1
|
Kunze R, Wacker P, Breuer P, Nasyrov E, Kur IM, Weigert A, Wagner AH, Marti HH, Korff T. Adequate post-ischemic reperfusion of the mouse brain requires endothelial NFAT5. Acta Neuropathol Commun 2024; 12:200. [PMID: 39710754 DOI: 10.1186/s40478-024-01918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Severity and outcome of strokes following cerebral hypoperfusion are significantly influenced by stress responses of the blood vessels. In this context, brain endothelial cells (BEC) regulate inflammation, angiogenesis and the vascular resistance to rapidly restore perfusion. Despite the relevance of these responses for infarct volume and tissue recovery, their transcriptional control in BEC is not well characterized. We revealed that oxygen and nutrient-deprived BEC activate nuclear factor of activated T-cells 5 (NFAT5)-a transcription factor that adjusts the cellular transcriptome to cope with environmental stressors. We hypothesized that NFAT5 controls the expression of genes regulating the response of BEC in the ischemic brain. The functional relevance of NFAT5 was assessed in mice, allowing the conditional EC-specific knock-out of Nfat5 (Nfat5(EC)-/-). Cerebral ischemia was induced by transient middle cerebral artery occlusion (MCAO) followed reperfusion up to 28 days. While loss of endothelial Nfat5 did not evoke any phenotypic abnormalities in mice under control conditions, infarct volumes, neurological deficits and the degree of brain atrophy were significantly pronounced following MCAO as compared to control animals (Nfat5fl/fl). In contrast, MCAO-induced edema formation, inflammatory processes and angiogenesis were not altered in Nfat5(EC)-/- mice. RNAseq analyses of cultured BEC suggested that loss of NFAT5 impairs the expression of Kcnj2 encoding a potassium channel that may affect reperfusion. In fact, lower levels of KCNJ2 were detected in arterial endothelial cells of Nfat5(EC)-/- versus Nfat5fl/fl mice. Laser speckle contrast imaging of the brain revealed an impaired perfusion recovery in Nfat5(EC)-/- versus Nfat5fl/fl mice after MCAO.Collectively, NFAT5 in arterial BEC is required for an adequate reperfusion response after brain ischemia that is presumably dependent on the maintenance of Kcnj2 expression. Consequently, impairment of the protective role of endothelial NFAT5 results in enlarged infarct sizes and more severe functional deficits of brain functions.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Paul Wacker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Paula Breuer
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Emil Nasyrov
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
- Centre for Ophthalmology, University Eye Hospital Tuebingen, Tuebingen, Germany
| | - Ivan M Kur
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Laban H, Siegmund S, Schlereth K, Trogisch FA, Ablieh A, Brandenburg L, Weigert A, De La Torre C, Mogler C, Hecker M, Kuebler WM, Korff T. Nuclear factor of activated T-cells 5 is indispensable for a balanced adaptive transcriptional response of lung endothelial cells to hypoxia. Cardiovasc Res 2024; 120:1590-1606. [PMID: 39107245 DOI: 10.1093/cvr/cvae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 08/09/2024] Open
Abstract
AIMS Chronic hypoxia causes detrimental structural alterations in the lung, which may cause pulmonary hypertension and are partially mediated by the endothelium. While its relevance for the development of hypoxia-associated lung diseases is well known, determinants controlling the initial adaptation of the lung endothelium to hypoxia remain largely unexplored. METHODS AND RESULTS We revealed that hypoxia activates the transcription factor nuclear factor of activated T-cells 5 (NFAT5) and studied its regulatory function in murine lung endothelial cells (MLECs). EC-specific knockout of Nfat5 (Nfat5(EC)-/-) in mice exposed to normobaric hypoxia (10% O2) for 21 days promoted vascular fibrosis and aggravated the increase in pulmonary right ventricular systolic pressure as well as right ventricular dysfunction as compared with control mice. Microarray- and single-cell RNA-sequencing-based analyses revealed an impaired growth factor-, energy-, and protein-metabolism-associated gene expression in Nfat5-deficient MLEC after exposure to hypoxia for 7 days. Specifically, loss of NFAT5 boosted the expression and release of platelet-derived growth factor B (Pdgfb)-a hypoxia-inducible factor 1 alpha (HIF1α)-regulated driver of vascular smooth muscle cell (VSMC) growth-in capillary MLEC of hypoxia-exposed Nfat5(EC)-/- mice, which was accompanied by intensified VSMC coverage of distal pulmonary arteries. CONCLUSION Collectively, our study shows that early and transient subpopulation-specific responses of MLEC to hypoxia may determine the degree of organ dysfunction in later stages. In this context, NFAT5 acts as a protective transcription factor required to rapidly adjust the endothelial transcriptome to cope with hypoxia. Specifically, NFAT5 restricts HIF1α-mediated Pdgfb expression and consequently limits muscularization and resistance of the pulmonary vasculature.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adaptation, Physiological
- Cell Hypoxia
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/metabolism
- Hypoxia/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Lung/metabolism
- Lung/blood supply
- Lung/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Signal Transduction
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Transcription, Genetic
- Vascular Remodeling
- Ventricular Function, Right
Collapse
Affiliation(s)
- Hebatullah Laban
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Sophia Siegmund
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Katharina Schlereth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Felix A Trogisch
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
- Department of Cardiovascular Physiology and Cardiac Imaging Center, Core Facility Platform Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alia Ablieh
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Lennart Brandenburg
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I Pathobiochemistry, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Ryuno H, Hanafusa Y, Fujisawa T, Ogawa M, Adachi H, Naguro I, Ichijo H. HES1 potentiates high salt stress response as an enhancer of NFAT5-DNA binding. Commun Biol 2024; 7:1290. [PMID: 39384976 PMCID: PMC11464898 DOI: 10.1038/s42003-024-06997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
High salt conditions and subsequent hyperosmolarity are injurious cellular stresses that can activate immune signaling. Nuclear factor of activated T-cells 5 (NFAT5) is an essential transcription factor that induces osmoprotective genes such as aldose reductase (AR) and betaine-GABA transporter 1 (BGT1). High salt stress-mediated NFAT5 activation is also reported to accelerate the inflammatory response and autoimmune diseases. However, the systemic regulation of NFAT5 remains unclear. Here, we performed a genome-wide siRNA screen to comprehensively identify the regulators of NFAT5. We monitored NFAT5 nuclear translocation and identified one of the Notch signaling effectors, Hairy and enhancer of split-1 (HES1), as a positive regulator of NFAT5. HES1 was induced by high salinity via ERK signaling and facilitated NFAT5 recruitment to its target promoter region, resulting in the proper induction of osmoprotective genes and cytoprotection under high salt stress. These findings suggest that, though HES1 is well known as a transcriptional repressor, it positively regulates NFAT5-dependent transcription in the context of a high salinity/hyperosmotic response.
Collapse
Affiliation(s)
- Hiroki Ryuno
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Hanafusa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
| | - Motoyuki Ogawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
- Laboratory of Bioresponse Signaling, Faculty of Pharmacy, Juntendo University, Urayasu, Chiba, Japan
| | - Hiroki Adachi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan.
- Laboratory of Bioresponse Signaling, Faculty of Pharmacy, Juntendo University, Urayasu, Chiba, Japan.
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
4
|
Couasnay G, Garcia H, Elefteriou F. A comparative analysis of TonEBP conditional knockout mouse models reveals inter-dependency between compartments of the intervertebral disc. Development 2024; 151:dev202354. [PMID: 38421307 PMCID: PMC11006390 DOI: 10.1242/dev.202354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Interactions between notochord and sclerotome are required for normal embryonic spine patterning, but whether the postnatal derivatives of these tissues also require interactions for postnatal intervertebral disc (IVD) growth and maintenance is less established. We report here the comparative analysis of four conditional knockout mice deficient for TonEBP, a transcription factor known to allow cells to adapt to changes in extracellular osmotic pressure, in specific compartments of the IVD. We show that TonEBP deletion in nucleus pulposus (NP) cells does not affect their survival or aggrecan expression, but promoted cell proliferation in the NP and in adjacent vertebral growth plates (GPs). In cartilage end plates/GPs, TonEBP deletion induced cell death, but also structural alterations in the adjacent NP cells and vertebral bodies. Embryonic or postnatal TonEBP loss generated similar IVD changes. In addition to demonstrating the requirement of TonEBP in the different compartments of the IVD, this comparative analysis uncovers the in vivo interdependency of the different IVD compartments during the growth of the postnatal IVD-vertebral units.
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haley Garcia
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Feng F, Duan Q, Jiang X, Kao X, Zhang D. DendroX: multi-level multi-cluster selection in dendrograms. BMC Genomics 2024; 25:134. [PMID: 38308243 PMCID: PMC10835886 DOI: 10.1186/s12864-024-10048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Cluster heatmaps are widely used in biology and other fields to uncover clustering patterns in data matrices. Most cluster heatmap packages provide utility functions to divide the dendrograms at a certain level to obtain clusters, but it is often difficult to locate the appropriate cut in the dendrogram to obtain the clusters seen in the heatmap or computed by a statistical method. Multiple cuts are required if the clusters locate at different levels in the dendrogram. RESULTS We developed DendroX, a web app that provides interactive visualization of a dendrogram where users can divide the dendrogram at any level and in any number of clusters and pass the labels of the identified clusters for functional analysis. Helper functions are provided to extract linkage matrices from cluster heatmap objects in R or Python to serve as input to the app. A graphic user interface was also developed to help prepare input files for DendroX from data matrices stored in delimited text files. The app is scalable and has been tested on dendrograms with tens of thousands of leaf nodes. As a case study, we clustered the gene expression signatures of 297 bioactive chemical compounds in the LINCS L1000 dataset and visualized them in DendroX. Seventeen biologically meaningful clusters were identified based on the structure of the dendrogram and the expression patterns in the heatmap. We found that one of the clusters consisting of mostly naturally occurring compounds is not previously reported and has its members sharing broad anticancer, anti-inflammatory and antioxidant activities. CONCLUSIONS DendroX solves the problem of matching visually and computationally determined clusters in a cluster heatmap and helps users navigate among different parts of a dendrogram. The identification of a cluster of naturally occurring compounds with shared bioactivities implicates a convergence of biological effects through divergent mechanisms.
Collapse
Affiliation(s)
- Feiling Feng
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qiaonan Duan
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiaoming Kao
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Dadong Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China.
| |
Collapse
|
6
|
Palahati A, Luo Y, Qin L, Duan Y, Zhang M, Gan H, Zhai X. TonEBP: A Key Transcription Factor in Microglia Following Intracerebral Hemorrhage Induced-Neuroinflammation. Int J Mol Sci 2024; 25:1438. [PMID: 38338716 PMCID: PMC10855931 DOI: 10.3390/ijms25031438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Transcription factors within microglia contribute to the inflammatory response following intracerebral hemorrhage (ICH). Therefore, we employed bioinformatics screening to identify the potential transcription factor tonicity-responsive enhancer-binding protein (TonEBP) within microglia. Inflammatory stimuli can provoke an elevated expression of TonEBP in microglia. Nevertheless, the expression and function of microglial TonEBP in ICH-induced neuroinflammation remain ambiguous. In our recent research, we discovered that ICH instigated an increased TonEBP in microglia in both human and mouse peri-hematoma brain tissues. Furthermore, our results indicated that TonEBP knockdown mitigates lipopolysaccharide (LPS)-induced inflammation and the activation of NF-κB signaling in microglia. In order to more deeply comprehend the underlying molecular mechanisms of how TonEBP modulates the inflammatory response, we sequenced the transcriptomes of TonEBP-deficient cells and sought potential downstream target genes of TonEBP, such as Pellino-1 (PELI1). PELI has been previously reported to mediate nuclear factor-κB (NF-κB) signaling. Through the utilization of CUT & RUN, a dual-luciferase reporter, and qPCR, we confirmed that TonEBP is the transcription factor of Peli1, binding to the Peli1 promoter. In summary, TonEBP may enhance the LPS-induced inflammation and activation of NF-κB signaling via PELI1.
Collapse
Affiliation(s)
- Ailiyaer Palahati
- Department of Neurosurgery Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400010, China; (A.P.)
- Center for Neuroscience Research, Chongqing Medical University, Chongqing 400016, China
| | - Yujia Luo
- Department of Neurosurgery Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400010, China; (A.P.)
- Center for Neuroscience Research, Chongqing Medical University, Chongqing 400016, China
| | - Le Qin
- Department of Neurosurgery Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400010, China; (A.P.)
- Center for Neuroscience Research, Chongqing Medical University, Chongqing 400016, China
| | - Yuhao Duan
- Department of Neurosurgery Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400010, China; (A.P.)
- Center for Neuroscience Research, Chongqing Medical University, Chongqing 400016, China
| | - Mi Zhang
- Department of Neurosurgery Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400010, China; (A.P.)
- Center for Neuroscience Research, Chongqing Medical University, Chongqing 400016, China
| | - Hui Gan
- Department of Neurosurgery Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400010, China; (A.P.)
- Center for Neuroscience Research, Chongqing Medical University, Chongqing 400016, China
| | - Xuan Zhai
- Department of Neurosurgery Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400010, China; (A.P.)
- Center for Neuroscience Research, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
SONG HEEJU, KIM TAEHEE, CHOI HANNA, KIM SOOJIN, LEE SANGDO. TonEBP expression is essential in the IL-1β-induced migration and invasion of human A549 lung cancer cells. Oncol Res 2023; 32:151-161. [PMID: 38188678 PMCID: PMC10767233 DOI: 10.32604/or.2023.030690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2023] [Indexed: 01/09/2024] Open
Abstract
Lung cancer has the highest mortality rate among all cancers, in part because it readily metastasizes. The tumor microenvironment, comprising blood vessels, fibroblasts, immune cells, and macrophages [including tumor-associated macrophages (TAMs)], is closely related to cancer cell growth, migration, and invasion. TAMs secrete several cytokines, including interleukin (IL)-1β, which participate in cancer migration and invasion. p21-activated kinase 1 (PAK1), an important signaling molecule, induces cell migration and invasion in several carcinomas. Tonicity-responsive enhancer-binding protein (TonEBP) is also known to participate in cancer cell growth, migration, and invasion. However, the mechanisms by which it increases lung cancer migration remain unclear. Therefore, in this study, we aimed to elucidate the mechanisms by which IL-1β and TonEBP affect lung cancer cell migration and invasion. We found that A549 cocultured-MΦ-secreted IL-1β induced A549 cell migration and invasion via the PAK1 pathway. TonEBP deficiency reduced A549 cell migration and invasion and increased responsiveness to IL-1β-induced migration and invasion. PAK1 phosphorylation, which was promoted by IL-1β, was reduced when TonEBP was depleted. These results suggest that TonEBP plays an important role in IL-1β induction and invasiveness of A549 cells via the PAK1 pathway. These findings could be valuable in identifying potential targets for lung cancer treatment.
Collapse
Affiliation(s)
- HEE JU SONG
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - TAEHEE KIM
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - HAN NA CHOI
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - SOO JIN KIM
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - SANG DO LEE
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| |
Collapse
|
8
|
Yoo EJ, Oh KH, Piao H, Kang HJ, Jeong GW, Park H, Lee CJ, Ryu H, Yang SH, Kim MG, Kim DK, Park SH, Lim BJ, Lee SM, Park CY, Choi SY, Lee-Kwon W, Yang J, Kwon HM. Macrophage transcription factor TonEBP promotes systemic lupus erythematosus and kidney injury via damage-induced signaling pathways. Kidney Int 2023; 104:163-180. [PMID: 37088425 DOI: 10.1016/j.kint.2023.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by autoreactive B cells and dysregulation of many other types of immune cells including myeloid cells. Lupus nephritis (LN) is a common target organ manifestations of SLE. Tonicity-responsive enhancer-binding protein (TonEBP, also known as nuclear factor of activated T-cells 5 (NFAT5)), was initially identified as a central regulator of cellular responses to hypertonic stress and is a pleiotropic stress protein involved in a variety of immunometabolic diseases. To explore the role of TonEBP, we examined kidney biopsy samples from patients with LN. Kidney TonEBP expression was found to be elevated in these patients compared to control patients - in both kidney cells and infiltrating immune cells. Kidney TonEBP mRNA was elevated in LN and correlated with mRNAs encoding inflammatory cytokines and the degree of proteinuria. In a pristane-induced SLE model in mice, myeloid TonEBP deficiency blocked the development of SLE and LN. In macrophages, engagement of various toll-like receptors (TLRs) that respond to damage-associated molecular patterns induced TonEBP expression via stimulation of its promoter. Intracellular signaling downstream of the TLRs was dependent on TonEBP. Therefore, TonEBP can act as a transcriptional cofactor for NF-κB, and activated mTOR-IRF3/7 via protein-protein interactions. Additionally, TonEBP-deficient macrophages displayed elevated efferocytosis and animals with myeloid deficiency of TonEBP showed reduced Th1 and Th17 differentiation, consistent with macrophages defective in TLR signaling. Thus, our data show that myeloid TonEBP may be an attractive therapeutic target for SLE and LN.
Collapse
Affiliation(s)
- Eun Jin Yoo
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Honglin Piao
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea; Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Je Kang
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea
| | - Gyu Won Jeong
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea
| | - Hyun Park
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea
| | - Chang Jun Lee
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myung-Gyu Kim
- Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Park
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea
| | - Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea
| | - Chan Young Park
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea
| | - Soo Youn Choi
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea; Department of Biology, Jeju National University, Jeju, Republic of Korea
| | - Whaseon Lee-Kwon
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea
| | - Jaeseok Yang
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea.
| | - Hyug Moo Kwon
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea.
| |
Collapse
|
9
|
Ito Y, Sun T, Tanaka H, Yamaguchi M, Kinashi H, Sakata F, Kunoki S, Sakai Y, Ishimoto T. Tissue Sodium Accumulation Induces Organ Inflammation and Injury in Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24098329. [PMID: 37176037 PMCID: PMC10179540 DOI: 10.3390/ijms24098329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
High salt intake is a primary cause of over-hydration in chronic kidney disease (CKD) patients. Inflammatory markers are predictors of CKD mortality; however, the pathogenesis of inflammation remains unclear. Sodium storage in tissues has recently emerged as an issue of concern. The binding of sodium to tissue glycosaminoglycans and its subsequent release regulates local tonicity. Many cell types express tonicity-responsive enhancer-binding protein (TonEBP), which is activated in a tonicity-dependent or tonicity-independent manner. Macrophage infiltration was observed in the heart, peritoneal wall, and para-aortic tissues in salt-loading subtotal nephrectomized mice, whereas macrophages were not prominent in tap water-loaded subtotal nephrectomized mice. TonEBP was increased in the heart and peritoneal wall, leading to the upregulation of inflammatory mediators associated with cardiac fibrosis and peritoneal membrane dysfunction, respectively. Reducing salt loading by a diuretic treatment or changing to tap water attenuated macrophage infiltration, TonEBP expression, and inflammatory marker expression. The role of TonEBP may be crucial during the cardiac fibrosis and peritoneal deterioration processes induced by sodium overload. Anti-interleukin-6 therapy improved cardiac inflammation and fibrosis and peritoneal membrane dysfunction. Further studies are necessary to establish a strategy to regulate organ dysfunction induced by TonEBP activation in CKD patients.
Collapse
Affiliation(s)
- Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Hiroya Tanaka
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Fumiko Sakata
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 464-0813, Japan
| | - Shunnosuke Kunoki
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
- Department of Nephrology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yukinao Sakai
- Department of Nephrology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| |
Collapse
|
10
|
Inhibiting NFAT5 With KRN2 Mitigates Acute Allograft Rejection in a Murine Heart Transplantation Model. J Cardiovasc Pharmacol 2023; 81:212-220. [PMID: 36651978 PMCID: PMC9988219 DOI: 10.1097/fjc.0000000000001392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023]
Abstract
ABSTRACT Despite advancements in immunosuppressive therapy, acute allograft rejection remains an important challenge for heart transplantation patients. Nuclear factor of activated T-cells 5 (NFAT5), a member of the family of Rel homology domain-containing factors that plays an important role in regulating immune responses of T lymphocytes, may be closely associated with cardiac rejection. KRN2, as a specific inhibitor of NFAT5, is injected intraperitoneally daily starting from day 0 after murine heart transplantation. When compared with saline treatment, KRN2 treatment can improve allograft survival. Histologic examination revealed that the KRN2 treatment group experienced less-severe rejection, and enzyme-linked immunosorbent assay revealed lower levels of inflammatory cytokines in circulating serum. The proportion and number of T-cell subpopulations in the spleens were analyzed by flow cytometry. We found that KRN2 treatment reduced the proportions of CD4 + IFN-γ + , CD4 + IL-17A + , and CD4 + IL-4 + Th cells, whereas increasing CD4 + Foxp3 + Treg cells compared with the control group. These findings suggest that KRN2 attenuates acute allograft rejection by regulating CD4 + T lymphocyte responses. NFAT5 could be a promising therapeutic target for preventing acute allograft rejection.
Collapse
|
11
|
Xu J, Gao C, He Y, Fang X, Sun D, Peng Z, Xiao H, Sun M, Zhang P, Zhou T, Yang X, Yu Y, Li R, Zou X, Shu H, Qiu Y, Zhou X, Yuan S, Yao S, Shang Y. NLRC3 expression in macrophage impairs glycolysis and host immune defense by modulating the NF-κB-NFAT5 complex during septic immunosuppression. Mol Ther 2023; 31:154-173. [PMID: 36068919 PMCID: PMC9840117 DOI: 10.1016/j.ymthe.2022.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 01/28/2023] Open
Abstract
Impairment of innate immune cell function and metabolism underlies immunosuppression in sepsis; however, a promising therapy to orchestrate this impairment is currently lacking. In this study, high levels of NOD-like receptor family CARD domain containing-3 (NLRC3) correlated with the glycolytic defects of monocytes/macrophages from septic patients and mice that developed immunosuppression. Myeloid-specific NLRC3 deletion improved macrophage glycolysis and sepsis-induced immunosuppression. Mechanistically, NLRC3 inhibits nuclear factor (NF)-κB p65 binding to nuclear factor of activated T cells 5 (NFAT5), which further controls the expression of glycolytic genes and proinflammatory cytokines of immunosuppressive macrophages. This is achieved by decreasing NF-κB activation-co-induced by TNF-receptor-associated factor 6 (TRAF6) or mammalian target of rapamycin (mTOR)-and decreasing transcriptional co-activator p300 activity by inducing NLRC3 sequestration of mTOR and p300. Genetic inhibition of NLRC3 disrupted the NLRC3-mTOR-p300 complex and enhanced NF-κB binding to the NFAT5 promoter in concert with p300. Furthermore, intrapulmonary delivery of recombinant adeno-associated virus harboring a macrophage-specific NLRC3 deletion vector significantly improved the defense of septic mice that developed immunosuppression upon secondary intratracheal bacterial challenge. Collectively, these findings indicate that NLRC3 mediates critical aspects of innate immunity that contribute to an immunocompromised state during sepsis and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenggang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangzhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Deyi Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhekang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hairong Xiao
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Miaomiao Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pei Zhang
- Department of Paediatrics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210016, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan 43007, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shanglong Yao
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Lee HH, Jeong GW, Ye BJ, Yoo EJ, Son KS, Kim DK, Park HK, Kang BH, Lee-Kwon W, Kwon HM, Choi SY. TonEBP in Myeloid Cells Promotes Obesity-Induced Insulin Resistance and Inflammation Through Adipose Tissue Remodeling. Diabetes 2022; 71:2557-2571. [PMID: 36170666 PMCID: PMC9862453 DOI: 10.2337/db21-1099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/20/2022] [Indexed: 02/05/2023]
Abstract
The phenotypic and functional plasticity of adipose tissue macrophages (ATMs) during obesity plays a crucial role in orchestration of adipose and systemic inflammation. Tonicity-responsive enhancer binding protein (TonEBP) (also called NFAT5) is a stress protein that mediates cellular responses to a range of metabolic insults. Here, we show that myeloid cell-specific TonEBP depletion reduced inflammation and insulin resistance in mice with high-fat diet-induced obesity but did not affect adiposity. This phenotype was associated with a reduced accumulation and a reduced proinflammatory phenotype of metabolically activated macrophages, decreased expression of inflammatory factors related to insulin resistance, and enhanced insulin sensitivity. TonEBP expression was elevated in the ATMs of obese mice, and Sp1 was identified as a central regulator of TonEBP induction. TonEBP depletion in macrophages decreased induction of insulin resistance-related genes and promoted induction of insulin sensitivity-related genes under obesity-mimicking conditions and thereby improved insulin signaling and glucose uptake in adipocytes. mRNA expression of TonEBP in peripheral blood mononuclear cells was positively correlated with blood glucose levels in mice and humans. These findings suggest that TonEBP in macrophages promotes obesity-associated systemic insulin resistance and inflammation, and downregulation of TonEBP may induce a healthy metabolic state during obesity.
Collapse
Affiliation(s)
- Hwan Hee Lee
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Gyu Won Jeong
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Byeong Jin Ye
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Eun Jin Yoo
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Keoung Sun Son
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye-Kyung Park
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Byoung Heon Kang
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyug Moo Kwon
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Corresponding author: Soo Youn Choi, , or Hyug Moo Kwon,
| | - Soo Youn Choi
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Department of Biology, Jeju National University, Jeju, Republic of Korea
- Corresponding author: Soo Youn Choi, , or Hyug Moo Kwon,
| |
Collapse
|
13
|
Dash MK, Joshi N, Dubey VS, Dwivedi KN, Gautam DNS. Screening of anti-cancerous potential of classical Raudra rasa and modified Raudra rasa modified with hiraka bhasma (nanodiamond) through FTIR & LC-MS analysis. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:669-682. [PMID: 35106982 DOI: 10.1515/jcim-2021-0410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Raudra rasa is an ayurvedic medicine explicitly prescribed for the treatment of arbuda (cancer), whereas hiraka bhasma has the potential to promote cancer healing properties. Together, these two medicines provide multifunction benefits. This paper analyses the functional groups of Raudra rasa modified with hiraka bhasma and compares it with the classically prepared raudra rasa. To identify the functional group, organic ligands, and active compounds present in samples of raudra rasa (CRR) and modified raudra rasa with hiraka bhasma (MRR) contributing to cancer alleviation by using Fourier transform infrared spectroscopy (FTIR) & LC-MS analysis. METHODS Classical raudra rasa (CRR), its ingredients, shadguna kajjali (SK); decoction of Piper betel Linn. (PBD); Amaranthus spinosus Linn. (ASD); Boerhaavia diffusa Linn. (BDD); Piper longum Linn. (PLD); cow urine (GM), & similarly modified raudra rasa (MRR), its ingredients, hiraka bhasma (HB); shadguna rasasindura (SHR); water-soluble extract of Piper betel Linn. (PBE); Amaranthus spinosus Linn. (ASE); Boerhaavia diffusa Linn. (BDE); cow urine ark (GA); Piper Longum Linn. (PLE) were subjected to FTIR and LC-MS analysis. RESULTS Among all 15 samples studied, maximum numbers of peaks (21) were seen in MRR indicating a greater number of functional groups. Further, in MRR, a maximum peak in the double bond region is suggestive of its higher stability compared to CRR. Both the compound is preliminarily a mixture of the number of functional groups like; fluoro, methyl, amino, hydroxy, nitro, methylamino, carbonyl, and iodo groups, having known anti-proliferative activities. By the FT-IR analysis, the biologically active compounds in aqueous and methanol extract of CRR & MRR were identified that have anti-cancerous compounds. In the present study, a total of 40 major compounds like alkaloids, amino acid, carboxylic acid, Flavonoids, Nucleoside, Nucleotide, phenylpropanoid, Sphingosine, stilbenoid, sugar, phosphate, terpenoids, vitamin from aqueous & methanol extract of CRR & MRR were identified by LC-MS. CONCLUSIONS This research paper highlights the presence of different functional groups and bioactive compounds known to have anti-cancer activities. Thus, this review suggests future recommendations for the design and development of improved anticancer drugs with higher efficacy.
Collapse
Affiliation(s)
- Manoj Kumar Dash
- Department of Rasashastra, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | - Namrata Joshi
- Department of Rasashastra, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | - Vd Sushil Dubey
- Department of Kriya Sarira, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | | | | |
Collapse
|
14
|
Jeong EA, Lee J, Shin HJ, Lee JY, Kim KE, An HS, Kim DR, Choi KY, Lee KH, Roh GS. Tonicity-responsive enhancer-binding protein promotes diabetic neuroinflammation and cognitive impairment via upregulation of lipocalin-2. J Neuroinflammation 2021; 18:278. [PMID: 34844610 PMCID: PMC8628424 DOI: 10.1186/s12974-021-02331-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Diabetic individuals have increased circulating inflammatory mediators which are implicated as underlying causes of neuroinflammation and memory deficits. Tonicity-responsive enhancer-binding protein (TonEBP) promotes diabetic neuroinflammation. However, the precise role of TonEBP in the diabetic brain is not fully understood. Methods We employed a high-fat diet (HFD)-only fed mice or HFD/streptozotocin (STZ)-treated mice in our diabetic mouse models. Circulating TonEBP and lipocalin-2 (LCN2) levels were measured in type 2 diabetic subjects. TonEBP haploinsufficient mice were used to investigate the role of TonEBP in HFD/STZ-induced diabetic mice. In addition, RAW 264.7 macrophages were given a lipopolysaccharide (LPS)/high glucose (HG) treatment. Using a siRNA, we examined the effects of TonEBP knockdown on RAW264 cell’ medium/HG-treated mouse hippocampal HT22 cells. Results Circulating TonEBP and LCN2 levels were higher in experimental diabetic mice or type 2 diabetic patients with cognitive impairment. TonEBP haploinsufficiency ameliorated the diabetic phenotypes including adipose tissue macrophage infiltrations, neuroinflammation, blood–brain barrier leakage, and memory deficits. Systemic and hippocampal LCN2 proteins were reduced in diabetic mice by TonEBP haploinsufficiency. TonEBP (+ / −) mice had a reduction of hippocampal heme oxygenase-1 (HO-1) expression compared to diabetic wild-type mice. In particular, we found that TonEBP bound to the LCN2 promoter in the diabetic hippocampus, and this binding was abolished by TonEBP haploinsufficiency. Furthermore, TonEBP knockdown attenuated LCN2 expression in lipopolysaccharide/high glucose-treated mouse hippocampal HT22 cells. Conclusions These findings indicate that TonEBP may promote neuroinflammation and cognitive impairment via upregulation of LCN2 in diabetic mice. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02331-8.
Collapse
Affiliation(s)
- Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Republic of Korea. .,Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea. .,Aging Neuroscience Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
15
|
Laban H, Siegmund S, Zappe M, Trogisch FA, Heineke J, Torre CDL, Fisslthaler B, Arnold C, Lauryn J, Büttner M, Mogler C, Kato K, Adams RH, Kuk H, Fischer A, Hecker M, Kuebler WM, Korff T. NFAT5/TonEBP Limits Pulmonary Vascular Resistance in the Hypoxic Lung by Controlling Mitochondrial Reactive Oxygen Species Generation in Arterial Smooth Muscle Cells. Cells 2021; 10:cells10123293. [PMID: 34943801 PMCID: PMC8699676 DOI: 10.3390/cells10123293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic hypoxia increases the resistance of pulmonary arteries by stimulating their contraction and augmenting their coverage by smooth muscle cells (SMCs). While these responses require adjustment of the vascular SMC transcriptome, regulatory elements are not well defined in this context. Here, we explored the functional role of the transcription factor nuclear factor of activated T-cells 5 (NFAT5/TonEBP) in the hypoxic lung. Regulatory functions of NFAT5 were investigated in cultured artery SMCs and lungs from control (Nfat5fl/fl) and SMC-specific Nfat5-deficient (Nfat5(SMC)−/−) mice. Exposure to hypoxia promoted the expression of genes associated with metabolism and mitochondrial oxidative phosphorylation (OXPHOS) in Nfat5(SMC)−/− versus Nfat5fl/fl lungs. In vitro, hypoxia-exposed Nfat5-deficient pulmonary artery SMCs elevated the level of OXPHOS-related transcripts, mitochondrial respiration, and production of reactive oxygen species (ROS). Right ventricular functions were impaired while pulmonary right ventricular systolic pressure (RVSP) was amplified in hypoxia-exposed Nfat5(SMC)−/− versus Nfat5fl/fl mice. Scavenging of mitochondrial ROS normalized the raise in RVSP. Our findings suggest a critical role for NFAT5 as a suppressor of OXPHOS-associated gene expression, mitochondrial respiration, and ROS production in pulmonary artery SMCs that is vital to limit ROS-dependent arterial resistance in a hypoxic environment.
Collapse
Affiliation(s)
- Hebatullah Laban
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Sophia Siegmund
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Maren Zappe
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Felix A. Trogisch
- Department of Cardiovascular Physiology, Mannheim Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany; (F.A.T.); (J.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Jörg Heineke
- Department of Cardiovascular Physiology, Mannheim Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany; (F.A.T.); (J.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Beate Fisslthaler
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, 60323 Frankfurt, Germany;
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, 60323 Frankfurt, Germany
| | - Caroline Arnold
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Jonathan Lauryn
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10099 Berlin, Germany; (J.L.); (W.M.K.)
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany;
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University Munich, 80333 Munich, Germany;
| | - Katsuhiro Kato
- Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, University of Münster, 48149 Münster, Germany; (K.K.); (R.H.A.)
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, University of Münster, 48149 Münster, Germany; (K.K.); (R.H.A.)
| | - Hanna Kuk
- The Ottawa Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Andreas Fischer
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Internal Medicine I, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10099 Berlin, Germany; (J.L.); (W.M.K.)
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-6221-544131; Fax: +49-6221-544038
| |
Collapse
|
16
|
Kang HJ, Eom HJ, Kim H, Myung K, Kwon HM, Choi JH. Thrap3 promotes R-loop resolution via interaction with methylated DDX5. Exp Mol Med 2021; 53:1602-1611. [PMID: 34697388 PMCID: PMC8569202 DOI: 10.1038/s12276-021-00689-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
Transcription-replication conflicts lead to DNA damage and genomic instability, which are closely related to human diseases. A major source of these conflicts is the formation of R-loops, which consist of an RNA-DNA hybrid and a displaced single-stranded DNA. Although these structures have been studied, many aspects of R-loop biology and R-loop-mediated genome instability remain unclear. Here, we demonstrate that thyroid hormone receptor-associated protein 3 (Thrap3) plays a critical role in regulating R-loop resolution. In cancer cells, Thrap3 interacts with DEAD-box helicase 5 (DDX5) and localizes to R-loops. Arginine-mediated methylation of DDX5 is required for its interaction with Thrap3, and the Thrap3-DDX5 axis induces the recruitment of 5'-3' exoribonuclease 2 (XRN2) into R-loops. Loss of Thrap3 increases R-loop accumulation and DNA damage. These findings suggest that Thrap3 mediates resistance to cell death by preventing R-loop accumulation in cancer cells.
Collapse
Affiliation(s)
- Hyun Je Kang
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hye-jin Eom
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hongtae Kim
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Kyungjae Myung
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea ,grid.42687.3f0000 0004 0381 814XCenter for Genomic Integrity (CGI), Institute for Basic Science (IBS), Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Hyug Moo Kwon
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Jang Hyun Choi
- grid.42687.3f0000 0004 0381 814XDepartment of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| |
Collapse
|
17
|
Lunazzi G, Buxadé M, Riera-Borrull M, Higuera L, Bonnin S, Huerga Encabo H, Gaggero S, Reyes-Garau D, Company C, Cozzuto L, Ponomarenko J, Aramburu J, López-Rodríguez C. NFAT5 Amplifies Antipathogen Responses by Enhancing Chromatin Accessibility, H3K27 Demethylation, and Transcription Factor Recruitment. THE JOURNAL OF IMMUNOLOGY 2021; 206:2652-2667. [PMID: 34031145 DOI: 10.4049/jimmunol.2000624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The ability of innate immune cells to respond to pathogen-associated molecular patterns across a wide range of intensities is fundamental to limit the spreading of infections. Studies on transcription responses to pathogen-activated TLRs have often used relatively high TLR ligand concentrations, and less is known about their regulation under mild stimulatory conditions. We had shown that the transcription factor NFAT5 facilitates expression of antipathogen genes under TLR stimulation conditions corresponding to low pathogen loads. In this study, we analyze how NFAT5 optimizes TLR-activated responses in mouse macrophages. We show that NFAT5 was required for effective recruitment of central effectors p65/NF-κB and c-Fos to specific proinflammatory target genes, such as Nos2, Il6, and Tnf in primary macrophages responding to low doses of the TLR4 ligand LPS. By contrast, NFAT5 was not required for p65/NF-κB recruitment in response to high LPS doses. Using the transposase-accessible chromatin with high-throughput sequencing assay, we show that NFAT5 facilitated chromatin accessibility mainly at promoter regions of multiple TLR4-responsive genes. Analysis of various histone marks that regulate gene expression in response to pathogens identified H3K27me3 demethylation as an early NFAT5-dependent mechanism that facilitates p65 recruitment to promoters of various TLR4-induced genes. Altogether, these results advance our understanding about specific mechanisms that optimize antipathogen responses to limit infections.
Collapse
Affiliation(s)
- Giulia Lunazzi
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Maria Buxadé
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Marta Riera-Borrull
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Laura Higuera
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | | | - Hector Huerga Encabo
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Silvia Gaggero
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Diana Reyes-Garau
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | | | | | - Julia Ponomarenko
- Centre for Genomic Regulation, Barcelona, Spain.,Barcelona Institute for Science and Technology, Barcelona, Spain; and.,Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - José Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain;
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain;
| |
Collapse
|
18
|
Kang HJ, Cheon NY, Park H, Jeong GW, Ye BJ, Yoo EJ, Lee JH, Hur JH, Lee EA, Kim H, Lee KY, Choi SY, Lee-Kwon W, Myung K, Lee JY, Kwon HM. TonEBP recognizes R-loops and initiates m6A RNA methylation for R-loop resolution. Nucleic Acids Res 2021; 49:269-284. [PMID: 33313823 PMCID: PMC7797050 DOI: 10.1093/nar/gkaa1162] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 11/29/2022] Open
Abstract
R-loops are three-stranded, RNA–DNA hybrid, nucleic acid structures produced due to inappropriate processing of newly transcribed RNA or transcription-replication collision (TRC). Although R-loops are important for many cellular processes, their accumulation causes genomic instability and malignant diseases, so these structures are tightly regulated. It was recently reported that R-loop accumulation is resolved by methyltransferase-like 3 (METTL3)-mediated m6A RNA methylation under physiological conditions. However, it remains unclear how R-loops in the genome are recognized and induce resolution signals. Here, we demonstrate that tonicity-responsive enhancer binding protein (TonEBP) recognizes R-loops generated by DNA damaging agents such as ultraviolet (UV) or camptothecin (CPT). Single-molecule imaging and biochemical assays reveal that TonEBP preferentially binds a R-loop via both 3D collision and 1D diffusion along DNA in vitro. In addition, we find that TonEBP recruits METTL3 to R-loops through the Rel homology domain (RHD) for m6A RNA methylation. We also show that TonEBP recruits RNaseH1 to R-loops through a METTL3 interaction. Consistent with this, TonEBP or METTL3 depletion increases R-loops and reduces cell survival in the presence of UV or CPT. Collectively, our results reveal an R-loop resolution pathway by TonEBP and m6A RNA methylation by METTL3 and provide new insights into R-loop resolution processes.
Collapse
Affiliation(s)
- Hyun Je Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Na Young Cheon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyun Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Gyu Won Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Byeong Jin Ye
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eun Jin Yoo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun Ho Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST-Optical Biomed Imaging Center (UOBC), Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eun-A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | | | | | - Kyungjae Myung
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Hyug Moo Kwon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
19
|
Fultang N, Li X, Li T, Chen YH. Myeloid-Derived Suppressor Cell Differentiation in Cancer: Transcriptional Regulators and Enhanceosome-Mediated Mechanisms. Front Immunol 2021; 11:619253. [PMID: 33519825 PMCID: PMC7840597 DOI: 10.3389/fimmu.2020.619253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 01/16/2023] Open
Abstract
Myeloid-derived Suppressor Cells (MDSCs) are a sub-population of leukocytes that are important for carcinogenesis and cancer immunotherapy. During carcinogenesis or severe infections, inflammatory mediators induce MDSCs via aberrant differentiation of myeloid precursors. Although several transcription factors, including C/EBPβ, STAT3, c-Rel, STAT5, and IRF8, have been reported to regulate MDSC differentiation, none of them are specifically expressed in MDSCs. How these lineage-non-specific transcription factors specify MDSC differentiation in a lineage-specific manner is unclear. The recent discovery of the c-Rel-C/EBPβ enhanceosome in MDSCs may help explain these context-dependent roles. In this review, we examine several transcriptional regulators of MDSC differentiation, and discuss the concept of non-modular regulation of MDSC signature gene expression by transcription factors such as c-Rel and C/EBPß.
Collapse
Affiliation(s)
- Norman Fultang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | - Youhai H. Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Jeong GW, Lee HH, Lee-Kwon W, Kwon HM. Microglial TonEBP mediates LPS-induced inflammation and memory loss as transcriptional cofactor for NF-κB and AP-1. J Neuroinflammation 2020; 17:372. [PMID: 33292328 PMCID: PMC7722447 DOI: 10.1186/s12974-020-02007-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Microglia are brain-resident myeloid cells involved in the innate immune response and a variety of neurodegenerative diseases. In macrophages, TonEBP is a transcriptional cofactor of NF-κB which stimulates the transcription of pro-inflammatory genes in response to LPS. Here, we examined the role of microglial TonEBP. METHODS We used microglial cell line, BV2 cells. TonEBP was knocked down using lentiviral transduction of shRNA. In animals, TonEBP was deleted from myeloid cells using a line of mouse with floxed TonEBP. Cerulenin was used to block the NF-κB cofactor function of TonEBP. RESULTS TonEBP deficiency blocked the LPS-induced expression of pro-inflammatory cytokines and enzymes in association with decreased activity of NF-κB in BV2 cells. We found that there was also a decreased activity of AP-1 and that TonEBP was a transcriptional cofactor of AP-1 as well as NF-κB. Interestingly, we found that myeloid-specific TonEBP deletion blocked the LPS-induced microglia activation and subsequent neuronal cell death and memory loss. Cerulenin disrupted the assembly of the TonEBP/NF-κB/AP-1/p300 complex and suppressed the LPS-induced microglial activation and the neuronal damages in animals. CONCLUSIONS TonEBP is a key mediator of microglial activation and neuroinflammation relevant to neuronal damage. Cerulenin is an effective blocker of the TonEBP actions.
Collapse
Affiliation(s)
- Gyu Won Jeong
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hwan Hee Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
21
|
Kang HJ, Yoo EJ, Lee HH, An SM, Park H, Lee-Kwon W, Choi SY, Kwon HM. TonEBP Promotes β-Cell Survival under ER Stress by Enhancing Autophagy. Cells 2020; 9:cells9091928. [PMID: 32825390 PMCID: PMC7563687 DOI: 10.3390/cells9091928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
The endoplasmic reticulum (ER) stress response and autophagy are important cellular responses that determine cell fate and whose dysregulation is implicated in the perturbation of homeostasis and diseases. Tonicity-responsive enhancer-binding protein (TonEBP, also called NFAT5) is a pleiotropic stress protein that mediates both protective and pathological cellular responses. Here, we examined the role of TonEBP in β-cell survival under ER stress. We found that TonEBP increases β-cell survival under ER stress by enhancing autophagy. The level of TonEBP protein increased under ER stress due to a reduction in its degradation via the ubiquitin–proteasome pathway. In response to ER stress, TonEBP increased autophagosome formations and suppressed the accumulation of protein aggregates and β-cell death. The Rel-homology domain of TonEBP interacted with FIP200, which is essential for the initiation of autophagy, and was required for autophagy and cell survival upon exposure to ER stress. Mice in which TonEBP was specifically deleted in pancreatic endocrine progenitor cells exhibited defective glucose homeostasis and a loss of islet mass. Taken together, these findings demonstrate that TonEBP protects against ER stress-induced β-cell death by enhancing autophagy.
Collapse
|
22
|
Lee JH, Suh JH, Kang HJ, Choi SY, Jung SW, Lee-Kwon W, Park SA, Kim H, Ye BJ, Yoo EJ, Jeong GW, Park NH, Kwon HM. Tonicity-responsive enhancer-binding protein promotes stemness of liver cancer and cisplatin resistance. EBioMedicine 2020; 58:102926. [PMID: 32739873 PMCID: PMC7393528 DOI: 10.1016/j.ebiom.2020.102926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High recurrence and chemoresistance drive the high mortality in hepatocellular carcinoma (HCC). Although cancer stem cells are considered to be the source of recurrent and chemoresistant tumors, they remain poorly defined in HCC. Tonicity-responsive enhancer binding protein (TonEBP) is elevated in almost all HCC tumors and associated with recurrence and death. We aimed to identify function of TonEBP in stemness and chemoresistance of liver cancer. METHODS Tumors obtained from 280 HCC patients were analyzed by immunohistochemical analyses. Stemness and chemoresistance of liver CSCs (LCSCs) were investigated using cell culture. Tumor-initiating activity was measured by implanting LCSCs into BALB/c nude mice. FINDINGS Expression of TonEBP is higher in LCSCs in HCC cell lines and correlated with markers of LCSCs whose expression is significantly associated with poor prognosis of HCC patients. TonEBP mediates ATM-mediated activation of NF-κB, which stimulates the promoter of a key stem cell transcription factor SOX2. As expected, TonEBP is required for the tumorigenesis and self-renewal of LSCSs. Cisplatin induces the recruitment of the ERCC1/XPF dimer to the chromatin in a TonEBP-dependent manner leading to DNA repair and cisplatin resistance. The cisplatin-induced inflammation in LSCSs is also dependent on the TonEBP-ERCC1/XPF complex, and leads to enhanced stemness via the ATM-NF-κB-SOX2 pathway. In HCC patients, tumor expression of ERCC1/XPF predicts recurrence and death in a TonEBP-dependent manner. INTERPRETATION TonEBP promotes stemness and cisplatin resistance of HCC via ATM-NF-κB. TonEBP is a key regulator of LCSCs and a promising therapeutic target for HCC and its recurrence.
Collapse
Affiliation(s)
- Jun Ho Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jae Hee Suh
- Department of Pathology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan 44033, Republic of Korea
| | - Hyun Je Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Soo Youn Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Seok Won Jung
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan 44033, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Soo-Ah Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hajin Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Byeong Jin Ye
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eun Jin Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Gyu Won Jeong
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Neung Hwa Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan 44033, Republic of Korea.
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
23
|
TonEBP in dendritic cells mediates pro-inflammatory maturation and Th1/Th17 responses. Cell Death Dis 2020; 11:421. [PMID: 32499518 PMCID: PMC7272407 DOI: 10.1038/s41419-020-2632-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells that link the innate and adaptive immune responses; as such they play pivotal roles in initiation and progression of rheumatoid arthritis (RA). Here, we report that the tonicity-responsive enhancer-binding protein (TonEBP or NFAT5), a Rel family protein involved in the pathogenesis of autoimmune disease and inflammation, is required for maturation and function of DCs. Myeloid cell-specific TonEBP deletion reduces disease severity in a murine model of collagen-induced arthritis; it also inhibits maturation of DCs and differentiation of pathogenic Th1 and Th17 cells in vivo. Upon stimulation by TLR4, TonEBP promotes surface expression of major histocompatibility complex class II and co-stimulatory molecules via p38 mitogen-activated protein kinase. This is followed by DC-mediated differentiation of pro-inflammatory Th1 and Th17 cells. Taken together, these findings provide mechanistic basis for the pathogenic role of TonEBP in RA and possibly other autoimmune diseases.
Collapse
|
24
|
Farabaugh KT, Krokowski D, Guan BJ, Gao Z, Gao XH, Wu J, Jobava R, Ray G, de Jesus TJ, Bianchi MG, Chukwurah E, Bussolati O, Kilberg M, Buchner DA, Sen GC, Cotton C, McDonald C, Longworth M, Ramakrishnan P, Hatzoglou M. PACT-mediated PKR activation acts as a hyperosmotic stress intensity sensor weakening osmoadaptation and enhancing inflammation. eLife 2020; 9:e52241. [PMID: 32175843 PMCID: PMC7145421 DOI: 10.7554/elife.52241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
The inability of cells to adapt to increased environmental tonicity can lead to inflammatory gene expression and pathogenesis. The Rel family of transcription factors TonEBP and NF-κB p65 play critical roles in the switch from osmoadaptive homeostasis to inflammation, respectively. Here we identified PACT-mediated PKR kinase activation as a marker of the termination of adaptation and initiation of inflammation in Mus musculus embryonic fibroblasts. We found that high stress-induced PACT-PKR activation inhibits the interaction between NF-κB c-Rel and TonEBP essential for the increased expression of TonEBP-dependent osmoprotective genes. This resulted in enhanced formation of TonEBP/NF-κB p65 complexes and enhanced proinflammatory gene expression. These data demonstrate a novel role of c-Rel in the adaptive response to hyperosmotic stress, which is inhibited via a PACT/PKR-dependent dimer redistribution of the Rel family transcription factors. Our results suggest that inhibiting PACT-PKR signaling may prove a novel target for alleviating stress-induced inflammatory diseases.
Collapse
Affiliation(s)
- Kenneth T Farabaugh
- Department of Pharmacology, Case Western Reserve UniversityClevelandUnited States
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
- Department of Molecular Biology, Maria Curie-Sklodowska UniversityLublinPoland
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| | - Xing-Huang Gao
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| | - Jing Wu
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| | - Raul Jobava
- Department of Biochemistry, Case Western Reserve UniversityClevelandUnited States
| | - Greeshma Ray
- Department of Inflammation and Immunity, Cleveland Clinic FoundationClevelandUnited States
| | - Tristan J de Jesus
- Department of Pathology, Case Western Reserve UniversityClevelandUnited States
| | | | - Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| | - Ovidio Bussolati
- Department of Medicine and Surgery, Universita degli Studi di ParmaParmaItaly
| | - Michael Kilberg
- Department of Biochemistry and Molecular Biology, University of FloridaGainesvilleUnited States
| | - David A Buchner
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
- Department of Biochemistry, Case Western Reserve UniversityClevelandUnited States
| | - Ganes C Sen
- Department of Inflammation and Immunity, Cleveland Clinic FoundationClevelandUnited States
| | - Calvin Cotton
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Christine McDonald
- Department of Inflammation and Immunity, Cleveland Clinic FoundationClevelandUnited States
| | - Michelle Longworth
- Department of Inflammation and Immunity, Cleveland Clinic FoundationClevelandUnited States
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
25
|
The evolving role of TonEBP as an immunometabolic stress protein. Nat Rev Nephrol 2020; 16:352-364. [PMID: 32157251 DOI: 10.1038/s41581-020-0261-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Tonicity-responsive enhancer-binding protein (TonEBP), which is also known as nuclear factor of activated T cells 5 (NFAT5), was discovered 20 years ago as a transcriptional regulator of the cellular response to hypertonic (hyperosmotic salinity) stress in the renal medulla. Numerous studies since then have revealed that TonEBP is a pleiotropic stress protein that is involved in a range of immunometabolic diseases. Some of the single-nucleotide polymorphisms (SNPs) in TONEBP introns are cis-expression quantitative trait loci that affect TONEBP transcription. These SNPs are associated with increased risk of type 2 diabetes mellitus, diabetic nephropathy, inflammation, high blood pressure and abnormal plasma osmolality, indicating that variation in TONEBP expression might contribute to these phenotypes. In addition, functional studies have shown that TonEBP is involved in the pathogenesis of rheumatoid arthritis, atherosclerosis, diabetic nephropathy, acute kidney injury, hyperlipidaemia and insulin resistance, autoimmune diseases (including type 1 diabetes mellitus and multiple sclerosis), salt-sensitive hypertension and hepatocellular carcinoma. These pathological activities of TonEBP are in contrast to the protective actions of TonEBP in response to hypertonicity, bacterial infection and DNA damage induced by genotoxins. An emerging theme is that TonEBP is a stress protein that mediates the cellular response to a range of pathological insults, including excess caloric intake, inflammation and oxidative stress.
Collapse
|
26
|
Miki H, Han KH, Scott D, Croft M, Kang YJ. 4-1BBL Regulates the Polarization of Macrophages, and Inhibition of 4-1BBL Signaling Alleviates Imiquimod-Induced Psoriasis. THE JOURNAL OF IMMUNOLOGY 2020; 204:1892-1903. [PMID: 32041783 DOI: 10.4049/jimmunol.1900983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
4-1BBL, a member of the TNF superfamily, regulates the sustained production of inflammatory cytokines in macrophages triggered by TLR signaling. In this study, we have investigated the role of 4-1BBL in macrophage metabolism and polarization and in skin inflammation using a model of imiquimod-induced psoriasis in mice. Genetic ablation or blocking of 4-1BBL signaling by Ab or 4-1BB-Fc alleviated the pathology of psoriasis by regulating the expression of inflammatory cytokines associated with macrophage activation and regulated the polarization of macrophages in vitro. We further linked this result with macrophage by finding that 4-1BBL expression during the immediate TLR response was dependent on glycolysis, mitochondrial oxidative phosphorylation, and fatty acid metabolism, whereas the late-phase 4-1BBL-mediated sustained inflammatory response was dependent on glycolysis and fatty acid synthesis. Correlating with this, administration of a fatty acid synthase inhibitor, cerulenin, also alleviated the pathology of psoriasis. We further found that 4-1BBL-mediated psoriasis development is independent of its receptor 4-1BB, as a deficiency of 4-1BB augmented the severity of psoriasis linked to a reduced regulatory T cell population and increased IL-17A expression in γδ T cells. Additionally, coblocking of 4-1BBL signaling and IL-17A activity additively ameliorated psoriasis. Taken together, 4-1BBL signaling regulates macrophage polarization and contributes to imiquimod-induced psoriasis by sustaining inflammation, providing a possible avenue for psoriasis treatment in patients.
Collapse
Affiliation(s)
- Haruka Miki
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Kyung Ho Han
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - David Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA 92037; .,Department of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Young Jun Kang
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037; and .,Molecular Medicine Research Institute, Sunnyvale, CA 94085
| |
Collapse
|
27
|
Cen L, Xing F, Xu L, Cao Y. Potential Role of Gene Regulator NFAT5 in the Pathogenesis of Diabetes Mellitus. J Diabetes Res 2020; 2020:6927429. [PMID: 33015193 PMCID: PMC7512074 DOI: 10.1155/2020/6927429] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5), a Rel/nuclear factor- (NF-) κB family member, is the only known gene regulator of the mammalian adaptive response to osmotic stress. Exposure to elevated glucose increases the expression and nuclear translocation of NFAT5, as well as NFAT5-driven transcriptional activity in vivo and in vitro. Increased expression of NFAT5 is closely correlated with the progression of diabetes in patients. The distinct structure of NFAT5 governs its physiological and pathogenic roles, indicating its opposing functions. The ability of NFAT5 to maintain cell homeostasis and proliferation is impaired in patients with diabetes. NFAT5 promotes the formation of aldose reductase, pathogenesis of diabetic vascular complications, and insulin resistance. Additionally, NFAT5 activates inflammation at a very early stage of diabetes and induces persistent inflammation. Recent studies revealed that NFAT5 is an effective therapeutic target for diabetes. Here, we describe the current knowledge about NFAT5 and its relationship with diabetes, focusing on its diverse regulatory functions, and highlight the importance of this protein as a potential therapeutic target in patients with diabetes.
Collapse
Affiliation(s)
- Lusha Cen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengling Xing
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Liying Xu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Youdian Rd. 54th, Hangzhou 310006, China
| |
Collapse
|
28
|
Transcriptional Regulator TonEBP Mediates Oxidative Damages in Ischemic Kidney Injury. Cells 2019; 8:cells8101284. [PMID: 31635160 PMCID: PMC6830075 DOI: 10.3390/cells8101284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
TonEBP (tonicity-responsive enhancer binding protein) is a transcriptional regulator whose expression is elevated in response to various forms of stress including hyperglycemia, inflammation, and hypoxia. Here we investigated the role of TonEBP in acute kidney injury (AKI) using a line of TonEBP haplo-deficient mice subjected to bilateral renal ischemia followed by reperfusion (I/R). In the TonEBP haplo-deficient animals, induction of TonEBP, oxidative stress, inflammation, cell death, and functional injury in the kidney in response to I/R were all reduced. Analyses of renal transcriptome revealed that genes in several cellular pathways including peroxisome and mitochondrial inner membrane were suppressed in response to I/R, and the suppression was relieved in the TonEBP deficiency. Production of reactive oxygen species (ROS) and the cellular injury was reproduced in a renal epithelial cell line in response to hypoxia, ATP depletion, or hydrogen peroxide. The knockdown of TonEBP reduced ROS production and cellular injury in correlation with increased expression of the suppressed genes. The cellular injury was also blocked by inhibitors of necrosis. These results demonstrate that ischemic insult suppresses many genes involved in cellular metabolism leading to local oxidative stress by way of TonEBP induction. Thus, TonEBP is a promising target to prevent AKI.
Collapse
|
29
|
TonEBP/NFAT5 promotes obesity and insulin resistance by epigenetic suppression of white adipose tissue beiging. Nat Commun 2019; 10:3536. [PMID: 31387996 PMCID: PMC6684655 DOI: 10.1038/s41467-019-11302-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Tonicity-responsive enhancer binding protein (TonEBP or NFAT5) is a regulator of cellular adaptation to hypertonicity, macrophage activation and T-cell development. Here we report that TonEBP is an epigenetic regulator of thermogenesis and obesity. In mouse subcutaneous adipocytes, TonEBP expression increases > 50-fold in response to high-fat diet (HFD) feeding. Mice with TonEBP haplo-deficiency or adipocyte-specific TonEBP deficiency are resistant to HFD-induced obesity and metabolic defects (hyperglycemia, hyperlipidemia, and hyperinsulinemia). They also display increased oxygen consumption, resistance to hypothermia, and beiging of subcutaneous fat tissues. TonEBP suppresses the promoter of β3-adrenoreceptor gene, a critical regulator of lipolysis and thermogenesis, in ex vivo and cultured adipocytes. This involves recruitment of DNMT1 DNA methylase and methylation of the promoter. In human subcutaneous adipocytes TonEBP expression displays a correlation with body mass index but an inverse correlation with β3-adrenoreceptor expression. Thus, TonEBP is an attractive therapeutic target for obesity, insulin resistance, and hyperlipidemia. Activation of thermogenic beige adipocytes within white adipose tissue increases energy expenditure. Here, the authors show that expression of TonEBP in adipocytes is increased when mice are fed a high fat diet and that it suppresses expression of beta3-adrenoreceptor.
Collapse
|
30
|
Kim HR, Kim DH, Kim KK, Jeong B, Kang D, Lee TH, Park JW, Kwon HM, Lee BJ. Tonicity-responsive enhancer binding protein (TonEBP) regulates TNF-α-induced hypothalamic inflammation. FEBS Lett 2019; 593:2762-2770. [PMID: 31281956 DOI: 10.1002/1873-3468.13533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/19/2019] [Accepted: 06/30/2019] [Indexed: 01/20/2023]
Abstract
Tonicity-responsive enhancer binding protein (TonEBP) is a widely expressed transcription factor and is important in the regulation of inflammatory cytokines. Here, we have identified TonEBP expression in the hypothalamus, which is particularly high in proopiomelanocortin (POMC) neurons. TonEBP overexpression stimulates POMC transcription, and TonEBP haploinsufficiency in TonEBP (+/-) mice results in a decrease in hypothalamic POMC expression. TonEBP (+/-) mice show reduced sickness responses, which include anorexia and hyperthermia, that are initially induced by tumor necrosis factor (TNF)-α. TonEBP (+/-) mice also show lower levels of TNF-α-induced hypothalamic expression of POMC and pro-inflammatory cytokines. These results suggest that TonEBP is an important molecular regulator in the development of inflammatory sickness responses through the control of POMC and pro-inflammatory cytokine expression in the hypothalamus.
Collapse
Affiliation(s)
- Han Rae Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, South Korea
| | - Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, South Korea
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, South Korea
| | - Bora Jeong
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, South Korea
| | - Dasol Kang
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, South Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, South Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, South Korea
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, South Korea
| |
Collapse
|
31
|
Kang HJ, Park H, Yoo EJ, Lee JH, Choi SY, Lee-Kwon W, Lee KY, Hur JH, Seo JK, Ra JS, Lee EA, Myung K, Kwon HM. TonEBP Regulates PCNA Polyubiquitination in Response to DNA Damage through Interaction with SHPRH and USP1. iScience 2019; 19:177-190. [PMID: 31376680 PMCID: PMC6677787 DOI: 10.1016/j.isci.2019.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/13/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
Polyubiquitination of proliferating cell nuclear antigen (PCNA) regulates the error-free template-switching mechanism for the bypass of DNA lesions during DNA replication. PCNA polyubiquitination is critical for the maintenance of genomic integrity; however, the underlying mechanism is poorly understood. Here, we demonstrate that tonicity-responsive enhancer-binding protein (TonEBP) regulates PCNA polyubiquitination in response to DNA damage. TonEBP was recruited to DNA damage sites with bulky adducts and sequentially recruited E3 ubiquitin ligase SHPRH, followed by deubiquitinase USP1, to DNA damage sites, in correlation with the dynamics of PCNA polyubiquitination. Similarly, TonEBP was found to be required for replication fork protection in response to DNA damage. The Rel-homology domain of TonEBP, which encircles DNA, was essential for the interaction with SHPRH and USP1, PCNA polyubiquitination, and cell survival after DNA damage. The present findings suggest that TonEBP is an upstream regulator of PCNA polyubiquitination and of the DNA damage bypass pathway.
Collapse
Affiliation(s)
- Hyun Je Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyun Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eun Jin Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun Ho Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Soo Youn Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST-Optical Biomed Imaging Center (UOBC), Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Eun-A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
32
|
Serman Y, Fuentealba RA, Pasten C, Rocco J, Ko BCB, Carrión F, Irarrázabal CE. Emerging new role of NFAT5 in inducible nitric oxide synthase in response to hypoxia in mouse embryonic fibroblast cells. Am J Physiol Cell Physiol 2019; 317:C31-C38. [PMID: 31067085 DOI: 10.1152/ajpcell.00054.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously described the protective role of the nuclear factor of activated T cells 5 (NFAT5) during hypoxia. Alternatively, inducible nitric oxide synthase (iNOS) is also induced by hypoxia. Some evidence indicates that NFAT5 is essential for the expression of iNOS in Toll-like receptor-stimulated macrophages and that iNOS inhibition increases NFAT5 expression in renal ischemia-reperfusion. Here we studied potential NFAT5 target genes stimulated by hypoxia in mouse embryonic fibroblast (MEF) cells. We used three types of MEF cells associated with NFAT5 gene: NFAT5 wild type (MEF-NFAT5+/+), NFAT5 knockout (MEF-NFAT5-/-), and NFAT5 dominant-negative (MEF-NFAT5Δ/Δ) cells. MEF cells were exposed to 21% or 1% O2 in a time course curve of 48 h. We found that, in MEF-NFAT5+/+ cells exposed to 1% O2, NFAT5 was upregulated and translocated into the nuclei, and its transactivation domain activity was induced, concomitant with iNOS, aquaporin 1 (AQP-1), and urea transporter 1 (UTA-1) upregulation. Interestingly, in MEF-NFAT5-/- or MEF-NFAT5Δ/Δ cells, the basal levels of iNOS and AQP-1 expression were strongly downregulated, but not for UTA-1. The upregulation of AQP-1, UTA-1, and iNOS by hypoxia was blocked in both NFAT5-mutated cells. The iNOS induction by hypoxia was recovered in MEF-NFAT5-/- MEF cells, when recombinant NFAT5 protein expression was reconstituted, but not in MEF-NFAT5Δ/Δ cells, confirming the dominant-negative effect of MEF-NFAT5Δ/Δ cells. We did not see the rescue effect on AQP-1 expression. This work provides novel and relevant information about the signaling pathway of NFAT5 during responses to oxygen depletion in mammalian cells and suggests that the expression of iNOS induced by hypoxia is dependent on NFAT5.
Collapse
Affiliation(s)
- Yair Serman
- Laboratorio de Fisiología Integrativa y Molecular, Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes , Santiago , Chile
| | - Rodrigo A Fuentealba
- Laboratorio de Fisiología Integrativa y Molecular, Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes , Santiago , Chile
| | - Consuelo Pasten
- Laboratorio de Fisiología Integrativa y Molecular, Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes , Santiago , Chile
| | - Jocelyn Rocco
- Laboratorio de Fisiología Integrativa y Molecular, Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes , Santiago , Chile
| | - Ben C B Ko
- Department of Applied Biology and Chemical Technology, Polytechnic University of Hong Kong, Hong Kong, China
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo , Santiago , Chile
| | - Carlos E Irarrázabal
- Laboratorio de Fisiología Integrativa y Molecular, Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes , Santiago , Chile
| |
Collapse
|
33
|
Cross D, Drury R, Hill J, Pollard AJ. Epigenetics in Sepsis: Understanding Its Role in Endothelial Dysfunction, Immunosuppression, and Potential Therapeutics. Front Immunol 2019; 10:1363. [PMID: 31275313 PMCID: PMC6591469 DOI: 10.3389/fimmu.2019.01363] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Sepsis has a complex pathophysiology in which both excessive and refractory inflammatory responses are hallmark features. Pro-inflammatory cytokine responses during the early stages are responsible for significant endothelial dysfunction, loss of endothelial integrity, and organ failure. In addition, it is now well-established that a substantial number of sepsis survivors experience ongoing immunological derangement and immunosuppression following a septic episode. The underpinning mechanisms of these phenomena are incompletely understood yet they contribute to a significant proportion of sepsis-associated mortality. Epigenetic mechanisms including DNA methylation, histone modifications, and non-coding RNAs, have an increasingly clear role in modulating inflammatory and other immunological processes. Recent evidence suggests epigenetic mechanisms are extensively perturbed as sepsis progresses, and particularly play a role in endothelial dysfunction and immunosuppression. Whilst therapeutic modulation of the epigenome is still in its infancy, there is substantial evidence from animal models that this approach could reap benefits. In this review, we summarize research elucidating the role of these mechanisms in several aspects of sepsis pathophysiology including tissue injury and immunosuppression. We also evaluate pre-clinical evidence for the use of "epi-therapies" in the treatment of poly-microbial sepsis.
Collapse
Affiliation(s)
- Deborah Cross
- Oxford Vaccine Group, Department of Paediatrics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
34
|
Yoo EJ, Lee HH, Ye BJ, Lee JH, Lee CY, Kang HJ, Jeong GW, Park H, Lim SW, Lee-Kwon W, Kwon HM, Choi SY. TonEBP Suppresses the HO-1 Gene by Blocking Recruitment of Nrf2 to Its Promoter. Front Immunol 2019; 10:850. [PMID: 31057560 PMCID: PMC6482272 DOI: 10.3389/fimmu.2019.00850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/02/2019] [Indexed: 01/08/2023] Open
Abstract
TonEBP is a key transcriptional activator in macrophages with an M1 phenotype. High expression of TonEBP is associated with many inflammatory diseases. Heme oxygenase-1 (HO-1), a stress-inducible protein, is induced by various oxidative and inflammatory signals, and its expression is regarded as an adaptive cellular response to inflammation and oxidative injury. Here, we show that TonEBP suppresses expression of HO-1 by blocking Nrf2 binding to the HO-1 promoter, thereby inducing polarization of macrophages to the M1 phenotype. Inhibition of HO-1 expression or activity significantly reduced the inhibitory responses on M1 phenotype and stimulatory effects on M2 phenotype by TonEBP knockdown. Additional experiments showed that HO-1 plays a role in the paracrine anti-inflammatory effects of TonEBP knockdown in macrophages. Identification of HO-1 as a downstream effector of TonEBP provides new possibilities for improved therapeutic approaches to inflammatory diseases.
Collapse
Affiliation(s)
- Eun Jin Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Hwan Hee Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Byeong Jin Ye
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jun Ho Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Chae Young Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Hyun Je Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Gyu Won Jeong
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Hyun Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Sun Woo Lim
- Transplantation Research Center, Catholic University of Korea, Seoul, South Korea
| | - Whaseon Lee-Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Soo Youn Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
35
|
Aramburu J, López-Rodríguez C. Regulation of Inflammatory Functions of Macrophages and T Lymphocytes by NFAT5. Front Immunol 2019; 10:535. [PMID: 30949179 PMCID: PMC6435587 DOI: 10.3389/fimmu.2019.00535] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
The transcription factor NFAT5, also known as TonEBP, belongs to the family of Rel homology domain-containing factors, which comprises the NF-κB proteins and the calcineurin-dependent NFAT1 to NFAT4. NFAT5 shares several structural and functional features with other Rel-family factors, for instance it recognizes DNA elements with the same core sequence as those bound by NFAT1 to 4, and like NF-κB it responds to Toll-like receptors (TLR) and activates macrophage responses to microbial products. On the other hand, NFAT5 is quite unique among Rel-family factors as it can be activated by hyperosmotic stress caused by elevated concentrations of extracellular sodium ions. NFAT5 regulates specific genes but also others that are inducible by NF-κB and NFAT1 to 4. The ability of NFAT5 to do so in response to hypertonicity, microbial products, and inflammatory stimuli may extend the capabilities of immune cells to mount effective anti-pathogen responses in diverse microenvironment and signaling conditions. Recent studies identifying osmostress-dependent and -independent functions of NFAT5 have broadened our understanding of how NFAT5 may modulate immune function. In this review we focus on the role of NFAT5 in macrophages and T cells in different contexts, discussing findings from in vivo mouse models of NFAT5 deficiency and reviewing current knowledge on its mechanisms of regulation. Finally, we propose several questions for future research.
Collapse
Affiliation(s)
- Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
36
|
Lee N, Kim D, Kim WU. Role of NFAT5 in the Immune System and Pathogenesis of Autoimmune Diseases. Front Immunol 2019; 10:270. [PMID: 30873159 PMCID: PMC6401628 DOI: 10.3389/fimmu.2019.00270] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 12/29/2022] Open
Abstract
The nuclear factor of activated T cells (NFAT5), also known as a tonicity-responsive enhancer-binding protein, was originally identified as a key transcription factor involved in maintaining cellular homeostasis against hypertonic and hyperosmotic environments. Although NFAT5 has been expressed and studied in various types of hyperosmolar tissues, evidence has emerged that NFAT5 plays a role in the development and activation of immune cells, especially T cells and macrophages. The immune-regulatory function of NFAT5 is achieved by inducing different target genes and different signaling pathways in both tonicity-dependent and -independent manners. Particularly in response to hyperosmotic stress, NFAT5 induces the generation of pathogenic TH17 cells and pro-inflammatory macrophages, contributing to autoimmune and inflammatory diseases. Meanwhile, with tonicity-independent stimuli, including activation of the Toll-like receptors and inflammatory cytokines, NFAT5 also can be activated and promotes immune cell survival, proliferation, migration, and angiogenesis. Moreover, under isotonic conditions, NFAT5 has been implicated in the pathogenesis of a variety of inflammatory and autoimmune diseases including rheumatoid arthritis. This review describes the current knowledge of NFAT5, focusing on its immune-regulatory functions, and it highlights the importance of NFAT5 as a novel therapeutic target for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Naeun Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, South Korea
| | - Donghyun Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
37
|
Lee JH, Suh JH, Choi SY, Kang HJ, Lee HH, Ye BJ, Lee GR, Jung SW, Kim CJ, Lee-Kwon W, Park J, Myung K, Park NH, Kwon HM. Tonicity-responsive enhancer-binding protein promotes hepatocellular carcinogenesis, recurrence and metastasis. Gut 2019; 68:347-358. [PMID: 29420225 PMCID: PMC6352413 DOI: 10.1136/gutjnl-2017-315348] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is a common cancer with high rate of recurrence and mortality. Diverse aetiological agents and wide heterogeneity in individual tumours impede effective and personalised treatment. Tonicity-responsive enhancer-binding protein (TonEBP) is a transcriptional cofactor for the expression of proinflammatory genes. Although inflammation is intimately associated with the pathogenesis of HCC, the role of TonEBP is unknown. We aimed to identify function of TonEBP in HCC. DESIGN Tumours with surrounding hepatic tissues were obtained from 296 patients with HCC who received completion resection. TonEBP expression was analysed by quantitative reverse transcription-quantitative real-time PCR (RT-PCR) and immunohfistochemical analyses of tissue microarrays. Mice with TonEBP haplodeficiency, and hepatocyte-specific and myeloid-specific TonEBP deletion were used along with HCC and hepatocyte cell lines. RESULTS TonEBP expression is higher in tumours than in adjacent non-tumour tissues in 92.6% of patients with HCC regardless of aetiology associated. The TonEBP expression in tumours and adjacent non-tumour tissues predicts recurrence, metastasis and death in multivariate analyses. TonEBP drives the expression of cyclo-oxygenase-2 (COX-2) by stimulating the promoter. In mouse models of HCC, three common sites of TonEBP action in response to diverse aetiological agents leading to tumourigenesis and tumour growth were found: cell injury and inflammation, induction by oxidative stress and stimulation of the COX-2 promoter. CONCLUSIONS TonEBP is a key component of the common pathway in tumourigenesis and tumour progression of HCC in response to diverse aetiological insults. TonEBP is involved in multiple steps along the pathway, rendering it an attractive therapeutic target as well as a prognostic biomarker.
Collapse
Affiliation(s)
- Jun Ho Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jae Hee Suh
- Department of Pathology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
| | - Soo Youn Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyun Je Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hwan Hee Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Byeong Jin Ye
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Seok Won Jung
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
| | - Chang Jae Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiyoung Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyungjae Myung
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Neung Hwa Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| |
Collapse
|
38
|
Martins R, Carlos AR, Braza F, Thompson JA, Bastos-Amador P, Ramos S, Soares MP. Disease Tolerance as an Inherent Component of Immunity. Annu Rev Immunol 2019; 37:405-437. [PMID: 30673535 DOI: 10.1146/annurev-immunol-042718-041739] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogenic organisms exert a negative impact on host health, revealed by the clinical signs of infectious diseases. Immunity limits the severity of infectious diseases through resistance mechanisms that sense and target pathogens for containment, killing, or expulsion. These resistance mechanisms are viewed as the prevailing function of immunity. Under pathophysiologic conditions, however, immunity arises in response to infections that carry health and fitness costs to the host. Therefore, additional defense mechanisms are required to limit these costs, before immunity becomes operational as well as thereafter to avoid immunopathology. These are tissue damage control mechanisms that adjust the metabolic output of host tissues to different forms of stress and damage associated with infection. Disease tolerance is the term used to define this defense strategy, which does not exert a direct impact on pathogens but is essential to limit the health and fitness costs of infection. Under this argument, we propose that disease tolerance is an inherent component of immunity.
Collapse
Affiliation(s)
- Rui Martins
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | | - Faouzi Braza
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | | | | - Susana Ramos
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | |
Collapse
|
39
|
Casali CI, Erjavec LC, Fernández-Tome MDC. Sequential and synchronized hypertonicity-induced activation of Rel-family transcription factors is required for osmoprotection in renal cells. Heliyon 2019; 4:e01072. [PMID: 30603705 PMCID: PMC6304461 DOI: 10.1016/j.heliyon.2018.e01072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/31/2018] [Accepted: 12/14/2018] [Indexed: 01/28/2023] Open
Abstract
NF-κB and TonEBP belong to the Rel-superfamily of transcription factors. Several specific stimuli, including hypertonicity which is a key factor for renal physiology, are able to activate them. It has been reported that, after hypertonic challenge, NF-κB activity can be modulated by TonEBP, considered as the master regulator of transcriptional activity in the presence of changes in environmental tonicity. In the present work we evaluated whether hypertonicity-induced gene transcription mediated by p65/RelA and TonEBP occurs by an independent action of each transcription factor or by acting together. To do this, we evaluated the expression of their specific target genes and cyclooxygenase-2 (COX-2), a common target of both transcription factors, in the renal epithelial cell line Madin-Darby canine kidney (MDCK) subjected to hypertonic environment. The results herein indicate that hypertonicity activates the Rel-family transcription factors p65/RelA and TonEBP in MDCK cells, and that both are required for hypertonic induction of COX-2 and of their specific target genes. In addition, present data show that p65/RelA modulates TonEBP expression and both colocalize in nuclei of hypertonic cultures of MDCK cells. Thus, a sequential and synchronized action p65/RelA → TonEBP would be necessary for the expression of hypertonicity-induced protective genes.
Collapse
Affiliation(s)
- Cecilia I Casali
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Luciana C Erjavec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - María Del Carmen Fernández-Tome
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
40
|
Yang XL, Wang X, Peng BW. NFAT5 Has a Job in the Brain. Dev Neurosci 2018; 40:289-300. [PMID: 30391952 DOI: 10.1159/000493789] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) has recently been classified as a new member of the Rel family. In addition, there are 5 more well-defined members (NF-κB and NFAT1-4) in the Rel family, which participate in regulating the expression of immune and inflammatory response-related genes. NFAT5 was initially identified in renal medullary cells where it regulated the expression of osmoprotective-related genes during the osmotic response. Many studies have demonstrated that NFAT5 is highly expressed in the nuclei of neurons in fetal and adult brains. Additionally, its expression is approximately 10-fold higher in fetal brains. With the development of detection technologies (laser scanning confocal microscopy, transgene technology, etc.), recent studies suggest that NFAT5 is also expressed in glial cells and plays a more diverse functional role. This article aims to summarize the current knowledge regarding the expression of NFAT5, its regulation of activation, and varied biological functions in the brain.
Collapse
Affiliation(s)
- Xing-Liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xin Wang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China,
| |
Collapse
|
41
|
Arnold C, Feldner A, Zappe M, Komljenovic D, De La Torre C, Ruzicka P, Hecker M, Neuhofer W, Korff T. Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice. FASEB J 2018; 33:3364-3377. [PMID: 30383452 DOI: 10.1096/fj.201801594r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The arterial wall adapts to alterations in blood flow and pressure by remodeling the cellular and extracellular architecture. Biomechanical stress of vascular smooth muscle cells (VSMCs) in the media is thought to precede this process and promote their activation and subsequent proliferation. However, molecular determinants orchestrating the transcriptional phenotype under these conditions have been insufficiently studied. We identified the transcription factor, nuclear factor of activated T cells 5 (NFAT5; or tonicity enhancer-binding protein) as a crucial regulatory element of mechanical stress responses of VSMCs. Here, the relevance of NFAT5 for arterial growth and thickening is investigated in mice upon inducible smooth muscle cell (SMC)-specific genetic ablation of Nfat5. In cultured mouse VSMCs, loss of Nfat5 inhibits the expression of gene sets involved in the control of the cell cycle and the interaction with the extracellular matrix and cytoskeletal dynamics. In vivo, SMC-specific knockout of Nfat5 did not affect the general vascular architecture and blood pressure levels under baseline conditions. However, proliferation of VSMCs and the thickening of the arterial wall were inhibited during both flow-induced collateral remodeling and hypertension-mediated arterial hypertrophy. Whereas originally described as a hypertonicity-responsive transcription factor, these findings identify NFAT5 as a novel molecular determinant of biomechanically induced phenotype changes of VSMCs and wall stress-induced arterial remodeling processes.-Arnold, C., Feldner, A., Zappe, M., Komljenovic, D., De La Torre, C., Ruzicka, P., Hecker, M., Neuhofer, W., Korff, T. Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice.
Collapse
Affiliation(s)
- Caroline Arnold
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Anja Feldner
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Maren Zappe
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Dorde Komljenovic
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Carolina De La Torre
- Center of Medical Research, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Philipp Ruzicka
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Neuhofer
- Medical Clinic V, University Hospital Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
42
|
Choi SY, Lim SW, Salimi S, Yoo EJ, Lee-Kwon W, Lee HH, Lee JH, Mitchell BD, Sanada S, Parsa A, Kwon HM. Tonicity-Responsive Enhancer-Binding Protein Mediates Hyperglycemia-Induced Inflammation and Vascular and Renal Injury. J Am Soc Nephrol 2018; 29:492-504. [PMID: 29158465 PMCID: PMC5791077 DOI: 10.1681/asn.2017070718] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/24/2017] [Indexed: 12/22/2022] Open
Abstract
Diabetic nephropathy (DN) has become the single leading cause of ESRD in developed nations. Bearing in mind the paucity of effective treatment for DN and progressive CKD, novel targets for treatment are sorely needed. We previously reported that increased activity of tonicity-responsive enhancer-binding protein (TonEBP) in monocytes was associated with early DN in humans. We now extend these findings by testing the hypotheses that TonEBP in macrophages promotes hyperglycemia-mediated proinflammatory activation and chronic renal inflammation leading to DN and CKD, and TonEBP genetic variability in humans is associated with inflammatory, renal, and vascular function-related phenotypes. In a mouse model of DN, compared with the wild-type phenotype, TonEBP haplodeficiency associated with reduced activation of macrophages by hyperglycemia, fewer macrophages in the kidney, lower renal expression of proinflammatory genes, and attenuated DN. Furthermore, in a cohort of healthy humans, genetic variants within TonEBP associated with renal function, BP, and systemic inflammation. One of the genetic variants associated with renal function was replicated in a large population-based cohort. These findings suggest that TonEBP is a promising target for minimizing diabetes- and stress-induced inflammation and renovascular injury.
Collapse
Affiliation(s)
- Soo Youn Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sun Woo Lim
- Transplantation Research Center, Catholic University of Korea, Seoul, Republic of Korea
| | - Shabnam Salimi
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Eun Jin Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hwan Hee Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jun Ho Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; and
- Geriatrics Research and Education Clinical Center and
| | - Satoru Sanada
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Afshin Parsa
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; and
- Division of Nephrology, Department of Medicine, Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea;
| |
Collapse
|
43
|
Rastogi M, Srivastava N, Singh SK. Exploitation of microRNAs by Japanese Encephalitis virus in human microglial cells. J Med Virol 2017; 90:648-654. [PMID: 29149532 DOI: 10.1002/jmv.24995] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/09/2017] [Indexed: 12/16/2022]
Abstract
JEV infection in CNS leads to the JE neuroinflammation. Children and old age individual have been reported to be more prone to JEV infection. MicroRNAs are endogenous, small non-coding RNAs, which regulate the gene expression. These are ∼22 nucleotide long, conserved RNA sequence that binds at the 3'UTR of a target mRNA and regulate the post-transcriptional gene expression. The role of microRNAs has been reported in several diseases like cancer, viral infection, neuro-degeneration, diabetes etc. In the present study, the human microglial cells were infected with JEV (JaOArS982). The control and infected samples were subject to microarray profiling for microRNA expression. The microarray profile yielded differentially expressed microRNAs from JEV infected samples. The microRNA gene targets, gene ontology, annotations, and pathways were identified through various bioinformatics tools. Additionally, the pathways were mostly found common to "ubiquitin mediated proteolysis," "cytokine signaling," "maintenance of barrier function/cell junctions," JAK/STAT pathway" "Toll-like receptor signaling," "Wnt-signaling," "adhesion molecules," "apoptosis," "endocytosis," "vesicle mediated transport" etc.
Collapse
Affiliation(s)
- Meghana Rastogi
- Laboratory of Human Molecular Virology and Immunology, Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neha Srivastava
- Laboratory of Human Molecular Virology and Immunology, Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sunit K Singh
- Laboratory of Human Molecular Virology and Immunology, Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
44
|
Johnson ZI, Doolittle AC, Snuggs JW, Shapiro IM, Le Maitre CL, Risbud MV. TNF-α promotes nuclear enrichment of the transcription factor TonEBP/NFAT5 to selectively control inflammatory but not osmoregulatory responses in nucleus pulposus cells. J Biol Chem 2017; 292:17561-17575. [PMID: 28842479 DOI: 10.1074/jbc.m117.790378] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/03/2017] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc degeneration (IDD) causes chronic back pain and is linked to production of proinflammatory molecules by nucleus pulposus (NP) and other disc cells. Activation of tonicity-responsive enhancer-binding protein (TonEBP)/NFAT5 by non-osmotic stimuli, including proinflammatory molecules, occurs in cells involved in immune response. However, whether inflammatory stimuli activate TonEBP in NP cells and whether TonEBP controls inflammation during IDD is unknown. We show that TNF-α, but not IL-1β or LPS, promoted nuclear enrichment of TonEBP protein. However, TNF-α-mediated activation of TonEBP did not cause induction of osmoregulatory genes. RNA sequencing showed that 8.5% of TNF-α transcriptional responses were TonEBP-dependent and identified genes regulated by both TNF-α and TonEBP. These genes were over-enriched in pathways and diseases related to inflammatory response and inhibition of matrix metalloproteases. Based on RNA-sequencing results, we further investigated regulation of novel TonEBP targets CXCL1, CXCL2, and CXCL3 TonEBP acted synergistically with TNF-α and LPS to induce CXCL1-proximal promoter activity. Interestingly, this regulation required a highly conserved NF-κB-binding site but not a predicted TonE, suggesting cross-talk between these two members of the Rel family. Finally, analysis of human NP tissue showed that TonEBP expression correlated with canonical osmoregulatory targets TauT/SLC6A6, SMIT/SLC5A3, and AR/AKR1B1, supporting in vitro findings that the inflammatory milieu during IDD does not interfere with TonEBP osmoregulation. In summary, whereas TonEBP participates in the proinflammatory response to TNF-α, therapeutic strategies targeting this transcription factor for treatment of disc disease must spare osmoprotective, prosurvival, and matrix homeostatic activities.
Collapse
Affiliation(s)
- Zariel I Johnson
- From the Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Alexandra C Doolittle
- From the Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Joseph W Snuggs
- the Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB Sheffield, United Kingdom
| | - Irving M Shapiro
- From the Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Christine L Le Maitre
- the Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB Sheffield, United Kingdom
| | - Makarand V Risbud
- From the Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| |
Collapse
|
45
|
Lee JY, Jeong EA, Kim KE, Yi CO, Jin Z, Lee JE, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS, Choi SY, Kwon HM, Roh GS. TonEBP/NFAT5 haploinsufficiency attenuates hippocampal inflammation in high-fat diet/streptozotocin-induced diabetic mice. Sci Rep 2017; 7:7837. [PMID: 28798347 PMCID: PMC5552681 DOI: 10.1038/s41598-017-08319-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/07/2017] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that overexpression of tonicity-responsive enhancer binding protein (TonEBP) is associated with many inflammatory diseases, including diabetes mellitus, which causes neuroinflammation in the hippocampus as well as hepatic steatosis. However, the exact mechanism in diabetic neuroinflammation is unknown. We report that haploinsufficiency of TonEBP inhibits hepatic and hippocampal high-mobility group box-1 (HMGB1) expression in diabetic mice. Here, mice were fed a high-fat diet (HFD) for 16 weeks and received an intraperitoneal injection of 100 mg/kg streptozotocin (STZ) and followed by continued HFD feeding for an additional 4 weeks to induce hyperglycemia and hepatic steatosis. Compared with wild-type diabetic mice, diabetic TonEBP+/- mice showed decreased body weight, fat mass, hepatic steatosis, and macrophage infiltration. We also found that adipogenesis and HMGB1 expression in the liver and hippocampus were lower in diabetic TonEBP+/- mice compared with the wild type. Furthermore, iba-1 immunoreactivity in the hippocampus was decreased in diabetic TonEBP+/- mice compared with that in the wild type. Our findings suggest that TonEBP haploinsufficiency suppresses diabetes-associated hepatic steatosis and neuroinflammation.
Collapse
Affiliation(s)
- Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Chin-Ok Yi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Zhen Jin
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Soo Youn Choi
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - H Moo Kwon
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea. .,Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea.
| |
Collapse
|
46
|
Protein Kinase R Mediates the Inflammatory Response Induced by Hyperosmotic Stress. Mol Cell Biol 2017; 37:MCB.00521-16. [PMID: 27920257 DOI: 10.1128/mcb.00521-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
High extracellular osmolarity results in a switch from an adaptive to an inflammatory gene expression program. We show that hyperosmotic stress activates the protein kinase R (PKR) independently of its RNA-binding domain. In turn, PKR stimulates nuclear accumulation of nuclear factor κB (NF-κB) p65 species phosphorylated at serine-536, which is paralleled by the induction of a subset of inflammatory NF-κB p65-responsive genes, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and IL-1β. The PKR-mediated hyperinduction of iNOS decreases cell survival in mouse embryonic fibroblasts via mechanisms involving nitric oxide (NO) synthesis and posttranslational modification of proteins. Moreover, we demonstrate that the PKR inhibitor C16 ameliorates both iNOS amplification and disease-induced phenotypic breakdown of the intestinal epithelial barrier caused by an increase in extracellular osmolarity induced by dextran sodium sulfate (DSS) in vivo Collectively, these findings indicate that PKR activation is an essential part of the molecular switch from adaptation to inflammation in response to hyperosmotic stress.
Collapse
|
47
|
Johnson ZI, Shapiro IM, Risbud MV. RNA Sequencing Reveals a Role of TonEBP Transcription Factor in Regulation of Pro-inflammatory Genes in Response to Hyperosmolarity in Healthy Nucleus Pulposus Cells: A HOMEOSTATIC RESPONSE? J Biol Chem 2016; 291:26686-26697. [PMID: 27875309 DOI: 10.1074/jbc.m116.757732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/12/2016] [Indexed: 11/06/2022] Open
Abstract
Transcription factor tonicity-responsive enhancer-binding protein (TonEBP/NFAT5) is critical for osmo-adaptation and extracellular matrix homeostasis of nucleus pulposus (NP) cells in their hypertonic tissue niche. Recent studies implicate TonEBP signaling in inflammatory disease and rheumatoid arthritis pathogenesis. However, broader functions of TonEBP in the disc remain unknown. RNA sequencing was performed on NP cells with TonEBP knockdown under hypertonic conditions. 1140 TonEBP-dependent genes were identified and categorized using Ingenuity Pathway Analysis. Bioinformatic analysis showed enrichment of matrix homeostasis and cytokine/chemokine signaling pathways. C-C motif chemokine ligand 2 (CCL2), interleukin 6 (IL6), tumor necrosis factor (TNF), and nitric oxide synthase 2 (NOS2) were studied further. Knockdown experiments showed that TonEBP was necessary to maintain expression levels of these genes. Gain- and loss-of-function experiments and site-directed mutagenesis demonstrated that TonEBP binding to a specific site in the CCL2 promoter is required for hypertonic inducibility. Despite inhibition by dominant-negative TonEBP, IL6 and NOS2 promoters were not hypertonicity-inducible. Whole-disc response to hypertonicity was studied in an ex vivo organ culture model, using wild-type and haploinsufficient TonEBP mice. Pro-inflammatory targets were induced by hypertonicity in discs from wild-type but not TonEBP-haploinsufficient mice. Mechanistically, NF-κB activity increased with hypertonicity and was necessary for hypertonic induction of target genes IL6, TNF, and NOS2 but not CCL2 Although TonEBP maintains transcription of genes traditionally considered pro-inflammatory, it is important to note that some of these genes also serve anabolic and pro-survival roles. Therefore, in NP cells, this phenomenon may reflect a physiological adaptation to diurnal osmotic loading of the intervertebral disc.
Collapse
Affiliation(s)
- Zariel I Johnson
- Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Irving M Shapiro
- Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,From the Department of Orthopaedic Surgery and
| | - Makarand V Risbud
- Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 .,From the Department of Orthopaedic Surgery and
| |
Collapse
|