1
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
2
|
Esposito TVF, Rodríguez-Rodríguez C, Blackadar C, Kłodzińska S, Mørck Nielsen H, Saatchi K, Häfeli UO. Biodistribution of the cationic host defense peptide LL-37 using SPECT/CT. Eur J Pharm Biopharm 2024; 202:114398. [PMID: 38972467 DOI: 10.1016/j.ejpb.2024.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Human cathelicidin LL-37, a cationic host defense peptide (CHDP), has several important physiological roles, including antimicrobial activity, immune modulation, and wound healing, and is a being investigated as a therapeutic candidate for several indications. While the effects of endogenously produced LL-37 are well studied, the biodistribution of exogenously administered LL-37 are less known. Here we assess the biodistribution of a gallium-67 labeled variant of LL-37 using nuclear imaging techniques over a 48 h period in healthy mice. When administered as an intravenous bolus just over 20 µg, the LL-37-based radiotracer was rapidly cleared from the blood, largely by the liver, while an appreciable fraction of the dose temporarily distributed to the lungs. When administered subcutaneously at the same dose level, the radiotracer was absorbed systemically following a two-phase kinetic model and was predominately cleared renally. Uptake into sites rich in immune cells, such as the lymph nodes and the spleen, was observed for both routes of administration. Scans of free gallium-67 were also performed as controls. Important preclinical insights into the biodistribution of exogenously administered LL-37 were gained from this study, which can aid in the understanding of this and related cationic host-defense peptides.
Collapse
Affiliation(s)
- Tullio V F Esposito
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, Canada
| | - Colin Blackadar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Sylvia Kłodzińska
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Esposito TVF, Blackadar C, Wu L, Rodríguez-Rodríguez C, Haney EF, Pletzer D, Saatchi K, Hancock REW, Häfeli UO. Biodistribution of Native and Nanoformulated Innate Defense Regulator Peptide 1002. Mol Pharm 2024; 21:2751-2766. [PMID: 38693707 DOI: 10.1021/acs.molpharmaceut.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Innate defense regulator-1002 (IDR-1002) is a synthetic peptide with promising immunomodulatory and antibiofilm properties. An appreciable body of work exists around its mechanism of action at the cellular and molecular level, along with its efficacy across several infection and inflammation models. However, little is known about its absorption, distribution, and excretion in live organisms. Here, we performed a comprehensive biodistribution assessment with a gallium-67 radiolabeled derivative of IDR-1002 using nuclear tracing techniques. Various dose levels of the radiotracer (2-40 mg/kg) were administered into the blood, peritoneal cavity, and subcutaneous tissue, or instilled into the lungs. The peptide was well tolerated at all subcutaneous and intraperitoneal doses, although higher levels were associated with delayed absorption kinetics and precipitation of the peptide within the tissues. Low intratracheal doses were rapidly absorbed systemically, and small increases in the dose level were lethal. Intravenous doses were rapidly cleared from the blood at lower levels, and upon escalation, were toxic with a high proportion of the dose accumulating within the lung tissue. To improve biocompatibility and prolong its circulation within the blood, IDR-1002 was further formulated onto high molecular weight hyperbranched polyglycerol (HPG) polymers. Constructs prepared at 5:1 and 10:1 peptide-to-polymer ratios were colloidally stable, maintained the biological profile of the peptide payload and helped reduce red blood cell lysis. The 5:1 construct circulated well in the blood, but higher peptide loading was associated with rapid clearance by the reticuloendothelial system. Many peptides face pharmacokinetic and biocompatibility challenges, but formulations such as those with HPG have the potential to overcome these limitations.
Collapse
Affiliation(s)
- Tullio V F Esposito
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Colin Blackadar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Lan Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Evan F Haney
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Asep Medical Holdings, 420 - 730 View Street, Victoria V8W 3Y7, British Columbia, Canada
| | - Daniel Pletzer
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1172, Denmark
| |
Collapse
|
4
|
Behera S, Mumtaz S, Singh M, Mukhopadhyay K. Synergistic Potential of α-Melanocyte Stimulating Hormone Based Analogues with Conventional Antibiotic against Planktonic, Biofilm-Embedded, and Systemic Infection Model of MRSA. ACS Infect Dis 2023; 9:2436-2447. [PMID: 38009640 DOI: 10.1021/acsinfecdis.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The repotentiation of the existing antibiotics by exploiting the combinatorial potential of antimicrobial peptides (AMPs) with them is a promising approach to address the challenges of slow antibiotic development and rising antimicrobial resistance. In the current study, we explored the ability of lead second generation Ana-peptides viz. Ana-9 and Ana-10, derived from Alpha-Melanocyte Stimulating Hormone (α-MSH), to act synergistically with different classes of conventional antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). The peptides exhibited prominent synergy with β-lactam antibiotics, namely, oxacillin, ampicillin, and cephalothin, against planktonic MRSA. Furthermore, the lead combination of Ana-9/Ana-10 with oxacillin provided synergistic activity against clinical MRSA isolates. Though the treatment of MRSA is complicated by biofilms, the lead combinations successfully inhibited biofilm formation and also demonstrated biofilm disruption potential. Encouragingly, the peptides alone and in combination were able to elicit in vivo anti-MRSA activity and reduce the bacterial load in the liver and kidney of immune-compromised mice. Importantly, the presence of Ana-peptides at sub-MIC doses slowed the resistance development against oxacillin in MRSA cells. Thus, this study highlights the synergistic activity of Ana-peptides with oxacillin advocating for the potential of Ana-peptides as an alternative therapeutic and could pave the way for the reintroduction of less potent conventional antibiotics into clinical use against MRSA infections.
Collapse
Affiliation(s)
- Swastik Behera
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sana Mumtaz
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Madhuri Singh
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
5
|
Cavallazzi Sebold B, Li J, Ni G, Fu Q, Li H, Liu X, Wang T. Going Beyond Host Defence Peptides: Horizons of Chemically Engineered Peptides for Multidrug-Resistant Bacteria. BioDrugs 2023; 37:607-623. [PMID: 37300748 PMCID: PMC10432368 DOI: 10.1007/s40259-023-00608-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Multidrug-resistant (MDR) bacteria are considered a health threat worldwide, and this problem is set to increase over the decades. The ESKAPE, a group of six pathogens including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. is the major source of concern due to their high death incidence and nosocomial acquired infection. Host defence peptides (HDPs) are a class of ribosomally synthesised peptides that have shown promising results in combating MDR, including the ESKAPE group, in- and outside bacterial biofilms. However, their poor pharmacokinetics in physiological mediums may impede HDPs from becoming viable clinical candidates. To circumvent this problem, chemical engineering of HDPs has been seen as an emergent approach to not only improve their pharmacokinetics but also their efficacy against pathogens. In this review, we explore several chemical modifications of HDPs that have shown promising results, especially against ESKAPE pathogens, and provide an overview of the current findings with respect to each modification.
Collapse
Affiliation(s)
- Bernardo Cavallazzi Sebold
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Guoying Ni
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Quanlan Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China.
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
6
|
Cresti L, Cappello G, Vailati S, Melloni E, Brunetti J, Falciani C, Bracci L, Pini A. In Vivo Efficacy and Toxicity of an Antimicrobial Peptide in a Model of Endotoxin-Induced Pulmonary Inflammation. Int J Mol Sci 2023; 24:ijms24097967. [PMID: 37175674 PMCID: PMC10178222 DOI: 10.3390/ijms24097967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
SET-M33 is a synthetic peptide that is being developed as a new antibiotic against major Gram-negative bacteria. Here we report two in vivo studies to assess the toxicity and efficacy of the peptide in a murine model of pulmonary inflammation. First, we present the toxicity study in which SET-M33 was administered to CD-1 mice by snout inhalation exposure for 1 h/day for 7 days at doses of 5 and 20 mg/kg/day. The results showed adverse clinical signs and effects on body weight at the higher dose, as well as some treatment-related histopathology findings (lungs and bronchi, nose/turbinates, larynx and tracheal bifurcation). On this basis, the no observable adverse effect level (NOAEL) was considered to be 5 mg/kg/day. We then report an efficacy study of the peptide in an endotoxin (LPS)-induced pulmonary inflammation model. Intratracheal administration of SET-M33 at 0.5, 2 and 5 mg/kg significantly inhibited BAL neutrophil cell counts after an LPS challenge. A significant reduction in pro-inflammatory cytokines, KC, MIP-1α, IP-10, MCP-1 and TNF-α was also recorded after SET-M33 administration.
Collapse
Affiliation(s)
- Laura Cresti
- U.O.C. Clinical Pathology, Azienda Ospedaliera Universitaria Senese, Via M. Bracci, 53100 Siena, Italy
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Giovanni Cappello
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
- SetLance srl, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Elsa Melloni
- Zambon spa, Via A. Meucci 3, 20091 Bresso, Italy
| | - Jlenia Brunetti
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Chiara Falciani
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Luisa Bracci
- U.O.C. Clinical Pathology, Azienda Ospedaliera Universitaria Senese, Via M. Bracci, 53100 Siena, Italy
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| | - Alessandro Pini
- U.O.C. Clinical Pathology, Azienda Ospedaliera Universitaria Senese, Via M. Bracci, 53100 Siena, Italy
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy
| |
Collapse
|
7
|
Cresti L, Conte G, Cappello G, Brunetti J, Falciani C, Bracci L, Quaglia F, Ungaro F, d’Angelo I, Pini A. Inhalable Polymeric Nanoparticles for Pulmonary Delivery of Antimicrobial Peptide SET-M33: Antibacterial Activity and Toxicity In Vitro and In Vivo. Pharmaceutics 2022; 15:pharmaceutics15010003. [PMID: 36678633 PMCID: PMC9863998 DOI: 10.3390/pharmaceutics15010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Development of inhalable formulations for delivering peptides to the conductive airways and shielding their interactions with airway barriers, thus enhancing peptide/bacteria interactions, is an important part of peptide-based drug development for lung applications. Here, we report the construction of a biocompatible nanosystem where the antimicrobial peptide SET-M33 is encapsulated within polymeric nanoparticles of poly(lactide-co-glycolide) (PLGA) conjugated with polyethylene glycol (PEG). This system was conceived for better delivery of the peptide to the lungs by aerosol. The encapsulated peptide showed prolonged antibacterial activity, due to its controlled release, and much lower toxicity than the free molecule. The peptide-based nanosystem killed Pseudomonas aeruginosa in planktonic and sessile forms in a dose-dependent manner, remaining active up to 72 h after application. The encapsulated peptide showed no cytotoxicity when incubated with human bronchial epithelial cells from healthy individuals and from cystic fibrosis patients, unlike the free peptide, which showed an EC50 of about 22 µM. In vivo acute toxicity studies in experimental animals showed that the peptide nanosystem did not cause any appreciable side effects, and confirmed its ability to mitigate the toxic and lethal effects of free SET-M33.
Collapse
Affiliation(s)
- Laura Cresti
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- SetLance srl, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Gemma Conte
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Giovanni Cappello
- SetLance srl, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Luisa Bracci
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | - Ivana d’Angelo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Correspondence: (I.d.); (A.P.)
| | - Alessandro Pini
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
- Correspondence: (I.d.); (A.P.)
| |
Collapse
|
8
|
Mumtaz S, Behera S, Joshi S, Mukhopadhyay K. Efficacy and Toxicity Studies of Novel α-MSH Analogues with Antibiofilm Action and β-Lactam Resensitization Potential against MRSA. ACS Infect Dis 2022; 8:2480-2493. [PMID: 36440863 DOI: 10.1021/acsinfecdis.2c00280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a biofilm-forming recalcitrant pathogen with a multidrug-resistant profile, poses a pandemic threat to human health and is the leading cause of severe infections in both healthcare and community settings. In this study, toward designing novel α-MSH-based peptides with enhanced activity and stability against MRSA, particularly its stationary phase and biofilm, we explored a design approach to augment the hydrophobicity of an 8-mer C-terminal α-MSH(6-13)-based peptide Ana-5 through the incorporation of a bulky unnatural amino acid. The designed Ana-peptides overcame the limitation of diminished activity in biological media and exhibited enhanced antistaphylococcal activity and cell selectivity. With membrane rupture as the primary mode of action, the peptides exhibited inhibitory potential against S. aureus biofilms. Importantly, the peptides did not exhibit any adverse effects in the in vivo toxicity studies and were also able to significantly alleviate bacterial infection in a systemic infection mice model study. Additionally, the peptides retained their activity in the presence of serum and displayed a low propensity toward resistance development in MRSA cells. Moreover, the observed synergistic potential of Ana-10 with conventional antibiotics could be vital in resurrecting discarded antibiotics. Thus, this study provides us with an exciting lead, Ana-10, for further development against biofilm-based chronic S. aureus infections.
Collapse
Affiliation(s)
- Sana Mumtaz
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi110067, India
| | - Swastik Behera
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi110067, India
| | - Seema Joshi
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi110067, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi110067, India
| |
Collapse
|
9
|
Safety evaluations of a synthetic antimicrobial peptide administered intravenously in rats and dogs. Sci Rep 2022; 12:19294. [PMID: 36369523 PMCID: PMC9652379 DOI: 10.1038/s41598-022-23841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The antimicrobial peptide SET-M33 is under study for the development of a new antibiotic against major Gram-negative pathogens. Here we report the toxicological evaluation of SET-M33 administered intravenously to rats and dogs. Dose range finding experiments determined the doses to use in toxicokinetic evaluation, clinical biochemistry analysis, necroscopy and in neurological and respiratory measurements. Clinical laboratory investigations in dogs and rats showed a dose-related increase in creatinine and urea levels, indicating that the kidneys are the target organ. This was also confirmed by necroscopy studies of animal tissues, where signs of degeneration and regeneration were found in kidney when SET-M33 was administered at the highest doses in the two animal species. Neurological toxicity measurements by the Irwin method and respiratory function evaluation in rats did not reveal any toxic effect even at the highest dose. Finally, repeated administration of SET-M33 by short infusion in dogs revealed a no-observed-adverse-effect-level of 0.5 mg/kg/day.
Collapse
|
10
|
El-brolsy HMEM, Hanafy NAN, El-Kemary MA. Fighting Non-Small Lung Cancer Cells Using Optimal Functionalization of Targeted Carbon Quantum Dots Derived from Natural Sources Might Provide Potential Therapeutic and Cancer Bio Image Strategies. Int J Mol Sci 2022; 23:13283. [PMID: 36362075 PMCID: PMC9658332 DOI: 10.3390/ijms232113283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is an important sub-type of lung cancer associated with poor diagnosis and therapy. Innovative multi-functional systems are urgently needed to overcome the invasiveness of NSCLC. Carbon quantum dots (CQDs) derived from natural sources have received interest for their potential in medical bio-imaging due to their unique properties, which are characterized by their water solubility, biocompatibility, simple synthesis, and low cytotoxicity. In the current study, ethylene-diamine doped CQDs enhanced their cytotoxicity (98 ± 0.4%, 97 ± 0.38%, 95.8 ± 0.15%, 86 ± 0.15%, 12.5 ± 0.14%) compared to CQDs alone (99 ± 0.2%, 98 ± 1.7%, 96 ± 0.8%, 93 ± 0.38%, 91 ± 1.3%) at serial concentrations (0.1, 1, 10, 100, 1000 μg/mL). In order to increase their location in a specific tumor site, folic acid was used to raise their functional folate recognition. The apoptotic feature of A549 lung cells exposed to N-CQDs and FA-NCQDs was characterized by a light orange-red color under fluorescence microscopy. Additionally, much nuclear fragmentation and condensation were seen. Flow cytometry results showed that the percentage of cells in late apoptosis and necrosis increased significantly in treated cells to (19.7 ± 0.03%), (27.6 ± 0.06%) compared to untreated cells (4.6 ± 0.02%), (3.5 ± 0.02%), respectively. Additionally, cell cycle arrest showed a strong reduction in cell numbers in the S phase (14 ± 0.9%) compared to untreated cells (29 ± 0.5%). Caspase-3 levels were increased significantly in A549 exposed to N-CQDs (2.67 ± 0.2 ng/mL) and FA-NCQDs (3.43 ± 0.05 ng/mL) compared to untreated cells (0.34 ± 0.04 ng/mL). The functionalization of CQDs derived from natural sources has proven their potential application to fight off non-small lung cancer.
Collapse
|
11
|
Acyldepsipeptide Analogues: A Future Generation Antibiotics for Tuberculosis Treatment. Pharmaceutics 2022; 14:pharmaceutics14091956. [PMID: 36145704 PMCID: PMC9502522 DOI: 10.3390/pharmaceutics14091956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Acyldepsipeptides (ADEPs) are a new class of emerging antimicrobial peptides (AMPs), which are currently explored for treatment of pathogenic infections, including tuberculosis (TB). These cyclic hydrophobic peptides have a unique bacterial target to the conventional anti-TB drugs, and present a therapeutic window to overcome Mycobacterium Tuberculosis (M. tb) drug resistance. ADEPs exerts their antibacterial activity on M. tb strains through activation of the protein homeostatic regulatory protease, the caseinolytic protease (ClpP1P2). ClpP1P2 is normally regulated and activated by the ClpP-ATPases to degrade misfolded and toxic peptides and/or short proteins. ADEPs bind and dysregulate all the homeostatic capabilities of ClpP1P2 while inducing non-selective proteolysis. The uncontrolled proteolysis leads to M. tb cell death within the host. ADEPs analogues that have been tested possess cytotoxicity and poor pharmacokinetic and pharmacodynamic properties. However, these can be improved by drug design techniques. Moreover, the use of nanomaterial in conjunction with ADEPs would yield effective synergistic effect. This new mode of action has potential to combat and eradicate the extensive multi-drug resistance (MDR) problem that is currently faced by the public health pertaining bacterial infections, especially TB.
Collapse
|
12
|
Arrazuria R, Kerscher B, Huber KE, Hoover JL, Lundberg CV, Hansen JU, Sordello S, Renard S, Aranzana-Climent V, Hughes D, Gribbon P, Friberg LE, Bekeredjian-Ding I. Variability of murine bacterial pneumonia models used to evaluate antimicrobial agents. Front Microbiol 2022; 13:988728. [PMID: 36160241 PMCID: PMC9493352 DOI: 10.3389/fmicb.2022.988728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded “Collaboration for prevention and treatment of MDR bacterial infections” (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Karen E. Huber
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Jennifer L. Hoover
- Infectious Diseases Research Unit, GlaxoSmithKline Pharmaceuticals, Collegeville, PA, United States
| | | | - Jon Ulf Hansen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Hamburg, Germany
| | | | - Isabelle Bekeredjian-Ding
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- *Correspondence: Isabelle Bekeredjian-Ding,
| |
Collapse
|
13
|
V F Esposito T, Rodríguez-Rodríguez C, Blackadar C, Haney EF, Pletzer D, E W Hancock R, Saatchi K, Häfeli UO. Biodistribution and Toxicity of Innate Defense Regulator 1018 (IDR-1018). Eur J Pharm Biopharm 2022; 179:11-25. [PMID: 36028151 DOI: 10.1016/j.ejpb.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/04/2022]
Abstract
Innate defense regulators (IDRs) are synthetic host-defense peptides (HDPs) with broad-spectrum anti-infective properties, including immunomodulatory, anti-biofilm and direct antimicrobial activities. A lack of pharmacokinetic data about these peptides hinders their development and makes it challenging to fully understand how they work in vivo since their mechanism of action is dependent on tissue concentrations of the peptide. Here, we set out to define in detail the pharmacokinetics of a well-characterized IDR molecule, IDR-1018. To make the peptide traceable, it was radiolabeled with the long-lived gamma-emitting isotope gallium-67. After a series of bench-top characterizations, the radiotracer was administered to healthy mice intravenously (IV) or subcutaneously (SQ) at various dose levels (2.5-13 mg/kg). Nuclear imaging and ex-vivo biodistributions were used to quantify organ and tissue uptake of the radiotracer over time. When administered as an IV bolus, the distribution profile of the radiotracer changed as the dose was escalated. At 2.5 mg/kg, the peptide was well-tolerated, poorly circulated in the blood and was cleared predominately by the reticuloendothelial system. Higher doses (7 and 13 mg/kg) as an IV bolus were almost immediately lethal due to respiratory arrest; significant lung uptake of the radiotracer was observed from nuclear scans of these animals, and histological examination found extensive damage to the pulmonary vasculature and alveoli. When administered SQ at a dose of 3 mg/kg, radiolabeled IDR-1018 was rapidly absorbed from the site of injection and predominately cleared renally. Apart from the SQ injection site, no other tissue had a concentration above the minimum inhibitory concentration that would enable this peptide to exert direct antimicrobial effects against most pathogenic bacteria. Tissue concentrations were sufficient however to disrupt microbial biofilms and alter the host immune response. Overall, this study demonstrated that the administration of synthetic IDR peptide in vivo is best suited to local administration which avoids some of the issues associated with peptide toxicity that are observed when administered systemically by IV injection, an issue that will have to be addressed through formulation.
Collapse
Affiliation(s)
- Tullio V F Esposito
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, Canada
| | - Colin Blackadar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Evan F Haney
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, Canada; Asep Medical Holdings, Victoria, BC, Canada
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | - Robert E W Hancock
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Lo WL, Wang YH, Chen EHL, Wang SM, Chen LC, Chen RPY. Biodistribution analysis of an intranasal-delivered peptide by the nanoSPECT/CT imaging. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Li T, Yang N, Teng D, Mao R, Hao Y, Wang X, Wang J. C-terminal mini-PEGylation of a marine peptide N6 had potent antibacterial and anti-inflammatory properties against Escherichia coli and Salmonella strains in vitro and in vivo. BMC Microbiol 2022; 22:128. [PMID: 35549900 PMCID: PMC9097129 DOI: 10.1186/s12866-022-02534-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/11/2022] [Indexed: 02/08/2023] Open
Abstract
Background Enteropathogenic Escherichia coli and Salmonella pullorum are two important groups of zoonotic pathogens. At present, the treatment of intestinal pathogenic bacteria infection mainly relies on antibiotics, which directly inhibit or kill the pathogenic bacteria. However, due to long-term irrational, excessive use or abuse, bacteria have developed different degrees of drug resistance. N6, an arenicin-3 derivative isolated from the lugworm, has potent antibacterial activity and is poorly resistant to enzymatic hydrolysis and distribution in vivo. Polyethylene glycol (PEG) is an extensively studied polymer and commonly used in protein or peptide drugs to improve their therapeutic potential. Here, we modified the N-/C-terminal or Cys residue of N6 with liner PEGn of different lengths (n = 2, 6,12, and 24), and the effects of PEGylation of N6 on the stability, toxicity, bactericidal mechanism, distribution and efficacy were investigated in vitro and in vivo. Results The antimicrobial activity of the peptide showed that PEGylated N6 at the C-terminus (n = 2, N6-COOH-miniPEG) had potent activity against Gram-negative bacteria; PEGylated N6 at the N-terminus and Cys residues showed low or no activity with increasing lengths of PEG. N6-COOH-miniPEG has higher stability in trypsin than the parent peptide-N6. N6-COOH-miniPEG significantly regulated cytokine expression in lipopolysaccharides (LPS)-induced RAW 264.7 cells, and the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β were reduced by 31.21%, 65.62% and 44.12%, respectively, lower than those of N6 (-0.06%, -12.36% and -12.73%); N6-COOH-miniPEG increased the level of IL-10 (37.83%), higher than N6 (-10.21%). The data indicated that N6-COOH-miniPEG has more potent anti-inflammatory and immune-regulatory effect than N6 in LPS-stimulated RAW 264.7 cells. N6-COOH-miniPEG exhibited a much wider biodistribution in mice and prolonged in vivo half-time. FITC-labeled N6-COOH-miniPEG was distributed throughout the body of mice in the range of 0.75 – 2 h after injection, while FITC-labeled N6 only concentrated in the abdominal cavity of mice after injection, and the distribution range was narrow. N6-COOH-miniPEG improved the survival rates of mice challenged with E. coli or S. pullorum, downregulated the levels of TNF-α, IL-6, IL-1β and IL-10 in the serum of LPS-infected mice, and alleviated multiple-organ injuries (the liver, spleen, kidney, and lung), superior to antibiotics, but slightly inferior to N6. Conclusions The antibacterial activity, bactericidal mechanism and cytotoxicity of N6-COOH-miniPEG and N6 were similar. N6-COOH-miniPEG has a higher resistance to trysin than N6. The distribution of N6-COOH-miniPEG in mice was superior to that of N6. In exploring the modulatory effects of antimicrobial peptides on cytokines, N6-COOH-miniPEG had stronger anti-inflammatory and immunomodulatory effects than N6. The results suggested that C-terminal PEGylated N6 may provide an opportunity for the development of effective anti-inflammatory and antibacterial peptides. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02534-w.
Collapse
Affiliation(s)
- Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Haidian District, 12 Zhongguancun Nandajie St, Beijing, 100081, People's Republic of China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
16
|
Novel Antimicrobial Peptides Designed Using a Recurrent Neural Network Reduce Mortality in Experimental Sepsis. Antibiotics (Basel) 2022; 11:antibiotics11030411. [PMID: 35326874 PMCID: PMC8944797 DOI: 10.3390/antibiotics11030411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
The search and development of new antibiotics is relevant due to widespread antibiotic resistance. One of the promising strategies is the de novo design of novel antimicrobial peptides. The amino acid sequences of 198 novel peptides were obtained using a generative long short-term memory recurrent neural network (LSTM RNN). To assess their antimicrobial effect, we synthesized five out of 198 generated peptides. The PEP-38 and PEP-137 peptides were active in vitro against carbapenem-resistant isolates of Klebsiella aerogenes and K. pneumoniae. PEP-137 was also active against Pseudomonas aeruginosa. The remaining three peptides (PEP-36, PEP-136 and PEP-174) showed no antibacterial effect. Then the effect of PEP-38 and PEP-137 (a single intraperitoneal administration of a 100 μg dose 30 min after infection) on animal survival in an experimental murine model of K. pneumoniae-induced sepsis was investigated. As a control, two groups of mice were used: one received sterile saline, and the other received inactive in vitro PEP-36 (a single 100 μg dose). The PEP-36 peptide was shown to provide the highest survival rate (66.7%). PEP-137 showed a survival rate of 50%. PEP-38 was found to be ineffective. The data obtained can be used to develop new antibacterial peptide drugs to combat antibiotic resistance.
Collapse
|
17
|
Mousaei Ghasroldasht M, Seok J, Park HS, Liakath Ali FB, Al-Hendy A. Stem Cell Therapy: From Idea to Clinical Practice. Int J Mol Sci 2022; 23:ijms23052850. [PMID: 35269990 PMCID: PMC8911494 DOI: 10.3390/ijms23052850] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
Regenerative medicine is a new and promising mode of therapy for patients who have limited or no other options for the treatment of their illness. Due to their pleotropic therapeutic potential through the inhibition of inflammation or apoptosis, cell recruitment, stimulation of angiogenesis, and differentiation, stem cells present a novel and effective approach to several challenging human diseases. In recent years, encouraging findings in preclinical studies have paved the way for many clinical trials using stem cells for the treatment of various diseases. The translation of these new therapeutic products from the laboratory to the market is conducted under highly defined regulations and directives provided by competent regulatory authorities. This review seeks to familiarize the reader with the process of translation from an idea to clinical practice, in the context of stem cell products. We address some required guidelines for clinical trial approval, including regulations and directives presented by the Food and Drug Administration (FDA) of the United States, as well as those of the European Medicine Agency (EMA). Moreover, we review, summarize, and discuss regenerative medicine clinical trial studies registered on the Clinicaltrials.gov website.
Collapse
|
18
|
Hamad M, Al-Marzooq F, Srinivasulu V, Omar HA, Sulaiman A, Zaher DM, Orive G, Al-Tel TH. Antibacterial Activity of Small Molecules Which Eradicate Methicillin-Resistant Staphylococcus aureus Persisters. Front Microbiol 2022; 13:823394. [PMID: 35178043 PMCID: PMC8846302 DOI: 10.3389/fmicb.2022.823394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
The serious challenge posed by multidrug-resistant bacterial infections with concomitant treatment failure and high mortality rates presents an urgent threat to the global health. We herein report the discovery of a new class of potent antimicrobial compounds that are highly effective against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The compounds were efficiently synthesized in one-pot employing a cascade of Groebke-Blackburn-Bienaymé and aza-Michael addition reactions. Phenotypic screening of the pilot library against various bacterial species including methicillin-sensitive and MRSA strains, has identified potent chemotypes with minimal inhibitory concentrations (MIC) of 3.125-6.25 μg/ml. The most potent compounds were fast-acting at eradicating exponentially growing MRSA, with killing achieved after 30 min of exposure to the compounds. They were also able to kill MRSA persister cells which are tolerant to most available medications. Microscopic analysis using fluorescence microscope and atomic force microscope indicate that these compounds lead to disruption of bacterial cell envelopes. Most notably, bacterial resistance toward these compounds was not observed after 20 serial passages in stark contrast to the significant resistance developed rapidly upon exposure to a clinically relevant antibiotic. Furthermore, the compounds did not induce significant hemolysis to human red blood cells. In vivo safety studies revealed a high safety profile of these motifs. These small molecules hold a promise for further studies and development as new antibacterial agents against MRSA infections.
Collapse
Affiliation(s)
- Mohamad Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Farah Al-Marzooq
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ashna Sulaiman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
19
|
PEGylation enhances the antibacterial and therapeutic potential of amphibian host defence peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183806. [PMID: 34656552 DOI: 10.1016/j.bbamem.2021.183806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022]
Abstract
Aurein 2.1, aurein 2.6 and aurein 3.1 are amphibian host defence peptides that kill bacteria via the use of lytic amphiphilic α-helical structures. The C-terminal PEGylation of these peptides led to decreased antibacterial activity (Minimum Lethal Concentration (MLCs) ↓ circa one and a half to threefold), reduced levels of amphiphilic α-helical structure in solvents (α-helicity ↓ circa 15.0%) and lower surface activity (Δπ ↓ > 1.5 mN m-1). This PEGylation of aureins also led to decreased levels of amphiphilic α-helical structure in the presence of anionic membranes and zwitterionic membranes (α-helicity↓ > 10.0%) as well as reduced levels of penetration (Δπ ↓ > 3.0 mN m-1) and lysis (lysis ↓ > 10.0%) of these membranes. Based on these data, it was proposed that the antibacterial action of PEGylated aureins involved the adoption of α-helical structures that promote the lysis of bacterial membranes, but with lower efficacy than their native counterparts. However, PEGylation also reduced the haemolytic activity of native aureins to negligible levels (haemolysis ↓ from circa 10% to 3% or less) and improved their relative therapeutic indices (RTIs ↑ circa three to sixfold). Based on these data, it is proposed that PEGylated aureins possess the potential for therapeutic development; for example, to combat infections due to multi-drug resistant strains of S. aureus, designated as high priority by the World Health Organization.
Collapse
|
20
|
de Souza CM, da Silva ÁP, Júnior NGO, Martínez OF, Franco OL. Peptides as a therapeutic strategy against Klebsiella pneumoniae. Trends Pharmacol Sci 2022; 43:335-348. [DOI: 10.1016/j.tips.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
|
21
|
César Moreira Brito J, Gustavo Lima W, Magalhães Resende J, Cristina Sampaio de Assis D, Boff D, Nascimento Cardoso V, Almeida Amaral F, Maria Souza-Fagundes E, Odília Antunes Fernandes S, Elena de Lima M. Pegylated LyeTx I-b peptide is effective against carbapenem-resistant Acinetobacter baumannii in an in vivo model of pneumonia and shows reduced toxicity. Int J Pharm 2021; 609:121156. [PMID: 34624440 DOI: 10.1016/j.ijpharm.2021.121156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
The World Health Organization (WHO) has been warning about the importance of developing new drugs against superbugs. Antimicrobial peptides are an alternative in this context, most of them being involved in innate immunity, acting in various ways, and some even showing synergism with commercial antimicrobial agents. LyeTx I-b is a synthetic peptide derived from native LyeTx I, originally isolated from Lycosa erythrognatha spider venom. Although LyeTx I-b is active against several multidrug-resistant bacteria, it shows some hemolytic and cytotoxic effects. To overcome this hindrance, in the present study we PEGylated LyeTx I-b and evaluated its toxicity and in vitro and in vivo activities on pneumonia caused by multi-resistant Acinetobacter baumannii. PEGylated LyeTx I-b (LyeTx I-bPEG) maintained the same MIC value as the non- PEGylated peptide, showed anti-biofilm activity, synergistic effect with commercial antimicrobial agents, and did not induce resistance. Moreover, in vivo experiments showed its activity against pneumonia. Additionally, LyeTx I-bPEG reduced hemolysis up to 10 times, was approximately 2 times less cytotoxic to HEK-293 cells and 4 times less toxic to mice in acute toxicity models, compared to LyeTx I-b. Our results show LyeTx I-bPEG as a promising antimicrobial candidate, significantly active against pneumonia caused by multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Júlio César Moreira Brito
- Programa de Inovação Tecnológica e Biofarmacêutica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil; Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil.
| | - William Gustavo Lima
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jarbas Magalhães Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora Cristina Sampaio de Assis
- Escola de Veterinária, Departamento de Inspeção Sanitária, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Daiane Boff
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Maria Souza-Fagundes
- Programa de Inovação Tecnológica e Biofarmacêutica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Elena de Lima
- Programa de Inovação Tecnológica e Biofarmacêutica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil; Faculdade Santa Casa de Belo Horizonte: Programa de Pós-Graduação em Medicina-Biomedicina, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Pratap Verma D, Ansari MM, Verma NK, Saroj J, Akhtar S, Pant G, Mitra K, Singh BN, Ghosh JK. Tandem Repeat of a Short Human Chemerin-Derived Peptide and Its Nontoxic d-Lysine-Containing Enantiomer Display Broad-Spectrum Antimicrobial and Antitubercular Activities. J Med Chem 2021; 64:15349-15366. [PMID: 34662112 DOI: 10.1021/acs.jmedchem.1c01352] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To design novel antimicrobial peptides by utilizing the sequence of the human host defense protein, chemerin, a seven-residue amphipathic stretch located in the amino acid region, 109-115, was identified, which possesses the highest density of hydrophobic and positively charged residues. Although this 7-mer peptide was inactive toward microorganisms, its 14-mer tandem repeat (Chem-KVL) was highly active against different bacteria including methicillin-resistant Staphylococcus aureus, a multidrug-resistant Staphylococcus aureus strain, and slow- and fast-growing mycobacterial species. The selective enantiomeric substitutions of its two l-lysine residues were attempted to confer cell selectivity and proteolytic stability to Chem-KVL. Chem-8dK with a d-lysine replacement in its middle (eighth position) showed the lowest hemolytic activity against human red blood cells among Chem-KVL analogues and maintained high antimicrobial properties. Chem-8dK showed in vivo efficacy against Pseudomonas aeruginosa infection in BALB/c mice and inhibited the development of resistance in this microorganism up to 30 serial passages and growth of intracellular mycobacteria in THP-1 cells.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohd Mustkim Ansari
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Garima Pant
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Bhupendra Narain Singh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
23
|
Ganesan R, Dughbaj MA, Ramirez L, Beringer S, Aboye TL, Shekhtman A, Beringer PM, Camarero JA. Engineered Cyclotides with Potent Broad in Vitro and in Vivo Antimicrobial Activity. Chemistry 2021; 27:12702-12708. [PMID: 34159664 PMCID: PMC8410672 DOI: 10.1002/chem.202101438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 12/18/2022]
Abstract
The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to the rapid development of drug resistance to current antibiotic therapeutics. Respiratory failure and septicemia are the leading causes of mortality among hospitalized patients. Here, the development of a novel engineered cyclotide with effective broad-spectrum antibacterial activity against several ESKAPE bacterial strains and clinical isolates is reported. The most active antibacterial cyclotide was extremely stable in serum, showed little hemolytic activity, and provided protection in vivo in a murine model of P. aeruginosa peritonitis. These results highlight the potential of the cyclotide scaffold for the development of novel antimicrobial therapeutic leads for the treatment of bacteremia.
Collapse
Affiliation(s)
- Rajasekaran Ganesan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Mansour A. Dughbaj
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Lisa Ramirez
- Department of Chemistry, State University of New York, Albany, NY 12222, USA
| | - Steven Beringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Teshome L. Aboye
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York, Albany, NY 12222, USA
| | - Paul M. Beringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033, USA
| |
Collapse
|
24
|
Frederiksen N, Louka S, Mudaliar C, Domraceva I, Kreicberga A, Pugovics O, Żabicka D, Tomczak M, Wygoda W, Björkling F, Franzyk H. Peptide/β-Peptoid Hybrids with Ultrashort PEG-Like Moieties: Effects on Hydrophobicity, Antibacterial Activity and Hemolytic Properties. Int J Mol Sci 2021; 22:ijms22137041. [PMID: 34208826 PMCID: PMC8268887 DOI: 10.3390/ijms22137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/01/2022] Open
Abstract
PEGylation of antimicrobial peptides as a shielding tool that increases stability toward proteolytic degradation typically leads to concomitant loss of activity, whereas incorporation of ultrashort PEG-like amino acids (sPEGs) remains essentially unexplored. Here, modification of a peptide/β-peptoid hybrid with sPEGs was examined with respect to influence on hydrophobicity, antibacterial activity and effect on viability of mammalian cells for a set of 18 oligomers. Intriguingly, the degree of sPEG modification did not significantly affect hydrophobicity as measured by retention in reverse-phase HPLC. Antibacterial activity against both wild-type and drug-resistant strains of Escherichia coli and Acinetobacter baumannii (both Gram-negative pathogens) was retained or slightly improved (MICs in the range 2–16 µg/mL equal to 0.7–5.2 µM). All compounds in the series exhibited less than 10% hemolysis at 400 µg/mL. While the number of sPEG moieties appeared not to be clearly correlated with hemolytic activity, a trend toward slightly increased hemolytic activity was observed for analogues displaying the longest sPEGs. In contrast, within a subseries the viability of HepG2 liver cells was least affected by analogues displaying the longer sPEGs (with IC50 values of ~1280 µg/mL) as compared to most other analogues and the parent peptidomimetic (IC50 values in the range 330–800 µg/mL).
Collapse
Affiliation(s)
- Nicki Frederiksen
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (N.F.); (S.L.); (C.M.); (F.B.)
| | - Stavroula Louka
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (N.F.); (S.L.); (C.M.); (F.B.)
| | - Chirag Mudaliar
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (N.F.); (S.L.); (C.M.); (F.B.)
| | - Ilona Domraceva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia; (I.D.); (A.K.); (O.P.)
| | - Agrita Kreicberga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia; (I.D.); (A.K.); (O.P.)
| | - Osvalds Pugovics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia; (I.D.); (A.K.); (O.P.)
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725 Warsaw, Poland; (D.Ż.); (M.T.); (W.W.)
| | - Magdalena Tomczak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725 Warsaw, Poland; (D.Ż.); (M.T.); (W.W.)
| | - Weronika Wygoda
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725 Warsaw, Poland; (D.Ż.); (M.T.); (W.W.)
| | - Fredrik Björkling
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (N.F.); (S.L.); (C.M.); (F.B.)
| | - Henrik Franzyk
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark; (N.F.); (S.L.); (C.M.); (F.B.)
- Correspondence:
| |
Collapse
|
25
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Gaglione R, Pizzo E, Notomista E, de la Fuente-Nunez C, Arciello A. Host Defence Cryptides from Human Apolipoproteins: Applications in Medicinal Chemistry. Curr Top Med Chem 2021; 20:1324-1337. [PMID: 32338222 DOI: 10.2174/1568026620666200427091454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Several eukaryotic proteins with defined physiological roles may act as precursors of cryptic bioactive peptides released upon protein cleavage by the host and/or bacterial proteases. Based on this, the term "cryptome" has been used to define the unique portion of the proteome encompassing proteins with the ability to generate bioactive peptides (cryptides) and proteins (crypteins) upon proteolytic cleavage. Hence, the cryptome represents a source of peptides with potential pharmacological interest. Among eukaryotic precursor proteins, human apolipoproteins play an important role, since promising bioactive peptides have been identified and characterized from apolipoproteins E, B, and A-I sequences. Human apolipoproteins derived peptides have been shown to exhibit antibacterial, anti-biofilm, antiviral, anti-inflammatory, anti-atherogenic, antioxidant, or anticancer activities in in vitro assays and, in some cases, also in in vivo experiments on animal models. The most interesting Host Defence Peptides (HDPs) identified thus far in human apolipoproteins are described here with a focus on their biological activities applicable to biomedicine. Altogether, reported evidence clearly indicates that cryptic peptides represent promising templates for the generation of new drugs and therapeutics against infectious diseases.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.,Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| |
Collapse
|
27
|
Rodríguez-Álvarez Y, Cabrales-Rico A, Diago-Abreu D, Correa-Arguelles E, Reyes-Acosta O, Puente-Pérez P, Pichardo-Díaz D, Urquiza-Noa D, Hernández-Santana A, Garay-Pérez HE. d-Amino acid substitutions and dimerization increase the biological activity and stability of an IL-15 antagonist peptide. J Pept Sci 2020; 27:e3293. [PMID: 33331098 DOI: 10.1002/psc.3293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/20/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022]
Abstract
Interleukin (IL)-15 plays an important role in several inflammatory diseases. We have previously identified an IL-15 antagonist called P8 peptide, which binds specifically to IL-15 receptor alpha subunit. However, the P8 peptide rapidly degraded by proteases, limiting its therapeutic application. Thus, we replaced each P8 peptide l-amino acid by its corresponding d-isomers. First, we determined the biological activity of the resulting peptides in a proliferation assay by using CTLL-2 cells. The substitution of l-Ala by d-Ala ([A4a]P8 peptide) increased the inhibitory effect of the P8 peptide in CTLL-2 cells in five-fold. In addition to that, the [A4a]P8 peptide dimer showed the most inhibitory effect. To protect the [A4a]P8 peptide and its dimer against exopeptidase activity, we acetylated the N-terminal of these peptides. At least a three-fold reduction in antagonist activity of acetylated peptides was exhibited. However, the substitution of the N-terminal l-Lys residue of [A4a]P8 peptide and its dimer by d-Lys ([K1k;A4a]P8 peptide) did not affect the antagonist effect of the aforementioned peptides. The [K1k;A4a]P8 peptide dimer was stable to the degradation of trypsin, chymotrypsin, and pepsin up until 48 min. Also, the safety and immunogenicity studies in healthy BALB/c mice demonstrated that the administration of this peptide did not affect the clinical parameters of the animals nor generated antipeptide antibodies. Our findings reveal that two distinct d-amino acid substitutions and dimerization increase the biological activity and stability of P8 peptide. The resulting peptide constitutes a novel IL-15 antagonist with potential applicability in inflammatory diseases.
Collapse
Affiliation(s)
| | - Ania Cabrales-Rico
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - David Diago-Abreu
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Osvaldo Reyes-Acosta
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Pedro Puente-Pérez
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Dagmara Pichardo-Díaz
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Dioslaida Urquiza-Noa
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Hilda E Garay-Pérez
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
28
|
Brunetti J, Carnicelli V, Ponzi A, Di Giulio A, Lizzi AR, Cristiano L, Cresti L, Cappello G, Pollini S, Mosconi L, Rossolini GM, Bracci L, Falciani C, Pini A. Antibacterial and Anti-Inflammatory Activity of an Antimicrobial Peptide Synthesized with D Amino Acids. Antibiotics (Basel) 2020; 9:antibiotics9120840. [PMID: 33255172 PMCID: PMC7760307 DOI: 10.3390/antibiotics9120840] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
The peptide SET-M33 is a molecule synthesized in tetra-branched form which is being developed as a new antibiotic against Gram-negative bacteria. Its isomeric form with D amino acids instead of the L version (SET-M33D) is also able to kill Gram-positive bacteria because of its higher resistance to bacterial proteases (Falciani et al., PLoS ONE, 2012, 7, e46259). Here we report the strong in vitro activity of SET-M33D (MIC range 0.7-6.0 µM) against multiresistant pathogens of clinical interest, including Gram-positives Staphylococcus aureus, Staphylococcus saprophyticus, and Enterococcus faecalis, and various Gram-negative enterobacteriaceae. SET-M33D antibacterial activity is also confirmed in vivo against a MRSA strain of S. aureus with doses perfectly compatible with clinical use (5 and 2.5 mg/Kg). Moreover, SET-M33D strongly neutralized lipopolysaccharide (LPS) and lipoteichoic acid (LTA), thus exerting a strong anti-inflammatory effect, reducing expression of cytokines, enzymes, and transcription factors (TNF-α, IL6, COX-2, KC, MIP-1, IP10, iNOS, NF-κB) involved in the onset and evolution of the inflammatory process. These results, along with in vitro and in vivo toxicity data and the low frequency of resistance selection reported here, make SET-M33D a strong candidate for the development of a new broad spectrum antibiotic.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
- Correspondence:
| | - Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Alessia Ponzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Antonio Di Giulio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Laura Cresti
- SetLance srl, Toscana Life Sciences, 53100 Siena, Italy;
| | - Giovanni Cappello
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (L.M.); (G.M.R.)
- Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Lara Mosconi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (L.M.); (G.M.R.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (L.M.); (G.M.R.)
- Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
- Laboratory of Clinical Pathology, Santa Maria alle Scotte Hospital, 53100 Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
- Laboratory of Clinical Pathology, Santa Maria alle Scotte Hospital, 53100 Siena, Italy
| |
Collapse
|
29
|
Mazumdar A, Haddad Y, Sur VP, Milosavljevic V, Bhowmick S, Michalkova H, Guran R, Vesely R, Moulick A. Characterization and in vitro Analysis of Probiotic-Derived Peptides Against Multi Drug Resistance Bacterial Infections. Front Microbiol 2020; 11:1963. [PMID: 32983007 PMCID: PMC7477325 DOI: 10.3389/fmicb.2020.01963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
An inexorable switch from antibiotics has become a major desideratum to overcome antibiotic resistance. Bacteriocin from Lactobacillus casei, a cardinal probiotic was used to design novel antibacterial peptides named as Probiotic Bacteriocin Derived and Modified (PBDM) peptides (PBDM1: YKWFAHLIKGLC and PBDM2: YKWFRHLIKKLC). The loop-shaped 3D structure of peptides was characterized in silico via molecular dynamics simulation as well as biophysically via spectroscopic methods. Thereafter, in vitro results against multidrug resistant bacterial strains and hospital samples demonstrated the strong antimicrobial activity of PBDM peptides. Further, in vivo studies with PBDM peptides showed downright recovery of balb/c mice from Vancomycin Resistant Staphylococcus aureus (VRSA) infection to its healthy condition. Thereafter, in vitro study with human epithelial cells showed no significant cytotoxic effects with high biocompatibility and good hemocompatibility. In conclusion, PBDM peptides displayed significant antibacterial activity against certain drug resistant bacteria which cause infections in human beings. Future analysis are required to unveil its mechanism of action in order to execute it as an alternative to antibiotics.
Collapse
Affiliation(s)
- Aninda Mazumdar
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia.,Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia.,Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Vishma Pratap Sur
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia.,Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia.,Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Sukanya Bhowmick
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia.,Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia.,Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Radek Vesely
- Department of Traumatology at the Medical Faculty, Masaryk University and Trauma Hospital of Brno, Brno, Czechia
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia.,Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| |
Collapse
|
30
|
Mardirossian M, Sola R, Beckert B, Valencic E, Collis DWP, Borišek J, Armas F, Di Stasi A, Buchmann J, Syroegin EA, Polikanov YS, Magistrato A, Hilpert K, Wilson DN, Scocchi M. Peptide Inhibitors of Bacterial Protein Synthesis with Broad Spectrum and SbmA-Independent Bactericidal Activity against Clinical Pathogens. J Med Chem 2020; 63:9590-9602. [PMID: 32787108 DOI: 10.1021/acs.jmedchem.0c00665] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proline-rich antimicrobial peptides (PrAMPs) are promising lead compounds for developing new antimicrobials; however, their narrow spectrum of action is limiting. PrAMPs kill bacteria binding to their ribosomes and inhibiting protein synthesis. In this study, 133 derivatives of the PrAMP Bac7(1-16) were synthesized to identify the crucial residues for ribosome inactivation and antimicrobial activity. Then, five new Bac7(1-16) derivatives were conceived and characterized by antibacterial and membrane permeabilization assays, X-ray crystallography, and molecular dynamics simulations. Some derivatives displayed broad spectrum activity, encompassing Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Staphylococcus aureus. Two peptides out of five acquired a weak membrane-perturbing activity while maintaining the ability to inhibit protein synthesis. These derivatives became independent of the SbmA transporter, commonly used by native PrAMPs, suggesting that they obtained a novel route to enter bacterial cells. PrAMP-derived compounds could become new-generation antimicrobials to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medical Sciences, University of Trieste, 34125 Trieste, Italy
| | - Riccardo Sola
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bertrand Beckert
- Institut für Biochemie und Molekularbiologie, University of Hamburg, 20146 Hamburg, Germany
| | - Erica Valencic
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 30137 Trieste, Italy
| | | | | | - Federica Armas
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Jan Buchmann
- Institut für Biochemie und Molekularbiologie, University of Hamburg, 20146 Hamburg, Germany.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | - Kai Hilpert
- Institute of Infection and Immunology, St. George's, University of London, SW 17 0RE London, U.K
| | - Daniel N Wilson
- Institut für Biochemie und Molekularbiologie, University of Hamburg, 20146 Hamburg, Germany
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
31
|
Drayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules 2020; 25:molecules25133048. [PMID: 32635310 PMCID: PMC7412191 DOI: 10.3390/molecules25133048] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs), otherwise known as host defence peptides (HDPs), are naturally occurring biomolecules expressed by a large array of species across the phylogenetic kingdoms. They have great potential to combat microbial infections by directly killing or inhibiting bacterial activity and/or by modulating the immune response of the host. Due to their multimodal properties, broad spectrum activity, and minimal resistance generation, these peptides have emerged as a promising response to the rapidly concerning problem of multidrug resistance (MDR). However, their therapeutic efficacy is limited by a number of factors, including rapid degradation, systemic toxicity, and low bioavailability. As such, many strategies have been developed to mitigate these limitations, such as peptide modification and delivery vehicle conjugation/encapsulation. Oftentimes, however, particularly in the case of the latter, this can hinder the activity of the parent AMP. Here, we review current delivery strategies used for AMP formulation, focusing on methodologies utilized for targeted infection site release of AMPs. This specificity unites the improved biocompatibility of the delivery vehicle with the unhindered activity of the free AMP, providing a promising means to effectively translate AMP therapy into clinical practice.
Collapse
Affiliation(s)
- Matthew Drayton
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine, and Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC V6T 1Z3, Canada;
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
- Correspondence: ; Tel.: +1-604-822-2537
| |
Collapse
|
32
|
Deslouches B, Montelaro RC, Urish KL, Di YP. Engineered Cationic Antimicrobial Peptides (eCAPs) to Combat Multidrug-Resistant Bacteria. Pharmaceutics 2020; 12:pharmaceutics12060501. [PMID: 32486228 PMCID: PMC7357155 DOI: 10.3390/pharmaceutics12060501] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing rate of antibiotic resistance constitutes a global health crisis. Antimicrobial peptides (AMPs) have the property to selectively kill bacteria regardless of resistance to traditional antibiotics. However, several challenges (e.g., reduced activity in the presence of serum and lack of efficacy in vivo) to clinical development need to be overcome. In the last two decades, we have addressed many of those challenges by engineering cationic AMPs de novo for optimization under test conditions that typically inhibit the activities of natural AMPs, including systemic efficacy. We reviewed some of the most promising data of the last two decades in the context of the advancement of the field of helical AMPs toward clinical development.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
- Correspondence: ; Tel.: +1-412-624-0103
| | - Ronald C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Ken L. Urish
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Yuanpu P. Di
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
| |
Collapse
|
33
|
Pulagam KR, Gómez-Vallejo V, Llop J, Rejc L. Radiochemistry: A Useful Tool in the Ophthalmic Drug Discovery. Curr Med Chem 2020; 27:501-522. [PMID: 31142249 DOI: 10.2174/0929867326666190530122032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/04/2019] [Accepted: 04/15/2019] [Indexed: 01/28/2023]
Abstract
Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT) are ultra-sensitive, fully translational and minimally invasive nuclear imaging techniques capable of tracing the spatiotemporal distribution of positron (PET) or gamma (SPECT) emitter-labeled molecules after administration into a living organism. Besides their impact in the clinical diagnostic, PET and SPECT are playing an increasing role in the process of drug development, both during the evaluation of the pharmacokinetic properties of new chemical entities as well as in the proof of concept, proof of mechanism and proof of efficacy studies. However, they have been scarcely applied in the context of ophthalmic drugs. In this paper, the basics of nuclear imaging and radiochemistry are briefly discussed, and the few examples of the use of these imaging modalities in ophthalmic drug development reported in the literature are presented and discussed. Finally, in a purely theoretical exercise, some labeling strategies that could be applied to the preparation of selected ophthalmic drugs are proposed and potential applications of nuclear imaging in ophthalmology are projected.
Collapse
Affiliation(s)
- Krishna R Pulagam
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, San Sebastian, Spain
| | | | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, San Sebastian, Spain
| | - Luka Rejc
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, San Sebastian, Spain
| |
Collapse
|
34
|
Antimicrobial Peptides from Rat-Tailed Maggots of the Drone Fly Eristalis tenax Show Potent Activity against Multidrug-Resistant Gram-Negative Bacteria. Microorganisms 2020; 8:microorganisms8050626. [PMID: 32344933 PMCID: PMC7284870 DOI: 10.3390/microorganisms8050626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
The spread of multidrug-resistant Gram-negative bacteria is an increasing threat to human health, because novel compound classes for the development of antibiotics have not been discovered for decades. Antimicrobial peptides (AMPs) may provide a much-needed breakthrough because these immunity-related defense molecules protect many eukaryotes against Gram-negative pathogens. Recent concepts in evolutionary immunology predict the presence of potent AMPs in insects that have adapted to survive in habitats with extreme microbial contamination. For example, the saprophagous and coprophagous maggots of the drone fly Eristalis tenax (Diptera) can flourish in polluted aquatic habitats, such as sewage tanks and farmyard liquid manure storage pits. We used next-generation sequencing to screen the E. tenax immunity-related transcriptome for AMPs that are synthesized in response to the injection of bacterial lipopolysaccharide. We identified 22 AMPs and selected nine for larger-scale synthesis to test their activity against a broad spectrum of pathogens, including multidrug-resistant Gram-negative bacteria. Two cecropin-like peptides (EtCec1-a and EtCec2-a) and a diptericin-like peptide (EtDip) displayed strong activity against the pathogens, even under simulated physiological conditions, and also achieved a good therapeutic window. Therefore, these AMPs could be used as leads for the development of novel antibiotics.
Collapse
|
35
|
Ritter D, Knebel J, Niehof M, Loinaz I, Marradi M, Gracia R, te Welscher Y, van Nostrum CF, Falciani C, Pini A, Strandh M, Hansen T. In vitro inhalation cytotoxicity testing of therapeutic nanosystems for pulmonary infection. Toxicol In Vitro 2020; 63:104714. [DOI: 10.1016/j.tiv.2019.104714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
|
36
|
Falciani C, Zevolini F, Brunetti J, Riolo G, Gracia R, Marradi M, Loinaz I, Ziemann C, Cossío U, Llop J, Bracci L, Pini A. Antimicrobial Peptide-Loaded Nanoparticles as Inhalation Therapy for Pseudomonas aeruginosa Infections. Int J Nanomedicine 2020; 15:1117-1128. [PMID: 32110011 PMCID: PMC7034994 DOI: 10.2147/ijn.s218966] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Antibiotic-resistant bacteria kill 25,000 people every year in the EU. Patients subject to recurrent lung infections are the most vulnerable to severe or even lethal infections. For these patients, pulmonary delivery of antibiotics would be advantageous, since inhalation can achieve higher concentration in the lungs than iv administration and can provide a faster onset of action. This would allow for the delivery of higher doses and hence reduce the number of treatments required. We report here about a new nanosystem (M33-NS) obtained by capturing SET-M33 peptide on single-chain dextran nanoparticles. SET-M33 is a non-natural antimicrobial peptide synthesized in branched form. This form gives the peptide resistance to degradation in biological fluids. SET-M33 has previously shown efficacy in vitro against about one hundred of Gram-negative multidrug and extensively drug-resistant clinical isolates and was also active in preclinical infection models of pneumonia, sepsis and skin infections. METHODS The new nanosystem was evaluated for its efficacy in bacteria cells and in a mouse model of pneumonia. Toxicity and genotoxicity were also tested in vitro. Biodistribution and pharmacokinetic studies in healthy rats were carried out using a radiolabeled derivative of the nanosystem. RESULTS The M33-nanosystem, studied here, showed to be effective against Pseudomonas aeruginosa in time-kill kinetic experiments. Cytotoxicity towards different animal cell lines was acceptable. Lung residence time of the antimicrobial peptide, administered via aerosol in healthy rats, was markedly improved by capturing SET-M33 on dextran nanoparticles. M33-NS was also efficient in eradicating pulmonary infection in a BALB/c mouse model of pneumonia caused by P. aeruginosa. DISCUSSION This study revealed that the encapsulation of the antimicrobial peptide in dextran nanoparticles markedly improved lung residence time of the peptide administered via aerosol. The result has to be considered among the aims of the development of a new therapeutic option for patients suffering recurrent infections, that will benefit from high local doses of persistent antimicrobials.
Collapse
Affiliation(s)
- Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Fabrizia Zevolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Raquel Gracia
- CIDETEC, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Marco Marradi
- CIDETEC, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Iraida Loinaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Centro de Investigación Biomédica en red Enfermedades Respiratorias – CIBERES, Madrid, Spain
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
37
|
Mazumdar A, Haddad Y, Milosavljevic V, Michalkova H, Guran R, Bhowmick S, Moulick A. Peptide-Carbon Quantum Dots conjugate, Derived from Human Retinoic Acid Receptor Responder Protein 2, against Antibiotic-Resistant Gram Positive and Gram Negative Pathogenic Bacteria. NANOMATERIALS 2020; 10:nano10020325. [PMID: 32075033 PMCID: PMC7075150 DOI: 10.3390/nano10020325] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/25/2022]
Abstract
Antibiotic-resistant bacterial infections have become global issues for public health, which increases the utter need to develop alternatives to antibiotics. Here, the HSER (Homo sapiens retinoic acid receptor) peptide was designed from retinoic acid receptor responder protein 2 of Homo sapiens, and was conjugated with synthesized CQDs (carbon quantum dots) for enhanced antibacterial activity in combination, as individually they are not highly effective. The HSER–CQDs were characterized using spectrophotometer, HPLC coupled with electrospray-ionization quadrupole time-of-flight mass spectrometer (ESI–qTOF) mass spectrometer, zeta potential, zeta size, and FTIR. Thereafter, the antibacterial activity against Vancomycin-Resistant Staphylococcus aureus (VRSA) and Escherichia coli (carbapenem resistant) was studied using growth curve analysis, further supported by microscopic images showing the presence of cell debris and dead bacterial cells. The antibacterial mechanism of HSER–CQDs was observed to be via cell wall disruption and also interaction with gDNA (genomic DNA). Finally, toxicity test against normal human epithelial cells showed no toxicity, confirmed by microscopic analysis. Thus, the HSER–CQDs conjugate, having high stability and low toxicity with prominent antibacterial activity, can be used as a potential antibacterial agent.
Collapse
Affiliation(s)
- Aninda Mazumdar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Y.H.); (V.M.); (H.M.); (R.G.); (S.B.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Correspondence: or (A.M.); (A.M.)
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Y.H.); (V.M.); (H.M.); (R.G.); (S.B.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Y.H.); (V.M.); (H.M.); (R.G.); (S.B.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Y.H.); (V.M.); (H.M.); (R.G.); (S.B.)
| | - Roman Guran
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Y.H.); (V.M.); (H.M.); (R.G.); (S.B.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Sukanya Bhowmick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Y.H.); (V.M.); (H.M.); (R.G.); (S.B.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Y.H.); (V.M.); (H.M.); (R.G.); (S.B.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Correspondence: or (A.M.); (A.M.)
| |
Collapse
|
38
|
Hirsch R, Wiesner J, Marker A, Pfeifer Y, Bauer A, Hammann PE, Vilcinskas A. Profiling antimicrobial peptides from the medical maggot Lucilia sericata as potential antibiotics for MDR Gram-negative bacteria. J Antimicrob Chemother 2020; 74:96-107. [PMID: 30272195 PMCID: PMC6322280 DOI: 10.1093/jac/dky386] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background The ability of MDR Gram-negative bacteria to evade even antibiotics of last resort is a severe global challenge. The development pipeline for conventional antibiotics cannot address this issue, but antimicrobial peptides (AMPs) offer an alternative solution. Objectives Two insect-derived AMPs (LS-sarcotoxin and LS-stomoxyn) were profiled to assess their suitability for systemic application in humans. Methods The peptides were tested against an extended panel of 114 clinical MDR Gram-negative bacterial isolates followed by time–kill analysis, interaction studies and assays to determine the likelihood of emerging resistance. In further in vitro studies we addressed cytotoxicity, cardiotoxicity and off-target interactions. In addition, an in vivo tolerability and pharmacokinetic study in mice was performed. Results LS-sarcotoxin and LS-stomoxyn showed potent and selective activity against Gram-negative bacteria and no cross-resistance with carbapenems, fluoroquinolones or aminoglycosides. Peptide concentrations of 4 or 8 mg/L inhibited 90% of the clinical MDR isolates of Escherichia coli, Enterobacter cloacae, Acinetobacter baumannii and Salmonella enterica isolates tested. The ‘all-d’ homologues of the peptides displayed markedly reduced activity, indicating a chiral target. Pharmacological profiling revealed a good in vitro therapeutic index, no cytotoxicity or cardiotoxicity, an inconspicuous broad-panel off-target profile, and no acute toxicity in mice at 10 mg/kg. In mouse pharmacokinetic experiments LS-sarcotoxin and LS-stomoxyn plasma levels above the lower limit of quantification (1 and 0.25 mg/mL, respectively) were detected after 5 and 15 min, respectively. Conclusions LS-sarcotoxin and LS-stomoxyn are suitable as lead candidates for the development of novel antibiotics; however, their pharmacokinetic properties need to be improved for systemic administration.
Collapse
Affiliation(s)
- Rolf Hirsch
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
- Present address: Evotec International GmbH, Hamburg, Germany
| | - Jochen Wiesner
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
| | - Alexander Marker
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
| | - Yvonne Pfeifer
- Department 1 – Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
| | - Peter E Hammann
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
- Present address: Evotec International GmbH, Hamburg, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Gießen, Germany
- Corresponding author. Tel: +49 641 99 39500; E-mail: orcid.org/0000-0001-8276-4968
| |
Collapse
|
39
|
Gautam M, Park DH, Park SJ, Nam KS, Park GY, Hwang J, Yong CS, Kim JO, Byeon JH. Plug-In Safe-by-Design Nanoinorganic Antibacterials. ACS NANO 2019; 13:12798-12809. [PMID: 31689083 DOI: 10.1021/acsnano.9b04939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to antimicrobial resistance and the adverse health effects that follow broad and inappropriate use of antibacterial agents, new classes of antibacterials with broad and strong bactericidal activity and safety for human use are urgently required globally, increasingly so with the onset of climate change. However, R&D in this field is known to be rarely profitable, unless a cost-effective, flexible, and convenient platform that ensures the production of workable candidate antibacterials can be developed. To address this issue, inorganic nanomaterials have been considered for their bactericidal activities, yet further investigations of composition crystalline modifications and/or surface biomaterial coatings are still required to provide effective and safe antibacterial nanoparticles. In this study, we developed a plug-in system comprising a spark plasma reactor and a flow heater under nitrogen gas flow to supply precursor inorganic nanoparticles (Cu-Te configuration) that can be modulated in-flight at different temperatures. From antibacterial and toxicological assays in both in vitro and in vivo models, bactericidal and toxicological profiles showed that the plug-in system-based platform can be used to identify key parameters for producing safe-by-design agents with antibacterial activity [>88% (in vitro) and >80% (in vivo) in antibacterial efficiency] and safety (>65% in in vitro viability and >60% in in vivo survival rate).
Collapse
Affiliation(s)
- Milan Gautam
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Dae Hoon Park
- School of Mechanical Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Sung Jae Park
- School of Mechanical Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Kang Sik Nam
- School of Mechanical Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Geun Young Park
- School of Mechanical Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Jeong Hoon Byeon
- School of Mechanical Engineering , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| |
Collapse
|
40
|
NMR Study of the Secondary Structure and Biopharmaceutical Formulation of an Active Branched Antimicrobial Peptide. Molecules 2019; 24:molecules24234290. [PMID: 31775296 PMCID: PMC6930567 DOI: 10.3390/molecules24234290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
The synthetic antimicrobial peptide SET-M33 is being developed as a possible new antibacterial candidate for the treatment of multi-drug resistant bacteria. SET-M33 is a branched peptide featuring higher resistance and bioavailability than its linear analogues. SET-M33 shows antimicrobial activity against different species of multi-resistant Gram-negative bacteria, including clinically isolated strains of Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanii and Escherichia coli. The secondary structure of this 40 amino acid peptide was investigated by NMR to fully characterize the product in the framework of preclinical studies. The possible presence of helixes or β-sheets in the structure had to be explored to predict the behavior of the branched peptide in solution, with a view to designing a formulation for parenteral administration. Since the final formulation of SET-M33 will be strictly defined in terms of counter-ions and additives, we also report the studies on a new salt form, SET-M33 chloride, that retains its activity against Gram-negative bacteria and gains in solubility, with a possible improvement in the pharmacokinetic profile. The opportunity of using a chloride counter-ion is very convenient from a process development point of view and did not increase the toxicity of the antimicrobial drug.
Collapse
|
41
|
Quercini L, Brunetti J, Riolo G, Bindi S, Scali S, Lampronti I, D'Aversa E, Wronski S, Pollini S, Gentile M, Lupetti P, Rossolini GM, Falciani C, Bracci L, Pini A. An antimicrobial molecule mitigates signs of sepsis in vivo and eradicates infections from lung tissue. FASEB J 2019; 34:192-207. [PMID: 31914681 DOI: 10.1096/fj.201901896rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
The peptide sequence KKIRVRLSA was synthesized in a dimeric structure (SET-M33DIM) and evaluated as a candidate drug for infections due to multidrug-resistant (MDR) Gram-negative pathogens. SET-M33DIM showed significant antibacterial activity against MDR strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli (Minimal Inhibitory Concentration [MICs], 1.5-11 µM), and less activity against Pseudomonas aeruginosa (MICs, 11-22 µM). It showed very low toxicity in vitro, ex vivo, and in vivo; in cytotoxicity tests, its EC50 was as much as 22 times better than that of SET-M33, a peptide with the same amino-acid sequence, but synthesized in tetra-branched form (638 vs 28 µM). In in vivo and ex vivo experiments, SET-M33DIM cleared P. aeruginosa infection, significantly reducing signs of sepsis in animals, and restoring cell viability in lung tissue after bacterial challenge. It also quelled inflammation triggered by LPS and live bacterial cells, inhibiting expression of inflammatory mediators in lung tissue, cultured macrophages, and bronchial cells from a cystic fibrosis patient.
Collapse
Affiliation(s)
| | - Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Giulia Riolo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Stefano Bindi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Silvia Scali
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer international Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | | | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
42
|
Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 2019; 40:488-505. [PMID: 31592585 PMCID: PMC6822926 DOI: 10.24272/j.issn.2095-8137.2019.062] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
The discovery of antibiotics marked a golden age in the revolution of human medicine. However, decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant (MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamases (ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options, increased hospital stay, and exorbitant medical costs. Antimicrobial peptides (AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Xue Hao
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Hubei 430071, China
| | - Zhi-Ye Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
| |
Collapse
|
43
|
Oshiro KGN, Cândido ES, Chan LY, Torres MDT, Monges BED, Rodrigues SG, Porto WF, Ribeiro SM, Henriques ST, Lu TK, de la Fuente-Nunez C, Craik DJ, Franco OL, Cardoso MH. Computer-Aided Design of Mastoparan-like Peptides Enables the Generation of Nontoxic Variants with Extended Antibacterial Properties. J Med Chem 2019; 62:8140-8151. [DOI: 10.1021/acs.jmedchem.9b00915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karen G. N. Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Elizabete S. Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Lai Y. Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marcelo D. T. Torres
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210170, Brazil
| | - Bruna E. D. Monges
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Silvia G. Rodrigues
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - William F. Porto
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Porto Reports, Brasília, DF 70790160, Brazil
| | - Suzana M. Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS 79825070, Brazil
| | - Sónia T. Henriques
- Faculty of Health, School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Octávio L. Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Marlon H. Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
44
|
van der Weide H, Vermeulen-de Jongh DMC, van der Meijden A, Boers SA, Kreft D, Ten Kate MT, Falciani C, Pini A, Strandh M, Bakker-Woudenberg IAJM, Hays JP, Goessens WHF. Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles. Int J Antimicrob Agents 2019; 54:159-166. [PMID: 31173867 DOI: 10.1016/j.ijantimicag.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/26/2019] [Indexed: 02/01/2023]
Abstract
Colistin is an antimicrobial peptide (AMP) used as a drug of last resort, although plasmid-mediated colistin resistance (MCR) has been reported. AA139 and SET-M33 are novel AMPs currently in development for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. As many AMPs have a similar mode of action to colistin, potentially leading to cross-resistance, the antimicrobial activity of AA139 and SET-M33 was investigated against a collection of 50 clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles, including colistin-resistant strains. The collection was genotypically characterised and susceptibility to clinically relevant antibiotics was determined. Susceptibility to AA139 and SET-M33 did not differ among the collection despite differences in underlying mechanisms of resistance or susceptibility to colistin. For three colistin-susceptible and three colistin-resistant strains with distinct MDR profiles as well as an additional MCR-producing strain, the bactericidal activity of AA139, SET-M33 and colistin during 24 h of exposure was examined. Following 24 h of exposure to AA139, SET-M33 or colistin, the seven strains were tested for changes in susceptibility to the respective AMPs. AA139 and SET-M33 showed a concentration-dependent bactericidal effect irrespective of bacterial susceptibility to colistin. Exposure to low colistin concentrations resulted in the development of colistin resistance in colistin-susceptible strains, whereas susceptibility to AA139 and SET-M33 following exposure to the respective AMPs was maintained. The two novel AMPs remained effective against colistin-resistant strains and may be promising novel drugs for the treatment of clinically and genotypically diverse MDR K. pneumoniae infections, including infections associated with colistin-resistant bacteria.
Collapse
Affiliation(s)
- Hessel van der Weide
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Denise M C Vermeulen-de Jongh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Aart van der Meijden
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stefan A Boers
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deborah Kreft
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marian T Ten Kate
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Siena, Italy; Setlance srl, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnology, University of Siena, Siena, Italy; Setlance srl, Siena, Italy
| | | | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - John P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Wil H F Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
45
|
Haney EF, Straus SK, Hancock REW. Reassessing the Host Defense Peptide Landscape. Front Chem 2019; 7:43. [PMID: 30778385 PMCID: PMC6369191 DOI: 10.3389/fchem.2019.00043] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Current research has demonstrated that small cationic amphipathic peptides have strong potential not only as antimicrobials, but also as antibiofilm agents, immune modulators, and anti-inflammatories. Although traditionally termed antimicrobial peptides (AMPs) these additional roles have prompted a shift in terminology to use the broader term host defense peptides (HDPs) to capture the multi-functional nature of these molecules. In this review, we critically examined the role of AMPs and HDPs in infectious diseases and inflammation. It is generally accepted that HDPs are multi-faceted mediators of a wide range of biological processes, with individual activities dependent on their polypeptide sequence. In this context, we explore the concept of chemical space as it applies to HDPs and hypothesize that the various functions and activities of this class of molecule exist on independent but overlapping activity landscapes. Finally, we outline several emerging functions and roles of HDPs and highlight how an improved understanding of these processes can potentially be leveraged to more fully realize the therapeutic promise of HDPs.
Collapse
Affiliation(s)
- Evan F Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Active components of mantis eggs and their immunomodulatory effect in a mouse model. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Biological Profiling of Coleoptericins and Coleoptericin-Like Antimicrobial Peptides from the Invasive Harlequin Ladybird Harmonia axyridis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1214:43-59. [PMID: 30269257 DOI: 10.1007/5584_2018_276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The spread of antibiotic-resistant human pathogens and the declining number of novel antibiotics in the development pipeline is a global challenge that has fueled the demand for alternative options. The search for novel drug candidates has expanded to include not only antibiotics but also adjuvants capable of restoring antibiotic susceptibility in multidrug-resistant (MDR) pathogens. Insect-derived antimicrobial peptides (AMPs) can potentially fulfil both of these functions. We tested two coleoptericins and one coleoptericin-like peptides from the invasive harlequin ladybird Harmonia axyridis against a panel of human pathogens. The AMPs displayed little or no activity when tested alone but were active even against clinical MDR isolates of the Gram-negative ESKAPE strains when tested in combination with polymyxin derivatives, such as the reserve antibiotic colistin, at levels below the minimal inhibitory concentration. Assuming intracellular targets of the AMPs, our data indicate that colistin potentiates the activity of the AMPs. All three AMPs achieved good in vitro therapeutic indices and high intrahepatic stability but low plasma stability, suggesting they could be developed as adjuvants for topical delivery or administration by inhalation for anti-infective therapy to reduce the necessary dose of colistin (and thus its side effects) or to prevent development of colistin resistance in MDR pathogens.
Collapse
|
48
|
Brunetti J, Falciani C, Bracci L, Pini A. Branched peptides as bioactive molecules for drug design. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jlenia Brunetti
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| | - Chiara Falciani
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| | - Luisa Bracci
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| | - Alessandro Pini
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| |
Collapse
|
49
|
Artim CM, Phan NN, Alabi CA. Effect of Composition on Antibacterial Activity of Sequence-Defined Cationic Oligothioetheramides. ACS Infect Dis 2018; 4:1257-1263. [PMID: 29750860 DOI: 10.1021/acsinfecdis.8b00079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In response to the urgent need for new antibiotic development strategies, antimicrobial peptides and their synthetic mimetics are being investigated as promising alternatives to traditional antibiotics. To facilitate their development into clinically viable candidates, we need to understand what molecular features and physicochemical properties are needed to induce cell death. Within the context of sequence-defined oligothioetheramides (oligoTEAs), we explore the impact of the cationic pendant group and backbone hydrophobicity on the potency and selectivity of antibacterial oligoTEAs. Through antibacterial, cytotoxicity, membrane destabilization, and membrane depolarization assays, we find a strong dependency on the nature of the cationic group and improved selectivity toward bacteria by tuning backbone hydrophobicity. In particular, compounds with the guanidinium headgroup are more potent than those with amines. Finally, we identify a promising oligoTEA, PDT-4G, with enhanced activity in vitro (minimum inhibitory concentration (MIC) ∼ 0.78 μM) and moderate activity in a mouse thigh infection model of methicillin-resistant Staphylococcus aureus. The studies outlined in this work provide insights into the effect of macromolecular physicochemical properties on antibacterial potency. This knowledge base will be vital for researchers engaged in the ongoing development of clinically viable antibacterial agents.
Collapse
Affiliation(s)
- Christine M. Artim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Ngoc N. Phan
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| |
Collapse
|
50
|
Heller AA, Lockwood SY, Janes TM, Spence DM. Technologies for Measuring Pharmacokinetic Profiles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:79-100. [PMID: 29324183 DOI: 10.1146/annurev-anchem-061417-125611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The creation of a pharmacokinetic (PK) curve, which follows the plasma concentration of an administered drug as a function of time, is a critical aspect of the drug development process and includes such information as the drug's bioavailability, clearance, and elimination half-life. Prior to a drug of interest gaining clearance for use in human clinical trials, research is performed during the preclinical stages to establish drug safety and dosing metrics from data obtained from the PK studies. Both in vivo animal models and in vitro platforms have limitations in predicting human reaction to a drug due to differences in species and associated simplifications, respectively. As a result, in silico experiments using computer simulation have been implemented to accurately predict PK parameters in human studies. This review assesses these three approaches (in vitro, in vivo, and in silico) when establishing PK parameters and evaluates the potential for in silico studies to be the future gold standard of PK preclinical studies.
Collapse
Affiliation(s)
- A A Heller
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - S Y Lockwood
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - T M Janes
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - D M Spence
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|