or R-GECO did not interfere with the rate of development to the blastocyst stage (61.8 or 70.0%, respectively, vs 75.0% in control). Furthermore, two-cell transfer to recipient female mice after imaging with G- or R-GECO resulted in a similar birthrate (53.3 or 52.0%, respectively) to that of controls (48.7%). Next, we assessed the quality of the cortical reaction (CR) in artificially activated or fertilized eggs using fluorescently labeled Lens culinaris agglutinin fluorescein isothiocyanate. Multicolor imaging demonstrated that the first few Ca 2+ spikes are sufficient for the completion of the CR and subsequent hardening of the zona pellucida in mouse eggs. These methods provide a framework for studying Ca 2+ dynamics in mammalian fertilization.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kaori Nozawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuo Yamagata
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Takao Fujimoto
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
45
|
Potassium as a pluripotency-associated element identified through inorganic element profiling in human pluripotent stem cells. Sci Rep 2017; 7:5005. [PMID: 28694442 PMCID: PMC5504050 DOI: 10.1038/s41598-017-05117-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Despite their well-known function in maintaining normal cell physiology, how inorganic elements are relevant to cellular pluripotency and differentiation in human pluripotent stem cells (hPSCs) has yet to be systematically explored. Using total reflection X-ray fluorescence (TXRF) spectrometry and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed the inorganic components of human cells with isogenic backgrounds in distinct states of cellular pluripotency. The elemental profiles revealed that the potassium content of human cells significantly differs when their cellular pluripotency changes. Pharmacological treatment that alters cell membrane permeability to potassium affected the maintenance and establishment of cellular pluripotency via multiple mechanisms in bona fide hPSCs and reprogrammed cells. Collectively, we report that potassium is a pluripotency-associated inorganic element in human cells and provide novel insights into the manipulation of cellular pluripotency in hPSCs by regulating intracellular potassium.
Collapse
|
46
|
Martin JH, Bromfield EG, Aitken RJ, Nixon B. Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 2017; 74:469-485. [PMID: 27604868 PMCID: PMC11107538 DOI: 10.1007/s00018-016-2356-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.
Collapse
Affiliation(s)
- Jacinta H Martin
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - Elizabeth G Bromfield
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - R John Aitken
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
47
|
Mendoza AD, Woodruff TK, Wignall SM, O'Halloran TV. Zinc availability during germline development impacts embryo viability in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:194-202. [PMID: 27664515 PMCID: PMC5210184 DOI: 10.1016/j.cbpc.2016.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/29/2022]
Abstract
Zinc is an essential metal that serves as a cofactor in a variety of cellular processes, including meiotic maturation. Cellular control of zinc uptake, availability and efflux is closely linked to meiotic progression in rodent and primate reproduction where large fluctuations in zinc levels are critical at several steps in the oocyte-to-embryo transition. Despite these well-documented roles of zinc fluxes during meiosis, only a few of the genes encoding key zinc receptors, membrane-spanning transporters, and downstream signaling pathway factors have been identified to date. Furthermore, little is known about analogous roles for zinc fluxes in the context of a whole organism. Here, we evaluate whether zinc availability regulates germline development and oocyte viability in the nematode Caenorhabditis elegans, an experimentally flexible model organism. We find that similar to mammals, mild zinc limitation in C. elegans profoundly impacts the reproductive axis: the brood size is significantly reduced under conditions of zinc limitation where other physiological functions are not perturbed. Zinc limitation in this organism has a more pronounced impact on oocytes than sperm and this leads to the decrease in viable embryo production. Moreover, acute zinc limitation of isolated zygotes prevents extrusion of the second polar body during meiosis and leads to aneuploid embryos. Thus, the zinc-dependent steps in C. elegans gametogenesis roughly parallel those described in meiotic-to-mitotic transitions in mammals.
Collapse
Affiliation(s)
- Adelita D Mendoza
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Teresa K Woodruff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Thomas V O'Halloran
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|