1
|
Zhang Q, Fujita M. Why nature evolved GPI-anchored proteins: unique structure characteristics enable versatile cell surface functions. Glycobiology 2024; 34:cwae089. [PMID: 39530348 PMCID: PMC11632373 DOI: 10.1093/glycob/cwae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
It remains a mystery why nature evolved the unique structural characteristics of GPI-anchored proteins (GPI-APs) and continues to sustain the complex, energy-intensive process of synthesizing these proteins. GPI-APs, despite their small size, rely on the coordinated activity of nearly 30 genes for their synthesis and remodeling, raising important evolutionary questions. The biological advantages of GPI-APs lie in their ability to rapidly redistribute across the cell membrane, localize within lipid rafts, utilize unique intracellular trafficking pathways, and function as both membrane-bound and soluble proteins. These properties allow GPI-APs to participate in diverse cellular processes such as synaptic plasticity, immune regulation, and signal transduction, highlighting their indispensable roles. Additionally, the shedding capability of GPI-APs extends their functional reach, adding further versatility to their biological roles. This review not only summarizes these key insights but also explores the broader implications of GPI-APs in cell signaling and disease. By understanding the evolutionary necessity of GPI-APs, we can better appreciate their complexity and potential as therapeutic targets.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Social Neural Networks, Faculty of Human Sciences, University of Tsukuba, 1-1-1Tennodai, Tsukuba 305-8577, Japan
| | - Morihisa Fujita
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
2
|
Chiou KL, Huang X, Bohlen MO, Tremblay S, DeCasien AR, O’Day DR, Spurrell CH, Gogate AA, Zintel TM, Andrews MG, Martínez MI, Starita LM, Montague MJ, Platt ML, Shendure J, Snyder-Mackler N. A single-cell multi-omic atlas spanning the adult rhesus macaque brain. SCIENCE ADVANCES 2023; 9:eadh1914. [PMID: 37824616 PMCID: PMC10569716 DOI: 10.1126/sciadv.adh1914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Cataloging the diverse cellular architecture of the primate brain is crucial for understanding cognition, behavior, and disease in humans. Here, we generated a brain-wide single-cell multimodal molecular atlas of the rhesus macaque brain. Together, we profiled 2.58 M transcriptomes and 1.59 M epigenomes from single nuclei sampled from 30 regions across the adult brain. Cell composition differed extensively across the brain, revealing cellular signatures of region-specific functions. We also identified 1.19 M candidate regulatory elements, many previously unidentified, allowing us to explore the landscape of cis-regulatory grammar and neurological disease risk in a cell type-specific manner. Altogether, this multi-omic atlas provides an open resource for investigating the evolution of the human brain and identifying novel targets for disease interventions.
Collapse
Affiliation(s)
- Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Martin O. Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex R. DeCasien
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | - Diana R. O’Day
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Cailyn H. Spurrell
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Aishwarya A. Gogate
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Trisha M. Zintel
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Cayo Biobank Research Unit
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Madeline G. Andrews
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Melween I. Martínez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Lea M. Starita
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Michael J. Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
3
|
A role for axon-glial interactions and Netrin-G1 signaling in the formation of low-threshold mechanoreceptor end organs. Proc Natl Acad Sci U S A 2022; 119:e2210421119. [PMID: 36252008 PMCID: PMC9618144 DOI: 10.1073/pnas.2210421119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low-threshold mechanoreceptors (LTMRs) and their cutaneous end organs convert light mechanical forces acting on the skin into electrical signals that propagate to the central nervous system. In mouse hairy skin, hair follicle-associated longitudinal lanceolate complexes, which are end organs comprising LTMR axonal endings that intimately associate with terminal Schwann cell (TSC) processes, mediate LTMR responses to hair deflection and skin indentation. Here, we characterized developmental steps leading to the formation of Aβ rapidly adapting (RA)-LTMR and Aδ-LTMR lanceolate complexes. During early postnatal development, Aβ RA-LTMRs and Aδ-LTMRs extend and prune cutaneous axonal branches in close association with nascent TSC processes. Netrin-G1 is expressed in these developing Aβ RA-LTMR and Aδ-LTMR lanceolate endings, and Ntng1 ablation experiments indicate that Netrin-G1 functions in sensory neurons to promote lanceolate ending elaboration around hair follicles. The Netrin-G ligand (NGL-1), encoded by Lrrc4c, is expressed in TSCs, and ablation of Lrrc4c partially phenocopied the lanceolate complex deficits observed in Ntng1 mutants. Moreover, NGL-1-Netrin-G1 signaling is a general mediator of LTMR end organ formation across diverse tissue types demonstrated by the fact that Aβ RA-LTMR endings associated with Meissner corpuscles and Pacinian corpuscles are also compromised in the Ntng1 and Lrrc4c mutant mice. Thus, axon-glia interactions, mediated in part by NGL-1-Netrin-G1 signaling, promote LTMR end organ formation.
Collapse
|
4
|
Altered genome-wide hippocampal gene expression profiles following early life lead exposure and their potential for reversal by environmental enrichment. Sci Rep 2022; 12:11937. [PMID: 35879375 PMCID: PMC9314447 DOI: 10.1038/s41598-022-15861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Early life lead (Pb) exposure is detrimental to neurobehavioral development. The quality of the environment can modify negative influences from Pb exposure, impacting the developmental trajectory following Pb exposure. Little is known about the molecular underpinnings in the brain of the interaction between Pb and the quality of the environment. We examined relationships between early life Pb exposure and living in an enriched versus a non-enriched postnatal environment on genome-wide transcription profiles in hippocampus CA1. RNA-seq identified differences in the transcriptome of enriched vs. non-enriched Pb-exposed animals. Most of the gene expression changes associated with Pb exposure were reversed by enrichment. This was also true for changes in upstream regulators, splicing events and long noncoding RNAs. Non-enriched rats also had memory impairments; enriched rats had no deficits. The results demonstrate that an enriched environment has a profound impact on behavior and the Pb-modified CA1 transcriptome. These findings show the potential for interactions between Pb exposure and the environment to result in significant transcriptional changes in the brain and, to the extent that this may occur in Pb-exposed children, could influence neuropsychological/educational outcomes, underscoring the importance for early intervention and environmental enrichment for Pb-exposed children.
Collapse
|
5
|
Netrin-G1 Regulates Microglial Accumulation along Axons and Supports the Survival of Layer V Neurons in the Postnatal Mouse Brain. Cell Rep 2021; 31:107580. [PMID: 32348754 DOI: 10.1016/j.celrep.2020.107580] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system, accumulate along subcerebral projection axons and support neuronal survival during the early postnatal period. It remains unknown how microglia follow an axon-specific distribution pattern to maintain neural circuits. Here, we investigated the mechanisms of microglial accumulation along subcerebral projection axons that were necessary for microglial accumulation in the internal capsule. Screening of molecules involved in this accumulation of microglia to axons of layer V cortical neurons identified netrin-G1, a member of the netrin family of axon guidance molecules with a glycosyl-phosphatidylinositol anchor. Deletion or knockdown of the netrin-G1 gene Ntng1 reduced microglial accumulation and caused loss of cortical neurons. Netrin-G1 ligand-Ngl1 knockout-mice-derived microglia showed reduced accumulation along the axons compared with wild-type microglia. Thus, microglia accumulate around the subcerebral projection axons via NGL1-netrin-G1 signaling and support neuronal survival. Our observations unveil bidirectional neurotrophic interactions between neurons and microglia.
Collapse
|
6
|
Kandasamy LC, Tsukamoto M, Banov V, Tsetsegee S, Nagasawa Y, Kato M, Matsumoto N, Takeda J, Itohara S, Ogawa S, Young LJ, Zhang Q. Limb-clasping, cognitive deficit and increased vulnerability to kainic acid-induced seizures in neuronal glycosylphosphatidylinositol deficiency mouse models. Hum Mol Genet 2021; 30:758-770. [PMID: 33607654 PMCID: PMC8161520 DOI: 10.1093/hmg/ddab052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022] Open
Abstract
Posttranslational modification of a protein with glycosylphosphatidylinositol (GPI) is a conserved mechanism exists in all eukaryotes. Thus far, >150 human GPI-anchored proteins have been discovered and ~30 enzymes have been reported to be involved in the biosynthesis and maturation of mammalian GPI. Phosphatidylinositol glycan biosynthesis class A protein (PIGA) catalyzes the very first step of GPI anchor biosynthesis. Patients carrying a mutation of the PIGA gene usually suffer from inherited glycosylphosphatidylinositol deficiency (IGD) with intractable epilepsy and intellectual developmental disorder. We generated three mouse models with PIGA deficits specifically in telencephalon excitatory neurons (Ex-M-cko), inhibitory neurons (In-M-cko) or thalamic neurons (Th-H-cko), respectively. Both Ex-M-cko and In-M-cko mice showed impaired long-term fear memory and were more susceptible to kainic acid-induced seizures. In addition, In-M-cko demonstrated a severe limb-clasping phenotype. Hippocampal synapse changes were observed in Ex-M-cko mice. Our Piga conditional knockout mouse models provide powerful tools to understand the cell-type specific mechanisms underlying inherited GPI deficiency and to test different therapeutic modalities.
Collapse
Affiliation(s)
- Lenin C Kandasamy
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Mina Tsukamoto
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Vitaliy Banov
- Laboratory for Behavioral Genetics, CBS, RIKEN, Wako 351-0198, Japan.,Institute of Neuroinformatics, University of Zürich, ETH Zürich, Zürich 8057, Switzerland
| | - Sambuu Tsetsegee
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yutaro Nagasawa
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Junji Takeda
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Larry J Young
- Faculty of Human Sciences, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan.,Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Qi Zhang
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan.,Laboratory for Behavioral Genetics, CBS, RIKEN, Wako 351-0198, Japan.,Faculty of Human Sciences, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
7
|
Francescone R, Barbosa Vendramini-Costa D, Franco-Barraza J, Wagner J, Muir A, Lau AN, Gabitova L, Pazina T, Gupta S, Luong T, Rollins D, Malik R, Thapa RJ, Restifo D, Zhou Y, Cai KQ, Hensley HH, Tan Y, Kruger WD, Devarajan K, Balachandran S, Klein-Szanto AJ, Wang H, El-Deiry WS, Vander Heiden MG, Peri S, Campbell KS, Astsaturov I, Cukierman E. Netrin G1 Promotes Pancreatic Tumorigenesis through Cancer-Associated Fibroblast-Driven Nutritional Support and Immunosuppression. Cancer Discov 2021; 11:446-479. [PMID: 33127842 PMCID: PMC7858242 DOI: 10.1158/2159-8290.cd-20-0775] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate and lacks effective therapeutics. Therefore, it is of paramount importance to identify new targets. Using multiplex data from patient tissue, three-dimensional coculturing in vitro assays, and orthotopic murine models, we identified Netrin G1 (NetG1) as a promoter of PDAC tumorigenesis. We found that NetG1+ cancer-associated fibroblasts (CAF) support PDAC survival, through a NetG1-mediated effect on glutamate/glutamine metabolism. Also, NetG1+ CAFs are intrinsically immunosuppressive and inhibit natural killer cell-mediated killing of tumor cells. These protumor functions are controlled by a signaling circuit downstream of NetG1, which is comprised of AKT/4E-BP1, p38/FRA1, vesicular glutamate transporter 1, and glutamine synthetase. Finally, blocking NetG1 with a neutralizing antibody stunts in vivo tumorigenesis, suggesting NetG1 as potential target in PDAC. SIGNIFICANCE: This study demonstrates the feasibility of targeting a fibroblastic protein, NetG1, which can limit PDAC tumorigenesis in vivo by reverting the protumorigenic properties of CAFs. Moreover, inhibition of metabolic proteins in CAFs altered their immunosuppressive capacity, linking metabolism with immunomodulatory function.See related commentary by Sherman, p. 230.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
- Ralph Francescone
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Débora Barbosa Vendramini-Costa
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Janusz Franco-Barraza
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jessica Wagner
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Muir
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Allison N Lau
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Linara Gabitova
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tatiana Pazina
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sapna Gupta
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tiffany Luong
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dustin Rollins
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ruchi Malik
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Roshan J Thapa
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Diana Restifo
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Biostatistics and Bioinformatics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Histopathology Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harvey H Hensley
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Small Animal Imaging Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Genomics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Warren D Kruger
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Siddharth Balachandran
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andres J Klein-Szanto
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Histopathology Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Huamin Wang
- Division of Pathology/Lab Medicine, Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wafik S El-Deiry
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Suraj Peri
- Biostatistics and Bioinformatics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kerry S Campbell
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Edna Cukierman
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021; 200:101983. [PMID: 33422662 DOI: 10.1016/j.pneurobio.2020.101983] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Trans-synaptic cell-adhesion molecules are critical for governing various stages of synapse development and specifying neural circuit properties via the formation of multifarious signaling pathways. Recent studies have pinpointed the putative roles of trans-synaptic cell-adhesion molecules in mediating various cognitive functions. Here, we review the literature on the roles of a diverse group of central synaptic organizers, including neurexins (Nrxns), leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs), and their associated binding proteins, in regulating properties of specific type of synapses and neural circuits. In addition, we highlight the findings that aberrant synaptic adhesion signaling leads to alterations in the structures, transmission, and plasticity of specific synapses across diverse brain areas. These results seem to suggest that proper trans-synaptic signaling pathways by Nrxns, LAR-RPTPs, and their interacting network is likely to constitute central molecular complexes that form the basis for cognitive functions, and that these complexes are heterogeneously and complexly disrupted in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea; Core Protein Resources Center, DGIST, Daegu, 42988, South Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
| |
Collapse
|
9
|
Dias CM, Punetha J, Zheng C, Mazaheri N, Rad A, Efthymiou S, Petersen A, Dehghani M, Pehlivan D, Partlow JN, Posey JE, Salpietro V, Gezdirici A, Malamiri RA, Al Menabawy NM, Selim LA, Vahidi Mehrjardi MY, Banu S, Polla DL, Yang E, Rezazadeh Varaghchi J, Mitani T, van Beusekom E, Najafi M, Sedaghat A, Keller-Ramey J, Durham L, Coban-Akdemir Z, Karaca E, Orlova V, Schaeken LLM, Sherafat A, Jhangiani SN, Stanley V, Shariati G, Galehdari H, Gleeson JG, Walsh CA, Lupski JR, Seiradake E, Houlden H, van Bokhoven H, Maroofian R. Homozygous Missense Variants in NTNG2, Encoding a Presynaptic Netrin-G2 Adhesion Protein, Lead to a Distinct Neurodevelopmental Disorder. Am J Hum Genet 2019; 105:1048-1056. [PMID: 31668703 PMCID: PMC6849109 DOI: 10.1016/j.ajhg.2019.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
NTNG2 encodes netrin-G2, a membrane-anchored protein implicated in the molecular organization of neuronal circuitry and synaptic organization and diversification in vertebrates. In this study, through a combination of exome sequencing and autozygosity mapping, we have identified 16 individuals (from seven unrelated families) with ultra-rare homozygous missense variants in NTNG2; these individuals present with shared features of a neurodevelopmental disorder consisting of global developmental delay, severe to profound intellectual disability, muscle weakness and abnormal tone, autistic features, behavioral abnormalities, and variable dysmorphisms. The variants disrupt highly conserved residues across the protein. Functional experiments, including in silico analysis of the protein structure, in vitro assessment of cell surface expression, and in vitro knockdown, revealed potential mechanisms of pathogenicity of the variants, including loss of protein function and decreased neurite outgrowth. Our data indicate that appropriate expression of NTNG2 plays an important role in neurotypical development.
Collapse
Affiliation(s)
- Caroline M Dias
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Céline Zheng
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6135783151, Iran; Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, 6155689467, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, 009851, Iran; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Andrea Petersen
- Randall Children's Hospital at Legacy Emanuel, Portland, OR 97227, USA
| | - Mohammadreza Dehghani
- Medical Genetics Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, 34303, Turkey
| | - Reza Azizi Malamiri
- Department of Paediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6163764648, Iran
| | - Nihal M Al Menabawy
- Pediatric Neurology and Metabolic Division, Cairo University Children Hospital, Egypt
| | - Laila A Selim
- Pediatric Neurology and Metabolic Division, Cairo University Children Hospital, Egypt
| | | | - Selina Banu
- Department of Pediatric Neurology, ICH and SSF Hospital Mirpur, Dhaka, 1216, Bangladesh
| | - Daniel L Polla
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands; CAPES Foundation, Ministry of Education of Brazil, 549 Brasília, Brazil
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ellen van Beusekom
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Maryam Najafi
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Alireza Sedaghat
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Leslie Durham
- Randall Children's Hospital at Legacy Emanuel, Portland, OR 97227, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Valeria Orlova
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Lieke L M Schaeken
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Amir Sherafat
- Department of Neurology, Faculty of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, 6155689467, Iran; Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6135783151, Iran
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK.
| |
Collapse
|
10
|
Choi Y, Park H, Kang S, Jung H, Kweon H, Kim S, Choi I, Lee SY, Choi YE, Lee SH, Kim E. NGL-1/LRRC4C-Mutant Mice Display Hyperactivity and Anxiolytic-Like Behavior Associated With Widespread Suppression of Neuronal Activity. Front Mol Neurosci 2019; 12:250. [PMID: 31680855 PMCID: PMC6798069 DOI: 10.3389/fnmol.2019.00250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
Netrin-G ligand-1 (NGL-1), encoded by Lrrc4c, is a post-synaptic adhesion molecule implicated in various brain disorders, including bipolar disorder, autism spectrum disorder, and developmental delay. Although previous studies have explored the roles of NGL-1 in the regulation of synapse development and function, the importance of NGL-1 for specific behaviors and the nature of related neural circuits in mice remain unclear. Here, we report that mice lacking NGL-1 (Lrrc4c–/–) show strong hyperactivity and anxiolytic-like behavior. They also display impaired spatial and working memory, but normal object-recognition memory and social interaction. c-Fos staining under baseline and anxiety-inducing conditions revealed suppressed baseline neuronal activity as well as limited neuronal activation in widespread brain regions, including the anterior cingulate cortex (ACC), motor cortex, endopiriform nucleus, bed nuclei of the stria terminalis, and dentate gyrus. Neurons in the ACC, motor cortex, and dentate gyrus exhibit distinct alterations in excitatory synaptic transmission and intrinsic neuronal excitability. These results suggest that NGL-1 is important for normal locomotor activity, anxiety-like behavior, and learning and memory, as well as synapse properties and excitability of neurons in widespread brain regions under baseline and anxiety-inducing conditions.
Collapse
Affiliation(s)
- Yeonsoo Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Haram Park
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Suwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Ilsong Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Soo Yeon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Ye-Eun Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| |
Collapse
|
11
|
Kim P, Scott MR, Meador-Woodruff JH. Abnormal ER quality control of neural GPI-anchored proteins via dysfunction in ER export processing in the frontal cortex of elderly subjects with schizophrenia. Transl Psychiatry 2019; 9:6. [PMID: 30664618 PMCID: PMC6341114 DOI: 10.1038/s41398-018-0359-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/09/2018] [Accepted: 12/09/2018] [Indexed: 01/22/2023] Open
Abstract
Abnormalities of posttranslational protein modifications (PTMs) have recently been implicated in the pathophysiology of schizophrenia. Glycosylphosphatidylinositols (GPIs) are a class of complex glycolipids, which anchor surface proteins and glycoproteins to the cell membrane. GPI attachment to proteins represents one of the most common PTMs and GPI-associated proteins (GPI-APs) facilitate many cell surface processes, including synapse development and maintenance. Mutations in the GPI processing pathway are associated with intellectual disability, emphasizing the potential role of GPI-APs in cognition and schizophrenia-associated cognitive dysfunction. As initial endoplasmic reticulum (ER)-associated protein processing is essential for GPI-AP function, we measured protein expression of molecules involved in attachment (GPAA1), modification (PGAP1), and ER export (Tmp21) of GPI-APs, in homogenates and in an ER enriched fraction derived from dorsolateral prefrontal cortex (DLPFC) of 15 matched pairs of schizophrenia and comparison subjects. In total homogenate we found a significant decrease in transmembrane protein 21 (Tmp21) and in the ER-enriched fraction we found reduced expression of post-GPI attachment protein (PGAP1). PGAP1 modifies GPI-anchors through inositol deacylation, allowing it to be recognized by Tmp21. Tmp21 is a component of the p24 complex that recognizes GPI-anchored proteins, senses the status of the GPI-anchor, and regulates incorporation into COPII vesicles for export to the Golgi apparatus. Together, these proteins are the molecular mechanisms underlying GPI-AP quality control and ER export. To investigate the potential consequences of a deficit in export and/or quality control, we measured cell membrane-associated expression of known GPI-APs that have been previously implicated in schizophrenia, including GPC1, NCAM, MDGA2, and EPHA1, using Triton X-114 phase separation. Additionally, we tested the sensitivity of those candidate proteins to phosphatidylinositol-specific phospholipase C (PI-PLC), an enzyme that cleaves GPI from GPI-APs. While we did not observe a difference in the amount of these GPI-APs in Triton X-114 phase separated membrane fractions, we found decreased NCAM and GPC1 within the PI-PLC sensitive fraction. These findings suggest dysregulation of ER-associated GPI-AP protein processing, with impacts on post-translational modifications of proteins previously implicated in schizophrenia such as NCAM and GPC1. These findings provide evidence for a deficit in ER protein processing pathways in this illness.
Collapse
Affiliation(s)
- Pitna Kim
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Madeline R Scott
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
12
|
Abstract
Neuroscience research has demonstrated that cognition, emotion, and their dynamic interactions emerge from complex and flexible patterns of activity across distributed neural circuits. A parallel branch of research in genetics has begun to identify common variation in the human DNA sequence (i.e., genome) that may shape individual differences in cognition-emotion interactions by altering molecular and cellular pathways that modulate the activity of these neural circuits. Here we provide a brief introduction to such neurogenetics research and how it may usefully inform our understanding of the biological mechanisms through which dynamic cognition-emotion interactions emerge and, subsequently, help shape normal and abnormal behavior.
Collapse
|
13
|
Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 2017; 27:931-945. [PMID: 28743494 DOI: 10.1016/j.tcb.2017.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are a specialized class of lipid-associated neuronal membrane proteins that perform diverse functions in the dynamic control of axon guidance, synaptic adhesion, cytoskeletal remodeling, and localized signal transduction, particularly at lipid raft domains. Recent studies have demonstrated that a subset of GPI-anchored proteins act as critical regulators of synapse development by modulating specific synaptic adhesion pathways via direct interactions with key synapse-organizing proteins. Additional studies have revealed that alteration of these regulatory mechanisms may underlie various brain disorders. In this review, we highlight the emerging role of GPI-anchored proteins as key synapse organizers that aid in shaping the properties of various types of synapses and circuits in mammals.
Collapse
|