1
|
Geiger RA, Khera D, Tenthorey JL, Kochs G, Graf L, Emerman M, Malik HS. Heterozygous and generalist MxA super-restrictors overcome breadth-specificity tradeoffs in antiviral restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617484. [PMID: 39416221 PMCID: PMC11482965 DOI: 10.1101/2024.10.10.617484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Antiviral restriction factors such as MxA (myxovirus resistance protein A) inhibit a broad range of viruses. However, they face the challenge of maintaining this breadth as viruses evolve to escape their defense. Viral escape drives restriction factors to evolve rapidly, selecting for amino acid changes at their virus-binding interfaces to regain defense. How do restriction factors balance the breadth of antiviral functions against the need to evolve specificity against individual escaping viruses? We explored this question in human MxA, which uses its rapidly evolving loop L4 as the specificity determinant for orthomyxoviruses such as THOV and IAV. Previous combinatorial mutagenesis of rapidly evolving residues in human MxA loop L4 revealed variants with a ten-fold increase in potency against THOV. However, this strategy did not yield improved IAV restriction, suggesting a strong tradeoff between antiviral specificity and breadth. Here, using a modified combinatorial mutagenesis strategy, we find 'super-restrictor' MxA variants with over ten-fold enhanced restriction of the avian IAV strain H5N1 but reduced THOV restriction. Analysis of super-restrictor MxA variants reveals that the identity of residue 561 explains most of MxA's breadth-specificity tradeoff in H5N1 versus THOV restriction. However, rare 'generalist' super-restrictors with enhanced restriction of both viruses allow MxA to overcome the breadth-specificity tradeoff. Finally, we show that a heterozygous combination of two 'specialist' super-restrictors, one against THOV and the other against IAV, enhances restriction against both viruses. Thus, two strategies enable restriction factors such as MxA to increase their restriction of diverse viruses to overcome breadth-specificity tradeoffs that may be pervasive in host-virus conflicts.
Collapse
Affiliation(s)
- Rechel A. Geiger
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, USA 98195
- Molecular and Cellular Biology, University of Washington, Seattle, WA, USA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Damini Khera
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Jeannette L. Tenthorey
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA 94158
| | - Georg Kochs
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Laura Graf
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle WA 98109
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle WA 98109
| |
Collapse
|
2
|
Vanhee C, Jacobs B, Kamugisha A, Canfyn M, Van Der Meersch H, Ceyssens B, Deconinck E, Van Hoorde K, Willocx M. Substandard and falsified ivermectin tablets obtained for self-medication during the COVID-19 pandemic as a source of potential harm. Drug Test Anal 2024; 16:957-967. [PMID: 38043940 DOI: 10.1002/dta.3618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
In 2019, a global viral pandemic, due to the SARS-CoV-2 virus, broke out. Soon after, the search for a vaccine and/or antiviral medicine began. One of the candidate antiviral medicines tested was ivermectin. Although several health authorities warned the public against the use of this medicine outside clinical trials, the drug was widely used at the end of 2020 and in 2021. Simultaneously, several reports started to emerge demonstrating serious adverse effects after self-medicating with ivermectin. It stands to reason that the self-administration of substandard or falsified (SF) medicines bearing harmful quality deficiencies have contributed to this phenomenon. In order to have a better view on the nature of these harmful quality deficiencies, SF ivermectin samples, intercepted in large quantities by the Belgian regulatory agencies during the period 2021-2022, were analyzed in our official medicines control laboratory. None of the samples (n = 19) were compliant to the quality criteria applicable to medicinal products. These SF products either suffered from a systematic underdosing of the active pharmaceutical ingredient or were severely contaminated with bacteria, two of which were contaminated with known pathogens that cause gastrointestinal illness upon oral intake. In addition to the direct risks of self-medicating with such a product, the improper usage and dosage of ivermectin medication might also facilitate ivermectin tolerance or resistance in parasites. This may have detrimental consequences on a global scale, certainly as the number of newly developed active pharmaceutical ingredients that can safely be used to combat parasites is rather scarce.
Collapse
Affiliation(s)
- Celine Vanhee
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Bram Jacobs
- Service of Foodborne Pathogen, Scientific Direction of Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Angélique Kamugisha
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Michael Canfyn
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | | | - Bart Ceyssens
- Federal Agency for Medicine and Health Care Products, Brussels, Belgium
| | - Eric Deconinck
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Koenraad Van Hoorde
- Service of Foodborne Pathogen, Scientific Direction of Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Marie Willocx
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| |
Collapse
|
3
|
Mo J, Segovia K, Chrzastek K, Briggs K, Kapczynski DR. Morphologic characterization and cytokine response of chicken bone-marrow derived dendritic cells to infection with high and low pathogenic avian influenza virus. Front Immunol 2024; 15:1374838. [PMID: 39281683 PMCID: PMC11401072 DOI: 10.3389/fimmu.2024.1374838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, which are key components of the immune system and involved in early immune responses. DCs are specialized in capturing, processing, and presenting antigens to facilitate immune interactions. Chickens infected with avian influenza virus (AIV) demonstrate a wide range of clinical symptoms, based on pathogenicity of the virus. Low pathogenic avian influenza (LPAI) viruses typically induce mild clinical signs, whereas high pathogenic avian influenza (HPAI) induce more severe disease, which can lead to death. For this study, chicken bone marrow-derived DC (ckBM-DC)s were produced and infected with high and low pathogenic avian influenza viruses of H5N2 or H7N3 subtypes to characterize innate immune responses, study effect on cell morphologies, and evaluate virus replication. A strong proinflammatory response was observed at 8 hours post infection, via upregulation of chicken interleukin-1β and stimulation of the interferon response pathway. Microscopically, the DCs underwent morphological changes from classic elongated dendrites to a more general rounded shape that eventually led to cell death with the presence of scattered cellular debris. Differences in onset of morphologic changes were observed between H5 and H7 subtypes. Increases in viral titers demonstrated that both HPAI and LPAI are capable of infecting and replicating in DCs. The increase in activation of infected DCs may be indicative of a dysregulated immune response typically seen with HPAI infections.
Collapse
Affiliation(s)
- Jongsuk Mo
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| | | | - Klaudia Chrzastek
- Pathology and Animal Sciences, Animal and Plant Health Agency (APHA), Addlestone, United Kingdom
| | - Kelsey Briggs
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| |
Collapse
|
4
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Baker AV, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595634. [PMID: 38826368 PMCID: PMC11142178 DOI: 10.1101/2024.05.23.595634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
H5 influenza is a potential pandemic threat. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic risk, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. Here we use pseudovirus deep mutational scanning to measure how all mutations to a clade 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind a2-6-linked sialic acids, and show that some viruses already carry mutations that stabilize HA. We also identify recent viral strains with reduced neutralization to sera elicited by candidate vaccine virus. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive characterization of mutations to inform surveillance of H5 influenza.
Collapse
|
5
|
An W, Lakhina S, Leong J, Rawat K, Husain M. Host Innate Antiviral Response to Influenza A Virus Infection: From Viral Sensing to Antagonism and Escape. Pathogens 2024; 13:561. [PMID: 39057788 PMCID: PMC11280125 DOI: 10.3390/pathogens13070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza virus possesses an RNA genome of single-stranded, negative-sensed, and segmented configuration. Influenza virus causes an acute respiratory disease, commonly known as the "flu" in humans. In some individuals, flu can lead to pneumonia and acute respiratory distress syndrome. Influenza A virus (IAV) is the most significant because it causes recurring seasonal epidemics, occasional pandemics, and zoonotic outbreaks in human populations, globally. The host innate immune response to IAV infection plays a critical role in sensing, preventing, and clearing the infection as well as in flu disease pathology. Host cells sense IAV infection through multiple receptors and mechanisms, which culminate in the induction of a concerted innate antiviral response and the creation of an antiviral state, which inhibits and clears the infection from host cells. However, IAV antagonizes and escapes many steps of the innate antiviral response by different mechanisms. Herein, we review those host and viral mechanisms. This review covers most aspects of the host innate immune response, i.e., (1) the sensing of incoming virus particles, (2) the activation of downstream innate antiviral signaling pathways, (3) the expression of interferon-stimulated genes, (4) and viral antagonism and escape.
Collapse
Affiliation(s)
| | | | | | | | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.A.); (S.L.); (J.L.); (K.R.)
| |
Collapse
|
6
|
Xu X, Gao S, Zuo Q, Gong J, Song X, Liu Y, Xiao J, Zhai X, Sun H, Zhang M, Gao X, Guo D. Enhanced In Vitro Antiviral Activity of Ivermectin-Loaded Nanostructured Lipid Carriers against Porcine Epidemic Diarrhea Virus via Improved Intracellular Delivery. Pharmaceutics 2024; 16:601. [PMID: 38794264 PMCID: PMC11125651 DOI: 10.3390/pharmaceutics16050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high efficacy and wide applicability. However, the poor bioavailability limits its application. Since the virus is parasitized inside the host cells, increasing the intracellular drug uptake can improve antiviral efficacy. Hence, we aimed to develop nanostructured lipid carriers (NLCs) to enhance the antiviral efficacy of IVM. The findings first revealed the capacity of IVM to inhibit the infectivity of PEDV by reducing viral replication with a certain direct inactivation effect. The as-prepared IVM-NLCs possessed hydrodynamic diameter of 153.5 nm with a zeta potential of -31.5 mV and high encapsulation efficiency (95.72%) and drug loading (11.17%). IVM interacted with lipids and was enveloped in lipid carriers with an amorphous state. Furthermore, its encapsulation in NLCs could enhance drug internalization. Meanwhile, IVM-NLCs inhibited PEDV proliferation by up to three orders of magnitude in terms of viral RNA copies, impeding the accumulation of reactive oxygen species and mitigating the mitochondrial dysfunction caused by PEDV infection. Moreover, IVM-NLCs markedly decreased the apoptosis rate of PEDV-induced Vero cells. Hence, IVM-NLCs showed superior inhibitory effect against PEDV compared to free IVM. Together, these results implied that NLCs is an efficient delivery system for IVM to improve its antiviral efficacy against PEDV via enhanced intracellular uptake.
Collapse
Affiliation(s)
- Xiaolin Xu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shasha Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Qindan Zuo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xinhao Song
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yongshi Liu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jing Xiao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaofeng Zhai
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Sun
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Mingzhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
7
|
Yoon J, Zhang YM, Her C, Grant RA, Ponomarenko AI, Ackermann BE, Hui T, Lin YS, Debelouchina GT, Shoulders MD. The immune-evasive proline-283 substitution in influenza nucleoprotein increases aggregation propensity without altering the native structure. SCIENCE ADVANCES 2024; 10:eadl6144. [PMID: 38640233 PMCID: PMC11029814 DOI: 10.1126/sciadv.adl6144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. NP also determines the sensitivity of influenza to myxovirus resistance protein 1 (MxA), an innate immunity factor that restricts influenza replication. A few critical MxA-resistant mutations have been identified in NP, including the highly conserved proline-283 substitution. This essential proline-283 substitution impairs influenza growth, a fitness defect that becomes particularly prominent at febrile temperature (39°C) when host chaperones are depleted. Here, we biophysically characterize proline-283 NP and serine-283 NP to test whether the fitness defect is caused by the proline-283 substitution introducing folding defects. We show that the proline-283 substitution changes the folding pathway of NP, making NP more aggregation prone during folding, but does not alter the native structure of the protein. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yu Meng Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cheenou Her
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Robert A. Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna I. Ponomarenko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bryce E. Ackermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Tiffani Hui
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
8
|
Xiao Y, Sheng ZM, Williams SL, Taubenberger JK. Two complete 1918 influenza A/H1N1 pandemic virus genomes characterized by next-generation sequencing using RNA isolated from formalin-fixed, paraffin-embedded autopsy lung tissue samples along with evidence of secondary bacterial co-infection. mBio 2024; 15:e0321823. [PMID: 38349163 PMCID: PMC10936189 DOI: 10.1128/mbio.03218-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
The 1918 influenza pandemic was the most devastating respiratory pandemic in modern human history, with 50-100 million deaths worldwide. Here, we characterized the complete genomes of influenza A virus (IAV) from two fatal cases during the fall wave of 1918 influenza A (H1N1) pandemic in the United States, one from Walter Reed Army Hospital in Washington, DC, and the other from Camp Jackson, SC. The two complete IAV genomes were obtained by combining Illumina deep sequencing data from both total RNA and influenza viral genome-enriched libraries along with Sanger sequencing data from PCR across the sequencing gaps. This study confirms the previously reported 1918 IAV genomes and increases the total number of available complete or near-complete influenza viral genomes of the 1918 pandemic from four to six. Sequence comparisons among them confirm that the genomes of the 1918 pandemic virus were highly conserved during the main wave of the pandemic with geographic separation in North America and Europe. Metagenomic analyses revealed bacterial co-infections in both cases. Interestingly, in the Washington, DC, case, evidence is presented of the first reported Rhodococcus-influenza virus co-infection. IMPORTANCE This study applied modern molecular biotechnology and high-throughput sequencing to formalin-fixed, paraffin-embedded autopsy lung samples from two fatal cases during the fall wave of the 1918 influenza A (H1N1) pandemic in the United States. Complete influenza genomes were obtained from both cases, which increases the total number of available complete or near-complete influenza genomes of the 1918 pandemic virus from four to six. Sequence analysis confirms that the 1918 pandemic virus was highly conserved during the main wave of the pandemic with geographic separation in North America and Europe. Metagenomic analyses revealed bacterial co-infections in both cases, including the first reported evidence of Rhodococcus-influenza co-infection. Overall, this study offers a detailed view at the molecular level of the very limited samples from the most devastating influenza pandemic in modern human history.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie L. Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Jitobaom K, Peerapen P, Boonyuen U, Meewan I, Boonarkart C, Sirihongthong T, Thongon S, Thongboonkerd V, Auewarakul P. Identification of inositol monophosphatase as a broad-spectrum antiviral target of ivermectin. J Med Virol 2024; 96:e29552. [PMID: 38511598 DOI: 10.1002/jmv.29552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Ivermectin has broad-spectrum antiviral activities. Despite the failure in clinical application of COVID-19, it can serve as a lead compound for the development of more effective broad-spectrum antivirals, for which a better understanding of its antiviral mechanisms is essential. We thus searched for potential novel targets of ivermectin in host cells by label-free thermal proteomic profiling using Huh-7 cells. Inositol monophosphatase (IMPase) was found among the proteins with shifted thermal stability by ivermectin. Ivermectin could inhibit IMPase activity and reduce cellular myo-inositol and phosphatidylinositol-4-phosphate levels. On the other hand, inositol could impair the antiviral activity of ivermectin and lithium, an IMPase inhibitor with known antiviral activity. As phosphatidylinositol phosphate is crucial for the replication of many RNA viruses, inhibition of cellular myo-inositol biosynthesis may be an important antiviral mechanism of ivermectin. Hence, inhibition of IMPase could serve as a potential target for broad-spectrum antiviral development.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ittipat Meewan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyaporn Sirihongthong
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Songkran Thongon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
11
|
Haidar R, Shabo R, Moeser M, Luch A, Kugler J. The nuclear entry of the aryl hydrocarbon receptor (AHR) relies on the first nuclear localization signal and can be negatively regulated through IMPα/β specific inhibitors. Sci Rep 2023; 13:19668. [PMID: 37951956 PMCID: PMC10640566 DOI: 10.1038/s41598-023-47066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
The human aryl hydrocarbon receptor (AHR) undergoes continuous shuttling between nucleus and cytoplasm. Binding to exogenous or endogenous ligands promotes its rapid nuclear import. The proposed mechanism for the ligand-dependent import is based on exposing the bipartite nuclear localisation signal (NLS) to members of the importin (IMP) superfamily. Among this, the molecular interactions involved in the basal import still need to be clarified. Utilizing fluorescently fused AHR variants, we recapitulated and characterized AHR localization and nucleo-cytoplasmic shuttling in living cells. Analysis of AHR variants carrying NLS point mutations demonstrated a mandatory role of first (13RKRRK17) and second (37KR-R40) NLS segments on the basal import of AHR. Further experiments indicated that ligand-induced import is mainly regulated through the first NLS, while the second NLS is supportive but not essential. Additionally, applying IMPα/β specific inhibitors, ivermectin (IVM) and importazole (IPZ), slowed down the ligand-induced import and, correspondingly, decreased the basal nuclear accumulation of the receptor. In conclusion, our data show that ligand-induced and basal nuclear entry of AHR rely on the same mechanism but are controlled uniquely by the two NLS components.
Collapse
Affiliation(s)
- Rashad Haidar
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Reneh Shabo
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Marie Moeser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Josephine Kugler
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
12
|
Yoon J, Zhang YM, Her C, Grant RA, Ponomarenko AM, Ackermann BE, Debelouchina GT, Shoulders MD. The Immune-Evasive Proline 283 Substitution in Influenza Nucleoprotein Increases Aggregation Propensity Without Altering the Native Structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556894. [PMID: 37745335 PMCID: PMC10515774 DOI: 10.1101/2023.09.08.556894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. In human cells, the interferon induced Myxovirus resistance protein 1 (MxA) binds to NP and restricts influenza replication. This selection pressure has caused NP to evolve a few critical MxA-resistant mutations, particularly the highly conserved Pro283 substitution. Previous work showed that this essential Pro283 substitution impairs influenza growth, and the fitness defect becomes particularly prominent at febrile temperature (39 °C) when host chaperones are depleted. Here, we biophysically characterize Pro283 NP and Ser283 NP to test if the fitness defect is owing to Pro283 substitution introducing folding defects. We show that the Pro283 substitution changes the folding pathway of NP without altering the native structure, making NP more aggregation prone during folding. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape. Teaser Pro283 substitution in flu nucleoprotein introduces folding defects, and makes influenza uniquely dependent on host chaperones.
Collapse
|
13
|
Ciminski K, Chase G, Schwemmle M, Beer M. Advocating a watch-and-prepare approach with avian influenza. Nat Microbiol 2023; 8:1603-1605. [PMID: 37644326 DOI: 10.1038/s41564-023-01457-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Affiliation(s)
- Kevin Ciminski
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Geoffrey Chase
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Martin Schwemmle
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
14
|
Martin AJ, Shackleford DM, Charman SA, Wagstaff KM, Porter CJH, Jans DA. Increased In Vivo Exposure of N-(4-Hydroxyphenyl) Retinamide (4-HPR) to Achieve Plasma Concentrations Effective against Dengue Virus. Pharmaceutics 2023; 15:1974. [PMID: 37514160 PMCID: PMC10384639 DOI: 10.3390/pharmaceutics15071974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
N-(4-hydroxyphenyl) retinamide (4-HPR, or fenretinide) has promising in vitro and in vivo antiviral activity against a range of flaviviruses and an established safety record, but there are challenges to its clinical use. This study evaluated the in vivo exposure profile of a 4-HPR dosage regime previously shown to be effective in a mouse model of severe dengue virus (DENV) infection, comparing it to an existing formulation for human clinical use for other indications and developed/characterised self-emulsifying lipid-based formulations of 4-HPR to enhance 4-HPR in vivo exposure. Pharmacokinetic (PK) analysis comprising single-dose oral and IV plasma concentration-time profiles was performed in mice; equilibrium solubility testing of 4-HPR in a range of lipids, surfactants and cosolvents was used to inform formulation approaches, with lead formulation candidates digested in vitro to analyse solubilisation/precipitation prior to in vivo testing. PK analysis suggested that effective plasma concentrations could be achieved with the clinical formulation, while novel lipid-based formulations achieved > 3-fold improvement. Additionally, 4-HPR exposure was found to be limited by both solubility and first-pass intestinal elimination but could be improved through inhibition of cytochrome P450 (CYP) metabolism. Simulated exposure profiles suggest that a b.i.d dosage regime is likely to maintain 4-HPR above the minimum effective plasma concentration for anti-DENV activity using the clinical formulation, with new formulations/CYP inhibition viable options to increase exposure in the future.
Collapse
Affiliation(s)
- Alexander J Martin
- Nuclear Signalling Laboratory, Department Biochem. & Mol. Biol., Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Kylie M Wagstaff
- Nuclear Signalling Laboratory, Department Biochem. & Mol. Biol., Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Christopher J H Porter
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - David A Jans
- Nuclear Signalling Laboratory, Department Biochem. & Mol. Biol., Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
15
|
Petric PP, Schwemmle M, Graf L. Anti-influenza A virus restriction factors that shape the human species barrier and virus evolution. PLoS Pathog 2023; 19:e1011450. [PMID: 37410755 DOI: 10.1371/journal.ppat.1011450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Affiliation(s)
- Philipp Peter Petric
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Graf
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Graf L, Staeheli P. A human protein that holds bird flu viruses at bay. Nature 2023:10.1038/d41586-023-01942-w. [PMID: 37380833 DOI: 10.1038/d41586-023-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
|
17
|
Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. J Pharmacol Sci 2023; 152:1-21. [PMID: 37059487 PMCID: PMC9930377 DOI: 10.1016/j.jphs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | | | - Simran Kaur Ahluwalia
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
19
|
Sarkar R, Banerjee S, Halder P, Koley H, Komoto S, Chawla-Sarkar M. Suppression of classical nuclear import pathway by importazole and ivermectin inhibits rotavirus replication. J Antimicrob Chemother 2022; 77:3443-3455. [PMID: 36210599 DOI: 10.1093/jac/dkac339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rotavirus is the foremost cause of acute gastroenteritis among infants in resource-poor countries, causing severe morbidity and mortality. The currently available rotavirus vaccines are effective in reducing severity of the disease but not the infection rates, thus antivirals as an adjunct therapy are needed to reduce the morbidity in children. Viruses rely on host cellular machinery for nearly every step of the replication cycle. Therefore, targeting host factors that are indispensable for virus replication could be a promising strategy. OBJECTIVES To assess the therapeutic potential of ivermectin and importazole against rotaviruses. METHODS Antirotaviral activity of importazole and ivermectin was measured against various rotavirus strains (RV-SA11, RV-Wa, RV-A5-13, RV-EW) in vitro and in vivo by quantifying viral protein expression by western blot, analysing viroplasm formation by confocal microscopy, and measuring virus yield by plaque assay. RESULTS Importin-β1 and Ran were found to be induced during rotavirus infection. Knocking down importin-β1 severely impaired rotavirus replication, suggesting a critical role for importin-β1 in the rotavirus life cycle. In vitro studies revealed that treatment of ivermectin and importazole resulted in reduced synthesis of viral proteins, diminished production of infectious virus particles, and decrease in viroplasm-positive cells. Mechanistic study proved that both drugs perform antirotavirus activity by inhibiting the function of importin-β1. In vivo investigations in mice also confirmed the antirotavirus potential of importazole and ivermectin at non-toxic doses. Treatments of rotavirus-infected mice with either drug resulted in diminished shedding of viral particles in the stool sample, reduced expression of viral protein in the small intestine and restoration of damaged intestinal villi comapared to untreated infected mice. CONCLUSIONS The study highlights the potential of importazole and ivermectin as antirotavirus therapeutics.
Collapse
Affiliation(s)
- Rakesh Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Shreya Banerjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| |
Collapse
|
20
|
Jose AM. Analyzing the Impermeable Structure and Myriad of Antiviral Therapies for SARS-CoV-2. JOURNAL OF THE ASSOCIATION OF PHYSICIANS OF INDIA 2022. [DOI: 10.5005/japi-11001-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Petric PP, King J, Graf L, Pohlmann A, Beer M, Schwemmle M. Increased Polymerase Activity of Zoonotic H7N9 Allows Partial Escape from MxA. Viruses 2022; 14:v14112331. [PMID: 36366429 PMCID: PMC9695009 DOI: 10.3390/v14112331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 02/01/2023] Open
Abstract
The interferon-induced myxovirus resistance protein A (MxA) is a potent restriction factor that prevents zoonotic infection from influenza A virus (IAV) subtype H7N9. Individuals expressing antivirally inactive MxA variants are highly susceptible to these infections. However, human-adapted IAVs have acquired specific mutations in the viral nucleoprotein (NP) that allow escape from MxA-mediated restriction but that have not been observed in MxA-sensitive, human H7N9 isolates. To date, it is unknown whether H7N9 can adapt to escape MxA-mediated restriction. To study this, we infected Rag2-knockout (Rag2-/-) mice with a defect in T and B cell maturation carrying a human MxA transgene (MxAtg/-Rag2-/-). In these mice, the virus could replicate for several weeks facilitating host adaptation. In MxAtg/-Rag2-/-, but not in Rag2-/- mice, the well-described mammalian adaptation E627K in the viral polymerase subunit PB2 was acquired, but no variants with MxA escape mutations in NP were detected. Utilizing reverse genetics, we could show that acquisition of PB2 E627K allowed partial evasion from MxA restriction in MxAtg/tg mice. However, pretreatment with type I interferon decreased viral replication in these mice, suggesting that PB2 E627K is not a true MxA escape mutation. Based on these results, we speculate that it might be difficult for H7N9 to acquire MxA escape mutations in the viral NP. This is consistent with previous findings showing that MxA escape mutations cause severe attenuation of IAVs of avian origin.
Collapse
Affiliation(s)
- Philipp P. Petric
- Institute of Virology, Medical Center—University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany
| | - Laura Graf
- Institute of Virology, Medical Center—University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center—University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- Correspondence:
| |
Collapse
|
22
|
Aref ZF, Bazeed SEES, Hassan MH, Hassan AS, Ghweil AA, Sayed MAA, Rashad A, Mansour H, Abdelmaksoud AA. Possible Role of Ivermectin Mucoadhesive Nanosuspension Nasal Spray in Recovery of Post-COVID-19 Anosmia. Infect Drug Resist 2022; 15:5483-5494. [PMID: 36164334 PMCID: PMC9508858 DOI: 10.2147/idr.s381715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Anosmia or hyposmia, with or without taste changes, are common symptoms that occur in SARS-CoV-2 infection and frequently persist as post-COVID-19 manifestations. This is the first trial to assess the potential value of using local ivermectin in the form of a mucoadhesive nanosuspension nasal spray to treat post-COVID-19 anosmia. Methods It is a controlled, randomized trial. Participants were recruited from South Valley University Hospitals in Qena, Upper Egypt, from the ENT and Chest Diseases Departments and outpatient clinics. Patients with persistent post COVID-19 anosmia were randomly divided into two groups, the first group "ivermectin group" included 49 patients treated by ivermectin nanosuspension mucoadhesive nasal spray (two puffs per day). The second group included 47 patients "placebo group" who received saline nasal spray. Follow- up of anosmia [using Visual analogue scale (VAS)] in all patients for three months or appearance of any drug related side effects was done. Results The mean duration of pre-treatment post COVID-19 anosmia was 19.5± 5.8 days in the ivermectin group and 19.1± 5.9 days in the placebo group,p˃0.05. Regarding the median duration of anosmia recovery, the ivermectin group recovered from post COVID-19 anosmia in 13 days compared to 50 days in the placebo group, p˂ 0.001. Following the first week of ivermectin nanosuspension mucoadhesive nasal spray therapy, the ivermectin group had a significantly higher percentage of anosmia recovery (59.2%) than the placebo group (27.7%), p˂ 0.01, with no significant differences in recovery rates between the two groups at 1, 2, and 3 months of follow up, p˃0.05. Conclusion In the small number of patients treated, local Ivermectin exhibited no side effects. In persistent post-COVID-19 anosmia, it could be used for one week at the most as the treatment was extended to one, two and three months, with no difference in recovery compared to the placebo treatment. Trial Registration No NCT04951362.
Collapse
Affiliation(s)
- Zaki F Aref
- ENT Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Ali A Ghweil
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Alaa Rashad
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Haggagy Mansour
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
23
|
Biber A, Harmelin G, Lev D, Ram L, Shaham A, Nemet I, Kliker L, Erster O, Mandelboim M, Schwartz E. The effect of ivermectin on the viral load and culture viability in early treatment of nonhospitalized patients with mild COVID-19 - a double-blind, randomized placebo-controlled trial. Int J Infect Dis 2022; 122:733-740. [PMID: 35811080 PMCID: PMC9262706 DOI: 10.1016/j.ijid.2022.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/19/2022] [Accepted: 07/02/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Ivermectin, an antiparasitic agent, also has antiviral properties. In this study, we aimed to assess whether ivermectin has anti-SARS-CoV-2 activity. METHODS In this double-blinded trial, we compared patients receiving ivermectin for 3 days versus placebo in nonhospitalized adult patients with COVID-19. A reverse transcriptase-polymerase chain reaction from a nasopharyngeal swab was obtained at recruitment and every 2 days for at least 6 days. The primary endpoint was a reduction of viral load on the sixth day as reflected by cycle threshold level >30 (noninfectious level). The primary outcome was supported by the determination of viral-culture viability. RESULTS Of 867 patients screened, 89 were ultimately evaluated per-protocol (47 ivermectin and 42 placeboes). On day 6, the odds ratio (OR) was 2.62 (95% confidence interval [CI]: 1.09-6.31) in the ivermectin arm, reaching the endpoint. In a multivariable logistic regression model, the odds of a negative test on day 6 were 2.28 times higher in the ivermectin group but reached significance only on day 8 (OR 3.70; 95% CI: 1.19-11.49, P = 0.02). Culture viability on days 2 to 6 was positive in 13.0% (3/23) of ivermectin samples versus 48.2% (14/29) in the placebo group (P = 0.008). CONCLUSION There were lower viral loads and less viable cultures in the ivermectin group, which shows its anti-SARS-CoV-2 activity. It could reduce transmission in these patients and encourage further studies with this drug.
Collapse
Affiliation(s)
- Asaf Biber
- The Center for Geographic Medicine and Tropical Diseases, Sheba Medical Center, Ramat Gan, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Geva Harmelin
- Emergency Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Dana Lev
- The Center for Geographic Medicine and Tropical Diseases, Sheba Medical Center, Ramat Gan, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Li Ram
- Emergency Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Amit Shaham
- Emergency Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Ital Nemet
- Central Virology Laboratory, Ministry of Health, Ramat Gan, Israel
| | - Limor Kliker
- Central Virology Laboratory, Ministry of Health, Ramat Gan, Israel
| | - Oran Erster
- Central Virology Laboratory, Ministry of Health, Ramat Gan, Israel
| | - Michal Mandelboim
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Central Virology Laboratory, Ministry of Health, Ramat Gan, Israel
| | - Eli Schwartz
- The Center for Geographic Medicine and Tropical Diseases, Sheba Medical Center, Ramat Gan, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Corresponding author: Eli Schwartz, The Center for Geographic Medicine and Tropical Diseases, The Chaim Sheba Medical Center, Tel Hashomer 52621, Israel. Tel/Fax:+ 972-3-5308456
| |
Collapse
|
24
|
Barati N, Motavallihaghi S, Nikfar B, Chaichian S, Momtazi-Borojeni AA. Potential therapeutic effects of Ivermectin in COVID-19. Exp Biol Med (Maywood) 2022; 247:1388-1396. [PMID: 35686662 PMCID: PMC9442455 DOI: 10.1177/15353702221099579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
COVID-19 is a critical pandemic that affected communities around the world, and there is currently no specific drug treatment for it. The virus enters the human cells via spikes and induces cytokine production and finally arrests the cell cycle. Ivermectin shows therapeutic potential for treating COVID-19 infection based on in vitro studies. Docking studies have shown a strong affinity between Ivermectin and some virulence factors of COVID-19. Notably, clinical evidence has demonstrated that Ivermectin with usual doses is effective by both the prophylactic and therapeutic approaches in all phases of the disease. Ivermectin inhibits both the adhesion and replication of the virus. Local therapy of the lung with Ivermectin or combination therapy may get better results and decrease the dose of the drug.
Collapse
Affiliation(s)
- Nastaran Barati
- Research Center For Molecular
Medicine, Hamadan University of Medical Sciences, Hamadan 9174223425,
Iran
- Medicinal Plants and Natural
Products Research Center, Hamadan University of Medical Sciences, Hamadan
9174223425, Iran
| | | | - Banafsheh Nikfar
- Pars Advanced and Minimally
Invasive Medical Manners Research Center, Pars Hospital, Iran University of
Medical Sciences, Tehran 1415944911, Iran
| | - Shahla Chaichian
- Pars Advanced and Minimally
Invasive Medical Manners Research Center, Pars Hospital, Iran University of
Medical Sciences, Tehran 1415944911, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical
Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences,
Mashhad 8167994434, Iran
| |
Collapse
|
25
|
de Souza RB, Guimarães JR. Effects of Avermectins on the Environment Based on Its Toxicity to Plants and Soil Invertebrates-a Review. WATER, AIR, AND SOIL POLLUTION 2022; 233:259. [PMID: 35789787 PMCID: PMC9243718 DOI: 10.1007/s11270-022-05744-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Avermectins are pharmaceutical drugs widely used mainly in livestock to combat both ectoparasites and endoparasites. Drugs belonging to this family include ivermectin, abamectin, doramectin, selamectin, eprinomectin, and emamectin benzoate, and they share similar chemical characteristics. When administered to livestock, between 80 and 98% of the drug is estimated to leave the body without being metabolized in feces, thus reaching the soil. For this reason, concern for avermectin contamination in soil is increasing, and researchers are focused on estimating the effects on non-target organisms, such as plants and soil invertebrates. This review aimed to compile and discuss updated data of avermectin toxicity on non-target organisms to better comprehend its effect on the environment. Effects on plants are scarcely studied, since they were not believed to absorb these drugs. However, recent studies suggest that plants can be negatively affected. Regarding soil invertebrates, negative effects such as increased mortality and reduced reproduction are best known to dung-beetles. Recently, some studies have also suggested that earthworms, springtails, and enchytraeids can be adversely affected by avermectin exposure. Since ivermectin was the first avermectin marketed, most of the data refers to this product. According to new data on scientific literature, avermectins can now be considered harmful to non-target organisms, and its prudent use is recommended in order to reduce negative effects on the environment. For future investigations, inclusion of avermectins other than ivermectin, as well as field and "omics" studies is suggested.
Collapse
Affiliation(s)
- Raphael B. de Souza
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, R. Saturnino de Brito, 224 - Cidade Universitária, Campinas, SP 13083-889 Brazil
| | - José Roberto Guimarães
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, R. Saturnino de Brito, 224 - Cidade Universitária, Campinas, SP 13083-889 Brazil
| |
Collapse
|
26
|
Hennig C, Graaf A, Petric PP, Graf L, Schwemmle M, Beer M, Harder T. Are pigs overestimated as a source of zoonotic influenza viruses? Porcine Health Manag 2022; 8:30. [PMID: 35773676 PMCID: PMC9244577 DOI: 10.1186/s40813-022-00274-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Swine influenza caused by influenza A viruses (IAV) directly affects respiratory health and indirectly impairs reproduction rates in pigs causing production losses. In Europe, and elsewhere, production systems have intensified featuring fewer holdings but, in turn, increased breeding herd and litter sizes. This seems to foster swine IAV (swIAV) infections with respect to the entrenchment within and spread between holdings. Disease management of swine influenza is difficult and relies on biosecurity and vaccination measures. Recently discovered and widely proliferating forms of self-sustaining modes of swIAV infections in large swine holdings challenge these preventive concepts by generating vaccine-escape mutants in rolling circles of infection. Main body The most recent human IAV pandemic of 2009 rooted at least partly in IAV of porcine origin highlighting the zoonotic potential of swIAV. Pigs constitute a mixing vessel of IAV from different species including avian and human hosts. However, other host species such as turkey and quail but also humans themselves may also act in this way; thus, pigs are not essentially required for the generation of IAV reassortants with a multispecies origin. Since 1918, all human pandemic influenza viruses except the H2N2 virus of 1958 have been transmitted in a reverse zoonotic mode from human into swine populations. Swine populations act as long-term reservoirs of these viruses. Human-derived IAV constitute a major driver of swIAV epidemiology in pigs. Swine-to-human IAV transmissions occurred rarely and mainly sporadically as compared to avian-to-human spill-over events of avian IAV. Yet, new swIAV variants that harbor zoonotic components continue to be detected. This increases the risk that such components might eventually reassort into viruses with pandemic potential. Conclusions Domestic pig populations should not be globally stigmatized as the only or most important reservoir of potentially zoonotic IAV. The likely emergence from swine of the most recent human IAV pandemic in 2009, however, emphasized the principal risks of swine populations in which IAV circulate unimpededly. Implementation of regular and close-meshed IAV surveillance of domestic swine populations to follow the dynamics of swIAV evolution is clearly demanded. Improved algorithms for directly inferring zoonotic potential from whole IAV genome sequences as well as improved vaccines are still being sought.
Collapse
Affiliation(s)
- Christin Hennig
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Philipp P Petric
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Laura Graf
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
27
|
Mirahmadizadeh A, Semati A, Heiran A, Ebrahimi M, Hemmati A, Karimi M, Basir S, Zare M, Charlys da Costa A, Zeinali M, Sargolzaee M, Eilami O. Efficacy of single-dose and double-dose ivermectin early treatment in preventing progression to hospitalization in mild COVID-19: A multi-arm, parallel-group randomized, double-blind, placebo-controlled trial. Respirology 2022; 27:758-766. [PMID: 35738778 PMCID: PMC9350312 DOI: 10.1111/resp.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/13/2022] [Indexed: 12/02/2022]
Abstract
Background and objective Ivermectin is a known anti‐parasitic agent that has been investigated as an antiviral agent against coronavirus disease 2019 (COVID‐19). This study aimed to evaluate the efficacy of ivermectin in mild COVID‐19 patients. Methods In this multi‐arm randomized clinical trial conducted between 9 April 2021 and 20 May 2021, a total of 393 patients with reverse transcription‐PCR‐confirmed COVID‐19 infection and mild symptoms were enrolled. Subjects were randomized in a 1:1:1 ratio to receive single‐dose ivermectin (12 mg), double‐dose ivermectin (24 mg) or placebo. The primary outcome was need for hospitalization. Results There was no significant difference in the proportion of subjects who required hospitalization between the placebo and single‐dose ivermectin groups (absolute difference in the proportions: −2.3 [95% CI = −8.5, 4.1]) and between the placebo and double‐dose ivermectin groups (absolute difference in the proportions: −3.9 [95% CI = −9.8, 2.2]). The odds of differences in mean change in severity score between single‐dose ivermectin and placebo groups (ORdifference = 1.005 [95% CI: 0.972, 1.040]; p = 0.762) and double‐dose ivermectin and placebo groups (ORdifference = 1.010 [95% CI: 0.974, 1.046]; p = 0.598) were not statistically significant. None of the six adverse events (including mild dermatitis, tachycardia and hypertension) were serious and required extra action. Conclusion Single‐dose and double‐dose ivermectin early treatment were not superior to the placebo in preventing progression to hospitalization and improving clinical course in mild COVID‐19. We conducted a double‐blinded randomized placebo‐controlled trial including 393 patients with mild coronavirus disease 2019 (COVID‐19) and found that ivermectin, an anti‐parasitic medication with known antiviral properties, was non‐superior to the placebo. Neither a single nor a double dose was better in preventing progression to hospitalization and worsening of the clinical course of COVID‐19 infection.
Collapse
Affiliation(s)
- Alireza Mirahmadizadeh
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Semati
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Heiran
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Ebrahimi
- Communicable Diseases Control Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolrasool Hemmati
- Department of Health Affairs, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Karimi
- Department of Health Affairs, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Souzan Basir
- Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Zare
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Zeinali
- National Zoonoses Control Department, Ministry of Health and Medical Education, Tehran, Iran
| | - Maryam Sargolzaee
- Communicable Diseases Control Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Owrang Eilami
- Department of Family Medicine and Infectious Diseases, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Popp M, Reis S, Schießer S, Hausinger RI, Stegemann M, Metzendorf MI, Kranke P, Meybohm P, Skoetz N, Weibel S. Ivermectin for preventing and treating COVID-19. Cochrane Database Syst Rev 2022; 6:CD015017. [PMID: 35726131 PMCID: PMC9215332 DOI: 10.1002/14651858.cd015017.pub3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Ivermectin, an antiparasitic agent, inhibits the replication of viruses in vitro. The molecular hypothesis of ivermectin's antiviral mode of action suggests an inhibitory effect on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in early stages of infection. Currently, evidence on ivermectin for prevention of SARS-CoV-2 infection and COVID-19 treatment is conflicting. OBJECTIVES To assess the efficacy and safety of ivermectin plus standard of care compared to standard of care plus/minus placebo, or any other proven intervention for people with COVID-19 receiving treatment as inpatients or outpatients, and for prevention of an infection with SARS-CoV-2 (postexposure prophylaxis). SEARCH METHODS We searched the Cochrane COVID-19 Study Register, Web of Science (Emerging Citation Index and Science Citation Index), WHO COVID-19 Global literature on coronavirus disease, and HTA database weekly to identify completed and ongoing trials without language restrictions to 16 December 2021. Additionally, we included trials with > 1000 participants up to April 2022. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing ivermectin to standard of care, placebo, or another proven intervention for treatment of people with confirmed COVID-19 diagnosis, irrespective of disease severity or treatment setting, and for prevention of SARS-CoV-2 infection. Co-interventions had to be the same in both study arms. For this review update, we reappraised eligible trials for research integrity: only RCTs prospectively registered in a trial registry according to WHO guidelines for clinical trial registration were eligible for inclusion. DATA COLLECTION AND ANALYSIS We assessed RCTs for bias, using the Cochrane RoB 2 tool. We used GRADE to rate the certainty of evidence for outcomes in the following settings and populations: 1) to treat inpatients with moderate-to-severe COVID-19, 2) to treat outpatients with mild COVID-19 (outcomes: mortality, clinical worsening or improvement, (serious) adverse events, quality of life, and viral clearance), and 3) to prevent SARS-CoV-2 infection (outcomes: SARS-CoV-2 infection, development of COVID-19 symptoms, admission to hospital, mortality, adverse events and quality of life). MAIN RESULTS We excluded seven of the 14 trials included in the previous review version; six were not prospectively registered and one was non-randomized. This updated review includes 11 trials with 3409 participants investigating ivermectin plus standard of care compared to standard of care plus/minus placebo. No trial investigated ivermectin for prevention of infection or compared ivermectin to an intervention with proven efficacy. Five trials treated participants with moderate COVID-19 (inpatient settings); six treated mild COVID-19 (outpatient settings). Eight trials were double-blind and placebo-controlled, and three were open-label. We assessed around 50% of the trial results as low risk of bias. We identified 31 ongoing trials. In addition, there are 28 potentially eligible trials without publication of results, or with disparities in the reporting of the methods and results, held in 'awaiting classification' until the trial authors clarify questions upon request. Ivermectin for treating COVID-19 in inpatient settings with moderate-to-severe disease We are uncertain whether ivermectin plus standard of care compared to standard of care plus/minus placebo reduces or increases all-cause mortality at 28 days (risk ratio (RR) 0.60, 95% confidence interval (CI) 0.14 to 2.51; 3 trials, 230 participants; very low-certainty evidence); or clinical worsening, assessed by participants with new need for invasive mechanical ventilation or death at day 28 (RR 0.82, 95% CI 0.33 to 2.04; 2 trials, 118 participants; very low-certainty evidence); or serious adverse events during the trial period (RR 1.55, 95% CI 0.07 to 35.89; 2 trials, 197 participants; very low-certainty evidence). Ivermectin plus standard of care compared to standard of care plus placebo may have little or no effect on clinical improvement, assessed by the number of participants discharged alive at day 28 (RR 1.03, 95% CI 0.78 to 1.35; 1 trial, 73 participants; low-certainty evidence); on any adverse events during the trial period (RR 1.04, 95% CI 0.61 to 1.79; 3 trials, 228 participants; low-certainty evidence); and on viral clearance at 7 days (RR 1.12, 95% CI 0.80 to 1.58; 3 trials, 231 participants; low-certainty evidence). No trial investigated quality of life at any time point. Ivermectin for treating COVID-19 in outpatient settings with asymptomatic or mild disease Ivermectin plus standard of care compared to standard of care plus/minus placebo probably has little or no effect on all-cause mortality at day 28 (RR 0.77, 95% CI 0.47 to 1.25; 6 trials, 2860 participants; moderate-certainty evidence) and little or no effect on quality of life, measured with the PROMIS Global-10 scale (physical component mean difference (MD) 0.00, 95% CI -0.98 to 0.98; and mental component MD 0.00, 95% CI -1.08 to 1.08; 1358 participants; high-certainty evidence). Ivermectin may have little or no effect on clinical worsening, assessed by admission to hospital or death within 28 days (RR 1.09, 95% CI 0.20 to 6.02; 2 trials, 590 participants; low-certainty evidence); on clinical improvement, assessed by the number of participants with all initial symptoms resolved up to 14 days (RR 0.90, 95% CI 0.60 to 1.36; 2 trials, 478 participants; low-certainty evidence); on serious adverse events (RR 2.27, 95% CI 0.62 to 8.31; 5 trials, 1502 participants; low-certainty evidence); on any adverse events during the trial period (RR 1.24, 95% CI 0.87 to 1.76; 5 trials, 1502 participants; low-certainty evidence); and on viral clearance at day 7 compared to placebo (RR 1.01, 95% CI 0.69 to 1.48; 2 trials, 331 participants; low-certainty evidence). None of the trials reporting duration of symptoms were eligible for meta-analysis. AUTHORS' CONCLUSIONS For outpatients, there is currently low- to high-certainty evidence that ivermectin has no beneficial effect for people with COVID-19. Based on the very low-certainty evidence for inpatients, we are still uncertain whether ivermectin prevents death or clinical worsening or increases serious adverse events, while there is low-certainty evidence that it has no beneficial effect regarding clinical improvement, viral clearance and adverse events. No evidence is available on ivermectin to prevent SARS-CoV-2 infection. In this update, certainty of evidence increased through higher quality trials including more participants. According to this review's living approach, we will continually update our search.
Collapse
Affiliation(s)
- Maria Popp
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Stefanie Reis
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Selina Schießer
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Renate Ilona Hausinger
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maria-Inti Metzendorf
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Peter Kranke
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephanie Weibel
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
29
|
Jitobaom K, Boonarkart C, Manopwisedjaroen S, Punyadee N, Borwornpinyo S, Thitithanyanont A, Avirutnan P, Auewarakul P. Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations. BMC Pharmacol Toxicol 2022; 23:41. [PMID: 35717393 PMCID: PMC9206137 DOI: 10.1186/s40360-022-00580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND COVID-19 pandemic has claimed millions of lives and devastated the health service system, livelihood, and economy in many countries worldwide. Despite the vaccination programs in many countries, the spread of the pandemic continues, and effective treatment is still urgently needed. Although some antiviral drugs have been shown to be effective, they are not widely available. Repurposing of anti-parasitic drugs with in vitro anti-SARS-CoV-2 activity is a promising approach being tested in many clinical trials. Combination of these drugs is a plausible way to enhance their effectiveness. METHODS The in vitro anti-SARS-CoV-2 activity of combinations of niclosamide, ivermectin and chloroquine were evaluated in Vero E6 and lung epithelial cells, Calu-3. RESULTS All the two-drug combinations showed higher potency resulting in up to 4-fold reduction in the half maximal inhibitory concentration (IC50) values compared to individual drugs. Among these combinations, niclosamide-ivermectin achieved the highest inhibitory level of over 99%. Combination synergy analysis showed niclosamide-ivermectin combination to have the best synergy score with a mean Loewe synergy score of 4.28 and a peak synergy score of 24.6 in Vero E6 cells and a mean Loewe synergy score of 3.82 and a peak synergy score of 10.86 in Calu-3 cells. CONCLUSIONS The present study demonstrated the benefit of drug combinations on anti-SARS-CoV-2 activity. Niclosamide and ivermectin showed the best synergistic profile and should be further tested in clinical trials.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
30
|
Shafiee A, Teymouri Athar MM, Kohandel Gargari O, Jafarabady K, Siahvoshi S, Mozhgani SH. Ivermectin under scrutiny: a systematic review and meta-analysis of efficacy and possible sources of controversies in COVID-19 patients. Virol J 2022; 19:102. [PMID: 35698151 PMCID: PMC9191543 DOI: 10.1186/s12985-022-01829-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/02/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis to evaluate the efficacy of ivermectin for COVID-19 patients based on current peer-reviewed RCTs and to address disputes over the existing evidence. METHODS MEDLINE (Pubmed), Scopus, Web of Science, Cochrane library, Google scholar and Clinicaltrials.gov were searched for RCTs assessing the efficacy of Ivermectin up to 20 February 2022. A systematic review and meta-analysis of studies was performed based on the PRISMA 2020 statement criteria. RESULTS 19 and 17 studies were included in this systematic review and meta-analysis, respectively. There was no significant difference in progression to severe disease (log OR - 0.27 [95% CI - 0.61 to 0.08], I2 = 42.29%), negative RT-PCR (log OR 0.25 [95% CI - 0.18-0.68], I2 = 58.73%), recovery (log OR 0.11 [95% CI - 0.22-0.45], I2 = 13.84%), duration of hospitalization (SMD - 0.40 [95% CI - 0.85-0.06], I2 = 88.90%), time to negative RT-PCR (SMD - 0.36 [95% CI - 0.89-0.17], I2 = 46.2%), and viral load (SMD -0.17 [95% CI -0.45 to 0.12], I^2 = 0%). It is worth noting that, based on low-certainty evidence, ivermectin may possibly reduce mortality (log OR - 0.67 [95% CI - 1.20 to - 0.13], I2 = 28.96%). However, studies with a higher risk of bias were more likely to indicate positive effects on the efficacy of this drug, according to our subgroup analyses based on study quality. CONCLUSION Ivermectin did not have any significant effect on outcomes of COVID-19 patients and as WHO recommends, use of ivermectin should be limited to clinical trials.
Collapse
Affiliation(s)
- Arman Shafiee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Kyana Jafarabady
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sepehr Siahvoshi
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
31
|
Darapaneni V, Jaldani A. <em>In silico</em> identification of ivermectin as an influenza A virus nuclear export protein inhibitor. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-71-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Influenza A virus (IAV) is an etiological agent infecting animals and humans that is responsible for seasonal epidemics and devastating pandemics. IAV nuclear export protein (NEP) is a multifaceted protein that plays a pivotal role in the virus life cycle. One of the most important functions of IAV NEP is to transport newly synthesized viral ribonucleoproteins from the nucleus to the cytoplasm. This function is achieved by the interaction between NEP and matrix protein 1 (M1) facilitated by Trp78 surrounded by negatively charged Glu residues in the M1 binding domain of NEP. In the present study, we targeted the IAV NEP with ivermectin. Utilizing in silico molecular docking, we tested ivermectin for its ability to bind NEP. We found that ivermectin strongly binds to NEP with an affinity of –7.3 kcal/mol. The ivermectin binding site identified in this study is located in the NEP-M1 protein interaction region. It is anticipated that blocking NEP-M1 protein interaction can have a considerably deleterious effect on IAV assembly and propagation. This study highlights the possibility of exploring ivermectin as a potential IAV NEP protein blocker, which could be an important therapeutic strategy in the treatment of influenza.
Collapse
Affiliation(s)
| | - A. Jaldani
- Anvek Institute of Biomolecular Research
| |
Collapse
|
32
|
Abstract
Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.
Collapse
Affiliation(s)
- Jeannette L Tenthorey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , ,
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
33
|
Panahi Y, Dadkhah M, Talei S, Gharari Z, Asghariazar V, Abdolmaleki A, Matin S, Molaei S. Can anti-parasitic drugs help control COVID-19? Future Virol 2022. [PMID: 35359702 PMCID: PMC8940209 DOI: 10.2217/fvl-2021-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Novel COVID-19 is a public health emergency that poses a serious threat to people worldwide. Given the virus spreading so quickly, novel antiviral medications are desperately needed. Repurposing existing drugs is the first strategy. Anti-parasitic drugs were among the first to be considered as a potential treatment option for this disease. Even though many papers have discussed the efficacy of various anti-parasitic drugs in treating COVID-19 separately, so far, no single study comprehensively discussed these drugs. This study reviews some anti-parasitic recommended drugs to treat COVID-19, in terms of function and in vitro as well as clinical results. Finally, we briefly review the advanced techniques, such as artificial intelligence, that have been used to find effective drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Yasin Panahi
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Gharari
- Department of Biotechnology, Faculty of Biological Sciences, Al-Zahra University, Tehran, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.,Bio Science & Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran
| | - Somayeh Matin
- Department of Internal Medicine, Imam Khomeini Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
34
|
Patil VM, Verma S, Masand N. Prospective mode of action of Ivermectin: SARS-CoV-2. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 4:100018. [PMID: 36593981 PMCID: PMC8607737 DOI: 10.1016/j.ejmcr.2021.100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
The well-known anti-helminthic drug ivermectin (IVM) has been established as an example of drug repurposing for the management of SARS-CoV-2 infection. Various study has been done to understand the inhibitory mechanism of IVM against SARS-CoV-2 targets. Broadly, IVM has been categorized as a host-directed agent and the proposed mechanism involves inhibition of the IMPα/ß1-mediated nuclear import of viral proteins. In addition, in vitro/in vivo and molecular docking/dynamic simulation studies suggested multitargets mechanism of IVM against SARS-CoV-2. Present manuscript attempts to provide an overview of the detailed mechanism of action based on experimental and computational studies. The knowledge of binding interaction of IVM and SARS-CoV-2 targets will give the direction to developed new and potential anti-COVID agents.
Collapse
Affiliation(s)
- Vaishali M Patil
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Saroj Verma
- Department of Pharmaceutical Chemistry, SGT University, Gurugram, Haryana, 122505, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
35
|
Reynolds DL, Simpson EB. Evaluation of ivermectin antiviral activity against avian infectious bronchitis virus using a chicken embryo model. Int J Vet Sci Med 2022; 10:19-24. [PMID: 35382155 PMCID: PMC8959520 DOI: 10.1080/23144599.2022.2050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ivermectin is widely used in both animals and humans as an FDA-approved parasiticide. Ivermectin has also been reported to have antiviral activity against several viruses including coronaviruses. There are reports that indicate ivermectin may have some role in diminishing the disease caused by SARS-CoV-2, but the evidence is inconclusive. The objective of this study was to determine if ivermectin was efficacious in inhibiting avian infectious bronchitis virus (IBV, a coronavirus) replication in chicken embryos. Briefly, our approach was to use the Massachusetts vaccine strain of IBV in combination with various doses of ivermectin and then inoculate these preparations into chicken embryos to determine if IBV replication was inhibited. The embryos were examined for IBV lesions and samples of chorioallantoic fluid were collected for IBV RT-PCR analysis. Several trials were performed, and the results of our study indicate that ivermectin did not inhibit IBV replication in chicken embryos.
Collapse
Affiliation(s)
- Donald L. Reynolds
- School of Veterinary Medicine and Biomedical Sciences University of Nebraska – Lincoln, Lincoln, NE, USA
| | - E. Barry Simpson
- School of Veterinary Medicine and Biomedical Sciences University of Nebraska – Lincoln, Lincoln, NE, USA
| |
Collapse
|
36
|
Hu Y, Pan Q, Zhou K, Ling Y, Wang H, Li Y. RUNX1 inhibits the antiviral immune response against influenza A virus through attenuating type I interferon signaling. Virol J 2022; 19:39. [PMID: 35248104 PMCID: PMC8897766 DOI: 10.1186/s12985-022-01764-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Influenza A viruses (IAVs) are zoonotic, segmented negative-stranded RNA viruses. The rapid mutation of IAVs results in host immune response escape and antiviral drug and vaccine resistance. RUNX1 is a transcription factor that not only plays essential roles in hematopoiesis, but also functions as a regulator in inflammation. However, its role in the innate immunity to IAV infection has not been well studied. Methods To investigate the effects of RUNX1 on IAV infection and explore the mechanisms that RUNX1 uses during IAV infection. We infected the human alveolar epithelial cell line (A549) with influenza virus A/Puerto Rico/8/34 (H1N1) (PR8) and examined RUNX1 expression by Western blot and qRT-PCR. We also knocked down or overexpressed RUNX1 in A549 cells, then evaluated viral replication by Western blot, qRT-PCR, and viral titration. Results We found RUNX1 expression is induced by IAV H1N1 PR8 infection, but not by poly(I:C) treatment, in the human alveolar epithelial cell line A549. Knockdown of RUNX1 significantly inhibited IAV infection. Conversely, overexpression of RUNX1 efficiently promoted production of progeny viruses. Additionally, RUNX1 knockdown increased IFN-β and ISGs production while RUNX1 overexpression compromised IFN-β and ISGs production upon PR8 infection in A549 cells. We further showed that RUNX1 may attenuate the interferon signaling transduction by hampering the expression of IRF3 and STAT1 during IAV infection. Conclusions Taken together, we found RUNX1 attenuates type I interferon signaling to facilitate IAV infection in A549 cells.
Collapse
|
37
|
Hariyanto TI, Halim DA, Rosalind J, Gunawan C, Kurniawan A. Ivermectin and outcomes from Covid‐19 pneumonia: A systematic review and meta‐analysis of randomized clinical trial studies. Rev Med Virol 2022; 32:e2265. [PMCID: PMC8209939 DOI: 10.1002/rmv.2265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ivermectin is an FDA‐approved drug for a parasitic disease that has broad antiviral activity. This study aims to analyse the efficacy of ivermectin in improving the Covid‐19 outcomes. We systematically searched the PubMed, Europe PMC and ClinicalTrials.gov database using specific keywords related to our aims until 10th May 2021. All published randomized clinical trial studies on Covid‐19 and ivermectin were retrieved. The quality of the study was assessed using Jadad scale assessment tool for clinical trial studies. Statistical analysis was done using Review Manager 5.4 software. A total of 19 studies with 2768 Covid‐19 patients were included in this meta‐analysis. This meta‐analysis showed that ivermectin was associated with reduction in severity of Covid‐19 (RR 0.43 [95% CI 0.23–0.81], p = 0.008), reduction of mortality (RR 0.31 [95% CI 0.15–0.62], p = 0.001), higher negative RT‐PCR test results rate (RR 1.23 [95% CI 1.01–1.51], p = 0.04), shorter time to negative RT‐PCR test results (mean difference [MD] −3.29 [95% CI −5.69, −0.89], p = 0.007), higher symptoms alleviations rate (RR 1.23 [95% CI 1.03−1.46], p = 0.02), shorter time to symptoms alleviations (MD −0.68 [95% CI −1.07, −0.29], p = 0.0007) and shorter time to hospital discharge (MD −2.66 [95% CI −4.49, −0.82], p = 0.004). Our study suggests that ivermectin may offer beneficial effects towards Covid‐19 outcomes. More randomized clinical trial studies are still needed to confirm the results of our study.
Collapse
Affiliation(s)
| | | | - Jane Rosalind
- Faculty of MedicinePelita Harapan UniversityTangerangIndonesia
| | | | - Andree Kurniawan
- Department of Internal MedicineFaculty of MedicinePelita Harapan UniversityTangerangIndonesia
| |
Collapse
|
38
|
Dicks LMT, Deane SM, Grobbelaar MJ. Could the COVID-19-Driven Increased Use of Ivermectin Lead to Incidents of Imbalanced Gut Microbiota and Dysbiosis? Probiotics Antimicrob Proteins 2022; 14:217-223. [PMID: 35218001 PMCID: PMC8881049 DOI: 10.1007/s12602-022-09925-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
The microfilaricidal anthelmintic drug ivermectin (IVM) has been used since 1988 for treatment of parasitic infections in animals and humans. The discovery of IVM’s ability to inactivate the eukaryotic importin α/β1 heterodimer (IMPα/β1), used by some viruses to enter the nucleus of susceptible hosts, led to the suggestion of using the drug to combat SARS-CoV-2 infection. Since IVM has antibacterial properties, prolonged use may affect commensal gut microbiota. In this review, we investigate the antimicrobial properties of IVM, possible mode of activity, and the concern that treatment of individuals diagnosed with COVID-19 may lead to dysbiosis.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Shelly M Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Matthew J Grobbelaar
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
39
|
Kalhor H, Sadeghi S, Abolhasani H, Kalhor R, Rahimi H. Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches. J Biomol Struct Dyn 2022; 40:1299-1315. [PMID: 32969333 PMCID: PMC7576931 DOI: 10.1080/07391102.2020.1824816] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/12/2020] [Indexed: 12/19/2022]
Abstract
Most recently, the new coronavirus (SARS-CoV-2) has been recognized as a pandemic by the World Health Organization (WHO) while this virus shares substantial similarity with SARS-CoV. So far, no definitive vaccine or drug has been developed to cure Covid-19 disease, since many important aspects about Covid-19 such as pathogenesis and proliferation pathways are still unclear. It was proven that human ACE2 is the main receptor for the entry of Covid-19 into lower respiratory tract epithelial cells through interaction with SARS-CoV-2 S protein. Based on this observation, it is expected that the virus infection can be inhibited if protein-protein interaction is prevented. In this study, using structure-based virtual screening of FDA databases, several lead drugs were discovered based on the ACE2-binding pocket of SARS-CoV-2 S protein. Then, binding affinity, binding modes, critical interactions, and pharmaceutical properties of the lead drugs were evaluated. Among the previously approved drugs, Diammonium Glycyrrhizinate, Digitoxin, Ivermectin, Rapamycin, Rifaximin, and Amphotericin B represented the most desirable features, and can be possible candidates for Covid-19 therapies. Furthermore, molecular dynamics (MD) simulation was accomplished for three S protein/drug complexes with the highest binding affinity and best conformation and binding free energies were also computed with the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. Results demonstrated the stable binding of these compounds to the S protein; however, in order to confirm the curative effect of these drugs, clinical trials must be done.
Collapse
Affiliation(s)
- Hourieh Kalhor
- Cellular and Molecular Research Center, Qom
University of Medical Sciences, Qom,
Iran
- Molecular Medicine Department, Biotechnology
Research Center, Pasteur Institute of Iran, Tehran,
Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of
Advanced Technologies in Medicine, Tehran University of Medical Sciences,
Tehran, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom
University of Medical Sciences, Qom,
Iran
- Spiritual Health Research Center, Qom
University of Medical Sciences, Qom,
Iran
- Department of Pharmacology, School of
Medicine, Qom University of Medical Sciences, Qom,
Iran
| | - Reyhaneh Kalhor
- Cellular and Molecular Research Center, Qom
University of Medical Sciences, Qom,
Iran
- Department of Genetics, Colleague of Sciences,
Kazerun branch, Islamic Azad University, Kazerun,
Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology
Research Center, Pasteur Institute of Iran, Tehran,
Iran
| |
Collapse
|
40
|
Azeez TA, Lakoh S, Adeleke AA, Balogun OT, Olanipekun BJ, Olusola FI. Chemoprophylaxis against COVID-19 among health-care workers using Ivermectin in low- and middle-income countries: A systematic review and meta-analysis. Indian J Pharmacol 2022; 53:493-498. [PMID: 34975139 PMCID: PMC8764977 DOI: 10.4103/ijp.ijp_117_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) is a novel viral infectious disease that the World Health Organization (WHO) has announced to be a pandemic. This meta-analysis was aimed at providing evidence for the use of ivermectin to prevent COVID-19 among hospital workers in low-resource countries. Medical databases including African Journals online, Google Scholar, PubMed, Cochrane library, EMBASE, COVID-19 research database (WHO), Clinicaltrials.gov, and SCOPUS were searched for studies on Ivermectin as a chemoprophylactic drug against COVID-19 among hospital personnel in settings with limited resources. Preprint servers such as bioRxiv and medRxiv as well as the gray literature were also searched. Studies adjudged to be eligible were identified using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses algorithm. Statistical analyses were done using Stata version 14.3. Seven studies were selected for the meta-analysis. The total sample size was 2652. There were two randomized controlled trials and five nonrandomized studies. Some studies dosed Ivermectin daily while some dosed it weekly. However, one of the studies dosed it monthly. The studies reported variable clinical benefits. I2 statistic was 92%, and random effect model was used. The pooled odd ratio was 0.11 (95% confidence interval 0.09–0.13). This implies that 89% of the participants benefited from taking Ivermectin as a form of preexposure chemoprophylaxis. Ivermectin has a significant clinical benefit as a preventive drug against COVID-19 for hospital personnel in settings with limited resources.
Collapse
Affiliation(s)
- Taoreed Adegoke Azeez
- Department of Medicine, Endocrinology Unit, University College Hospital, Ibadan, Nigeria
| | - Sulaiman Lakoh
- Department of Medicine, Infectious Diseases Unit, College of Medicine and Allied Health Sciences, Freetown, Sierra Leone
| | | | | | | | | |
Collapse
|
41
|
Agrawal M, Saraf S, Saraf S, Murty US, Kurundkar SB, Roy D, Joshi P, Sable D, Choudhary YK, Kesharwani P, Alexander A. In-line treatments and clinical initiatives to fight against COVID-19 outbreak. Respir Med 2022; 191:106192. [PMID: 33199136 PMCID: PMC7567661 DOI: 10.1016/j.rmed.2020.106192] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
In December 2019, when the whole world is waiting for Christmas and New Year, the physicians of Wuhan, China, are astounded by clusters of patients suffering from pneumonia from unknown causes. The pathogen isolated from the respiratory epithelium of the patients is similar to previously known coronaviruses with some distinct features. The disease was initially called nCoV-2019 or SARS-nCoV-2 and later termed as COVID-19 by WHO. The infection is rapidly propagating from the day of emergence, spread throughout the globe and now became a pandemic which challenged the competencies of developed nations in terms of health care management. As per WHO report, 216 countries are affected with SARS-CoV-19 by August 5, 2020 with 18, 142, 718 confirmed cases and 691,013 deaths reports. Such huge mortality and morbidity rates are truly threatening and calls for some aggressive and effective measures to slow down the disease transmission. The scientists are constantly engaged in finding a potential solution to diagnose and treat the pandemic. Various FDA approved drugs with the previous history of antiviral potency are repurposed for COVID-19 treatment. Different drugs and vaccines are under clinical trials and some rapid and effective diagnostic tools are also under development. In this review, we have highlighted the current epidemiology through infographics, disease transmission and progression, clinical features and diagnosis and possible therapeutic approaches for COVID-19. The article mainly focused on the development and possible application of various FDA approved drugs, including chloroquine, remdesivir, favipiravir, nefamostate mesylate, penciclovir, nitazoxanide, ribavirin etc., vaccines under development and various registered clinical trials exploring different therapeutic measures for the treatment of COVID-19. This information will definitely help the researchers to understand the in-line scientific progress by various clinical agencies and regulatory bodies against COVID-19.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India
| | - Sucheta Banerjee Kurundkar
- Clinical Development Services Agency (An Extramural Unit of Translational Health Science & Technology Institute, Dept of Biotechnology, Ministry of Science & Technology, Govt. of India) NCR Biotech Science Cluster, 3rd Milestone, Gurgaon- Faridabad Expressway, Faridabad, 121001, India
| | - Debjani Roy
- Clinical Development Services Agency (An Extramural Unit of Translational Health Science & Technology Institute, Dept of Biotechnology, Ministry of Science & Technology, Govt. of India) NCR Biotech Science Cluster, 3rd Milestone, Gurgaon- Faridabad Expressway, Faridabad, 121001, India
| | - Pankaj Joshi
- Kulkarni EndoSurgery Institute and Reconstructive Urology Centre, Paud Raod, Pune, 411038, India; Department of Urology, Deenanath Mangeshkar Hospital and Research Center, Erendawane, Pune, 411004, India
| | - Dhananjay Sable
- Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, New Delhi, 110001, India
| | - Yogendra Kumar Choudhary
- Etica Clinpharm Pvt Ltd, CCRP-317, Ambuja City Centre, Vidhan Sabha Road, Mowa, Raipur, Chhattisgarh, 492001, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India.
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India.
| |
Collapse
|
42
|
Bhat R, Soliman SS, El-Sayed Ahmed MM, Husseiny MI. COVID-19 Pandemic: Outbreak, Potential Vaccines And Medications. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The outbreak of the current global pandemic caused by the spread of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed an unprecedented threat to global health and economy across the whole world. As of today, the number of cases diagnosed with SARS-CoV-2 is exceeding 271 million with over 5.32 million deaths globally. Despite the high throughput technology and considerable advances in sciences, the outbreaks of the COVID-19 pandemic present a colossal challenge to scientific community. Scientists and clinicians all over the world are putting tremendous efforts to develop effective treatments to combat this deadly pathogen, at least to contain it momentarily until an adequate treatment regimen is available. Conventionally, vaccines have been developed as one of the therapeutic strategies to restrict infectious diseases. Although several vaccines are in the pipeline, evaluation of efficacy in animals’ studies and human are time-consuming. On the other hand, several drugs already in clinical use are being employed to test their efficacy against SARS-CoV-2. Some of these drugs have been already used as anti-viral drugs and others have been used for different therapeutic purposes. In this review, we summarize the ongoing efforts to control the dissemination of SARS-CoV-2 and highlight the potential prophylactic and therapeutic measures including the recently developed vaccines in the foreseeable future. Moreover, we emphasize an importance of having a customized strategy that can be easily and quickly employed to overcome possible future outbreaks.
Collapse
Affiliation(s)
- Rauf Bhat
- King Saud University, Riyadh, Saudi Arabia
| | | | | | - Mohamed I. Husseiny
- Beckman Research Institute of City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
43
|
Endo T, Takemae H, Sharma I, Furuya T. Multipurpose Drugs Active Against Both Plasmodium spp. and Microorganisms: Potential Application for New Drug Development. Front Cell Infect Microbiol 2021; 11:797509. [PMID: 35004357 PMCID: PMC8740689 DOI: 10.3389/fcimb.2021.797509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022] Open
Abstract
Malaria, a disease caused by the protozoan parasites Plasmodium spp., is still causing serious problems in endemic regions in the world. Although the WHO recommends artemisinin combination therapies for the treatment of malaria patients, the emergence of artemisinin-resistant parasites has become a serious issue and underscores the need for the development of new antimalarial drugs. On the other hand, new and re-emergences of infectious diseases, such as the influenza pandemic, Ebola virus disease, and COVID-19, are urging the world to develop effective chemotherapeutic agents against the causative viruses, which are not achieved to the desired level yet. In this review article, we describe existing drugs which are active against both Plasmodium spp. and microorganisms including viruses, bacteria, and fungi. We also focus on the current knowledge about the mechanism of actions of these drugs. Our major aims of this article are to describe examples of drugs that kill both Plasmodium parasites and other microbes and to provide valuable information to help find new ideas for developing novel drugs, rather than merely augmenting already existing drug repurposing efforts.
Collapse
Affiliation(s)
- Takuro Endo
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Indu Sharma
- Department of Biological Sciences, Hampton University, Hampton, VA, United States
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
44
|
Emrani J, Ahmed M, Jeffers-Francis L, Teleha JC, Mowa N, Newman RH, Thomas MD. SARS-COV-2, infection, transmission, transcription, translation, proteins, and treatment: A review. Int J Biol Macromol 2021; 193:1249-1273. [PMID: 34756970 PMCID: PMC8552795 DOI: 10.1016/j.ijbiomac.2021.10.172] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023]
Abstract
In this review, we describe the key molecular entities involved in the process of infection by SARS-CoV-2, while also detailing how those key entities influence the spread of the disease. We further introduce the molecular mechanisms of preventive and treatment strategies including drugs, antibodies, and vaccines.
Collapse
Affiliation(s)
- Jahangir Emrani
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27411, United States of America.
| | - Maryam Ahmed
- Department of Biology, Appalachian State University, Boone, NC 28608, United States of America
| | - Liesl Jeffers-Francis
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| | - John C Teleha
- Department of Reference and Instruction, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| | - Nathan Mowa
- Department of Biology, Appalachian State University, Boone, NC 28608, United States of America
| | - Robert H Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| | - Misty D Thomas
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| |
Collapse
|
45
|
Murugan C, Ramamoorthy S, Kuppuswamy G, Murugan RK, Sivalingam Y, Sundaramurthy A. COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. Int J Biol Macromol 2021; 193:1165-1200. [PMID: 34710479 PMCID: PMC8545698 DOI: 10.1016/j.ijbiomac.2021.10.144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
Today, the world population is facing an existential threat by an invisible enemy known as severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) or COVID-19. It is highly contagious and has infected a larger fraction of human population across the globe on various routes of transmission. The detailed knowledge of the SARS-CoV-2 structure and clinical aspects offers an important insight into the evolution of infection, disease progression and helps in executing the different therapies effectively. Herein, we have discussed in detail about the genome structure of SARS-CoV-2 and its role in the proteomic rational spread of different muted species and pathogenesis in infecting the host cells. The mechanisms behind the viral outbreak and its immune response, the availability of existing diagnostics techniques, the treatment efficacy of repurposed drugs and the emerging vaccine trials for the SARS-CoV-2 outbreak also have been highlighted. Furthermore, the possible antiviral effects of various herbal products and their extracted molecules in inhibiting SARS-CoV-2 replication and cellular entry are also reported. Finally, we conclude our opinion on current challenges involved in the drug development, bulk production of drug/vaccines and their storage requirements, logistical procedures and limitations related to dosage trials for larger population.
Collapse
Affiliation(s)
- Chandran Murugan
- SRM Research Institute, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Guruprasad Kuppuswamy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Rajesh Kumar Murugan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- SRM Research Institute, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; Department of Chemical Engineering, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India.
| |
Collapse
|
46
|
Davis J, Umeh U, Saba R. Treatment of SARS-CoV-2 (COVID-19): A safety perspective. World J Pharmacol 2021; 10:1-32. [DOI: 10.5497/wjp.v10.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/22/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The goal of this review is to report a balanced perspective of current evidence for efficacy of treatments for coronavirus disease 2019 (COVID-19) against the historical safety of these treatments as of May 2021. We preselected therapies of interest for COVID-19 based on national guidelines and modified over time. We searched PubMed and Medline for these specific COVID-19 treatments and data related to their efficacy. We also searched for prior randomized controlled trials of each therapy to assess adverse effects, and we obtained the Food and Drug Administration Approval label for this information. Several drugs have been approved for the treatment of COVID-19, and many more are under study. This includes dexamethasone, remdesivir, hydroxychloroquine/chloroquine, lopinvir/ritonavir, interferon or interleukin inhibitors, convalescent plasma and several vitamins and minerals. The strongest evidence for benefit is mortality benefit with dexamethasone in patients with COVID-19 and hypoxemia, although there is a signal of harm if this is started too early. There are several other promising therapies, like interleukin inhibitors and ivermectin. Hydroxychloroquine/chloroquine, lopinvir/ritonavir, and convalescent plasma do not have enough evidence of benefit to outweigh the known risks of these drugs.
Collapse
Affiliation(s)
- Joshua Davis
- Department of Emergency Medicine, Vituity, Wichita, KS 67214, United States
| | - Ugochukwu Umeh
- College of Medicine, Medical University of Lublin, Lublin 20-093, Poland
| | - Rand Saba
- Department of Surgery, Ascension Providence Hospital, Southfield, MI 48075, United States
| |
Collapse
|
47
|
Popp M, Stegemann M, Metzendorf MI, Gould S, Kranke P, Meybohm P, Skoetz N, Weibel S. Ivermectin for preventing and treating COVID-19. Cochrane Database Syst Rev 2021; 7:CD015017. [PMID: 34318930 PMCID: PMC8406455 DOI: 10.1002/14651858.cd015017.pub2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ivermectin, an antiparasitic agent used to treat parasitic infestations, inhibits the replication of viruses in vitro. The molecular hypothesis of ivermectin's antiviral mode of action suggests an inhibitory effect on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in the early stages of infection. Currently, evidence on efficacy and safety of ivermectin for prevention of SARS-CoV-2 infection and COVID-19 treatment is conflicting. OBJECTIVES To assess the efficacy and safety of ivermectin compared to no treatment, standard of care, placebo, or any other proven intervention for people with COVID-19 receiving treatment as inpatients or outpatients, and for prevention of an infection with SARS-CoV-2 (postexposure prophylaxis). SEARCH METHODS We searched the Cochrane COVID-19 Study Register, Web of Science (Emerging Citation Index and Science Citation Index), medRxiv, and Research Square, identifying completed and ongoing studies without language restrictions to 26 May 2021. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing ivermectin to no treatment, standard of care, placebo, or another proven intervention for treatment of people with confirmed COVID-19 diagnosis, irrespective of disease severity, treated in inpatient or outpatient settings, and for prevention of SARS-CoV-2 infection. Co-interventions had to be the same in both study arms. We excluded studies comparing ivermectin to other pharmacological interventions with unproven efficacy. DATA COLLECTION AND ANALYSIS We assessed RCTs for bias, using the Cochrane risk of bias 2 tool. The primary analysis excluded studies with high risk of bias. We used GRADE to rate the certainty of evidence for the following outcomes 1. to treat inpatients with moderate-to-severe COVID-19: mortality, clinical worsening or improvement, adverse events, quality of life, duration of hospitalization, and viral clearance; 2. to treat outpatients with mild COVID-19: mortality, clinical worsening or improvement, admission to hospital, adverse events, quality of life, and viral clearance; (3) to prevent SARS-CoV-2 infection: SARS-CoV-2 infection, development of COVID-19 symptoms, adverse events, mortality, admission to hospital, and quality of life. MAIN RESULTS We found 14 studies with 1678 participants investigating ivermectin compared to no treatment, placebo, or standard of care. No study compared ivermectin to an intervention with proven efficacy. There were nine studies treating participants with moderate COVID-19 in inpatient settings and four treating mild COVID-19 cases in outpatient settings. One study investigated ivermectin for prevention of SARS-CoV-2 infection. Eight studies had an open-label design, six were double-blind and placebo-controlled. Of the 41 study results contributed by included studies, about one third were at overall high risk of bias. Ivermectin doses and treatment duration varied among included studies. We identified 31 ongoing and 18 studies awaiting classification until publication of results or clarification of inconsistencies. Ivermectin compared to placebo or standard of care for inpatient COVID-19 treatment We are uncertain whether ivermectin compared to placebo or standard of care reduces or increases mortality (risk ratio (RR) 0.60, 95% confidence interval (CI) 0.14 to 2.51; 2 studies, 185 participants; very low-certainty evidence) and clinical worsening up to day 28 assessed as need for invasive mechanical ventilation (IMV) (RR 0.55, 95% CI 0.11 to 2.59; 2 studies, 185 participants; very low-certainty evidence) or need for supplemental oxygen (0 participants required supplemental oxygen; 1 study, 45 participants; very low-certainty evidence), adverse events within 28 days (RR 1.21, 95% CI 0.50 to 2.97; 1 study, 152 participants; very low-certainty evidence), and viral clearance at day seven (RR 1.82, 95% CI 0.51 to 6.48; 2 studies, 159 participants; very low-certainty evidence). Ivermectin may have little or no effect compared to placebo or standard of care on clinical improvement up to 28 days (RR 1.03, 95% CI 0.78 to 1.35; 1 study; 73 participants; low-certainty evidence) and duration of hospitalization (mean difference (MD) -0.10 days, 95% CI -2.43 to 2.23; 1 study; 45 participants; low-certainty evidence). No study reported quality of life up to 28 days. Ivermectin compared to placebo or standard of care for outpatient COVID-19 treatment We are uncertain whether ivermectin compared to placebo or standard of care reduces or increases mortality up to 28 days (RR 0.33, 95% CI 0.01 to 8.05; 2 studies, 422 participants; very low-certainty evidence) and clinical worsening up to 14 days assessed as need for IMV (RR 2.97, 95% CI 0.12 to 72.47; 1 study, 398 participants; very low-certainty evidence) or non-IMV or high flow oxygen requirement (0 participants required non-IMV or high flow; 1 study, 398 participants; very low-certainty evidence). We are uncertain whether ivermectin compared to placebo reduces or increases viral clearance at seven days (RR 3.00, 95% CI 0.13 to 67.06; 1 study, 24 participants; low-certainty evidence). Ivermectin may have little or no effect compared to placebo or standard of care on the number of participants with symptoms resolved up to 14 days (RR 1.04, 95% CI 0.89 to 1.21; 1 study, 398 participants; low-certainty evidence) and adverse events within 28 days (RR 0.95, 95% CI 0.86 to 1.05; 2 studies, 422 participants; low-certainty evidence). None of the studies reporting duration of symptoms were eligible for primary analysis. No study reported hospital admission or quality of life up to 14 days. Ivermectin compared to no treatment for prevention of SARS-CoV-2 infection We found one study. Mortality up to 28 days was the only outcome eligible for primary analysis. We are uncertain whether ivermectin reduces or increases mortality compared to no treatment (0 participants died; 1 study, 304 participants; very low-certainty evidence). The study reported results for development of COVID-19 symptoms and adverse events up to 14 days that were included in a secondary analysis due to high risk of bias. No study reported SARS-CoV-2 infection, hospital admission, and quality of life up to 14 days. AUTHORS' CONCLUSIONS Based on the current very low- to low-certainty evidence, we are uncertain about the efficacy and safety of ivermectin used to treat or prevent COVID-19. The completed studies are small and few are considered high quality. Several studies are underway that may produce clearer answers in review updates. Overall, the reliable evidence available does not support the use ivermectin for treatment or prevention of COVID-19 outside of well-designed randomized trials.
Collapse
Affiliation(s)
- Maria Popp
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maria-Inti Metzendorf
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Susan Gould
- Royal Liverpool University Hospital, Liverpool, UK
| | - Peter Kranke
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephanie Weibel
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
48
|
Vanden Eynde JJ. COVID-19: Failure of the DisCoVeRy Clinical Trial, and Now-New Hopes? Pharmaceuticals (Basel) 2021; 14:664. [PMID: 34358090 PMCID: PMC8308776 DOI: 10.3390/ph14070664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
The DisCoVeRy clinical trial aimed at the evaluation of four treatments for patients suffering from severe to critical COVID-19: Hydroxychloroquine, eventually associated with azithromycin; the combination lopinavir/ritonavir; the combination with the addition of interferon β-1a; remdesivir. The trial was discontinued due to the lack of positive results. Meanwhile, many other potential options have been considered either to target the virus itself, the interactions with the host cells, or the cytokine storm frequently observed during the infection. Several of those options are briefly reviewed. They include vaccines, small molecules, antibodies, and stem cells.
Collapse
Affiliation(s)
- Jean Jacques Vanden Eynde
- Formerly Head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium
| |
Collapse
|
49
|
Vallejos J, Zoni R, Bangher M, Villamandos S, Bobadilla A, Plano F, Campias C, Chaparro Campias E, Medina MF, Achinelli F, Guglielmone HA, Ojeda J, Farizano Salazar D, Andino G, Kawerin P, Dellamea S, Aquino AC, Flores V, Martemucci CN, Martinez SM, Segovia JE, Reynoso PI, Sosa NC, Robledo ME, Guarrochena JM, Vernengo MM, Ruiz Diaz N, Meza E, Aguirre MG. Ivermectin to prevent hospitalizations in patients with COVID-19 (IVERCOR-COVID19) a randomized, double-blind, placebo-controlled trial. BMC Infect Dis 2021; 21:635. [PMID: 34215210 PMCID: PMC8250562 DOI: 10.1186/s12879-021-06348-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has changed our lives. The scientific community has been investigating re-purposed treatments to prevent disease progression in coronavirus disease (COVID-19) patients. OBJECTIVE To determine whether ivermectin treatment can prevent hospitalization in individuals with early COVID-19. DESIGN, SETTING AND PARTICIPANTS A randomized, double-blind, placebo-controlled study was conducted in non-hospitalized individuals with COVID-19 in Corrientes, Argentina. Patients with SARS-CoV-2 positive nasal swabs were contacted within 48 h by telephone to invite them to participate. The trial randomized 501 patients between August 19th 2020 and February 22nd 2021. INTERVENTION Patients were randomized to ivermectin (N = 250) or placebo (N = 251) arms in a staggered dose, according to the patient's weight, for 2 days. MAIN OUTCOMES AND MEASURES The efficacy of ivermectin to prevent hospitalizations was evaluated as primary outcome. We evaluated secondary outcomes in relationship to safety and other efficacy end points. RESULTS The mean age was 42 years (SD ± 15.5) and the median time since symptom onset to the inclusion was 4 days [interquartile range 3-6]. The primary outcome of hospitalization was met in 14/250 (5.6%) individuals in ivermectin group and 21/251 (8.4%) in placebo group (odds ratio 0.65; 95% confidence interval, 0.32-1.31; p = 0.227). Time to hospitalization was not statistically different between groups. The mean time from study enrollment to invasive mechanical ventilatory support (MVS) was 5.25 days (SD ± 1.71) in ivermectin group and 10 days (SD ± 2) in placebo group, (p = 0.019). There were no statistically significant differences in the other secondary outcomes including polymerase chain reaction test negativity and safety outcomes. LIMITATIONS Low percentage of hospitalization events, dose of ivermectin and not including only high-risk population. CONCLUSION Ivermectin had no significant effect on preventing hospitalization of patients with COVID-19. Patients who received ivermectin required invasive MVS earlier in their treatment. No significant differences were observed in any of the other secondary outcomes. TRIAL REGISTRATION ClinicalTrials.gov NCT04529525 .
Collapse
Affiliation(s)
- Julio Vallejos
- Instituto de Cardiología de Corrientes, Bolivar 1334, Zip code, 3400, Corrientes, Argentina
| | - Rodrigo Zoni
- Instituto de Cardiología de Corrientes, Bolivar 1334, Zip code, 3400, Corrientes, Argentina.
| | - María Bangher
- Instituto de Cardiología de Corrientes, Bolivar 1334, Zip code, 3400, Corrientes, Argentina
| | - Silvina Villamandos
- Instituto de Cardiología de Corrientes, Bolivar 1334, Zip code, 3400, Corrientes, Argentina
| | - Angelina Bobadilla
- Epidemiology. Ministerio de Salud Pública de la Provincia de Corrientes, Corrientes, Argentina
| | - Fabian Plano
- Hospital de Campaña, Ministerio de Salud Pública de la Provincia de Corrientes, Ministerio de Salud Pública de Corrientes, Corrientes, Argentina
| | - Claudia Campias
- Epidemiology. Ministerio de Salud Pública de la Provincia de Corrientes, Corrientes, Argentina
| | | | - Maria Fernanda Medina
- Instituto de Cardiología de Corrientes, Bolivar 1334, Zip code, 3400, Corrientes, Argentina
| | - Fernando Achinelli
- Hospital de Campaña, Ministerio de Salud Pública de la Provincia de Corrientes, Ministerio de Salud Pública de Corrientes, Corrientes, Argentina
| | | | - Jorge Ojeda
- Hospital de Campaña, Ministerio de Salud Pública de la Provincia de Corrientes, Ministerio de Salud Pública de Corrientes, Corrientes, Argentina
| | - Diego Farizano Salazar
- Hospital de Campaña, Ministerio de Salud Pública de la Provincia de Corrientes, Ministerio de Salud Pública de Corrientes, Corrientes, Argentina
| | - Gerardo Andino
- Ministerio de Salud Pública de la Provincia de Corrientes, Corrientes, Argentina
| | - Pablo Kawerin
- Ministerio de Salud Pública de la Provincia de Corrientes, Corrientes, Argentina
| | - Silvana Dellamea
- Hospital de Campaña, Ministerio de Salud Pública de la Provincia de Corrientes, Ministerio de Salud Pública de Corrientes, Corrientes, Argentina
| | - Antonia Cristina Aquino
- Hospital de Campaña, Ministerio de Salud Pública de la Provincia de Corrientes, Ministerio de Salud Pública de Corrientes, Corrientes, Argentina
| | - Victor Flores
- Hospital de Campaña, Ministerio de Salud Pública de la Provincia de Corrientes, Ministerio de Salud Pública de Corrientes, Corrientes, Argentina
| | | | | | - Juan Emanuel Segovia
- Epidemiology. Ministerio de Salud Pública de la Provincia de Corrientes, Corrientes, Argentina
| | - Paola Itati Reynoso
- Instituto de Cardiología de Corrientes, Bolivar 1334, Zip code, 3400, Corrientes, Argentina
| | - Noelia Carolina Sosa
- Instituto de Cardiología de Corrientes, Bolivar 1334, Zip code, 3400, Corrientes, Argentina
| | | | | | - Maria Mercedes Vernengo
- Epidemiology. Ministerio de Salud Pública de la Provincia de Corrientes, Corrientes, Argentina
| | - Natalia Ruiz Diaz
- Ministerio de Salud Pública de la Provincia de Corrientes, Corrientes, Argentina
| | - Elba Meza
- Epidemiology. Ministerio de Salud Pública de la Provincia de Corrientes, Corrientes, Argentina
| | - María Gabriela Aguirre
- Instituto de Cardiología de Corrientes, Bolivar 1334, Zip code, 3400, Corrientes, Argentina
| |
Collapse
|
50
|
Ünlü B, Simsek R, Köse SBE, Yirün A, Erkekoglu P. Neurological Effects of Sars-Cov-2 And Neurotoxicity of Antiviral Drugs Against Covid-19. Mini Rev Med Chem 2021; 22:213-231. [PMID: 34191697 DOI: 10.2174/1389557521666210629100630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) is caused by different SARS viruses. In 2020, novel coronavirus (SARS-CoV-2) led to an ongoing pandemic, known as "Coronavirus Disease 2019 (COVID-19)". The disease can spread among individuals through direct (via saliva, respiratory secretions or secretion droplets) or indirect (through contaminated objects or surfaces) contact. The pandemic has spread rapidly from Asia to Europe and later to America. It continues to affect all parts of the world at an increasing rate. There have been over 92 million confirmed cases of COVID-19 by mid-January 2021. The similarity of homological sequences between SARS-CoV-2 and other SARS-CoVs is high. In addition, clinical symptoms of SARS-CoV-2 and other SARS viruses show similarities. However, some COVID-19 cases show neurologic signs like headache, loss of smell, hiccups and encephalopathy. The drugs used in the palliative treatment of the disease also have some neurotoxic effects. Currently, there are approved vaccines for COVID-19. However, there is a need for specific therapeutics against COVID-19. This review will describe the neurological effects of SARS-CoV-2 and the neurotoxicity of COVID-19 drugs used in clinics. Drugs used in the treatment of COVID-19 will be evaluated by their mechanism of action and their toxicological effects.
Collapse
Affiliation(s)
- Büşra Ünlü
- TOBB University, Bioengineering Department, Ankara, Turkey
| | - Rahime Simsek
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Sıhhiye 06100, Ankara, Turkey
| | - Selinay Başak Erdemli Köse
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| | - Anıl Yirün
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| | - Pinar Erkekoglu
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| |
Collapse
|