1
|
Bonthala VS, Stich B. StCoExpNet: a global co-expression network analysis facilitates identifying genes underlying agronomic traits in potatoes. PLANT CELL REPORTS 2024; 43:117. [PMID: 38622429 PMCID: PMC11018665 DOI: 10.1007/s00299-024-03201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
KEY MESSAGE We constructed a gene expression atlas and co-expression network for potatoes and identified several novel genes associated with various agronomic traits. This resource will accelerate potato genetics and genomics research. Potato (Solanum tuberosum L.) is the world's most crucial non-cereal food crop and ranks third in food production after wheat and rice. Despite the availability of several potato transcriptome datasets at public databases like NCBI SRA, an effort has yet to be put into developing a global transcriptome atlas and a co-expression network for potatoes. The objectives of our study were to construct a global expression atlas for potatoes using publicly available transcriptome datasets, identify housekeeping and tissue-specific genes, construct a global co-expression network and identify co-expression clusters, investigate the transcriptional complexity of genes involved in various essential biological processes related to agronomic traits, and provide a web server (StCoExpNet) to easily access the newly constructed expression atlas and co-expression network to investigate the expression and co-expression of genes of interest. In this study, we used data from 2299 publicly available potato transcriptome samples obtained from 15 different tissues to construct a global transcriptome atlas. We found that roughly 87% of the annotated genes exhibited detectable expression in at least one sample. Among these, we identified 281 genes with consistent and stable expression levels, indicating their role as housekeeping genes. Conversely, 308 genes exhibited marked tissue-specific expression patterns. We exemplarily linked some co-expression clusters to important agronomic traits of potatoes, such as self-incompatibility, anthocyanin biosynthesis, tuberization, and defense responses against multiple pathogens. The dataset compiled here constitutes a new resource (StCoExpNet), which can be accessed at https://stcoexpnet.julius-kuehn.de . This transcriptome atlas and the co-expression network will accelerate potato genetics and genomics research.
Collapse
Affiliation(s)
- Venkata Suresh Bonthala
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Julius Kühn-Institut (JKI), Institute for Breeding Research On Agricultural Crops, Rudolf-Schick-Platz 3a, OT Groß Lüsewitz, 18190, Sanitz, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
- Cluster of Excellence On Plant Sciences, From Complex Traits Towards Synthetic Modules, Düsseldorf, Germany
| |
Collapse
|
2
|
Zhou Y, Sukul A, Mishler-Elmore JW, Faik A, Held MA. PlantNexus: A Gene Co-expression Network Database and Visualization Tool for Barley and Sorghum. PLANT & CELL PHYSIOLOGY 2022; 63:565-572. [PMID: 35024864 PMCID: PMC9214644 DOI: 10.1093/pcp/pcac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Global gene co-expression networks (GCNs) are powerful tools for functional genomics whereby putative functions and regulatory mechanisms can be inferred by gene co-expression. Cereal crops, such as Hordeum vulgare (barley) and Sorghum bicolor (sorghum), are among the most important plants to civilization. However, co-expression network tools for these plants are lacking. Here, we have constructed global GCNs for barley and sorghum using existing RNA-seq data sets. Meta-information was manually curated and categorized by tissue type to also build tissue-specific GCNs. To enable GCN searching and visualization, we implemented a website and database named PlantNexus. PlantNexus is freely available at https://plantnexus.ohio.edu/.
Collapse
Affiliation(s)
- Yadi Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Abhijit Sukul
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
3
|
Feng Z, Song L, Song W, Qi Z, Yuan J, Li R, Han H, Wang H, Chen Z, Guo W, Xin M, Liu J, Hu Z, Peng H, Yao Y, Sun Q, Ni Z, Xing J. The decreased expression of GW2 homologous genes contributed to the increased grain width and thousand‑grain weight in wheat-Dasypyrum villosum 6VS·6DL translocation lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3873-3894. [PMID: 34374829 DOI: 10.1007/s00122-021-03934-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 05/12/2023]
Abstract
This study demonstrated that the aberrant transcription of DvGW2 contributed to the increased grain width and thousand-grain weight in wheat-Dasypyrum villosum T6VS·6DL translocation lines. Due to the high immunity to powdery mildew, Dasypyrum villosum 6VS has been one of the most successful applications of the wild relatives in modern wheat breeding. Along with the desired traits, side-effects could be brought when large alien chromosome fragments are introduced into wheat, but little is known about effects of 6VS on agronomic traits. Here, we found that T6VS·6DL translocation had significantly positive effects on grain weight, plant heightand spike length, and small negative effects on total spikelet number and spikelet compactness using recipient and wheat-D. villosum T6VS·6DL allohexaploid wheats, Wan7107 and Pm97033. Further analysis showed that the 6VS segment might exert direct genetic effect on grain width, then driving the increase of thousand-grain weight. Furthermore, comparative transcriptome analysis identified 2549 and 1282 differentially expressed genes (DEGs) and 2220 and 1496 specifically expressed genes (SEGs) at 6 days after pollination (DAP) grains and 15 DAP endosperms, respectively. Enrichment analysis indicated that the process of cell proliferation category was over-represented in the DEGs. Notably, two homologous genes, TaGW2-D1 and DvGW2, were identified as putative candidate genes associated with grain weight and yield. The expression analysis showed that DvGW2 had an aberrant expression in Pm97033, resulting in significantly lower total expression level of GW2 than Wan7107, which drives the increase of grain weight and width in Pm97033. Collectively, our data indicated that the compromised expression of DvGW2 is critical for increased grain width and weight in T6VS·6DL translocation lines.
Collapse
Affiliation(s)
- Zhiyu Feng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Long Song
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wanjun Song
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongqi Qi
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jun Yuan
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Run Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Haiming Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huifang Wang
- Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Mishra B, Kumar N, Mukhtar MS. Network biology to uncover functional and structural properties of the plant immune system. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102057. [PMID: 34102601 DOI: 10.1016/j.pbi.2021.102057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
In the last two decades, advances in network science have facilitated the discovery of important systems' entities in diverse biological networks. This graph-based technique has revealed numerous emergent properties of a system that enable us to understand several complex biological processes including plant immune systems. With the accumulation of multiomics data sets, the comprehensive understanding of plant-pathogen interactions can be achieved through the analyses and efficacious integration of multidimensional qualitative and quantitative relationships among the components of hosts and their microbes. This review highlights comparative network topology analyses in plant-pathogen co-expression networks and interactomes, outlines dynamic network modeling for cell-specific immune regulatory networks, and discusses the new frontiers of single-cell sequencing as well as multiomics data integration that are necessary for unraveling the intricacies of plant immune systems.
Collapse
Affiliation(s)
- Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL, 35294, USA
| | - Nilesh Kumar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL, 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL, 35294, USA.
| |
Collapse
|
5
|
Xia T, Yang Y, Zheng H, Han X, Jin H, Xiong Z, Qian W, Xia L, Ji X, Li G, Wang D, Zhang K. Efficient expression and function of a receptor-like kinase in wheat powdery mildew defence require an intron-located MYB binding site. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:897-909. [PMID: 33225586 PMCID: PMC8131041 DOI: 10.1111/pbi.13512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 05/10/2023]
Abstract
The LRK10-like receptor kinases (LRK10L-RLKs) are ubiquitously present in higher plants, but knowledge of their expression and function is still limited. Here, we report expression and functional analysis of TtdLRK10L-1, a typical LRK10L-RLK in durum wheat (Triticum turgidum L. ssp. durum). The introns of TtdLRK10L-1 contained multiple kinds of predicted cis-elements. To investigate the potential effect of these cis-elements on TtdLRK10L-1 expression and function, two types of transgenic wheat lines were prepared, which expressed a GFP-tagged TtdLRK10L-1 protein (TtdLRK10L-1:GFP) from the cDNA or genomic DNA (gDNA) sequence of TtdLRK10L-1 under the native promoter. TtdLRK10L-1:GFP expression was up-regulated by the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) in both types of transgenic plants, with the scale of the elevation being much stronger in the gDNA lines. Both types of transgenic plants exhibited enhanced resistance to Bgt infection relative to wild type control. Notably, the Bgt defence activated in the gDNA lines was significantly stronger than that in the cDNA lines. Further analysis revealed that a putative MYB transcription factor binding site (MYB-BS, CAGTTA) located in TtdLRK10L-1 intron I was critical for the efficient expression and function of TtdLRK10L-1 in Bgt defence. This MYB-BS could also increase the activity of a superpromoter widely used in ectopic gene expression studies in plants. Together, our results deepen the understanding of the expression and functional characteristics of LRK10L-RLKs. TtdLRK10L-1 is likely useful for further dissecting the molecular processes underlying wheat defence against Bgt and for developing Bgt resistant wheat crops.
Collapse
Affiliation(s)
- Tengfei Xia
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yanping Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hongyuan Zheng
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Huaibing Jin
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Zijun Xiong
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesPeking UniversityBeijingChina
| | - Lanqi Xia
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiang Ji
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Guangwei Li
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Daowen Wang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kunpu Zhang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Structure and predictive metabolic contribution of intestinal microbiota of Longfin yellowtail (Seriola rivoliana) juveniles in aquaculture systems. Mol Biol Rep 2020; 47:9627-9636. [PMID: 33159677 DOI: 10.1007/s11033-020-05970-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Seriola rivoliana intestinal microbiota (IM) was characterised under aquaculture conditions through 16S rRNA amplicon sequencing. Specimens of 30 days after hatching (DAH) were maintained in three tanks and fed under the same environmental conditions for characterisation 15 days prior to sampling. Three fish were randomly taken from each tank; total DNA extraction of the gut microbiota was performed to characterise microbial composition and its metabolic prediction. The V3 hypervariable region of the 16S rRNA was amplified and sequenced with Illumina pair-end technology. The prokaryotic components in the S. rivoliana intestine were dominated mainly by the phyla Proteobacteria, Firmicutes, Bacteroidetes, Cyanobacteria and Actinobacteria. No significant differences in beta diversity were detected in the three samples (tanks). However in alpha diversity, they were detected in juveniles of the same cohort within the same group, as exemplified by enrichment of certain bacterial groups, mainly of the Clostridia class, which were specific in each fish within the same tank. The metabolic prediction analyses suggested that S. rivoliana IM contribute to the metabolism of amino acids, carbohydrates, lipids, and immune system. This study provides the first IM characterisation under rearing conditions of S. rivoliana-a species with broad economic potential-and contributes to novel information for potential use of probiotics in future trials.
Collapse
|
7
|
Kong L, Zhi P, Liu J, Li H, Zhang X, Xu J, Zhou J, Wang X, Chang C. Epigenetic Activation of Enoyl- CoA Reductase By An Acetyltransferase Complex Triggers Wheat Wax Biosynthesis. PLANT PHYSIOLOGY 2020; 183:1250-1267. [PMID: 32439721 PMCID: PMC7333686 DOI: 10.1104/pp.20.00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 05/09/2023]
Abstract
The epidermal surface of bread wheat (Triticum aestivum) is coated with a hydrophobic cuticular wax layer that protects plant tissues against environmental stresses. However, the regulatory mechanism of cuticular wax biosynthesis remains to be uncovered in bread wheat. Here, we identified wheat Enoyl-CoA Reductase (TaECR) as a core component responsible for biosynthesis of wheat cuticular wax. Silencing of TaECR in bread wheat resulted in a reduced cuticular wax load and attenuated conidia germination of the adapted fungal pathogen powdery mildew (Blumeria graminis f.sp. tritici). Furthermore, we established that TaECR genes are direct targets of TaECR promoter-binding MYB transcription factor1 (TaEPBM1), which could interact with the adapter protein Alteration/Deficiency in Activation2 (TaADA2) and recruit the histone acetyltransferase General Control Nonderepressible5 (TaGCN5) to TaECR promoters. Most importantly, we demonstrated that the TaEPBM1-TaADA2-TaGCN5 ternary protein complex activates TaECR transcription by potentiating histone acetylation and enhancing RNA polymerase II enrichment at TaECR genes, thereby contributing to the wheat cuticular wax biosynthesis. Finally, we identified very-long-chain aldehydes as the wax signals provided by the TaECR-TaEPBM1-TaADA2-TaGCN5 circuit for triggering B graminis f.sp. tritici conidia germination. These results demonstrate that specific transcription factors recruit the TaADA2-TaGCN5 histone acetyltransferase complex to epigenetically regulate biosynthesis of wheat cuticular wax, which is required for triggering germination of the adapted powdery mildew pathogen.
Collapse
Affiliation(s)
- Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Pengfei Zhi
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jiao Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Haoyu Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaona Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jie Xu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jiaqi Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
8
|
Li H, Dong Z, Ma C, Xia Q, Tian X, Sehgal S, Koo DH, Friebe B, Ma P, Liu W. A spontaneous wheat-Aegilops longissima translocation carrying Pm66 confers resistance to powdery mildew. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1149-1159. [PMID: 31932954 DOI: 10.1007/s00122-020-03538-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/03/2020] [Indexed: 05/07/2023]
Abstract
A spontaneous Robertsonian T4SlS·4BL translocation chromosome carrying Pm66 for powdery mildew resistance was discovered and confirmed by RNA-seq, molecular marker, and in situ hybridization analyses. Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a severe disease of bread wheat worldwide. Discovery and utilization of resistance genes to powdery mildew from wild relatives of wheat have played important roles in wheat improvement. Aegilops longissima, one of the S-genome diploid wild relatives of wheat, is a valuable source of disease and pest resistance for wheat. Chromosome 4Sl from Ae. longissima confers moderate resistance to powdery mildew. In this study, we conducted RNA-seq on a putative Chinese Spring (CS)-Ae. longissima 4Sl(4B) disomic substitution line (TA3465) to develop 4Sl-specific markers to assist the transfer of a Bgt resistance gene from 4Sl by induced homoeologous recombination. A pairwise comparison of genes between CS and TA3465 demonstrated that a number of genes on chromosome 4BS in CS were not expressed in TA3465. Analysis of 4B- and 4Sl-specific molecular markers showed that 4BS and 4SlL were both missing in TA3465, whereas 4BL and 4SlS were present. Further characterization by genomic and fluorescent in situ hybridization confirmed that TA3465 carried a spontaneous Robertsonian T4SlS·4BL translocation. Powdery mildew tests showed that TA3465 was resistant to 10 of 16 Bgt isolates collected from different regions of China, whereas CS was susceptible to all those Bgt isolates. The powdery mildew resistance gene(s) in TA3465 was further mapped to the short arm of 4Sl and designated as Pm66.
Collapse
Affiliation(s)
- Huanhuan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Zhenjie Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Chao Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Qing Xia
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Xiubin Tian
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Sunish Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57006, USA
| | - Dal-Hoe Koo
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, 264005, People's Republic of China.
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
9
|
Zheng H, Dong L, Han X, Jin H, Yin C, Han Y, Li B, Qin H, Zhang J, Shen Q, Zhang K, Wang D. The TuMYB46L-TuACO3 module regulates ethylene biosynthesis in einkorn wheat defense to powdery mildew. THE NEW PHYTOLOGIST 2020; 225:2526-2541. [PMID: 31675430 PMCID: PMC7065006 DOI: 10.1111/nph.16305] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/22/2019] [Indexed: 05/22/2023]
Abstract
Powdery mildew disease, elicited by the obligate fungal pathogen Blumeria graminis f.sp. tritici (Bgt), causes widespread yield losses in global wheat crop. However, the molecular mechanisms governing wheat defense to Bgt are still not well understood. Here we found that TuACO3, encoding the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase functioning in ethylene (ET) biosynthesis, was induced by Bgt infection of the einkorn wheat Triticum urartu, which was accompanied by increased ET content. Silencing TuACO3 decreased ET production and compromised wheat defense to Bgt, whereas both processes were enhanced in the transgenic wheat overexpressing TuACO3. TuMYB46L, phylogenetically related to Arabidopsis MYB transcription factor AtMYB46, was found to bind to the TuACO3 promoter region in yeast-one-hybrid and EMSA experiments. TuMYB46L expression decreased rapidly following Bgt infection. Silencing TuMYB46L promoted ET content and Bgt defense, but the reverse was observed when TuMYB46L was overexpressed. Hence, decreased expression of TuMYB46L permits elevated function of TuACO3 in ET biosynthesis in Bgt-infected wheat. The TuMYB46L-TuACO3 module regulates ET biosynthesis to promote einkorn wheat defense against Bgt. Furthermore, we found four chitinase genes acting downstream of the TuMYB46L-TuACO3 module. Collectively, our data shed a new light on the molecular mechanisms underlying wheat defense to Bgt.
Collapse
Affiliation(s)
- Hongyuan Zheng
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Lingli Dong
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Xinyun Han
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Huaibing Jin
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Cuicui Yin
- The State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Yali Han
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Bei Li
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huanju Qin
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Jinsong Zhang
- The State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qianhua Shen
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Kunpu Zhang
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- The State Key Laboratory of Wheat and Maize Crop ScienceHenan Agricultural UniversityZhengzhou450002China
| |
Collapse
|
10
|
Dong Z, Tian X, Ma C, Xia Q, Wang B, Chen Q, Sehgal SK, Friebe B, Li H, Liu W. Physical Mapping of Pm57, a Powdery Mildew Resistance Gene Derived from Aegilops searsii. Int J Mol Sci 2020; 21:E322. [PMID: 31947730 PMCID: PMC6982159 DOI: 10.3390/ijms21010322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/21/2019] [Accepted: 12/31/2019] [Indexed: 12/01/2022] Open
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of many severe diseases that threaten bread wheat (Triticum aestivum L.) yield and quality worldwide. The discovery and deployment of powdery mildew resistance genes (Pm) can prevent this disease epidemic in wheat. In a previous study, we transferred the powdery mildew resistance gene Pm57 from Aegilops searsii into common wheat and cytogenetically mapped the gene in a chromosome region with the fraction length (FL) 0.75-0.87, which represents 12% segment of the long arm of chromosome 2Ss#1. In this study, we performed RNA-seq using RNA extracted from leaf samples of three infected and mock-infected wheat-Ae. searsii 2Ss#1 introgression lines at 0, 12, 24, and 48 h after inoculation with Bgt isolates. Then we designed 79 molecular markers based on transcriptome sequences and physically mapped them to Ae. searsii chromosome 2Ss#1- in seven intervals. We used these markers to identify 46 wheat-Ae. searsii 2Ss#1 recombinants induced by ph1b, a deletion mutant of pairing homologous (Ph) genes. After analyzing the 46 ph1b-induced 2Ss#1L recombinants in the region where Pm57 is located with different Bgt-responses, we physically mapped Pm57 gene on the long arm of 2Ss#1 in a 5.13 Mb genomic region, which was flanked by markers X67593 (773.72 Mb) and X62492 (778.85 Mb). By comparative synteny analysis of the corresponding region on chromosome 2B in Chinese Spring (T. aestivum L.) with other model species, we identified ten genes that are putative plant defense-related (R) genes which includes six coiled-coil nucleotide-binding site-leucine-rich repeat (CNL), three nucleotide-binding site-leucine-rich repeat (NL) and a leucine-rich receptor-like repeat (RLP) encoding proteins. This study will lay a foundation for cloning of Pm57, and benefit the understanding of interactions between resistance genes of wheat and powdery mildew pathogens.
Collapse
Affiliation(s)
- Zhenjie Dong
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Xiubin Tian
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Chao Ma
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Qing Xia
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Beilin Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Qifan Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA;
| | - Bernd Friebe
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA;
| | - Huanhuan Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Wenxuan Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| |
Collapse
|
11
|
Aminfar Z, Rabiei B, Tohidfar M, Mirjalili MH. Identification of key genes involved in the biosynthesis of triterpenic acids in the mint family. Sci Rep 2019; 9:15826. [PMID: 31676750 PMCID: PMC6825174 DOI: 10.1038/s41598-019-52090-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/14/2019] [Indexed: 01/11/2023] Open
Abstract
Triterpenic acids (TAs), a large group of natural compounds with diverse biological activity, are produced by several plant taxa. Betulinic, oleanolic, and ursolic acids are the most medicinally important TAs and are mainly found in plants of the mint family. Metabolic engineering is strongly dependent on identifying the key genes in biosynthetic pathways toward the products of interest. In this study, gene expression tracking was performed by transcriptome mining, co-expression network analysis, and tissue-specific metabolite-expression analysis in order to identify possible key genes involved in TAs biosynthetic pathways. To this end, taxa-specific degenerate primers of six important genes were designed using an effective method based on the MEME algorithm in a phylogenetically related group of sequences and successfully applied in three members of the Lamiaceae (Rosmarinus officinalis, Salvia officinalis, and Thymus persicus). Based on the results of in-depth data analysis, genes encoding squalene epoxidase and oxido squalene cyclases are proposed as targets for boosting triterpene production. The results emphasize the importance of identifying key genes in triterpene biosynthesis, which may facilitate genetic manipulation or overexpression of target genes.
Collapse
Affiliation(s)
- Zahra Aminfar
- Department of Agronomy and Plant Breeding, Faculty of Agricultural science, University of Guilan, Rasht, Iran
| | - Babak Rabiei
- Department of Agronomy and Plant Breeding, Faculty of Agricultural science, University of Guilan, Rasht, Iran.
| | - Masoud Tohidfar
- Department of Plant Biotechnology, Faculty of Sciences & Biotechnology, Shahid Beheshti University G.C., Tehran, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Tehran, Iran.
| |
Collapse
|
12
|
Genome-Wide Association and Gene Co-expression Network Analyses Reveal Complex Genetics of Resistance to Goss's Wilt of Maize. G3-GENES GENOMES GENETICS 2019; 9:3139-3152. [PMID: 31362973 PMCID: PMC6778796 DOI: 10.1534/g3.119.400347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Goss’s bacterial wilt and leaf blight is a disease of maize caused by the gram positive bacterium Clavibacter michiganensis subsp. nebraskensis (Cmn). First discovered in Nebraska, Goss’s wilt has now spread to major maize growing states in the United States and three provinces in Canada. Previous studies conducted using elite maize inbred lines and their hybrids have shown that resistance to Goss’s wilt is a quantitative trait. The objective of this study was to further our understanding of the genetic basis of resistance to Goss’s wilt by using a combined approach of genome-wide association mapping and gene co-expression network analysis. Genome-wide association analysis was accomplished using a diversity panel consisting of 555 maize inbred lines and a set of 450 recombinant inbred lines (RILs) from three bi-parental mapping populations, providing the most comprehensive screening of Goss’s wilt resistance to date. Three SNPs in the diversity panel and 10 SNPs in the combined dataset, including the diversity panel and RILs, were found to be significantly associated with Goss’s wilt resistance. Each significant SNP explained 1–5% of the phenotypic variation for Goss’s wilt (total of 8–11%). To augment the results of genome-wide association mapping and help identify candidate genes, a time course RNA sequencing experiment was conducted using resistant (N551) and susceptible (B14A) maize inbred lines. Gene co-expression network analysis of this time course experiment identified one module of 141 correlated genes that showed differential regulation in response to Cmn inoculations in both resistant and susceptible lines. SNPs inside and flanking these genes explained 13.3% of the phenotypic variation. Among 1,000 random samples of genes, only 8% of samples explained more phenotypic variance for Goss’s wilt resistance than those implicated by the co-expression network analysis. While a statistically significant enrichment was not observed (P < 0.05), these results suggest a possible role for these genes in quantitative resistance at the field level and warrant more research on combining gene co-expression network analysis with quantitative genetic analyses to dissect complex disease resistance traits. The results of the GWAS and co-expression analysis both support the complex nature of resistance to this important disease of maize.
Collapse
|
13
|
Li S, Wang J, Wang K, Chen J, Wang K, Du L, Ni Z, Lin Z, Ye X. Development of PCR markers specific to Dasypyrum villosum genome based on transcriptome data and their application in breeding Triticum aestivum-D. villosum#4 alien chromosome lines. BMC Genomics 2019; 20:289. [PMID: 30987602 PMCID: PMC6466811 DOI: 10.1186/s12864-019-5630-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/20/2019] [Indexed: 11/10/2022] Open
Abstract
Background Dasypyrum villosum is an important wild species of wheat (Triticum aestivum L.) and harbors many desirable genes that can be used to improve various traits of wheat. Compared with other D. villosum accessions, D. villosum#4 still remains less studied. In particular, chromosomes of D. villosum#4 except 6V#4 have not been introduced into wheat by addition or substitution and translocation, which is an essential step to identify and apply the alien desired genes. RNA-seq technology can generate large amounts of transcriptome sequences and accelerate the development of chromosome-specific molecular markers and assisted selection of alien chromosome line. Results We obtained the transcriptome of D. villosum#4 via a high-throughput sequencing technique, and then developed 76 markers specific to each chromosome arm of D. villosum#4 based on the bioinformatic analysis of the transcriptome data. The D. villosum#4 sequences containing the specific DNA markers were expected to be involved in different genes, among which most had functions in metabolic processes. Consequently, we mapped these newly developed molecular markers to the homologous chromosome of barley and obtained the chromosome localization of these markers on barley genome. Then we analyzed the collinearity of these markers among D. villosum, wheat, and barley. In succession, we identified six types of T. aestivum-D. villosum#4 alien chromosome lines which had one or more than one D. villosum#4 chromosome in the cross and backcross BC3F5 populations between T. durum–D. villosum#4 amphidiploid TH3 and wheat cv. Wan7107 by employing the selected specific markers, some of which were further confirmed to be translocation or addition lines by genomic in situ hybridization (GISH). Conclusion Seventy-six PCR markers specific to chromosomes of D. villosum#4 based on transcriptome data were developed in the current study and their collinearity among D. villosum, wheat, and barley were carried out. Six types of Triticum aestivum-D. villosum#4 alien chromosome lines were identified by using 12 developed markers and some of which were further confirmed by GISH. These novel T. aestivum-D. villosum#4 chromosome lines have great potential to be used for the introduction of desirable genes from D. villosum#4 into wheat by chromosomal translocation to breed new wheat varieties. Electronic supplementary material The online version of this article (10.1186/s12864-019-5630-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shijin Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,College of Agronomy and Biotechnology/State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, 100193, China
| | - Jing Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kunyang Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingnan Chen
- School of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lipu Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhongfu Ni
- College of Agronomy and Biotechnology/State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, 100193, China.
| | - Zhishan Lin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
14
|
Liu J, Zhi P, Wang X, Fan Q, Chang C. Wheat WD40-repeat protein TaHOS15 functions in a histone deacetylase complex to fine-tune defense responses to Blumeria graminis f.sp. tritici. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:255-268. [PMID: 30204899 DOI: 10.1093/jxb/ery330] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) seriously threatens the production of common wheat (Triticum aestivum). In eukaryotes, WD40-repeat (WDR) proteins usually participate in assembling protein complexes involved in a wide range of cellular processes, including defense responses. However, the potential function of WDR proteins in regulating crop resistance to biotrophic fungal pathogens, such as Bgt, remains unclear. In this study, we isolated TaHOS15, encoding a WDR protein, from the Bgt-susceptible wheat cultivar Jing411 and demonstrated that knockdown of TaHOS15 expression using virus- or transient-induced gene-silencing attenuated wheat susceptibility to Bgt. Biochemical and molecular-biological assays revealed that TaHOS15 interacts with TaHDA6, a wheat homolog of Arabidopsis histone deacetylase AtHDA6, to constitute a transcriptional repressor complex. We determined the role of TaHOS15, which might act as an adaptor protein recruiting TaHDA6 to the chromatin of wheat defense-related genes including TaPR1, TaPR2, TaPR5, and TaWRKY45, where they repress histone acetylation. Reduced TaHOS15 or TaHDA6 transcript levels led to decreased susceptibility to Bgt together with enhanced defense-related transcription under Bgt infection. Collectively, these results demonstrate that TaHOS15 functions in a histone deacetylase complex with TaHDA6 to fine-tune the defense response to Bgt in common wheat.
Collapse
Affiliation(s)
- Jiao Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Pengfei Zhi
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Qingxin Fan
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Zhao RB, Zhu LH, Li HJ, Fan ZM, Xia ZK. High-throughput sequencing analysis of lncRNAs in hippocampus tissues with hypoxic-ischemic brain damage. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5265-5277. [PMID: 31949607 PMCID: PMC6963025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 06/10/2023]
Abstract
LncRNAs abundantly expressed in the brain have vital and wide-ranging functions in different biological processes. However, little is currently known regarding the influence of lncRNAs in developing brains after hypoxic-ischemic brain damage (HIBD). In this study, to investigate the lncRNAs expression signatures and the co-expression network of lncRNAs and mRNAs in the brain after HIBD, we established a neonatal rat HIBD model and detected the expression profiles of lncRNAs in the HIBD brain and a sham control using high-throughput sequencing. Further, highly differentially expressed lncRNAs were selected and validated by qRT-PCR. Finally, the biological functions of the selected lncRNAs were investigated by over-expressing or silencing the target genes through lentivirus transfection in hippocampal neuron cells. Our results revealed that the expression profile of lncRNAs was dramatically different between the HIBD brains and the sham control, showing as the aberrant expression of 617 lncRNA transcripts and 441 mRNA transcripts at 24 hours after HIBD. GO and KEGG analyses indicated that the differentially expressed mRNAs were mostly involved in the apoptosis signaling pathway. After validating the expression of 8 randomly selected lncRNA transcripts by qRT-PCR, we found that the TNFRSF17 gene (ID: ENSRNOG00000021987) was down-regulated in HI brains. After stable over-expression and silencing of TNFRSF17, the apoptosis rate of hippocampal neuron cells exhibited obvious changes under hypoxia or normaxia. The over-expression of TNFRSF17 could significantly up-regulate Bcl-2 but down-regulate Bax, caspase-3, and caspase-9 at the mRNA and protein levels, while the silencing of TNFRSF17 led to just the opposite phenomenon. Notably, the regulation effects of TNFRSF17 on apoptotic related genes and proteins under hypoxia were more obvious than those under normaxia. Moreover, the over-expression of TNFRSF17 reduced the apoptotic rate, but the loss of TNFRSF17 led to a high rate of apoptosis under hypoxia. Taken together, the silencing of TNFRSF17 exacerbated, while over-expression attenuated, neuron apoptosis induced by HI injury, suggesting that TNFRSF17 may be a target for the prognosis, diagnosis, and treatment of HIBD.
Collapse
Affiliation(s)
- Rui-Bin Zhao
- Department of Pediatrics, Jinling Hospital, Nanjing University School of MedicineNanjing, China
| | - Li-Hua Zhu
- Jiangsu Health Vocational CollegeNanjing, China
| | - Hui-Juan Li
- Department of Pediatrics, Zhongda Hospital, Southeast UniversityNanjing, China
| | - Zhong-Min Fan
- Department of Pediatrics, The BenQ Hospital, Nanjing Medical UniversityNanjing, China
| | - Zheng-Kun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing University School of MedicineNanjing, China
| |
Collapse
|
16
|
Wang A, Shu X, Niu X, Zhao W, Ai P, Li P, Zheng A. Comparison of gene co-networks analysis provide a systems view of rice (Oryza sativa L.) response to Tilletia horrida infection. PLoS One 2018; 13:e0202309. [PMID: 30372430 PMCID: PMC6205584 DOI: 10.1371/journal.pone.0202309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
The biotrophic soil-borne fungus Tilletia horrida causes rice kernel smut, an important disease affecting the production of rice male sterile lines in most hybrid rice growing regions of the world. There are no successful ways of controlling this disease and there has been little study of mechanisms of resistance to T. horrida. Based on transcriptional data of different infection time points, we found 23, 782 and 23, 718 differentially expressed genes (fragments per kilobase of transcript sequence per million, FPKM >1) in Jiangcheng 3A (resistant to T. horrida) and 9311A (susceptible to T. horrida), respectively. In order to illuminate the differential responses of the two rice male sterile lines to T. horrida, we identified gene co-expression modules using the method of weighted gene co-expression network analysis (WGCNA) and compared the different biological functions of gene co-expression networks in key modules at different infection time points. The results indicated that gene co-expression networks in the two rice genotypes were different and that genes contained in some modules of the two groups may play important roles in resistance to T. horrida, such as DTH8 and OsHop/Sti1a. Furthermore, these results provide a global view of the responses of two different phenotypes to T. horrida, and assist our understanding of the regulation of expression changes after T. horrida infection.
Collapse
Affiliation(s)
- Aijun Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Xinyue Shu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Xianyu Niu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Wenjuan Zhao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Peng Ai
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| |
Collapse
|
17
|
Gene coexpression network analysis combined with metabonomics reveals the resistance responses to powdery mildew in Tibetan hulless barley. Sci Rep 2018; 8:14928. [PMID: 30297768 PMCID: PMC6175840 DOI: 10.1038/s41598-018-33113-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
Powdery mildew is a fungal disease that represents a ubiquitous threat to crop plants. Transcriptomic and metabolomic analyses were used to identify molecular and physiological changes in Tibetan hulless barley in response to powdery mildew. There were 3418 genes and 405 metabolites differentially expressed between the complete resistance cultivar G7 and the sensitive cultivar Z13. Weighted gene coexpression network analysis was carried out, and the differentially expressed genes were enriched in five and four major network modules in G7 and Z13, respectively. Further analyses showed that phytohormones, photosynthesis, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways were altered during Qingke-Blumeria graminis (DC.) f.sp. hordei (Bgh) interaction. Comparative analyses showed a correspondence between gene expression and metabolite profiles, and the activated defenses resulted in changes of metabolites involved in plant defense response, such as phytohormones, lipids, flavone and flavonoids, phenolamides, and phenylpropanoids. This study enabled the identification of Bgh responsive genes and provided new insights into the dynamic physiological changes that occur in Qingke during response to powdery mildew. These findings greatly improve our understanding of the mechanisms of induced defense response in Qingke and will provide new clues for the development of resistant Tibetan hulless barley varieties.
Collapse
|
18
|
Zhang J, Zhao W, Fu R, Fu C, Wang L, Liu H, Li S, Deng Q, Wang S, Zhu J, Liang Y, Li P, Zheng A. Comparison of gene co-networks reveals the molecular mechanisms of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1 IA infection. Funct Integr Genomics 2018; 18:545-557. [PMID: 29730773 PMCID: PMC6097106 DOI: 10.1007/s10142-018-0607-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these findings by focusing on an analysis of gene co-expression in response to R. solani AG1 IA and identified gene modules within the networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein. Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wenjuan Zhao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Rong Fu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chenglin Fu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lingxia Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Huainian Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shiquan Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
19
|
Ling HQ, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, Zhao Y, Zhang J, Li Y, Zhou W, Zhang B, Hu W, van Eijk MJT, Tang J, Witsenboer HMA, Zhao S, Li Z, Zhang A, Wang D, Liang C. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 2018. [PMID: 29743678 DOI: 10.1038/s41586‐018‐0108‐0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Triticum urartu (diploid, AA) is the progenitor of the A subgenome of tetraploid (Triticum turgidum, AABB) and hexaploid (Triticum aestivum, AABBDD) wheat1,2. Genomic studies of T. urartu have been useful for investigating the structure, function and evolution of polyploid wheat genomes. Here we report the generation of a high-quality genome sequence of T. urartu by combining bacterial artificial chromosome (BAC)-by-BAC sequencing, single molecule real-time whole-genome shotgun sequencing 3 , linked reads and optical mapping4,5. We assembled seven chromosome-scale pseudomolecules and identified protein-coding genes, and we suggest a model for the evolution of T. urartu chromosomes. Comparative analyses with genomes of other grasses showed gene loss and amplification in the numbers of transposable elements in the T. urartu genome. Population genomics analysis of 147 T. urartu accessions from across the Fertile Crescent showed clustering of three groups, with differences in altitude and biostress, such as powdery mildew disease. The T. urartu genome assembly provides a valuable resource for studying genetic variation in wheat and related grasses, and promises to facilitate the discovery of genes that could be useful for wheat improvement.
Collapse
Affiliation(s)
- Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hui Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hua Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ye Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ying Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huilong Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hua Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Cui
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chunlin Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juncheng Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bairu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Weijuan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Chengzhi Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 2018; 557:424-428. [PMID: 29743678 PMCID: PMC6784869 DOI: 10.1038/s41586-018-0108-0] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
Triticum urartu (diploid, AA) is the progenitor of the A subgenome of tetraploid (Triticum turgidum, AABB) and hexaploid (Triticum aestivum, AABBDD) wheat1,2. Genomic studies of T. urartu have been useful for investigating the structure, function and evolution of polyploid wheat genomes. Here we report the generation of a high-quality genome sequence of T. urartu by combining bacterial artificial chromosome (BAC)-by-BAC sequencing, single molecule real-time whole-genome shotgun sequencing3, linked reads and optical mapping4,5. We assembled seven chromosome-scale pseudomolecules and identified protein-coding genes, and we suggest a model for the evolution of T. urartu chromosomes. Comparative analyses with genomes of other grasses showed gene loss and amplification in the numbers of transposable elements in the T. urartu genome. Population genomics analysis of 147 T. urartu accessions from across the Fertile Crescent showed clustering of three groups, with differences in altitude and biostress, such as powdery mildew disease. The T. urartu genome assembly provides a valuable resource for studying genetic variation in wheat and related grasses, and promises to facilitate the discovery of genes that could be useful for wheat improvement. The genome sequence of Triticum urartu, the progenitor of the A subgenome of hexaploid wheat, provides insight into genome duplication during grass evolution.
Collapse
|
21
|
Zou S, Wang H, Li Y, Kong Z, Tang D. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. THE NEW PHYTOLOGIST 2018; 218:298-309. [PMID: 29281751 DOI: 10.1111/nph.14964] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/20/2017] [Indexed: 05/18/2023]
Abstract
Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat.
Collapse
Affiliation(s)
- Shenghao Zou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
22
|
Li S, Lin Z, Liu C, Wang K, Du L, Ye X. Development and comparative genomic mapping of Dasypyrum villosum 6V#4S-specific PCR markers using transcriptome data. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2057-2068. [PMID: 28653149 DOI: 10.1007/s00122-017-2942-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/20/2017] [Indexed: 05/26/2023]
Abstract
Twenty-five Dasypyrum villosum 6V#4S-specific PCR markers were developed using transcriptome data and further assigned to comparative genomic maps of wheat chromosome 6A, 6B, and 6D and barley chromosome 6H contrasting their homologous genes in these genomes. Two Dasypyrum villosum accessions, D.v#2 and No. 1026 from England and Russia, respectively, contain Pm21 on chromosome 6V#2S and PmV on chromosome 6V#4S. Both genes confer high resistance to powdery mildew (PM) in wheat. Even though several molecular markers have been developed to detect Pm21 and PmV, only the MBH1 marker can simultaneously detect both Pm21 and PmV. In this study, we first used a high-throughput sequencing technique to obtain the transcriptome sequences of a wheat-D. villosum translocation line, Pm97033-which contains chromosome 6V#4S carrying the PmV locus, under wheat PM pathogen induction. Twenty-five 6V#4S chromosome-specific markers were developed. Three of them were able to clearly distinguish chromosomes 6V#4S and 6V#2S by product size, four amplified the product specific for chromosome 6V#4S only, and the remaining 18 markers identified chromosome 6VS in wheat backgrounds. Two different D. villosum accessions, their derived translocation lines and wheat varieties carrying different chromosome 6VS were identified using these specific markers. The 25 newly developed markers together with the known PM resistance gene Stpk-V were used to construct comparative genomic maps with the homoeologous chromosome arms of wheat and barley. The colinearity of the identified gene sequences amplified by the 25 markers among wheat chromosomes 6A, 6B, and 6D and barley chromosome 6H was not very conserved and interrupted frequently by inversion and insertion. Our markers have potential in marker assisted selection for PM resistance breeding, and for locating other potential important genes and cloning the PmV gene on chromosome 6V#4S.
Collapse
Affiliation(s)
- Shijin Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhishan Lin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Chang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Lipu Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
23
|
Connectivity in gene coexpression networks negatively correlates with rates of molecular evolution in flowering plants. PLoS One 2017; 12:e0182289. [PMID: 28759647 PMCID: PMC5536297 DOI: 10.1371/journal.pone.0182289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022] Open
Abstract
Gene coexpression networks are a useful tool for summarizing transcriptomic data and providing insight into patterns of gene regulation in a variety of species. Though there has been considerable interest in studying the evolution of network topology across species, less attention has been paid to the relationship between network position and patterns of molecular evolution. Here, we generated coexpression networks from publicly available expression data for seven flowering plant taxa (Arabidopsis thaliana, Glycine max, Oryza sativa, Populus spp., Solanum lycopersicum, Vitis spp., and Zea mays) to investigate the relationship between network position and rates of molecular evolution. We found a significant negative correlation between network connectivity and rates of molecular evolution, with more highly connected (i.e., “hub”) genes having significantly lower nonsynonymous substitution rates and dN/dS ratios compared to less highly connected (i.e., “peripheral”) genes across the taxa surveyed. These findings suggest that more centrally located hub genes are, on average, subject to higher levels of evolutionary constraint than are genes located on the periphery of gene coexpression networks. The consistency of this result across disparate taxa suggests that it holds for flowering plants in general, as opposed to being a species-specific phenomenon.
Collapse
|
24
|
Peng J, Wu Y, Tian X, Pang J, Kuai L, Cao F, Qin X, Zhong J, Li X, Li Y, Sun X, Chen L, Jiang Y. High-Throughput Sequencing and Co-Expression Network Analysis of lncRNAs and mRNAs in Early Brain Injury Following Experimental Subarachnoid Haemorrhage. Sci Rep 2017; 7:46577. [PMID: 28417961 PMCID: PMC5394545 DOI: 10.1038/srep46577] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Subarachnoid haemorrhage (SAH) is a fatal neurovascular disease following cerebral aneurysm rupture with high morbidity and mortality rates. Long non-coding RNAs (lncRNAs) are a type of mammalian genome transcript, are abundantly expressed in the brain and are involved in many nervous system diseases. However, little is currently known regarding the influence of lncRNAs in early brain injury (EBI) after SAH. This study analysed the expression profiles of lncRNAs and mRNAs in SAH brain tissues of mice using high-throughput sequencing. The results showed a remarkable difference in lncRNA and mRNA transcripts between SAH and control brains. Approximately 617 lncRNA transcripts and 441 mRNA transcripts were aberrantly expressed at 24 hours after SAH. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the differentially expressed mRNAs were mostly involved in inflammation. Based on the lncRNA/mRNA co-expression network, knockdown of fantom3_F730004F19 reduced the mRNA and protein levels of CD14 and toll-like receptor 4 (TLR4) and attenuated inflammation in BV-2 microglia cells. These results indicate that lncRNA fantom3_F730004F19 may be associated with microglia induced inflammation via the TLR signaling pathway in EBI following SAH. LncRNA represent a potential therapeutic target for the prognosis, diagnosis, and treatment of SAH.
Collapse
Affiliation(s)
- Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Wu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaocui Tian
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Kuai
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Cao
- Department of Neurovascular Disease, the Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Xinghu Qin
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Neurosurgery, People’s Hospital of Deyang City, Deyang, China
| | - Jianjun Zhong
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinshen Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Wen Z, Yao L, Singer SD, Muhammad H, Li Z, Wang X. Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:346-361. [PMID: 28131063 DOI: 10.1016/j.plaphy.2017.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 05/27/2023]
Abstract
Plants use resistance (R) proteins to detect pathogen effector proteins and activate their innate immune response against the pathogen. The majority of these proteins contain an NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain along with a leucine-rich repeat (LRR), and some also bear a toll interleukin 1 receptor (TIR) domain. In this study, we characterized a gene encoding a TIR-NB-ARC-LRR R protein (VpTNL1) (GenBank accession number KX649890) from wild Chinese grapevine Vitis pseudoreticulata accession "Baihe-35-1", which was identified previously from a transcriptomic analysis of leaves inoculated with powdery mildew (PM; Erysiphe necator (Schw.)). The VpTNL1 transcript was found to be highly induced in V. pseudoreticulata following inoculation with E. necator, as well as treatment with salicylic acid (SA). Sequence analysis demonstrated that the deduced amino acid sequence contained a TIR domain at the N-terminus, along with an NB-ARC and four LRRs domains within the C-terminus. Constitutive expression of VpTNL1 in Arabidopsis thaliana resulted in either a wild-type or dwarf phenotype. Intriguingly, the phenotypically normal transgenic lines displayed enhanced resistance to Arabidopsis PM, Golovinomyces cichoracearum, as well as to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Similarly, constitutive expression of VpTNL1 in Nicotiana tabacum was found to confer enhanced resistance to tobacco PM, Erysiphe cichoacearum DC. Subsequent isolation of the VpTNL1 promoter and deletion analysis indicated that TC-rich repeats and TCA elements likely play an important role in its response to E. necator and SA treatment, respectively. Taken together, these results indicate that VpTNL1 contributes to PM resistance in grapevine and provide an interesting gene target for the future amelioration of grape via breeding and/or biotechnology.
Collapse
Affiliation(s)
- Zhifeng Wen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Liping Yao
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Hanif Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|