1
|
Hu R, Wu F, Zheng YQ. Ivacaftor attenuates gentamicin-induced ototoxicity through the CFTR-Nrf2-HO1/NQO1 pathway. Redox Rep 2024; 29:2332038. [PMID: 38563333 PMCID: PMC10993751 DOI: 10.1080/13510002.2024.2332038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES Gentamicin is one of the most common ototoxic drugs that can lower patients' quality of life. Oxidative stress is a key factors inducing sensory hair cell death during gentamicin administration. So far, there are no effective drugs to prevent or treat gentamicin- induced hearing loss. A recent study found cystic fibrosis transmembrane conductance regulator (CFTR) as a new target to modulate cellular oxidative balance. The objective of this study was to estimate the effect of the CFTR activator ivacaftor on gentamicin-induced ototoxicity and determine its mechanism. METHODS The hair cell count was analyzed by Myosin 7a staining. Apoptosis was analyzed by TUNEL Apoptosis Kit. Cellular reactive oxygen species (ROS) level was detected by DCFH-DA probes. The Nrf2 related proteins expression levels were analyzed by western blot. RESULTS An in vitro cochlear explant model showed that gentamicin caused ROS accumulation in sensory hair cells and induced apoptosis, and this effect was alleviated by pretreatment with ivacaftor. Western blotting showed that ivacaftor administration markedly increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO1), and NAD(P)H:quinone oxidoreductase 1 (NQO1). The protective effect of ivacaftor was abolished by the Nrf2 inhibitor ML385. DISCUSSION Our results indicate the protective role of the CFTR-Nrf2-HO1/NQO1 pathway in gentamicin-induced ototoxicity. Ivacaftor may be repositioned or repurposed towards aminoglycosides-induced hearing loss.
Collapse
Affiliation(s)
- Rui Hu
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, People’s Republic of China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Charleston, SC, USA
| | - Yi-Qing Zheng
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, People’s Republic of China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Ning S, Guo X, Zhu Y, Li C, Li R, Meng Y, Luo W, Lu D, Yin Y. The mechanism of NRF2 regulating cell proliferation and mesenchymal transformation in pulmonary hypertension. Int J Biol Macromol 2024; 275:133514. [PMID: 38944076 DOI: 10.1016/j.ijbiomac.2024.133514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Pulmonary hypertension (PH) is a fatal disease with no existing curative drugs. NF-E2-related factor 2 (NRF2) a pivotal molecular in cellular protection, was investigated in PH models to elucidate its role in regulating abnormal phenotypes in pulmonary artery cells. We examined the expression of NRF2 in PH models and explored the role of NRF2 in regulating abnormal phenotypes in pulmonary artery cells. We determined the expression level of NRF2 in lung tissues of PH model decreased significantly. We found that NRF2 was reduced in rat pulmonary artery endothelial cells (rPAEC) under hypoxia, while it was overexpressed in rat pulmonary artery smooth muscle cells (rPASMC) under hypoxia. Next, the results showed that knockdown NRF2 in rPAEC promoted endothelial-mesenchymal transformation and upregulated reactive oxygen species level. After the rPASMC was treated with siRNA or activator, we found that NRF2 could accelerate cell migration by affecting MMP2/3/7, and promote cell proliferation by regulating PDGFR/ERK1/2 and mTOR/P70S6K pathways. Therefore, the study has shown that the clinical application of NRF2 activator in the treatment of pulmonary hypertension may cause side effects of promoting the proliferation and migration of rPASMC. Attention should be paid to the combination of NRF2 activators.
Collapse
Affiliation(s)
- Shasha Ning
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xinyue Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yanan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Chenghui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ruixue Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yinan Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Weiwei Luo
- Military Mental Cognition, Strategic Support Force Medical Center, No. 9 Anxiangbeili, Chaoyang District, Beijing 100101, China.
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yupeng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Pham TH, Trang NM, Kim EN, Jeong HG, Jeong GS. Citropten Inhibits Vascular Smooth Muscle Cell Proliferation and Migration via the TRPV1 Receptor. ACS OMEGA 2024; 9:29829-29839. [PMID: 39005766 PMCID: PMC11238308 DOI: 10.1021/acsomega.4c03539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration play critical roles in arterial remodeling. Citropten, a natural organic compound belonging to coumarin and its derivative classes, exhibits various biological activities. However, mechanisms by which citropten protects against vascular remodeling remain unknown. Therefore, in this study, we investigated the inhibitory effects of citropten on VSMC proliferation and migration under high-glucose (HG) stimulation. Citropten abolished the proliferation and migration of rat vascular smooth muscle cells (RVSMCs) in a concentration-dependent manner. Also, citropten inhibited the expression of proliferation-related proteins, including proliferating cell nuclear antigen (PCNA), cyclin E1, cyclin D1, and migration-related markers such as matrix metalloproteinase (MMP), MMP2 and MMP9, in a concentration-dependent manner. In addition, citropten inhibited the phosphorylation of ERK and AKT, as well as hypoxia-inducible factor-1α (HIF-1α) expression, mediated to the Krüppel-like factor 4 (KLF4) transcription factor. Using pharmacological inhibitors of ERK, AKT, and HIF-1α also strongly blocked the expression of MMP9, PCNA, and cyclin D1, as well as migration and the proliferation rate. Finally, molecular docking suggested that citropten docked onto the binding site of transient receptor potential vanilloid 1 (TRPV1), like epigallocatechin gallate (EGCG), a well-known agonist of TRPV1. These data suggest that citropten inhibits VSMC proliferation and migration by activating the TRPV1 channel.
Collapse
Affiliation(s)
- Thi Hoa Pham
- College
of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nguyen Minh Trang
- College
of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun-Nam Kim
- College
of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye Gwang Jeong
- College
of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gil-Saeng Jeong
- College
of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Hu Y, Zhang F, Ikonomovic M, Yang T. The Role of NRF2 in Cerebrovascular Protection: Implications for Vascular Cognitive Impairment and Dementia (VCID). Int J Mol Sci 2024; 25:3833. [PMID: 38612642 PMCID: PMC11012233 DOI: 10.3390/ijms25073833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Vascular cognitive impairment and dementia (VCID) represents a broad spectrum of cognitive decline secondary to cerebral vascular aging and injury. It is the second most common type of dementia, and the prevalence continues to increase. Nuclear factor erythroid 2-related factor 2 (NRF2) is enriched in the cerebral vasculature and has diverse roles in metabolic balance, mitochondrial stabilization, redox balance, and anti-inflammation. In this review, we first briefly introduce cerebrovascular aging in VCID and the NRF2 pathway. We then extensively discuss the effects of NRF2 activation in cerebrovascular components such as endothelial cells, vascular smooth muscle cells, pericytes, and perivascular macrophages. Finally, we summarize the clinical potential of NRF2 activators in VCID.
Collapse
Affiliation(s)
- Yizhou Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC) McKeesport, McKeesport, PA 15132, USA
| | - Feng Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Milos Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15216, USA
| |
Collapse
|
5
|
Fu Y, Liu T, He S, Zhang Y, Tan Y, Bai Y, Shi J, Deng W, Qiu J, Wang Z, Chen Y, Jin Q, Xie M, Wang J. Ursolic acid reduces oxidative stress injury to ameliorate experimental autoimmune myocarditis by activating Nrf2/HO-1 signaling pathway. Front Pharmacol 2023; 14:1189372. [PMID: 37547335 PMCID: PMC10403233 DOI: 10.3389/fphar.2023.1189372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Background: Oxidative stress is crucial in experimental autoimmune myocarditis (EAM)-induced inflammatory myocardial injury. Ursolic acid (UA) is an antioxidant-enriched traditional Chinese medicine formula. The present study aimed to investigate whether UA could alleviate inflammatory cardiac injury and determine the underlying mechanisms. Methods: Six-week-old male BALB/c mice were randomly assigned to one of the three groups: Sham, EAM group, or UA intervention group (UA group) by gavage for 2 weeks. An EAM model was developed by subcutaneous injection of α-myosin heavy chain derived polypeptide (α-MyHC peptide) into lymph nodes on days 0 and 7. Echocardiography was used to assess cardiac function on day 21. The inflammation level in the myocardial tissue of each group was compared using hematoxylin and eosin staining (HE) of heart sections and Interleukin-6 (IL-6) immunohistochemical staining. Masson staining revealed the degree of cardiac fibrosis. Furthermore, Dihydroethidium staining, Western blot, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to determine the mechanism of cardioprotective effects of UA on EAM-induced cardiac injury, and the level of IL-6, Nrf2, and HO-1. Results: In EAM mice, UA intervention significantly reduced the degree of inflammatory infiltration and myocardial fibrosis while improving cardiac function. Mechanistically, UA reduced myocardial injury by inhibiting oxidative stress (as demonstrated by a decrease of superoxide and normalization of pro- and antioxidant enzyme levels). Interestingly, UA intervention upregulated the expression of antioxidant factors such as Nrf2 and HO-1. In vitro experiments, specific Nrf2 inhibitors reversed the antioxidant and antiapoptotic effects of ursolic acid, which further suggested that the amelioration of EAM by UA was in a Nrf2/HO-1 pathway-dependent manner. Conclusion: These findings indicate that UA is a cardioprotective traditional Chinese medicine formula that reduces EAM-induced cardiac injury by up-regulating Nrf2/HO-1 expression and suppressing oxidative stress, making it a promising therapeutic strategy for the treatment of EAM.
Collapse
Affiliation(s)
- Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yichan Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuting Tan
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ying Bai
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiani Qiu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zhen Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
6
|
Vašková J, Klepcová Z, Špaková I, Urdzík P, Štofilová J, Bertková I, Kľoc M, Rabajdová M. The Importance of Natural Antioxidants in Female Reproduction. Antioxidants (Basel) 2023; 12:antiox12040907. [PMID: 37107282 PMCID: PMC10135990 DOI: 10.3390/antiox12040907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress (OS) has an important role in female reproduction, whether it is ovulation, endometrium decidualization, menstruation, oocyte fertilization, or development andimplantation of an embryo in the uterus. The menstrual cycle is regulated by the physiological concentration of reactive forms of oxygen and nitrogen as redox signal molecules, which trigger and regulate the length of individual phases of the menstrual cycle. It has been suggested that the decline in female fertility is modulated by pathological OS. The pathological excess of OS compared to antioxidants triggers many disorders of female reproduction which could lead to gynecological diseases and to infertility. Therefore, antioxidants are crucial for proper female reproductive function. They play a part in the metabolism of oocytes; in endometrium maturation via the activation of antioxidant signaling pathways Nrf2 and NF-κB; and in the hormonal regulation of vascular action. Antioxidants can directly scavenge radicals and act as a cofactor of highly valuable enzymes of cell differentiation and development, or enhance the activity of antioxidant enzymes. Compensation for low levels of antioxidants through their supplementation can improve fertility. This review considers the role of selected vitamins, flavonoids, peptides, and trace elements with antioxidant effects in female reproduction mechanisms.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Zuzana Klepcová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
- Medirex, a.s., Holubyho 35, 902 01 Pezinok, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Jana Štofilová
- Center for Clinical and Preclinical Research MEDIPARK, Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Izabela Bertková
- Center for Clinical and Preclinical Research MEDIPARK, Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Marek Kľoc
- Medirex, a.s., Holubyho 35, 902 01 Pezinok, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
7
|
Rao G, Zhong G, Hu T, Wu S, Tan J, Zhang X, Huang R, Tang Z, Hu L. Arsenic Trioxide Triggers Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis via Nrf 2/Caspase 3 Signaling Pathway in Heart of Ducks. Biol Trace Elem Res 2023; 201:1407-1417. [PMID: 35366752 DOI: 10.1007/s12011-022-03219-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Arsenic is a common environmental pollutant and poses a serious threat to human and animal health. In this study, we used the ducks to mimic arsenic trioxide (ATO) exposure and investigated the mechanism of cardiac toxicity. The results indicated that ATO inhibited the body and organ growth of ducks, led to an increase in LDH content, and caused obvious deformity, ischemia infarction. It is found that ATO exacerbated the swell of mitochondrial and the contraction of cell nuclei in the heart of ducks through transmission electron microscopy (TEM). ATO also induced an increase in MDA content; inhibited the activation of the Nrf 2 pathway; downregulated the expression of mRNA and protein of Nrf 2, HO-1, and SOD-1; and upregulated the expression of mRNA and protein of Keap 1. At the same time, ATO induced apoptosis which not only upregulated the expression levels of mRNA and proteins (Caspase 3, Cyt-C, P53, Bax) but also decreased the mRNA and protein expression level of Bcl-2. These results indicated that ATO can lead to oxidative stress and apoptosis in the heart of ducks. In general, our research shows that ATO triggers mitochondrial dysfunction, oxidative stress, and apoptosis via Nrf 2/Caspase 3 signaling pathway in the heart of ducks.
Collapse
Affiliation(s)
- Gan Rao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajia Tan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Oltipraz, the activator of nuclear factor erythroid 2-related factor 2 (Nrf2), protects against the formation of BAPN-induced aneurysms and dissection of the thoracic aorta in mice by inhibiting activation of the ROS-mediated NLRP3 inflammasome. Eur J Pharmacol 2022; 936:175361. [DOI: 10.1016/j.ejphar.2022.175361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
9
|
Kumar S, Jin J, Park HY, Kim MJ, Chin J, Lee S, Kim J, Kim JG, Choi YK, Park KG. DN200434 Inhibits Vascular Smooth Muscle Cell Proliferation and Prevents Neointima Formation in Mice after Carotid Artery Ligation. Endocrinol Metab (Seoul) 2022; 37:800-809. [PMID: 36168774 PMCID: PMC9633220 DOI: 10.3803/enm.2022.1462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGRUOUND Excessive proliferation and migration of vascular smooth muscle cells (VSMCs), which contributes to the development of occlusive vascular diseases, requires elevated mitochondrial oxidative phosphorylation to meet the increased requirements for energy and anabolic precursors. Therefore, therapeutic strategies based on blockade of mitochondrial oxidative phosphorylation are considered promising for treatment of occlusive vascular diseases. Here, we investigated whether DN200434, an orally available estrogen receptor-related gamma inverse agonist, inhibits proliferation and migration of VSMCs and neointima formation by suppressing mitochondrial oxidative phosphorylation. METHODS VSMCs were isolated from the thoracic aortas of 4-week-old Sprague-Dawley rats. Oxidative phosphorylation and the cell cycle were analyzed in fetal bovine serum (FBS)- or platelet-derived growth factor (PDGF)-stimulated VSMCs using a Seahorse XF-24 analyzer and flow cytometry, respectively. A model of neointimal hyperplasia was generated by ligating the left common carotid artery in male C57BL/6J mice. RESULTS DN200434 inhibited mitochondrial respiration and mammalian target of rapamycin complex 1 activity and consequently suppressed FBS- or PDGF-stimulated proliferation and migration of VSMCs and cell cycle progression. Furthermore, DN200434 reduced carotid artery ligation-induced neointima formation in mice. CONCLUSION Our data suggest that DN200434 is a therapeutic option to prevent the progression of atherosclerosis.
Collapse
Affiliation(s)
- Sudeep Kumar
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jonghwa Jin
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyeon Young Park
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Korea
| | - Mi-Jin Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Sungwoo Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Jina Kim
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Jung-Guk Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yeon-Kyung Choi
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Yeon-Kyung Choi. Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu 41404, Korea Tel: +82-53-200-3869, Fax: +82-53-200-3870, E-mail:
| | - Keun-Gyu Park
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Korea
- Corresponding authors: Keun-Gyu Park. Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Korea Tel: +82-53-200-5505, Fax: +82-53-426-2046, E-mail:
| |
Collapse
|
10
|
Sano M, Akagi D, Naito M, Hoshina K, Miyata K, Kataoka K, Ishihara S. Systemic single administration of anti-inflammatory microRNA 146a-5p loaded in polymeric nanomedicines with active targetability attenuates neointimal hyperplasia by controlling inflammation in injured arteries in a rat model. FASEB J 2022; 36:e22486. [PMID: 35929425 DOI: 10.1096/fj.202101481r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 06/18/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
Neointimal hyperplasia (NIH) after revascularization is a key unsolved clinical problem. Various studies have shown that attenuation of the acute inflammatory response on the vascular wall can prevent NIH. MicroRNA146a-5p (miR146a-5p) has been reported to show anti-inflammatory effects by inhibiting the NF-κB pathway, a well-known key player of inflammation of the vascular wall. Here, a nanomedicine, which can reach the vascular injury site, based on polymeric micelles was applied to deliver miR146a-5p in a rat carotid artery balloon injury model. In vitro studies using inflammation-induced vascular smooth muscle cell (VSMC) was performed. Results showed anti-inflammatory response as an inhibitor of the NF-κB pathway and VSMC migration, suppression of reactive oxygen species production, and proinflammatory cytokine gene expression in VSMCs. A single systemic administration of miR146a-5p attenuated NIH and vessel remodeling in a carotid artery balloon injury model in both male and female rats in vivo. MiR146a-5p reduced proinflammatory cytokine gene expression in injured arteries and monocyte/macrophage infiltration into the vascular wall. Therefore, miR146a-5p delivery to the injury site demonstrated therapeutic potential against NIH after revascularization.
Collapse
Affiliation(s)
- Masaya Sano
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Daisuke Akagi
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Katsuyuki Hoshina
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Soichiro Ishihara
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| |
Collapse
|
11
|
Chen C, Ma J, Xu Z, Chen L, Sun B, Shi Y, Miao Y, Wu T, Qin M, Zhang Y, Zhang M, Cao X. Rosmarinic Acid Inhibits Platelet Aggregation and Neointimal Hyperplasia In Vivo and Vascular Smooth Muscle Cell Dedifferentiation, Proliferation, and Migration In Vitro via Activation of the Keap1-Nrf2-ARE Antioxidant System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7420-7440. [PMID: 35687823 DOI: 10.1021/acs.jafc.2c01176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The activation of platelets and proliferation of vascular smooth muscle cells (VSMCs) in the vascular intima play an essential role in the pathological mechanism of vascular restenosis (RS). Rosmarinic acid (RA) is a natural phenolic acid compound. However, its mechanism of action on platelets and VSMCs is still unclear. This study investigated the effects of RA on platelet function, VSMCs phenotypic conversion, proliferation, and migration in vascular remodeling with a specific focus on the Keap1-Nrf2-ARE signaling pathway. RA inhibited platelet aggregation and Ca2+ release and significantly reduced the release of platelet microvesicles. In addition, RA inhibited the phenotypic transition of VSMCs in vitro and in vivo. In vitro experiments showed that RA could effectively inhibit the proliferation and migration of VSMCs induced by the platelet-derived growth factor (PDGF)-BB. PDGF-BB triggered ROS generation and a decrease in mitochondrial membrane potential, which were inhibited by RA. Mechanistically, after artery injury or treatment with PDGF-BB, VSMCs presented with inhibition of the Nrf2/antioxidant response element (ARE) signaling pathway. RA treatment reversed this profile by activating the Nrf2/ARE signaling pathway; stabilizing Keap1 protein; upregulating HO-1, NQO1, GCLM, and GST protein levels; promoting typical Nrf2 nuclear translocation; and preventing VSMCs from oxidative stress damage. On the other hand, RA also inhibited the NF-κB pathway to reduce inflammation. In summary, these results indicate that RA inhibits platelet function and attenuates the proliferation, migration, and phenotypic transition of VSMCs induced by PDGF-BB in vitro and vascular remodeling in vivo. Therefore, RA treatment may be a potential therapy for preventing or treating RS.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| | - Zhiping Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| | - Liang Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| | - Bo Sun
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| | - Yan Shi
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| | - Yujia Miao
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| | - Tianlong Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| | - Meng Qin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| | - Yang Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| | - Ming Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| | - Xia Cao
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 13002, Jilin, China
| |
Collapse
|
12
|
Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, Sandoval-Rodriguez A, García-Bañuelos J, Santos A, Armendariz-Borunda J. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel) 2022; 11:235. [PMID: 35204118 PMCID: PMC8868420 DOI: 10.3390/antiox11020235] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The raising prevalence of obesity is associated with an increased risk for cardiovascular diseases (CVDs), particularly coronary artery disease (CAD), and heart failure, including atrial fibrillation, ventricular arrhythmias and sudden death. Obesity contributes directly to incident cardiovascular risk factors, including hyperglycemia or diabetes, dyslipidemia, and hypertension, which are involved in atherosclerosis, including structural and functional cardiac alterations, which lead to cardiac dysfunction. CVDs are the main cause of morbidity and mortality worldwide. In obesity, visceral and epicardial adipose tissue generate inflammatory cytokines and reactive oxygen species (ROS), which induce oxidative stress and contribute to the pathogenesis of CVDs. Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by Nfe2l2 gene) protects against oxidative stress and electrophilic stress. NRF2 participates in the regulation of cell inflammatory responses and lipid metabolism, including the expression of over 1000 genes in the cell under normal and stressed environments. NRF2 is downregulated in diabetes, hypertension, and inflammation. Nfe2l2 knockout mice develop structural and functional cardiac alterations, and NRF2 deficiency in macrophages increases atherosclerosis. Given the endothelial and cardiac protective effects of NRF2 in experimental models, its activation using pharmacological or natural products is a promising therapeutic approach for obesity and CVDs. This review provides a comprehensive summary of the current knowledge on the role of NRF2 in obesity-associated cardiovascular risk factors.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Hugo Christian Monroy-Ramírez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Arturo Santos
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| |
Collapse
|
13
|
Kimura Y, Izumiya Y, Araki S, Yamamura S, Hanatani S, Onoue Y, Ishida T, Arima Y, Nakamura T, Yamamoto E, Senokuchi T, Yoshizawa T, Sata M, Kim-Mitsuyama S, Nakagata N, Bober E, Braun T, Kaikita K, Yamagata K, Tsujita K. Sirt7 Deficiency Attenuates Neointimal Formation Following Vascular Injury by Modulating Vascular Smooth Muscle Cell Proliferation. Circ J 2021; 85:2232-2240. [PMID: 33678753 DOI: 10.1253/circj.cj-20-0936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Sirt7 is a recently identified sirtuin and has important roles in various pathological conditions, including cancer progression and metabolic disorders. It has previously been reported that Sirt7 is a key molecule in acute myocardial wound healing and pressure overload-induced cardiac hypertrophy. In this study, the role of Sirt7 in neointimal formation after vascular injury is investigated. METHODS AND RESULTS Systemic (Sirt7-/-) and smooth muscle cell-specific Sirt7-deficient mice were subjected to femoral artery wire injury. Primary vascular smooth muscle cells (VSMCs) were isolated from the aorta of wild type (WT) and Sirt7-/-mice and their capacity for cell proliferation and migration was compared. Sirt7 expression was increased in vascular tissue at the sites of injury. Sirt7-/-mice demonstrated significant reduction in neointimal formation compared to WT mice. In vitro, Sirt7 deficiency attenuated the proliferation of serum-induced VSMCs. Serum stimulation-induced upregulation of cyclins and cyclin-dependent-kinase 2 (CDK2) was significantly attenuated in VSMCs of Sirt7-/-compared with WT mice. These changes were accompanied by enhanced expression of the microRNA 290-295 cluster, the translational negative regulator of CDK2, in VSMCs of Sirt7-/-mice. It was confirmed that smooth muscle cell-specific Sirt7-deficient mice showed significant reduction in neointima compared with control mice. CONCLUSIONS Sirt7 deficiency attenuates neointimal formation after vascular injury. Given the predominant role in vascular neointimal formation, Sirt7 is a potentially suitable target for treatment of vascular diseases.
Collapse
Affiliation(s)
- Yuichi Kimura
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Satoru Yamamura
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Shinsuke Hanatani
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Yoshiro Onoue
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Toshifumi Ishida
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Taishi Nakamura
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Takafumi Senokuchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Shokei Kim-Mitsuyama
- Departments of Pharmacology and Molecular Therapeutics, Faculty of Life Sciences, Kumamoto University
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University
| | - Eva Bober
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
14
|
Duan Y, Qi D, Liu Y, Song Y, Wang X, Jiao S, Li H, Gonzalez FJ, Qi Y, Xu Q, Du J, Qu A. Deficiency of peroxisome proliferator-activated receptor α attenuates apoptosis and promotes migration of vascular smooth muscle cells. Biochem Biophys Rep 2021; 27:101091. [PMID: 34381883 PMCID: PMC8339143 DOI: 10.1016/j.bbrep.2021.101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) α is widely expressed in the vasculature and has pleiotropic and lipid-lowering independent effects, but its role in the growth and function of vascular smooth muscle cells (VSMCs) during vascular pathophysiology is still unclear. Herein, VSMC-specific PPARα-deficient mice (Ppara ΔSMC) were generated by Cre-LoxP site-specific recombinase technology and VSMCs were isolated from mice aorta. PPARα deficiency attenuated VSMC apoptosis induced by angiotensin (Ang) II and hydrogen peroxide, and increased the migration of Ang II-challenged cells.
Collapse
Key Words
- Ang II, angiotensin II
- Angiotensin II
- EC, endothelial cell
- ECM, extracellular matrix
- ERK, extracellular signal-regulated kinase
- MAPK, mitogen-activated protein kinase
- MCP-1, monocyte chemoattractant protein-1
- PCR, polymerase chain reaction
- PPAR, peroxisome proliferator-activated receptor
- PPARα
- SM22α, smooth muscle 22α
- TGF, tumor growth factor
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- VSMC, vascular smooth muscle cell
- Vascular remodeling
- Vascular smooth muscle cell
Collapse
Affiliation(s)
- Yan Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Dan Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Ye Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Huihua Li
- Department of Nutrition and Food Hygiene, School of Public Health, Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qingbo Xu
- School of Cardiovascular Medicine and Sciences, King' s College of London, London, UK
| | - Jie Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China.,Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| |
Collapse
|
15
|
Bonetti J, Corti A, Lerouge L, Pompella A, Gaucher C. Phenotypic Modulation of Macrophages and Vascular Smooth Muscle Cells in Atherosclerosis-Nitro-Redox Interconnections. Antioxidants (Basel) 2021; 10:antiox10040516. [PMID: 33810295 PMCID: PMC8066740 DOI: 10.3390/antiox10040516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of “foam cells” within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena. Elucidation of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date much remains to be explored. The present article is an overview of the different factors and signalling pathways implicated in plaque formation and of the effects of NO on the molecular steps of the phenotypic switch of macrophages and vSMCs.
Collapse
Affiliation(s)
- Justine Bonetti
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alessandro Corti
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
| | - Lucie Lerouge
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alfonso Pompella
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-2218-537
| | - Caroline Gaucher
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| |
Collapse
|
16
|
Endo S, Kawai M, Hoshi M, Segawa J, Fujita M, Matsukawa T, Fujimoto N, Matsunaga T, Ikari A. Targeting Nrf2-antioxidant signaling reverses acquired cabazitaxel resistance in prostate cancer cells. J Biochem 2021; 170:89-96. [PMID: 33729485 DOI: 10.1093/jb/mvab025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is known to have a relatively good prognosis, but long-term hormone therapy can lead to castration-resistant prostate cancer (CRPC). Cabazitaxel, a second-generation taxane, has been used for the CRPC treatment, but its tolerance is an urgent problem to be solved. In this study, to elucidate the acquisition mechanism of the cabazitaxel-resistance, we established cabazitaxel-resistant prostate cancer 22Rv1 (Cab-R) cells, which exhibited approximately 7-fold higher LD50 against cabazitaxel than the parental 22Rv1 cells. Cab-R cells showed marked increases in nuclear accumulation of NF-E2 related factor 2 (Nrf2) and expression of Nrf2-inducible antioxidant enzymes compared to 22Rv1 cells, suggesting that Nrf2 signaling is homeostatically activated in Cab-R cells. The cabazitaxel sensitivity of Cab-R cells was enhanced by silencing of Nrf2, and that of 22Rv1 cells was reduced by activation of Nrf2. Halofuginone (HF) has been recently identified as a potent Nrf2 synthetic inhibitor, and its treatment of Cab-R cells not only suppressed the Nrf2 signaling by decreasing both nuclear and cytosolic Nrf2 protein levels, but also significantly augmented the cabazitaxel sensitivity. Thus, inhibition of Nrf2 signaling may be effective in overcoming the cabazitaxel resistance in prostate cancer cells.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Manami Hoshi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Jin Segawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Mei Fujita
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Takuo Matsukawa
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| |
Collapse
|
17
|
Ishii S, Ashino T, Fujimori H, Numazawa S. Reactive sulfur species inhibit the migration of PDGF-treated vascular smooth muscle cells by blocking the reactive oxygen species-regulated Akt signaling pathway. Free Radic Res 2021; 55:186-197. [PMID: 33641584 DOI: 10.1080/10715762.2021.1887485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular smooth muscle cell (VSMC) migration contributes to vascular remodeling after injury, whereas oxidative stress generated through dysfunctional redox homeostasis induces hypermigration, leading to arteriosclerosis. Platelet-derived growth factor (PDGF)-induced reactive oxygen species (ROS) serve as intracellular signaling molecules in VSMCs. Reactive sulfur species (RSS) may serve as a biological defense system because of the antioxidative properties of highly nucleophilic sulfane sulfur. However, insufficient information is available on its function in PDGF-induced VSMC migration. Here we show that PDGF significantly increased the levels of intracellular sulfane sulfur and that intracellular sulfane sulfur donors, donor 5a and Na2S4, inhibited the increase in ROS levels in PDGF-treated VSMCs and inhibited their migration. Consistent with the migration results, sulfane sulfur donors inhibited Akt phosphorylation, a downstream signaling molecule in the PDGF cascade, without affecting the autophosphorylation of PDGF receptor-β. Further, sulfane sulfur donors inhibited vinculin and paxillin recruitment to the leading edge of VSMCs in response to PDGF to decrease focal adhesion formation. These findings suggest that RSS are required for PDGF-stimulated VSMC migration through the regulation of the ROS-regulated Akt pathway, which may contribute to focal adhesion formation. Our findings provide insight into RSS as novel regulators of vascular redox homeostasis.
Collapse
Affiliation(s)
- Shunichi Ishii
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Takashi Ashino
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Hiroki Fujimori
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| |
Collapse
|
18
|
Dolanbay T, Makav M, Gul HF, Karakurt E. The effect of diclofenac sodium intoxication on the cardiovascular system in rats. Am J Emerg Med 2020; 46:560-566. [PMID: 33272872 DOI: 10.1016/j.ajem.2020.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES Diclofenac sodium (DS) is a widely used nonsteroidal anti-inflammatory drug. Although its high doses are known to cause toxic effects in many tissues including liver and kidney, the effects on the cardiovascular system (CVS) have not been fully elucidated yet. Therefore, this study aimed to investigate the effect of DS on CVS. METHODS The Control group did not receive medication; however, a single dose of 240 mg/kg DS was administered orally to the DS group. Electrocardiography (ECG) measurements were performed in all animals before (0thhour) and after (1st,6th,12th,24thhour) intoxication. After 24 h, All animals were sacrificed. Biochemical (malondialdehyde [MDA], and glutathione (GSH), Apelin, Elabela, Meteorin, Endoglin, Keap1, and Nrf2) and histopathological analyzes were performed on heart tissue samples. RESULTS ECG results showed that there was a statistically significant increase in QTc, QRS, and heart rate at the 12th and 24th hours in the DS group. The biochemical analysis showed that GSH, Apelin, Keap1, and NRF2 values decreased significantly while Meteorin and Endoglin levels increased in the DS group. When histopathological results were evaluated, distinct lesions were observed in the DS group. CONCLUSION In conclusion, high doses of DS intake can cause adverse effects on and damage to CVS.
Collapse
Affiliation(s)
- Turgut Dolanbay
- Kafkas University, Faculty of Medicine, Department of Medical Emergency, Kars, Turkey.
| | - Mustafa Makav
- Kafkas University, Faculty of Veterinary Medicine, Department of Physiology, Kars, Turkey
| | - Huseyin Fatih Gul
- Kafkas University, Faculty of Medicine, Department of Medical Biochemistry, Kars, Turkey
| | - Emin Karakurt
- Kafkas University, Faculty of Veterinary Medicine, Department of Pathology, Kars, Turkey
| |
Collapse
|
19
|
Microparticles-Mediated Vascular Inflammation and its Amelioration by Antioxidant Activity of Baicalin. Antioxidants (Basel) 2020; 9:antiox9090890. [PMID: 32962240 PMCID: PMC7555600 DOI: 10.3390/antiox9090890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Microparticles (MPs) are extracellular vesicles (0.1–1.0 μm in size), released in response to cell activation or apoptosis. Endothelial microparticles (EC-MP), vascular smooth muscle cell microparticles (VSMC-MP), and macrophage microparticles (MØ-MP) are key hallmarks of atherosclerosis progression. In our current study, we investigated the potent antioxidant activity of baicalin to ameliorate MP-induced vascular smooth muscle cell (VSMC) dysfunction and endothelial cell (EC) dysfunction, as well as the production of inflammatory mediators in macrophage (RAW264.7). In our study, baicalin suppressed the apoptosis, reactive oxygen species (ROS) generation, NO production, foam cell formation, protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in MØ-MP-induced RAW264.7. In addition, VSMC migration induced by VSMC-MP was dose-dependently inhibited by baicalin. Likewise, baicalin inhibits metalloproteinase-9 expression and suppresses VSMC-MP-induced VSMC proliferation by down-regulation of mitogen-activated protein kinase and proliferating cell nuclear antigen protein expressions. Baicalin also inhibited ROS production and apoptosis in VSMC. In EC, the marker of endothelial dysfunction (endothelial senescence, upregulation of ICAM, and ROS production) induced by EC-MP was halted by baicalin. Our results suggested that baicalin exerts potent biological activity to restore the function of EC and VSMC altered by their corresponding microparticles and inhibits the release of inflammation markers from activated macrophages.
Collapse
|
20
|
Zhang C, Kong X, Ma D. miR-141-3p inhibits vascular smooth muscle cell proliferation and migration via regulating Keap1/Nrf2/HO-1 pathway. IUBMB Life 2020; 72:2167-2179. [PMID: 32897647 DOI: 10.1002/iub.2374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/06/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023]
Abstract
miR-141-3p is proven to play a prominent role in various inflammation-related diseases. Nonetheless, little is known concerning the function of miR-141-3p in vascular smooth muscle cells (VSMCs) dysfunction and the underlying mechanism. ApoE knockdown (ApoE-/- ) C57BL/6 mice and human VSMCs were employed to establish atherosclerosis (AS) animal model and cell model, respectively. The expressions of miR-141-3p and Keap1 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Enzyme-linked immunosorbent assay (ELISA) was conducted to determine inflammatory cytokines IL-6, IL-β and TNF-α. Cell proliferation, migration and apoptosis were analyzed by BrdU assay, Transwell assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, respectively. Luciferase reporter assay was carried out to determine the regulatory relationship between miR-141-3p and Keap1. Additionally, Western blot was used to detect the function of miR-141-3p on the expression levels of Keap1, Nrf2 and HO-1 in VSMCs. miR-141-3p was remarkably down-regulated in both AS animal model and cell model while the expression of Keap1 was elevated. Proliferation and migration of VSMCs were suppressed after miR-141-3p mimics transfection and cell apoptosis was promoted. miR-141-3p also inhibited the expressions of IL-6, IL-β, TNF-α and Keap1 but promoted the expressions of Nrf2 and HO-1. Moreover, the binding site between miR-141-3p and the 3'UTR of Keap1 was confirmed. miR-141-3p is down-regulated during AS, and it can alleviate VSMCs' dysfunction by targeting the Keap1/Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Cuicui Zhang
- Department of Cardiology, Linyi Central Hospital, Linyi, China
| | - Xianghui Kong
- Department of Cardiology, Linyi Central Hospital, Linyi, China
| | - Deliang Ma
- Department of Medical Oncology, Linyi Central Hospital, Linyi, China
| |
Collapse
|
21
|
Wang L, Deng L, Lin N, Shi Y, Chen J, Zhou Y, Chen D, Liu S, Li C. Berberine inhibits proliferation and apoptosis of vascular smooth muscle cells induced by mechanical stretch via the PDI/ERS and MAPK pathways. Life Sci 2020; 259:118253. [PMID: 32795536 DOI: 10.1016/j.lfs.2020.118253] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
AIMS We recently demonstrated that mechanical stretch increases the proliferation and apoptosis of vascular smooth muscle cells (VSMCs) by activating the protein disulfide isomerase (PDI) redox system, thus accelerating atherosclerotic lesion formation in the transplanted vein. At present, there are no efficient intervention measures to prevent this phenomenon. Berberine inhibits pathological vascular remodeling caused by hypertension, but the underlying mechanism is controversial. Herein, we investigate the role of berberine and the underlying mechanism of its effects on mechanical stretch-induced VSMC proliferation and apoptosis. MAIN METHODS Mouse VSMCs cultivated on flexible membranes were pretreated for 1 h with one of the following substances: berberine, PDI inhibitor bacitracin, MAPK inhibitors, or ERS inhibitor 4-PBA. VSMCs were then subjected to mechanical stretch. Immunofluorescence and western blot were used to detect proliferation and apoptosis, as well as to analyze signaling pathways in VSMCs. KEY FINDINGS Our results showed that berberine inhibits the PDI-endoplasmic reticulum stress system, thereby attenuating the simultaneous increase of VSMC proliferation and apoptosis in response to mechanical stretch. Interestingly, MAPK inhibitors PD98059, SP600125, and SB202190 significantly reduced the activation of ERS signaling cascades, and their combination with berberine had additive effects. The ERS inhibitor 4-PBA reduced PDI activation and ERS signaling, but not MAPK phosphorylation. Moreover, caspase-3 and caspase-12 were downregulated by berberine. SIGNIFICANCE These results illustrate a novel mechanism of action of berberine that has practical implications. Our data provide important insights for the prevention and treatment of vascular remodeling and diseases caused by mechanical stretching during hypertension.
Collapse
Affiliation(s)
- Linli Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Lie Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Ning Lin
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yi Shi
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Dadi Chen
- Experimental Center for Basic Medical Teaching, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
22
|
Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4683943. [PMID: 32831999 PMCID: PMC7428967 DOI: 10.1155/2020/4683943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiocerebral vascular disease (CCVD) is a common disease with high morbidity, disability, and mortality. Oxidative stress (OS) is closely related to the progression of CCVD. Abnormal redox regulation leads to OS and overproduction of reactive oxygen species (ROS), which can cause biomolecular and cellular damage. The Nrf2/antioxidant response element (ARE) signaling pathway is one of the most important defense systems against exogenous and endogenous OS injury, and Nrf2 is regarded as a vital pharmacological target. The complexity of the CCVD pathological process and the current difficulties in conducting clinical trials have hindered the development of therapeutic drugs. Furthermore, little is known about the role of the Nrf2/ARE signaling pathway in CCVD. Clarifying the role of the Nrf2/ARE signaling pathway in CCVD can provide new ideas for drug design. This review details the recent advancements in the regulation of the Nrf2/ARE system and its role and activators in common CCVD development.
Collapse
|
23
|
Li H, Xu H, Li Y, Jiang Y, Hu Y, Liu T, Tian X, Zhao X, Zhu Y, Wang S, Zhang C, Ge J, Wang X, Wen H, Bai C, Sun Y, Song L, Zhang Y, Hui R, Cai J, Chen J. Alterations of gut microbiota contribute to the progression of unruptured intracranial aneurysms. Nat Commun 2020; 11:3218. [PMID: 32587239 PMCID: PMC7316982 DOI: 10.1038/s41467-020-16990-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Unruptured intracranial aneurysm (UIA) is a life-threatening cerebrovascular condition. Whether changes in gut microbial composition participate in the development of UIAs remains largely unknown. We perform a case-control metagenome-wide association study in two cohorts of Chinese UIA patients and control individuals and mice that receive fecal transplants from human donors. After fecal transplantation, the UIA microbiota is sufficient to induce UIAs in mice. We identify UIA-associated gut microbial species link to changes in circulating taurine. Specifically, the abundance of Hungatella hathewayi is markedly decreased and positively correlated with the circulating taurine concentration in both humans and mice. Consistently, gavage with H. hathewayi normalizes the taurine levels in serum and protects mice against the formation and rupture of intracranial aneurysms. Taurine supplementation also reverses the progression of intracranial aneurysms. Our findings provide insights into a potential role of H. hathewayi-associated taurine depletion as a key factor in the pathogenesis of UIAs. Unruptured intracranial aneurysm (UIA) is a life-threatening cerebrovascular condition. Here the authors report altered gut microbiota including low abundance of Hungatella hathewayi in patients with UIAs, and show that supplementation with Hungatella hathewayi or the metabolite taurine prevents UIAs in mice.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuhua Jiang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Yamin Hu
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Tingting Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xueqing Tian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xihai Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yandong Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuxia Wang
- Chinese PLA General Hospital and Chinese PLA Medical College, Beijing, 100853, China
| | - Chunrui Zhang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Jing Ge
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xuliang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
24
|
Pascale CL, Martinez AN, Carr C, Sawyer DM, Ribeiro-Alves M, Chen M, O'Donnell DB, Guidry JJ, Amenta PS, Dumont AS. Treatment with dimethyl fumarate reduces the formation and rupture of intracranial aneurysms: Role of Nrf2 activation. J Cereb Blood Flow Metab 2020; 40:1077-1089. [PMID: 31220996 PMCID: PMC7181091 DOI: 10.1177/0271678x19858888] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress and chronic inflammation in arterial walls have been implicated in intracranial aneurysm (IA) formation and rupture. Dimethyl fumarate (DMF) exhibits immunomodulatory properties, partly via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway which reduces oxidative stress by inducing the antioxidant response element (ARE). This study evaluated the effects of DMF both in vitro, using tumor necrosis factor (TNF)-α-treated vascular smooth muscle cells (VSMC), and in vivo, using a murine elastase model to induce aneurysm formation. The mice were treated with either DMF at 100 mg/kg/day P.O. or vehicle for two weeks. DMF treatment protected VSMCs from TNF-α-induced inflammation as demonstrated by its downregulation of cytokines and upregulation of Nrf2 and smooth muscle cell markers. At higher doses, DMF also inhibited the pro-proliferative action of TNF-α by increasing apoptosis which protected the cells from aponecrosis. In mice, DMF treatment significantly decreased the incidence of aneurysm formation and rupture, at the same time increasing Nrf2 levels. DMF demonstrated a neuroprotective effect in mice with a resultant inhibition of oxidative stress, inflammation, and fibrosis in the cerebrovasculature. This suggests a potential role for DMF as a rescue therapy for patients at risk for formation and rupture of IAs.
Collapse
Affiliation(s)
- Crissey L Pascale
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alejandra N Martinez
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Christopher Carr
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - David M Sawyer
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas (INI)-Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Mimi Chen
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Devon B O'Donnell
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessie J Guidry
- Louisiana State University Health Sciences Center Proteomics Core Facility, New Orleans, LA, USA
| | - Peter S Amenta
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
25
|
Zhang D, Yang Y, Li Y, Zhang G, Cheng Z. Inhibitory Effect of Curcumin on Artery Restenosis Following Carotid Endarterectomy and Its Associated Mechanism in vitro and in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:855-866. [PMID: 32161445 PMCID: PMC7049773 DOI: 10.2147/dddt.s229607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
Abstract
Objective The present study aimed to assess the effect of curcumin (Cur) on carotid artery restenosis following carotid endarterectomy (CEA) and its associated mechanism in vivo and in vitro. Methods Ang II was used to induce excessive proliferation of rabbit aortic smooth muscle cells (CCC-SMC-1) in order to establish a hemadostenosis cell model. Similarly, the animal model of carotid artery restenosis was established by carotid artery gas drying injury combined with high-fat feed prior to CEA. CCC-SMC-1 cells and animals were treated by Cur and its effects on neointimal hyperplasia, inflammation and oxidative stress were detected and observed. The proteins that were associated with the Raf/MEK/ERK pathway were detected in cells and rabbit carotid artery tissues. Results Cur inhibited the proliferation of smooth muscle cells and neointimal formation and reduced the inflammation and oxidative stress indices. Concomitantly, Cur reduced the phosphorylation of the Raf/MEK/ERK pathway proteins. Conclusion Cur could inhibit carotid restenosis following CEA by inhibiting the activation of the Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Dapeng Zhang
- Neurosurgery Department, Xinxiang Central Hospital, Xinxiang, Henan Province 453000, People's Republic of China
| | - Yanhui Yang
- Color Ultrasonic Room, People's Hospital of Huixian, Xinxiang, Henan Province 453600, People's Republic of China
| | - Yuanchao Li
- Neurosurgery Department, Xinxiang Central Hospital, Xinxiang, Henan Province 453000, People's Republic of China
| | - Guodong Zhang
- Neurosurgery Department, Xinxiang Central Hospital, Xinxiang, Henan Province 453000, People's Republic of China
| | - Zhenguo Cheng
- Neurosurgery Department, Xinxiang Central Hospital, Xinxiang, Henan Province 453000, People's Republic of China
| |
Collapse
|
26
|
Wei R, Enaka M, Muragaki Y. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Sci Rep 2019; 9:10366. [PMID: 31316111 PMCID: PMC6637199 DOI: 10.1038/s41598-019-46824-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification is a complication of diseases and conditions such as chronic kidney disease, diabetes, and aging. Previous studies have demonstrated that high concentrations of inorganic phosphate (Pi) can induce oxidative stress and vascular smooth muscle cell calcification. KEAP1 (Kelch-like ECH-associated protein 1)/NF-E2-related factor 2 (NRF2) signaling has been shown to play important roles in protecting cells from oxidative stress. The current study aims to investigate the possible involvement of the KEAP1/NRF2/P62 -mediated antioxidant pathway in vascular calcification induced by high Pi levels. Exposure of vascular smooth muscle cells (VSMCs) to high Pi concentrations promoted the accumulation of reactive oxygen species (ROS) and the nuclear translocation of NRF2, along with an increase in P62 levels and a decrease in KEAP1 levels. A classic NRF2 activator, tert-butylhydroquinone (tBHQ), significantly decreased ROS levels and calcium deposition in VSMCs by promoting the nuclear translocation of NRF2 and upregulating P62 and KEAP1 expression. In contrast, silencing NRF2 and P62 with siRNAs increased the levels of ROS and calcium deposition in VSMCs. In conclusion, VSMC calcification can be alleviated by the activation of the KEAP1/NRF2/P62 antioxidative pathway, which could have a protective role when it is exogenously activated by tBHQ.
Collapse
Affiliation(s)
- Ran Wei
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Mayu Enaka
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| |
Collapse
|
27
|
Effects of KEAP1 Silencing on the Regulation of NRF2 Activity in Neuroendocrine Lung Tumors. Int J Mol Sci 2019; 20:ijms20102531. [PMID: 31126053 PMCID: PMC6566555 DOI: 10.3390/ijms20102531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/09/2023] Open
Abstract
Background. The KEAP1/NRF2 pathway has been widely investigated in tumors since it was implicated in cancer cells survival and therapies resistance. In lung tumors the deregulation of this pathway is mainly related to point mutations of KEAP1 and NFE2L2 genes and KEAP1 promoter hypermethylation, but these two genes have been rarely investigated in low/intermediate grade neuroendocrine tumors of the lung. Methods. The effects of KEAP1 silencing on NRF2 activity was investigated in H720 and H727 carcinoid cell lines and results were compared with those obtained by molecular profiling of KEAP1 and NFE2L2 in a collection of 47 lung carcinoids. The correlation between methylation and transcript levels was assessed by 5-aza-dC treatment. Results. We demonstrated that in carcinoid cell lines, the KEAP1 silencing induces an upregulation of NRF2 and some of its targets and that there is a direct correlation between KEAP1 methylation and its mRNA levels. A KEAP1 hypermethylation and Loss of Heterozygosity at KEAP1 gene locus was also observed in nearly half of lung carcinoids. Conclusions. This is the first study that has described the effects of KEAP1 silencing on the regulation of NRF2 activity in lung carcinoids cells. The epigenetic deregulation of the KEAP1/NRF2 by a KEAP1 promoter hypermethylation system appears to be a frequent event in lung carcinoids.
Collapse
|
28
|
da Costa RM, Rodrigues D, Pereira CA, Silva JF, Alves JV, Lobato NS, Tostes RC. Nrf2 as a Potential Mediator of Cardiovascular Risk in Metabolic Diseases. Front Pharmacol 2019; 10:382. [PMID: 31031630 PMCID: PMC6473049 DOI: 10.3389/fphar.2019.00382] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Free radicals act as secondary messengers, modulating a number of important biological processes, including gene expression, ion mobilization in transport systems, protein interactions and enzymatic functions, cell growth, cell cycle, redox homeostasis, among others. In the cardiovascular system, the physiological generation of free radicals ensures the integrity and function of cardiomyocytes, endothelial cells, and adjacent smooth muscle cells. In physiological conditions, there is a balance between free radicals generation and the activity of enzymatic and non-enzymatic antioxidant systems. Redox imbalance, caused by increased free radical's production and/or reduced antioxidant defense, plays an important role in the development of cardiovascular diseases, contributing to cardiac hypertrophy and heart failure, endothelial dysfunction, hypertrophy and hypercontractility of vascular smooth muscle. Excessive production of oxidizing agents in detriment of antioxidant defenses in the cardiovascular system has been described in obesity, diabetes mellitus, hypertension, and atherosclerosis. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), a major regulator of antioxidant and cellular protective genes, is primarily activated in response to oxidative stress. Under physiological conditions, Nrf2 is constitutively expressed in the cytoplasm of cells and is usually associated with Keap-1, a repressor protein. This association maintains low levels of free Nrf2. Stressors, such as free radicals, favor the translocation of Nrf2 to the cell nucleus. The accumulation of nuclear Nrf2 allows the binding of this protein to the antioxidant response element of genes that code antioxidant proteins. Although little information on the role of Nrf2 in the cardiovascular system is available, growing evidence indicates that decreased Nrf2 activity contributes to oxidative stress, favoring the pathophysiology of cardiovascular disorders found in obesity, diabetes mellitus, and atherosclerosis. The present mini-review will provide a comprehensive overview of the role of Nrf2 as a contributing factor to cardiovascular risk in metabolic diseases.
Collapse
Affiliation(s)
- Rafael M da Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Special Academic Unit of Health Sciences, Federal University of Goiás, Jataí, Brazil
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Camila A Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Josiane F Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Juliano V Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Núbia S Lobato
- Special Academic Unit of Health Sciences, Federal University of Goiás, Jataí, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Li H, Xu H, Wen H, Liu T, Sun Y, Xiao N, Bai C, Ge J, Wang X, Song L, Song Y, Zhang Y, Chen J. Overexpression of LH3 reduces the incidence of hypertensive intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2019; 39:547-561. [PMID: 30516406 PMCID: PMC6421250 DOI: 10.1177/0271678x18815791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypertensive intracerebral hemorrhage (ICH) is a devastating cerebrovascular disease with no effective treatment. Lysyl hydroxylase 3 (LH3) is essential for collagen IV intermolecular crosslinking and stabilization. Deficiency in LH3 affects the assembly and secretion of collagen IV and basement membrane (BM) integrity of vessels. Here, we investigated whether LH3 has significant implications for disease progression and therapeutic intervention. Spontaneous hypertensive ICH of mice was induced by angiotensin II and L-NAME treatment. The adeno-associated virus was delivered into brain by stereotactic injection to knockdown or overexpress LH3. We found LH3 levels were reduced in human patients with ICH and gradually decreased in mice before ICH. LH3 knockdown increased the incidence of hypertensive ICH in mice. The incidence, number, and size of ICHs in mice were markedly reduced by LH3 overexpression. RNA-seq revealed that LH3 overexpression significantly reversed the profound alterations in gene transcriptional profiles of cerebral vessels. LH3 overexpression was sufficient to enhance BM integrity, inhibit matrix metalloproteinase activity, attenuate microglial activation and leukocyte infiltration, and reduce VSMC apoptosis before ICH. These results indicate that LH3 overexpression attenuates susceptibility to hypertensive ICH. We emphasize that LH3 modulation may serve as a viable approach for future investigations of ICH prevention.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianlong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Ge
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuliang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Zhang M, Xu Y, Qiu Z, Jiang L. Sulforaphane Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Migration via Suppression of NOX4/ROS/Nrf2 Signaling. Int J Biol Sci 2019; 15:148-157. [PMID: 30662355 PMCID: PMC6329926 DOI: 10.7150/ijbs.28874] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Angiotensin II (Ang II) is involved in the pathogenic progress of cardiovascular diseases via the promotion of abnormal proliferation and migration of human vascular smooth muscle cells (HVSMCs). Sulforaphane (SFN) exerts potent anti-inflammatory effects both in vitro and in vivo. In the present study, we aimed to investigate the effects of SFN on Ang II-induced abnormal migration of HVSMCs as well as the underlying mechanisms of those effects. The results showed that Ang II-induced HVSMC proliferation and migration were inhibited by treatment with SFN. SFN also exhibited anti-inflammatory activity, as indicated by its reduction of monocyte adhesion to HVSMCs via the reduction of ICAM1 and VCAM1 levels. Moreover, SFN reduced the Ang II-induced upregulation of HVSMC migration; this effect was inhibited by pretreatment with inhibitors of NADPH oxidase and ROS or transfection with siNOX4. In addition, SFN reversed the Ang II-induced upregulation of HVSMC migration via elevation of Nrf2 activation and expression. Taken together, the results indicate that SFN reverses Ang II-induced HVSMC migration through suppression of the NOX4/ROS/Nrf2 pathway. Thus, SFN is a potential agent to reverse the pathological changes involved in various cardiovascular diseases.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yingjie Xu
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zhaohui Qiu
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Li Jiang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
31
|
He J, Zhang X, Lian C, Wu J, Fang Y, Ye X. Exendin-4 prevented pancreatic beta cells from apoptosis in (Type I) diabetic mouse via keap1-Nrf2 signaling. Exp Biol Med (Maywood) 2019; 244:28-35. [PMID: 30638057 PMCID: PMC6362529 DOI: 10.1177/1535370218823549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/05/2018] [Indexed: 01/11/2023] Open
Abstract
IMPACT STATEMENT Nrf2 is an essential part of the defense mechanism of vertebrates and protects them from surrounding stress via participation in stimulated expression of detoxification as well as antioxidant enzymes. It also exerts a role in defending hosts from different stress in the environment, including reactive oxygen species. Our study investigates the role of exendin-4 on Nrf2 pathway as well as cell death in pancreatic β-cell and in non-obese diabetic mice. Result of study indicates exendin-4 mediates activation of Keap1-Nrf2-ARE pathway and may serve as a potential agent to treat type I diabetes mellitus. In our research, we observed excessive reactive oxygen species production, low level of cell death, and PKC phosphorylation on exendine-4 treatment. Nrf2 knockdown led to suppression of reactive oxygen species generation as well as increasing apoptosis. Moreover, siRNA-mediated Nrf2 down-regulation attenuated the suppressive effect of exendin-4 in pancreatic β-cell viability, via modulating apoptosis promoting- and counteracting-proteins, Bax, and Bcl-2.
Collapse
Affiliation(s)
- Jinshui He
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| | - Xu Zhang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| | - Chaowei Lian
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| | - Jinzhi Wu
- Department of endocrinology, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| | - Yanling Fang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| | - Xiaoling Ye
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| |
Collapse
|
32
|
He J, Zhang X, Lian C, Wu J, Fang Y, Ye X. KEAP1/NRF2 axis regulates H 2O 2-induced apoptosis of pancreatic β-cells. Gene 2018; 691:8-17. [PMID: 30594636 DOI: 10.1016/j.gene.2018.11.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
In human pancreatic β-cells, oxidative stress and cellular injures can be induced by H2O2 treatment. The KEAP1/NRF2 axis is a key antioxidant signaling pathway. The present study attempted to elucidate the mechanism by which the KEAP1/NRF2 axis mediates oxidative stress-induced death in pancreatic β-cells. Our data showed that H2O2 treatment obviously induced the apoptosis of β-cells. Further experiments demonstrated that KEAP1 expression was downregulated in H2O2-treated pancreatic β-cells and this change correlated with increase in the cellular abundance and nuclear translocation of NRF2. The restoration of KEAP1 expression in cells resulted in a recovery of cell proliferation and inhibition of apoptosis. Furthermore, we found that KEAP1 overexpression negatively regulated the abundance of NRF2, subsequently causing decreased antioxidant response element activation. This led to HO-1 protein downregulation in H2O2-treated human pancreatic β-cells, which was also observed in NRF2-silenced β-cells. Conversely, the silencing of KEAP1 led to NRF2 upregulation and inhibited ARE and HO-1 signaling in pancreatic β-cells. The increase in the abundance of NRF2 following treatment with H2O2 drastically elevated the production of BAX, FAS, FAS-L, CASP-3, and CASP-9, and this change was reversed by KEAP1 overexpression or NRF2 silencing. Taken together, H2O2 treatment activated KEAP1/NRF2 signaling to promote the production of pro-apoptotic factors and consequently led to the apoptosis of human pancreatic β-cells.
Collapse
Affiliation(s)
- Jinshui He
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Xu Zhang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Chaowei Lian
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Jinzhi Wu
- Department of Endocrinology, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Yanling Fang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Xiaoling Ye
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China.
| |
Collapse
|
33
|
Effects of cigarette smoke extracts on apoptosis and oxidative stress in two models of ovarian cancer in vitro. Toxicol In Vitro 2018; 52:161-169. [DOI: 10.1016/j.tiv.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
|
34
|
Nrf2 in aging - Focus on the cardiovascular system. Vascul Pharmacol 2018; 112:42-53. [PMID: 30170173 DOI: 10.1016/j.vph.2018.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
Aging is the most critical risk factor for the development of cardiovascular diseases and their complications. Therefore, the fine-tuning of cellular response to getting older is an essential target for prospective therapies in cardiovascular medicine. One of the most promising targets might be the transcription factor Nrf2, which drives the expression of cytoprotective and antioxidative genes. Importantly, Nrf2 expression correlates with potential lifespan in rodents. However, the effect of Nrf2 activity in vascular diseases might be ambiguous and strongly depend on the cell type. On the one hand, the Nrf2 activity may protect cells from oxidative stress and senescence, on the other hand, total lack of Nrf2 is protective against atherosclerosis development. Therefore, this review aims to discuss the current knowledge on the role played by the transcription factor Nrf2 in cardiovascular diseases and its potential effects on aging.
Collapse
|
35
|
Nour OAA, Shehatou GSG, Rahim MA, El-Awady MS, Suddek GM. Cinnamaldehyde exerts vasculoprotective effects in hypercholestrolemic rabbits. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1203-1219. [PMID: 30058017 DOI: 10.1007/s00210-018-1547-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
Abstract
The effects of cinnamaldehyde (CIN), a commonly consumed food flavor, against high-cholesterol diet (HCD)-induced vascular damage in rabbits were evaluated. Male New Zealand rabbits (n = 24) were allocated to four groups at random: control, fed with standard rabbit chow; CIN, fed with standard diet and administered CIN; HCD, fed with 1% cholesterol-enriched diet; and HCD-CIN, fed with HCD and treated with CIN. CIN was orally given at a dose of (10 mg/kg/day) concomitantly with each diet type from day 1 until the termination of the experimental protocol (4 weeks). HCD elicited significant elevations in serum levels of total cholesterol (TC), triglycerides (TGs), and high- and low-density lipoprotein cholesterol (HDL-C and LDL-C, respectively) compared with control rabbits. Moreover, aortic levels of nitric oxide metabolites (NOx) and antioxidant enzyme activities were significantly lower, while aortic levels of malondialdehyde (MDA) and myeloperoxidase (MPO) activity were significantly higher, in HCD-fed rabbits relative to control animals. CIN administration mitigated or completely reversed HCD-induced metabolic alterations, vascular oxidative stress, and inflammation. Moreover, CIN ameliorated HCD-induced vascular functional and structural irregularities. Aortic rings from HCD-CIN group showed improved relaxation to acetylcholine compared to aortas from HCD group. Moreover, CIN decreased atherosclerotic lipid deposition and intima/media (I/M) ratio of HCD aortas. CIN-mediated effects might be related to its ability to attenuate the elevated aortic mRNA expression of cholesteryl ester transfer protein (CETP) and MPO in HCD group. Interestingly, the vasculoprotective effects of CIN treatment in the current study do not seem to be mediated via Nrf2-dependent mechanisms. In conclusion, CIN may mitigate the development of atherosclerosis in hypercholestrolemic rabbits via cholesterol-lowering, antiinflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Omnia A A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mona Abdel Rahim
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
36
|
Simvastatin Treatment Upregulates HO-1 in Patients with Abdominal Aortic Aneurysm but Independently of Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2028936. [PMID: 29743974 PMCID: PMC5883937 DOI: 10.1155/2018/2028936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/24/2022]
Abstract
Heme oxygenase-1 (HO-1), encoded by HMOX1 gene and regulated by Nrf2 transcription factor, is a cytoprotective enzyme. Its deficiency may exacerbate abdominal aortic aneurysm (AAA) development, which is also often associated with hyperlipidemia. Beneficial effects of statins, the broadly used antilipidemic drugs, were attributed to modulation of Nrf2/HO-1 axis. However, the effect of statins on Nrf2/HO-1 pathway in patients with AAA has not been studied yet. We analyzed AAA tissue from patients treated with simvastatin (N = 28) or without statins (N = 14). Simvastatin treatment increased HO-1 protein level in AAA, both in endothelial cells (ECs) and in smooth muscle cells (SMCs), but increased Nrf2 localization was restricted only to vasa vasorum. Nrf2 target genes HMOX1, NQO1, and GCLM expression remained unchanged in AAA. In vitro studies showed that simvastatin raises HO-1 protein level slightly in ECs and to much higher extent in SMCs, which is not related to Nrf2/ARE activation, although HMOX1 expression is upregulated by simvastatin in both cell types. In conclusion, simvastatin-induced modulation of HO-1 level in ECs and SMCs in vitro is not related to Nrf2/ARE activity. Likewise, divergent HO-1 and Nrf2 localization together with stable expression of Nrf2 target genes, including HMOX1, in AAA tissue denotes Nrf2 independency.
Collapse
|
37
|
Guo Y, Zhao Y, Li L, Wei X, Gao P, Zhou Y, Liu Y, Yang H. Concentration‑dependent effects of paeoniflorin on proliferation and apoptosis of vascular smooth muscle cells. Mol Med Rep 2017; 16:9567-9572. [PMID: 29039520 DOI: 10.3892/mmr.2017.7776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 07/27/2017] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are an important component of arterial walls, and their dysfunction may serve an important role in the development of cardiovascular diseases, including atherosclerosis and restenosis. Paeoniflorin (PF) is a principal component of the commonly used traditional Chinese medicine, peonies. To the best of our knowledge, the effects of PF on apoptosis and proliferation of VSMCs and its underlying molecular mechanisms have not been widely reported. Therefore, the present study was designed to investigated this phenomenon. VSMCs were treated with different concentrations of PF (25, 50 and 100 µg/ml) for 12, 24 or 48 h. The data demonstrated that PF treatment not only significantly decreased cell viability and DNA synthesis but also blocked G0/G1 cell cycle progression. This effect was associated with a decreased expression of cyclin D1, cyclin E, cyclin‑dependent kinase (CDK)4 and CDK2 as well as an upregulation of p21. Notably, a significant concentration‑dependent decrease in the phosphorylation of p65 and nuclear factor of κ light polypeptide gene enhancer in B‑cells inhibitor‑α (IκBα) was observed. In addition, it was demonstrated that PF promoted the apoptosis of VSMCs, which was associated with the increased expression of caspases. In conclusion, PF inhibited the proliferation of VSMCs by downregulating proteins associated with the nuclear factor‑κB signaling pathway. Furthermore, it promoted the apoptosis of VSMCs by upregulating the expression of caspases. These results may be useful in improving the understanding of the molecular mechanisms underlying the apoptotic and anti‑proliferative effects of PF on VSMCs, and facilitate the development of novel treatments for cardiovascular diseases.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yintao Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xiaoyun Wei
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Pingjun Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yanqiang Zhou
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Haibo Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
38
|
Yong HJ, Park JS, Lee Jeong A, Han S, Lee S, Ka HI, Sumiyasuren B, Joo HJ, So SJ, Park JY, Yoon DY, Lim JS, Lee MS, Lee HG, Yang Y. Von Hippel-Lindau regulates interleukin-32β stability in ovarian cancer cells. Oncotarget 2017; 8:69833-69846. [PMID: 29050245 PMCID: PMC5642520 DOI: 10.18632/oncotarget.19311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia-induced interleukin-32β (IL-32β) shifts the metabolic program to the enhanced glycolytic pathway. In the present study, the underlying mechanism by which hypoxia-induced IL-32β stability is regulated was investigated in ovarian cancer cells. IL-32β expression increased under hypoxic conditions in ovarian cancer cells as it did in breast cancer cells. The amount of IL-32β was regulated by post-translational control rather than by transcriptional activation. Under normoxic conditions, IL-32β was continuously eliminated through ubiquitin-dependent degradation by the von-Hippel Lindau (VHL) E3 ligase complex. Oxygen deficiency or reactive oxygen species (ROS) disrupted the interaction between IL-32β and VHL, leading to the accumulation of the cytokine. The fact that IL-32β is regulated by the energy-consuming ubiquitination system implies that it plays an important role in oxidative stress. We found that IL-32β reduced protein kinase Cδ (PKCδ)-induced apoptosis under oxidative stress. This implies that the hypoxia- and ROS-stabilized IL-32β contributes to sustain survival against PKCδ-induced apoptosis.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Jeong Su Park
- Department of Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ae Lee Jeong
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Sora Han
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Sunyi Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Hye In Ka
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | | | - Hyun Jeong Joo
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Su Jeong So
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Ji Young Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Myeong-Seok Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Nowak WN, Deng J, Ruan XZ, Xu Q. Reactive Oxygen Species Generation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:e41-e52. [DOI: 10.1161/atvbaha.117.309228] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Witold N. Nowak
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Jiacheng Deng
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Xiong Z. Ruan
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Qingbo Xu
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| |
Collapse
|
40
|
Shawky NM, Segar L. Sulforaphane inhibits platelet-derived growth factor-induced vascular smooth muscle cell proliferation by targeting mTOR/p70S6kinase signaling independent of Nrf2 activation. Pharmacol Res 2017; 119:251-264. [PMID: 28212891 DOI: 10.1016/j.phrs.2017.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022]
Abstract
Activation of nuclear factor erythroid 2-related factor 2 (Nrf2, a transcription factor) and/or inhibition of mammalian target of rapamycin (mTOR) are implicated in the suppression of vascular smooth muscle cell (VSMC) proliferation. The present study has examined the likely regulatory effects of sulforaphane (SFN, an antioxidant) on Nrf2 activation and platelet-derived growth factor (PDGF)-induced mTOR signaling in VSMCs. Using human aortic VSMCs, nuclear extraction and siRNA-mediated downregulation studies were performed to determine the role of Nrf2 on SFN regulation of PDGF-induced proliferative signaling. Immunoprecipitation and/or immunoblot studies were carried out to determine how SFN regulates PDGF-induced mTOR/p70S6K/S6 versus ERK and Akt signaling. Immunohistochemical analysis was performed to determine SFN regulation of S6 phosphorylation in the injured mouse femoral artery. SFN (5μM) inhibits PDGF-induced activation of mTOR without affecting mTOR association with raptor in VSMCs. While SFN inhibits PDGF-induced phosphorylation of p70S6K and 4E-BP1 (downstream targets of mTOR), it does not affect ERK or Akt phosphorylation. In addition, SFN diminishes exaggerated phosphorylation of S6 ribosomal protein (a downstream target of p70S6K) in VSMCs in vitro and in the neointimal layer of injured artery in vivo. Although SFN promotes Nrf2 accumulation to upregulate cytoprotective genes (e.g., heme oxygenase-1 and thioredoxin-1), downregulation of endogenous Nrf2 by target-specific siRNA reveals an Nrf2-independent effect for SFN-mediated inhibition of mTOR/p70S6K/S6 signaling and suppression of VSMC proliferation. Strategies that utilize local delivery of SFN at the lesion site may limit restenosis after angioplasty by targeting mTOR/p70S6K/S6 axis in VSMCs independent of Nrf2 activation.
Collapse
Affiliation(s)
- Noha M Shawky
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Lakshman Segar
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Vascular Biology Center, Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
41
|
Cytoprotective effects of mild plasma-activated medium against oxidative stress in human skin fibroblasts. Sci Rep 2017; 7:42208. [PMID: 28169359 PMCID: PMC5294635 DOI: 10.1038/srep42208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
Non-thermal atmospheric pressure plasma (NTAPP) has recently been applied to living cells and tissues and has emerged as a novel technology for medical applications. NTAPP affects cells not only directly, but also indirectly with previously prepared plasma-activated medium (PAM). The objective of this study was to demonstrate the preconditioning effects of “mild PAM” which was prepared under relatively mild conditions, on fibroblasts against cellular injury generated by a high dose of hydrogen peroxide (H2O2). We observed the preconditioning effects of mild PAM containing approximately 50 μM H2O2. Hydrogen peroxide needs to be the main active species in mild PAM for it to exert preconditioning effects because the addition of catalase to mild PAM eliminated these effects. The nuclear translocation and recruitment of nuclear factor erythroid 2-related factor 2 (Nrf2) to antioxidant response elements (ARE) in heme oxygenase 1 (HO-1) promoters and the up-regulation of HO-1 were detected in fibroblasts treated with mild PAM. The addition of ZnPP, a HO-1-specific inhibitor, or the knockdown of Nrf2 completely abrogated the preconditioning effects. Our results demonstrate that mild PAM protects fibroblasts from oxidative stress by up-regulating HO-1, and the H2O2-induced activation of the Nrf2-ARE pathway needs to be involved in this reaction.
Collapse
|
42
|
Fukuda Y, Kaishima M, Ohnishi T, Tohyama K, Chisaki I, Nakayama Y, Ogasawara-Shimizu M, Kawamata Y. Fluid shear stress stimulates MATE2-K expression via Nrf2 pathway activation. Biochem Biophys Res Commun 2017; 484:358-364. [PMID: 28131833 DOI: 10.1016/j.bbrc.2017.01.124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022]
Abstract
Accurate prediction of drug-induced renal toxicity is necessary for development of safer drugs for patients. Cellular assay systems that recapitulate physiologically relevant microenvironments have been proposed for correct estimation of drug responses in the human body. However, establishment of such assay systems for accurate prediction of renal toxicity is challenging because of the lack of readily available in vitro assay systems. In this study, we investigated the cellular response to fluid shear stress, which is a characteristic of the environment in the kidney proximal tubules, using microfluidic devices. The global gene expression profiles of human primary proximal tubule cells under the fluidic conditions revealed upregulation of MATE2-K and activation of Nrf2 signaling in response to fluid shear stress. Network and cell biological analysis additionally showed that expression of MATE2-K is regulated by Nrf2 signaling. These results strongly suggest that fluid shear stress is involved in the expression and maintenance of function of tissue-specific drug transporters in the proximal tubule, where the cells are exposed to continuous shear stress by primary urine. Furthermore, the microfluidic culture of human proximal tubules was demonstrated to be a useful system to analyze the regulatory mechanisms of gene expression in physiologically relevant cell conditions.
Collapse
Affiliation(s)
- Yasunori Fukuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Misato Kaishima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Toshiyuki Ohnishi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Kimio Tohyama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Ikumi Chisaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Yusuke Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Mari Ogasawara-Shimizu
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Yuji Kawamata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
43
|
Elucidating a molecular mechanism that the deterioration of porcine meat quality responds to increased cortisol based on transcriptome sequencing. Sci Rep 2016; 6:36589. [PMID: 27833113 PMCID: PMC5105143 DOI: 10.1038/srep36589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
Stress response is tightly linked to meat quality. The current understanding of the intrinsic mechanism of meat deterioration under stress is limited. Here, male piglets were randomly assigned to cortisol and control groups. Our results showed that when serum cortisol level was significantly increased, the meat color at 1 h postmortem, muscle bundle ratio, apoptosis rate, and gene expression levels of calcium channel and cell apoptosis including SERCA1, IP3R1, BAX, Bcl-2, and Caspase-3, were notably increased. However, the value of drip loss at 24 h postmortem and serum CK were significantly decreased. Additionally, a large number of differentially expressed genes (DEGs) in GC regulation mechanism were screened out using transcriptome sequencing technology. A total of 223 DEGs were found, including 80 up-regulated genes and 143 down-regulated genes. A total of 204 genes were enriched in GO terms, and 140 genes annotated into in KEGG database. Numerous genes were primarily involved in defense, inflammatory and wound responses. This study not only identifies important genes and signalling pathways that may affect the meat quality but also offers a reference for breeding and feeding management to provide consumers with better quality pork products.
Collapse
|
44
|
Xiao F, He F, Chen H, Lin S, Shen A, Chen Y, Chu J, Peng J. Qingxuan Jiangya Decoction Reverses Vascular Remodeling by Inducing Vascular Smooth Muscle Cell Apoptosis in Spontaneously Hypertensive Rats. Molecules 2016; 21:molecules21070956. [PMID: 27455221 PMCID: PMC6274417 DOI: 10.3390/molecules21070956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
Qingxuan Jiangya Decoction (QXJYD), a traditional Chinese medicine formula prescribed by academician Ke-ji Chen, has been used in China to clinically treat hypertension for decades of years. However, the molecular mechanisms of its action remain largely unknown. In this study, we examined the therapeutic efficacy of QXJYD against elevated systolic blood pressure in the spontaneously hypertensive rat (SHR) model, and investigated the underlying molecular mechanisms. We found that oral administration of QXJYD significantly reduced the elevation of systolic blood pressure in SHR but had no effect on body weight change. Additionally, QXJYD treatment significantly decreased the media thickness and ratio of media thickness/lumen diameter in the carotid arteries of SHR. Moreover, QXJYD remarkably promoted apoptosis of vascular smooth muscle cells and reduced the expression of anti-apoptotic B-cell leukemia/lymphoma 2. Furthermore, QXJYD significantly decreased the plasma Angiotensin II level in SHR. Collectively, our findings suggest that reversing vascular remodeling via inducing VSMC apoptosis could be one of the mechanisms whereby QXJYD treats hypertension.
Collapse
MESH Headings
- Angiotensin II/blood
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Apoptosis/drug effects
- Blood Pressure/drug effects
- Chromatography, High Pressure Liquid
- Disease Models, Animal
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Hypertension/drug therapy
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- Male
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats
- Rats, Inbred SHR
- Vascular Remodeling/drug effects
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Fei Xiao
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, Fujian, China.
| | - Fei He
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, Fujian, China.
- Fuqing Health and Family Planning Bureau, 23 Futang Road, Fuqing 350300, Fujian, China.
| | - Hongwei Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, Fujian, China.
| | - Shan Lin
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, Fujian, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, Fujian, China.
| | - Youqin Chen
- Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA.
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, Fujian, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou 350122, Fujian, China.
| |
Collapse
|