1
|
Tian Y, Gao H, Li H, Li C, Li B. Evolutionary origin and distribution of leucine-rich repeat-containing G protein-coupled receptors in insects. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101318. [PMID: 39216279 DOI: 10.1016/j.cbd.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Leucine-rich repeat-containing G protein-coupled receptors (LGRs) are crucial for animal growth and development. They were categorized into four types (A, B, C1, and C2) based on their sequence and domain structures. Despite the widespread distribution of LGRs across bilaterians, a thorough investigation of their distribution and evolutionary history remains elusive. Recent studies insect LGRs, especially the emergence of type C2 LGRs in various hemimetabolous insects, had prompted our study to address these problems. Initially, we traced the origins of LGRs by exploiting data from 99 species spanning 11 metazoan phyla, and discovered that type A and B LGRs originated from sponges, while type C LGRs originated from cnidarians. Subsequently, through comprehensive genomic and transcriptomic analyses across 565 species across 25 orders of insects, we found that both type A and C1 LGRs divided into two gene clusters. These clusters can be traced back to basal Insecta and an early ancestor of the Arthropoda, respectively. Furthermore, the absence of type B LGRs in wingless insects suggests a role in wing development, while the absence of type C2 LGRs in holometabolous insects hints at novel functions unrelated to insect metamorphosis. According to the origin of LGRs and the investigation of LGRs in insects, we speculated that type A and B LGRs appeared first among four types of LGRs, type A evolved into type C LGRs later, and type A and C1 LGRs independently duplicated during the evolutionary process. This study provides a more comprehensive view of the evolution of LGR genes than previously available, and sheds light on the evolutionary history and significance of LGRs in insect biology.
Collapse
Affiliation(s)
- Ying Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Luo LL, Lin Y, Linghu JH, Gong W, Luo YH, Liu M, Jin DC, Smagghe G, Liu TX, Gui SH, Yi TC. Genomics, transcriptomics, and peptidomics of the greater wax moth Galleria mellonella neuropeptides and their expression in response to lead stress. INSECT SCIENCE 2024; 31:773-791. [PMID: 37689966 DOI: 10.1111/1744-7917.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 09/11/2023]
Abstract
Neuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G. mellonella genome and transcriptome, in which 40 neuropeptide precursors were confirmed in the G. mellonella peptidome. Interestingly, we identified 12 neuropeptide precursor genes present in G. mellonella but absent in honeybees, which may be potential novel pesticide target sites. Honeybee hives were contaminated with heavy metals such as lead, enabling its bioaccumulation in G. mellonella bodies through the food chain, we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G. mellonella neuropeptide precursors. After treatment by Pb, the expression of neuropeptide F1 was found to be significantly downregulated, implying that this neuropeptide might be associated with responding to the heavy metal stress in G. mellonella. This study comprehensively identified neuropeptide precursors in G. mellonella, and discussed the effects of heavy metals on insect neuropeptides, with the example of G. mellonella. The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G. mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.
Collapse
Affiliation(s)
- Li-Lin Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Yang Lin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Jun-Hong Linghu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Wei Gong
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Yuan-Hong Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Man Liu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Dao-Chao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Tong-Xian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Shun-Hua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Yang Z, Wang W, Deng M, Xiao T, Ma W, Huang X, Lu K. Characterization of Neuropeptides from Spodoptera litura and Functional Analysis of NPF in Diet Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10304-10313. [PMID: 38657164 DOI: 10.1021/acs.jafc.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenling Ma
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Kaur G, Quilici DR, Woolsey RJ, Petereit J, Nuss AB. Starvation-Induced Changes to the Midgut Proteome and Neuropeptides in Manduca sexta. INSECTS 2024; 15:325. [PMID: 38786882 PMCID: PMC11121805 DOI: 10.3390/insects15050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Starvation is a complex physiological state that induces changes in protein expression to ensure survival. The insect midgut is sensitive to changes in dietary content as it is at the forefront of communicating information about incoming nutrients to the body via hormones. Therefore, a DIA proteomics approach was used to examine starvation physiology and, specifically, the role of midgut neuropeptide hormones in a representative lepidopteran, Manduca sexta. Proteomes were generated from midguts of M. sexta fourth-instar caterpillars, starved for 24 h and 48 h, and compared to fed controls. A total of 3047 proteins were identified, and 854 of these were significantly different in abundance. KEGG analysis revealed that metabolism pathways were less abundant in starved caterpillars, but oxidative phosphorylation proteins were more abundant. In addition, six neuropeptides or related signaling cascade proteins were detected. Particularly, neuropeptide F1 (NPF1) was significantly higher in abundance in starved larvae. A change in juvenile hormone-degrading enzymes was also detected during starvation. Overall, our results provide an exploration of the midgut response to starvation in M. sexta and validate DIA proteomics as a useful tool for quantifying insect midgut neuropeptide hormones.
Collapse
Affiliation(s)
- Gurlaz Kaur
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA;
| | - David R. Quilici
- Mick Hitchcock, Ph.D. Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA; (D.R.Q.); (R.J.W.)
| | - Rebekah J. Woolsey
- Mick Hitchcock, Ph.D. Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA; (D.R.Q.); (R.J.W.)
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA;
| | - Andrew B. Nuss
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
5
|
Liu YX, Hu C, Li YT, Gao P, Yang XQ. Identification of G Protein-Coupled Receptors (GPCRs) Associated with Lambda-Cyhalothrin Detoxification in Cydia pomonella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:363-377. [PMID: 38134348 DOI: 10.1021/acs.jafc.3c06522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
While previous studies have reported G protein-coupled receptor (GPCR)-mediated insecticide resistance in various arthropods, the understanding of GPCR-associated resistance mechanisms in Cydia pomonella remains limited. In this study, a total of 95 CpGPCR genes categorized into four families were identified in C. pomonella. Results revealed high expression levels of the majority of the CpGPCRs during the first larval stage and in the head of C. pomonella. Exposure to lambda-cyhalothrin significantly increased the expression of 15 CpGPCRs, including CpGPCR70, which is highly expressed in all larval stages and shows the highest expression in the midgut. RNA interference (RNAi) demonstrated that downregulation of CpGPCR70 leads to reduced expression of key resistance-related genes and a decreased tolerance of larvae to lambda-cyhalothrin. These findings indicate that CpGPCR70 plays a crucial role in regulating the expression of detoxifying genes involved in lambda-cyhalothrin resistance, offering valuable insights for the development of more effective pest control strategies.
Collapse
Affiliation(s)
- Yu-Xi Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Chao Hu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Yu-Ting Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Ping Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| |
Collapse
|
6
|
Wang G, Wang J, Nie L. Transcriptome sequencing of the central nervous system to identify the neuropeptides and neuropeptide receptors of Antheraea pernyi. Int J Biol Macromol 2023:125411. [PMID: 37327925 DOI: 10.1016/j.ijbiomac.2023.125411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Neuropeptides and neuropeptide receptors are crucial regulators for the behavior, lifecycle, and physiology of insects and are mainly produced and released from the neurosecretory cells of the central nervous system (CNS). In this study, RNA-seq was employed to investigate the transcriptome profile of the CNS which is composed of the brain and ventral nerve cord (VNC) of Antheraea pernyi. From the data sets, a total of 18 and 42 genes were identified, which respectively encode the neuropeptides and neuropeptide receptors involved in regulating multiple behaviors including feeding, reproductive behavior, circadian locomotor, sleep, and stress response and physiological processes such as nutrient absorption, immunity, ecdysis, diapause, and excretion. Comparison of the patterns of expression of those genes between the brain and VNC showed that most had higher levels of expression in the brain than VNC. Besides, 2760 differently expressed genes (DEGs) (1362 up-regulated and 1398 down-regulated ones between the B and VNC group) were also screened and further analyzed via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses. The results of this study could provide comprehensive profiles of the neuropeptides and neuropeptide receptors of A. pernyi CNS and lay the foundation for further research into their functions.
Collapse
Affiliation(s)
- Guobao Wang
- College of Biology and Oceanography, Weifang University, Weifang 261061, China.
| | - Jiangrun Wang
- College of Biology and Oceanography, Weifang University, Weifang 261061, China
| | - Lei Nie
- Shandong Sericulture Research Institute, Shandong Academy of Agricultural Sciences, Yantai 264002, China
| |
Collapse
|
7
|
Mochizuki T, Sakamoto M, Tanizawa Y, Seike H, Zhu Z, Zhou YJ, Fukumura K, Nagata S, Nakamura Y. Best Practices for Comprehensive Annotation of Neuropeptides of Gryllus bimaculatus. INSECTS 2023; 14:121. [PMID: 36835690 PMCID: PMC9960350 DOI: 10.3390/insects14020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Genome annotation is critically important data that can support research. Draft genome annotations cover representative genes; however, they often do not include genes that are expressed only in limited tissues and stages, or genes with low expression levels. Neuropeptides are responsible for regulation of various physiological and biological processes. A recent study disclosed the genome draft of the two-spotted cricket Gryllus bimaculatus, which was utilized to understand the intriguing physiology and biology of crickets. Thus far, only two of the nine reported neuropeptides in G. bimaculatus were annotated in the draft genome. Even though de novo assembly using transcriptomic analyses can comprehensively identify neuropeptides, this method does not follow those annotations on the genome locus. In this study, we performed the annotations based on the reference mapping, de novo transcriptome assembly, and manual curation. Consequently, we identified 41 neuropeptides out of 43 neuropeptides, which were reported in the insects. Further, 32 of the identified neuropeptides on the genomic loci in G. bimaculatus were annotated. The present annotation methods can be applicable for the neuropeptide annotation of other insects. Furthermore, the methods will help to generate useful infrastructures for studies relevant to neuropeptides.
Collapse
Affiliation(s)
- Takako Mochizuki
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yasuhiro Tanizawa
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hitomi Seike
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Zhen Zhu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yi Jun Zhou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Keisuke Fukumura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
8
|
Li M, Li B, Yang Q, Li Y, Wu J, Xu X. Identification of the neuropeptide gene family and feeding regulation by neuropeptide Y in Mythimna separata (Lepidoptera: Noctuidae). Int J Biol Macromol 2022; 224:676-687. [DOI: 10.1016/j.ijbiomac.2022.10.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
9
|
Marco HG, König S, Gäde G. Mass Spectrometric Proof of Predicted Peptides: Novel Adipokinetic Hormones in Insects. Molecules 2022; 27:6469. [PMID: 36235010 PMCID: PMC9573411 DOI: 10.3390/molecules27196469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
The importance of insects in our ecosystems is undeniable. The indiscriminate use of broad-spectrum insecticides is a factor in the decline in insect biomass. We identify and sequence a prominent neuropeptide hormone in insects with an overarching goal to elucidate relatedness and create a database of bioactive peptides that could inform possible cross-activity in biological assays for the identification of a biorational lead compound. The major task of an adipokinetic hormone (AKH) in an insect is the regulation of metabolic events, such as carbohydrate and lipid breakdown in storage tissue during intense muscular work. From genomic and/or transcriptomic information one may predict the genes encoding neuropeptides such as the AKHs of insects. Definite elucidation of the primary structure of the mature peptide with putative post-translational modifications needs analytical chemical methods. Here we use high-resolution mass spectrometry coupled with liquid chromatography to identify unequivocally the AKHs of five insect species (one cockroach, two moths, and two flies) of which either genomic/transcriptomic information was available or sequences from related species. We confirm predicted sequences and discover novel AKH sequences, including one with a post-translational hydroxyproline modification. The additional sequences affirm an evolutionary pattern of dipteran AKHs and a conserved pattern in crambid moths.
Collapse
Affiliation(s)
- Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town ZA-7700, South Africa
| | - Simone König
- IZKF Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Röntgenstr. 21, 48149 Münster, Germany
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town ZA-7700, South Africa
| |
Collapse
|
10
|
Sun L, Ma H, Gao Y, Wang Z, Cao C. Functional Identification and Characterization of Leucokinin and Its Receptor in the Fall Webworm, Hyphantria cunea. Front Physiol 2021; 12:741362. [PMID: 34690813 PMCID: PMC8529013 DOI: 10.3389/fphys.2021.741362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022] Open
Abstract
Neuropeptides function as central neuromodulators and circulating hormones that modulate insect behavior and physiology. Leucokinin (LK) is an intercellular signaling molecule that mediates many physiological and behavioral processes. However, the functions of LK associated with environmental stress and feeding behavior in the fall webworm, Hyphantria cunea, is little known. Our primary objective is to understand the function of LK and LK receptor (LKR) neuroendocrine system in H. cunea. In the present study, the results showed that LK/LKR are expressed at different developmental stages and in various tissues of H. cunea. A candidate receptor-ligand pairing for LK was identified in the larval transcriptome of H. cunea. In a heterologous expression system, the calcium assay was used to demonstrate that LKR is activated by HcLKs in a dose-dependent manner, with 50% effective concentration (EC50) values of 8.44-90.44nM. Knockdown of HcLK and HcLKR by microinjecting target-specific dsRNA leads to several effects in H. cunea, including feeding promotion, increase in resistance to desiccation and starvation stress, and regulation of water homeostasis. The transcript levels of HILP2 (except in the LK knockdown group), HILP5, and HILP8 increased, whereas those of HILP3, HILP4, and HILP6 decreased; HILP1, HILP2 (in the LK knockdown group), and HILP7 gene expression was not influenced after LK and LKR knockdown. Variations in mRNA expression levels in insulin-like peptide genes in the knockdown larvae suggest an essential role of these genes in survival in H. cunea. To our knowledge, the present study is the first comprehensive study of LK and LKR - from gene to behavior - in H. cunea.
Collapse
Affiliation(s)
| | | | | | | | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Cheng J, Yang X, Tian Z, Shen Z, Wang X, Zhu L, Liu X, Li Z, Liu X. Coordinated transcriptomics and peptidomics of central nervous system identify neuropeptides and their G protein-coupled receptors in the oriental fruit moth Grapholita molesta. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100882. [PMID: 34273641 DOI: 10.1016/j.cbd.2021.100882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023]
Abstract
The oriental fruit moth Grapholita molesta is a cosmopolitan pest of orchard, which causes serious economic losses to the fruit production. Neuropeptides and their specific receptors (primarily G protein-coupled receptors, GPCRs) regulate multiple biological functions in insects and represent promising next-generation pest management strategy. Here, we generated a transcriptome of the central nervous system (CNS) of G. molesta. Overall, 57 neuropeptide precursor genes were identified and 128 various mature peptides were predicted from these precursors. Using peptidomic analysis of CNS of G. molesta, we identified total of 28 mature peptides and precursor-related peptides from 16 precursors. A total of 41 neuropeptide GPCR genes belonging to three classes were also identified. These GPCRs and their probable ligands were predicted. Additionally, expression patterns of these 98 genes in various larval tissues were evaluated using quantitative real-time PCR. Taken together, these results will benefit further investigations to determine physiological functions and pharmacological characterization of neuropeptides and their GPCRs in G. molesta; and to develop specific neuropeptide-based agents for this tortricid fruit pest control.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuelin Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xueli Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Liu B, Fu D, Gao H, Ning H, Sun Y, Chen H, Tang M. Cloning and Expression of the Neuropeptide F and Neuropeptide F Receptor Genes and Their Regulation of Food Intake in the Chinese White Pine Beetle Dendroctonus armandi. Front Physiol 2021; 12:662651. [PMID: 34220532 PMCID: PMC8249871 DOI: 10.3389/fphys.2021.662651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/31/2023] Open
Abstract
Neuropeptide F (NPF) is an important signaling molecule that acts as a neuromodulator to regulate a diversity of physiological and behavioral processes from vertebrates to invertebrates by interaction with NPF receptors, which are G protein-coupled receptors (GPCR). However, nothing is known about NPF in Chinese white pine beetle, Dendroctonus armandi, a destructive pest of natural and coniferous forests in the middle Qinling Mountains of China. We have cloned and characterized cDNAs encoding one NPF precursor and two NPF receptors in D. armandi and made bioinformatics predictions according to the deduced amino acid sequences. They were highly similar to that of Dendroctonus ponderosa. The transcription levels of these genes were different between larvae and adults of sexes, and there were significant differences among the different developmental stages and tissues and between beetles under starvation and following re-feeding states. Additionally, downregulation of NPF and NPFR by injecting dsRNA into beetles reduced their food intake, caused increases of mortality and decreases of body weight, and also resulted in a decrease of glycogen and free fatty acid and an increase of trehalose. These results indicate that the NPF signaling pathway plays a significant positive role in the regulation of food intake and provides a potential target for the sustainable management of this pest.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hang Ning
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Yaya Sun
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Xianyang, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Xianyang, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Liu N, Li T, Wang Y, Liu S. G-Protein Coupled Receptors (GPCRs) in Insects-A Potential Target for New Insecticide Development. Molecules 2021; 26:2993. [PMID: 34069969 PMCID: PMC8157829 DOI: 10.3390/molecules26102993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
G-protein coupled receptors (GPCRs) play important roles in cell biology and insects' physiological processes, toxicological response and the development of insecticide resistance. New information on genome sequences, proteomic and transcriptome analysis and expression patterns of GPCRs in organs such as the central nervous system in different organisms has shown the importance of these signaling regulatory GPCRs and their impact on vital cell functions. Our growing understanding of the role played by GPCRs at the cellular, genome, transcriptome and tissue levels is now being utilized to develop new targets that will sidestep many of the problems currently hindering human disease control and insect pest management. This article reviews recent work on the expression and function of GPCRs in insects, focusing on the molecular complexes governing the insect physiology and development of insecticide resistance and examining the genome information for GPCRs in two medically important insects, mosquitoes and house flies, and their orthologs in the model insect species Drosophila melanogaster. The tissue specific distribution and expression of the insect GPCRs is discussed, along with fresh insights into practical aspects of insect physiology and toxicology that could be fundamental for efforts to develop new, more effective, strategies for pest control and resistance management.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Shikai Liu
- College of Fisheries, Ocean University of China, Qingdao 266100, China;
| |
Collapse
|
14
|
Shahraki A, Işbilir A, Dogan B, Lohse MJ, Durdagi S, Birgul-Iyison N. Structural and Functional Characterization of Allatostatin Receptor Type-C of Thaumetopoea pityocampa, a Potential Target for Next-Generation Pest Control Agents. J Chem Inf Model 2021; 61:715-728. [PMID: 33476150 DOI: 10.1021/acs.jcim.0c00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Insect neuropeptide receptors, including allatostatin receptor type C (AstR-C), a G protein-coupled receptor, are among the potential targets for designing next-generation pesticides that despite their importance in offering a new mode-of-action have been overlooked. Focusing on AstR-C of Thaumetopoea pityocampa, a common pest in Mediterranean countries, by employing resonance energy transfer-based methods, we showed Gαi/o coupling and β-arrestin recruitment of the receptor at sub-nanomolar and nanomolar ranges of the endogenous ligand, AST-C, respectively. Molecular docking and molecular dynamics simulation studies revealed the importance of extracellular loop 2 in AstRC/AST-C interaction, and a combination of in silico and in vitro approaches showed the substantial role of Q2716.55 in G protein-dependent activation of AstR-C possibly via contributing to the flexibility of the receptor's structure. The functional and structural insights obtained on T. pit AstR-C positively assist future efforts in developing environmentally friendly pest control agents that are needed urgently.
Collapse
Affiliation(s)
- Aida Shahraki
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey.,Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| | - Ali Işbilir
- Max Delbrück Center for Molecular Medicine in Helmholz Association, 13125 Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Berna Dogan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in Helmholz Association, 13125 Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany.,ISAR Bioscience Institute, Planegg, 82152 Munich, Germany
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| | - Necla Birgul-Iyison
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
15
|
Shi Y, Li J, Li L, Lin G, Bilal AM, Smagghe G, Liu TX. Genomics, transcriptomics, and peptidomics of Spodoptera frugiperda (Lepidoptera, Noctuidae) neuropeptides. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21740. [PMID: 33020953 DOI: 10.1002/arch.21740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Neuropeptides control many physiological and behavioral processes, and so they are functionally important classes of cell-to-cell signaling molecules. Nowadays, the fall armyworm, Spodoptera frugiperda, is one of the most destructive agricultural pests in the world. In this study, we mined the publicly accessible genome assembly data for S. frugiperda, and the transcriptomic and proteomic data of the larval central nervous system (CNS) for putative neuropeptide-encoding, and subsequently we used these to anticipate a peptidome for this species. In essence, we could identify 57 orthologs of insect neuropeptides, including Allatotropin, CCHamide, Corazonin, pheromone biosynthesis activating neuropeptide, short neuropeptide F, Trissin, and Natalisin. Interesting features for S. frugiperda were the absence of genes coding for CNMamide, Elevein, and the differential evolution of ancestral neuropeptide genes such as adipokinetic corazonin-related peptide, adipokinetic hormone, Tachykinin, and Natalisin. In conclusion, our study provides the most complete neuropeptide description for the important pest S. frugiperda as a foundation to study the factors regulating insect growth, reproduction, and behavior. Second, we confirm that a comprehensive multi-omics analysis is necessary for the identification of neuropeptides. Finally, our data provide a reliable reference for other comparative studies in other insects beyond the supermodel insect of Drosophila melanogaster and the finding of potential candidates as selective for pests versus beneficial insects.
Collapse
Affiliation(s)
- Yan Shi
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - JiangJie Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - LinYu Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - GanLin Lin
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Amir M Bilal
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
16
|
Işbilir A, Duan Sahbaz B, Tuncgenc G, Bünemann M, Lohse MJ, Birgül-Iyison N. Pharmacological Characterization of the Stick Insect Carausius morosus Allatostatin-C Receptor with Its Endogenous Agonist. ACS OMEGA 2020; 5:32183-32194. [PMID: 33376856 PMCID: PMC7758886 DOI: 10.1021/acsomega.0c03382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 05/12/2023]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in regulating key physiological events in all animal species. Recent advances in collective analysis of genes and proteins revealed numerous potential neuropeptides and GPCRs from insect species, allowing for the characterization of peptide-receptor pairs. In this work, we used fluorescence resonance energy transfer (FRET)-based genetically encoded biosensors in intact mammalian cells to study the pharmacological features of the cognate GPCR of the type-C allatostatin (AST-C) peptide from the stick insect, Carausius morosus. Analysis of multiple downstream pathways revealed that AST-C can activate the human Gi2 protein, and not Gs or Gq, through AST-C receptor (AlstRC). Activated AlstRC recruits β-arrestin2 independent of the Gi protein but stimulates ERK phosphorylation in a Gi protein-dependent manner. Identification of Gαi-, arrestin-, and GRK-like transcripts from C. morosus revealed high evolutionary conservation at the G protein level, while β-arrestins and GRKs displayed less conservation. In conclusion, our study provides experimental and homology-based evidence on the functionality of vertebrate G proteins and downstream signaling biosensors to characterize early signaling steps of an insect GPCR. These results may serve as a scaffold for developing assays to characterize pharmacological and structural aspects of other insect GPCRs and can be used in deorphanization and pesticide studies.
Collapse
Affiliation(s)
- Ali Işbilir
- Department
of Molecular Biology and Genetics, Faculty
of Arts and Sciences, Bogazici University, Istanbul 34342, Turkey
- Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- Institute
of Pharmacology and Toxicology, University
of Würzburg, Würzburg 97078, Germany
| | - Burcin Duan Sahbaz
- Department
of Molecular Biology and Genetics, Faculty
of Arts and Sciences, Bogazici University, Istanbul 34342, Turkey
| | - Gunes Tuncgenc
- Department
of Molecular Biology and Genetics, Faculty
of Arts and Sciences, Bogazici University, Istanbul 34342, Turkey
| | - Moritz Bünemann
- Department
of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg 35043, Germany
| | - Martin J. Lohse
- Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- Institute
of Pharmacology and Toxicology, University
of Würzburg, Würzburg 97078, Germany
- ISAR
Bioscience Institute, Planegg/Munich 82152, Germany
| | - Necla Birgül-Iyison
- Department
of Molecular Biology and Genetics, Faculty
of Arts and Sciences, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
17
|
Marco HG, Šimek P, Gäde G. Unique Members of the Adipokinetic Hormone Family in Butterflies and Moths (Insecta, Lepidoptera). Front Physiol 2020; 11:614552. [PMID: 33391031 PMCID: PMC7773649 DOI: 10.3389/fphys.2020.614552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023] Open
Abstract
Lepidoptera is amongst one of the four most speciose insect orders and ecologically very successful because of their ability to fly. Insect flight is always aerobic and exacts a high metabolic demand on the animal. A family of structurally related neuropeptides, generically referred to as adipokinetic hormones (AKHs), play a key role in triggering the release of readily utilizable fuel metabolites into the hemolymph from the storage forms in the fat body. We used mass spectrometry to elucidate AKH sequences from 34 species of Lepidoptera and searched the literature and publicly available databases to compile (in a phylogenetic context) a comprehensive list of all Lepidoptera sequences published/predicted from a total of 76 species. We then used the resulting set of 15 biochemically characterized AKHs in a physiological assay that measures lipid or carbohydrate mobilization in three different lepidopteran species to learn about the functional cross-activity (receptor-ligand interactions) amongst the different butterfly/moth families. Our results include novel peptide structures, demonstrate structural diversity, phylogenetic trends in peptide distribution and order-specificity of Lepidoptera AKHs. There is almost an equal occurrence of octa-, nona-, and decapeptides, with an unparalleled emphasis on nonapeptides than in any insect order. Primitive species make Peram-CAH-II, an octapeptide found also in other orders; the lepidopteran signature peptide is Manse-AKH. Not all of the 15 tested AKHs are active in Pieris brassicae; this provides insight into structure-activity specificity and could be useful for further investigations into possible biorational insecticide development.
Collapse
Affiliation(s)
- Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Petr Šimek
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
18
|
Yu K, Xiong S, Xu G, Ye X, Yao H, Wang F, Fang Q, Song Q, Ye G. Identification of Neuropeptides and Their Receptors in the Ectoparasitoid, Habrobracon hebetor. Front Physiol 2020; 11:575655. [PMID: 33178044 PMCID: PMC7596734 DOI: 10.3389/fphys.2020.575655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Neuropeptides are a group of signal molecules that regulate many physiological and behavioral processes by binding to corresponding receptors, most of which are G-protein-coupled receptors (GPCRs). Using bioinformatic methods, we screened genomic and transcriptomic data of the ectoparasitoid wasp, Habrobracon hebetor, and annotated 34 neuropeptide candidate precursor genes and 44 neuropeptide receptor candidate genes. The candidate neuropeptide genes were found to encode all known insect neuropeptides except allatotropin, neuropeptide F, pigment dispersing factor, and CCHamides. When compared with the endoparasitic wasp Pteromalus puparum and the ectoparasitic wasp Nasonia vitripennis, trissin and FMRFamide were found only in H. hebetor. A similar result held for the neuropeptide receptor genes, for the receptors were found in H. hebetor except the receptors of CCHamides and neuroparsin. Furthermore, we compared and analyzed the differences in neuropeptides in eight Braconidae wasps and identified natalisin in H. hebetor, Diachasma alloeum, Fopius arisanus and Microplitis demolitor, but not in the other wasps. We also analyzed the transcriptome data and qRT-PCR data from different developmental stages and tissues to reveal the expression patterns of the neuropeptides and their receptors. In this study, we revealed composition of neuropeptides and neuropeptide receptors in H. hebetor, which may contribute to future neurobiological studies.
Collapse
Affiliation(s)
- Kaili Yu
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gang Xu
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Abou El Asrar R, Cools D, Vanden Broeck J. Role of peptide hormones in insect gut physiology. CURRENT OPINION IN INSECT SCIENCE 2020; 41:71-78. [PMID: 32814267 DOI: 10.1016/j.cois.2020.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Nutrient uptake and digestion are essential for optimal growth and development. In insects, these processes are regulated by the gut-brain axis, which is a neurohumoral communication system for maintaining gut homeostasis. The insect gut is a complex organ consisting of three distinct structures, denominated foregut, midgut and hindgut, each with their specific specializations. These specializations are tightly regulated by the interplay of several neuropeptides: a versatile group of signalling molecules involved in a multitude of processes including gut physiology. Neuropeptides take part in the regulation of gut processes ranging from digestive enzyme release to muscle activity and satiety. Some neuropeptide mimetics are a promising strategy for ecological pest management. This review focuses on a selection of neuropeptides that are well-known for their role in gut physiology, and neuropeptides for which the mode of action is yet to be unravelled.
Collapse
Affiliation(s)
- Rania Abou El Asrar
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Dorien Cools
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Corzo FL, Traverso L, Sterkel M, Benavente A, Ajmat MT, Ons S. Plodia interpunctella (Lepidoptera: Pyralidae): Intoxication with essential oils isolated from Lippia turbinata (Griseb.) and analysis of neuropeptides and neuropeptide receptors, putative targets for pest control. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21684. [PMID: 32329117 DOI: 10.1002/arch.21684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The Indian meal moth Plodia interpunctella is a pest of stored products worldwide. Plant-derived essential oils with insecticidal activity could be safe products to control this species. The scarce information about the mode of action of most plant-derived products limits their use for the control of insect pests. Here, we demonstrate that an essential oil distilled from Lippia turbinata ("poleo") has insecticidal activity on P. interpunctella larvae. Furthermore, we performed a comprehensive characterization of P. interpunctella neuroendocrine system, in comparison with other lepidopteran species.
Collapse
Affiliation(s)
- Fernando Livio Corzo
- Instituto de Ambiente de Montaña y Regiones Áridas Universidad Nacional de Chilecito (IAMRA-UNdeC), La Rioja, Argentina
| | - Lucila Traverso
- Laboratorio de Neurobiología de Insectos, Facultad de Ciencias Exactas, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos, Facultad de Ciencias Exactas, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alba Benavente
- Instituto de Ambiente de Montaña y Regiones Áridas Universidad Nacional de Chilecito (IAMRA-UNdeC), La Rioja, Argentina
| | - María Teresa Ajmat
- Instituto de Ambiente de Montaña y Regiones Áridas Universidad Nacional de Chilecito (IAMRA-UNdeC), La Rioja, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos, Facultad de Ciencias Exactas, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
21
|
Identification and expression profiling of neuropeptides and neuropeptide receptor genes in Atrijuglans hetaohei. Gene 2020; 743:144605. [PMID: 32199950 DOI: 10.1016/j.gene.2020.144605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/16/2020] [Accepted: 03/17/2020] [Indexed: 11/21/2022]
Abstract
Atrijuglans hetaohei Yang (Lepidoptera: Gelechioidea), is one of the major pests that can seriously damage the walnut fruits. Neuropeptides and their receptors regulate most physiological functions in insects and represent new targets for the development of control agents. To identify the neuropeptides and their receptors from A. hetaohei, we sequenced and analyzed its head transcriptomic data, identified 32 neuropeptides and 39 neuropeptide receptor genes. Sequence comparisons and phylogenetic analyses suggest that A. hetaohei neuropeptides and receptor genes have high homology with those in Bombyx mori, Chilo suppressalis, Plutella xylostella and Helicoverpa armigera. Moreover, gene expression patterns revealed that neuropeptide genes such as AKH1, CP, MS and PTTH were expressed specifically in male head, while CAP3, DH, NPLP1, PBAN and SIF showed higher expression in the female head. Bur showed abdomen biased expression in both male and female. Neuropeptide receptor genes such as A8, A11, A15 and LGR were highly expressed in male head, whereas A24 and LGR2 were preferentially expressed in female head. This is the first sequencing, identification and expression analyses of neuropeptides and neuropeptide receptor genes from A. hetaohei. Our results could provide a powerful background that will facilitate the further investigations using transcriptomics to determine neuropeptides and their receptors presence, functions, and indicates potential targets in A. hetaohei for a novel pest management strategy.
Collapse
|
22
|
Zhang H, Bai J, Huang S, Liu H, Lin J, Hou Y. Neuropeptides and G-Protein Coupled Receptors (GPCRs) in the Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front Physiol 2020; 11:159. [PMID: 32184735 PMCID: PMC7058690 DOI: 10.3389/fphys.2020.00159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
The red palm weevil Rhynchophorus ferrugineus is a devastating, invasive pest that causes serious damages to palm trees, and its invasiveness depends on its strong ability of physiological and behavioral adaptability. Neuropeptides and their receptors regulate physiology and behavior of insects, but these protein partners have not been identified from many insects. Here, we systematically identified neuropeptide precursors and the corresponding receptors in the red palm weevil, and analyzed their tissue expression patterns under control conditions and after pathogen infection. A total of 43 putative neuropeptide precursors were identified, including an extra myosuppressin peptide was identified with amino acid substitutions at two conserved sites. Forty-four putative neuropeptide receptors belonging to three classes were also identified, in which neuropeptide F receptors and insulin receptors were expanded compared to those in other insects. Based on qRT-PCR analyses, genes coding for several neuropeptide precursors and receptors were highly expressed in tissues other than the nervous system, suggesting that these neuropeptides and receptors play other roles in addition to neuro-reception. Some of the neuropeptides and receptors, like the tachykinin-related peptide and receptor, were significantly induced by pathogen infection, especially sensitive to Bacillus thuringiensis and Metarhizium anisopliae. Systemic identification and initial characterization of neuropeptides and their receptors in the red palm weevil provide a framework for further studies to reveal the functions of these ligand- and receptor-couples in regulating physiology, behavior, and immunity in this important insect pest species.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Juan Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Shuning Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Huihui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
23
|
Xu G, Teng ZW, Gu GX, Qi YX, Guo L, Xiao S, Wang F, Fang Q, Wang F, Song QS, Stanley D, Ye GY. Genome-wide characterization and transcriptomic analyses of neuropeptides and their receptors in an endoparasitoid wasp, Pteromalus puparum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21625. [PMID: 31565815 DOI: 10.1002/arch.21625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
In insects, neuropeptides constitute a group of signaling molecules that act in regulation of multiple physiological and behavioral processes by binding to their corresponding receptors. On the basis of the bioinformatic approaches, we screened the genomic and transcriptomic data of the parasitoid wasp, Pteromalus puparum, and annotated 36 neuropeptide precursor genes and 33 neuropeptide receptor genes. Compared to the number of precursor genes in Bombyx mori (Lepidoptera), Chilo suppressalis (Lepidoptera), Drosophila melanogaster (Diptera), Nilaparvata lugens (Hemiptera), Apis mellifera (Hymenoptera), and Tribolium castaneum (Coleoptera), P. puparum (Hymenoptera) has the lowest number of neuropeptide precursor genes. This lower number may relate to its parasitic life cycle. Transcriptomic data of embryos, larvae, pupae, adults, venom glands, salivary glands, ovaries, and the remaining carcass revealed stage-, sex-, and tissue-specific expression patterns of the neuropeptides, and their receptors. These data provided basic information about the identity and expression profiles of neuropeptides and their receptors that are required to functionally address their biological significance in an endoparasitoid wasp.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Xiang Qi
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lei Guo
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi-Sheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Xu G, Teng ZW, Gu GX, Guo L, Wang F, Xiao S, Wang JL, Wang BB, Fang Q, Wang F, Song QS, Stanley D, Ye GY. Genomic and transcriptomic analyses of glutathione S-transferases in an endoparasitoid wasp, Pteromalus puparum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21634. [PMID: 31587360 DOI: 10.1002/arch.21634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Pteromalus puparum is a gregarious pupal endoparasitoid with a wide host range. It deposits eggs into pierid and papilionid butterfly pupae. Glutathione S-transferases (GSTs) are a family of multifunctional detoxification enzymes that act in xenobiotic metabolism in insects. Insect genome projects have facilitated identification and characterization of GST family members. We identified 20 putative GSTs in the P. puparum genome, including 19 cytosolic and one microsomal. Phylogenetic analysis showed that P. puparum GSTs are clustered into Hymenoptera-specific branches. Transcriptomic data of embryos, larvae, female pupae, male pupae, female adults, male adults, venom glands, carcass, salivary glands, and ovaries revealed stage-, sex-, and tissue-specific expression patterns of GSTs in P. puparum. This is the most comprehensive study of genome-wide identification, characterization, and expression profiling of GST family in hymenopterans. Our results provide valuable information for understanding the metabolic adaptation of this wasp.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lei Guo
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jia-Le Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Bei-Bei Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi-Sheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Li X, Du L, Jiang XJ, Ju Q, Qu CJ, Qu MJ, Liu TX. Identification and Characterization of Neuropeptides and Their G Protein-Coupled Receptors (GPCRs) in the Cowpea Aphid Aphis craccivora. Front Endocrinol (Lausanne) 2020; 11:640. [PMID: 33042012 PMCID: PMC7527416 DOI: 10.3389/fendo.2020.00640] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Neuropeptides are the most abundant and diverse signal molecules in insects. They act as neurohormones and neuromodulators to regulate the physiology and behavior of insects. The majority of neuropeptides initiate downstream signaling pathways through binding to G protein-coupled receptors (GPCRs) on the cell surface. In this study, RNA-seq technology and bioinformatics were used to search for genes encoding neuropeptides and their GPCRs in the cowpea aphid Aphis craccivora. And the expression of these genes at different developmental stages of A. craccivora was analyzed by quantitative real-time PCR (qRT-PCR). A total of 40 candidate genes encoding neuropeptide precursors were identified from the transcriptome data, which is roughly equivalent to the number of neuropeptide genes that have been reported in other insects. On this basis, software analysis combined with homologous prediction estimated that there could be more than 60 mature neuropeptides with biological activity. In addition, 46 neuropeptide GPCRs were obtained, of which 40 belong to rhodopsin-like receptors (A-family GPCRs), including 21 families of neuropeptide receptors and 7 orphan receptors, and 6 belong to secretin-like receptors (B-family GPCRs), including receptors for diuretic hormone 31, diuretic hormone 44 and pigment-dispersing factor (PDF). Compared with holometabolous insects such as Drosophila melanogaster, the coding genes for sulfakinin, corazonin, arginine vasopressin-like peptide (AVLP), and trissin and the corresponding receptors were not found in A. craccivora. It is speculated that A. craccivora likely lacks the above neuropeptide signaling pathways, which is consistent with Acyrthosiphon pisum and that the loss of these pathways may be a common feature of aphids. In addition, expression profiling revealed neuropeptide genes and their GPCR genes that are differentially expressed at different developmental stages and in different wing morphs. This study will help to deepen our understanding of the neuropeptide signaling systems in aphids, thus laying the foundation for the development of new methods for aphid control targeting these signaling systems.
Collapse
Affiliation(s)
- Xiao Li
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Long Du
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Xiao-Jing Jiang
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Qian Ju
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Chun-Juan Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Ming-Jing Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- *Correspondence: Ming-Jing Qu
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- Tong-Xian Liu
| |
Collapse
|
26
|
Sun S, Zhu M, Pan F, Feng J, Li J. Identifying Neuropeptide and G Protein-Coupled Receptors of Juvenile Oriental River Prawn ( Macrobrachium nipponense) in Response to Salinity Acclimation. Front Endocrinol (Lausanne) 2020; 11:623. [PMID: 33013701 PMCID: PMC7506046 DOI: 10.3389/fendo.2020.00623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) from the central nervous system regulate the physiological responses of crustaceans. However, in crustaceans, our knowledge regarding GPCR expression patterns and phylogeny is limited. Thus, the present study aimed to analyze the eyestalk transcriptome of the oriental river prawn Macrobrachium nipponense in response to salinity acclimation. We obtained 162,250 unigenes after de novo assembly, and 1,392 and 1,409 differentially expressed genes were identified in the eyestalk of prawns in response to low and high salinity, respectively. We used combinatorial bioinformatic analyses to identify M. nipponense genes encoding GPCRs and neuropeptides. The mRNA levels of seven neuropeptides and one GPCR were validated in prawns in response to salinity acclimation using quantitative real-time reverse transcription polymerase chain reaction. A total of 148 GPCR-encoding transcripts belonging to three classes were identified, including 77 encoding GPCR-A proteins, 52 encoding GPCR-B proteins, and 19 encoding other GPCRs. The results increase our understanding of molecular basis of neural signaling in M. nipponense, which will promote further research into salinity acclimation of this crustacean.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- *Correspondence: Shengming Sun
| | - Mengru Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Fangyan Pan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Jianbin Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
27
|
Pandit AA, Davies SA, Smagghe G, Dow JAT. Evolutionary trends of neuropeptide signaling in beetles - A comparative analysis of Coleopteran transcriptomic and genomic data. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103227. [PMID: 31470084 DOI: 10.1016/j.ibmb.2019.103227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Insects employ neuropeptides to regulate their growth & development, behaviour, metabolism and their internal milieu. At least 50 neuropeptides are known to date, with some ancestral to the insects and others more specific to particular taxa. In order to understand the evolution and essentiality of neuropeptides, we data mined publicly available high quality genomic or transcriptomic data for 31 species of the largest insect Order, the Coleoptera, chosen to represent the superfamilies' of the Adephaga and Polyphaga. The resulting neuropeptide distributions were compared against the habitats, lifestyle and other parameters. Around half of the neuropeptide families were represented across the Coleoptera, suggesting essentiality or at least continuing utility. However, the remaining families showed patterns of loss that did not correlate with any obvious life history parameter, suggesting that these neuropeptides are no longer required for the Coleopteran lifestyle. This may perhaps indicate a decreasing reliance on neuropeptide signaling in insects.
Collapse
Affiliation(s)
- Aniruddha A Pandit
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
28
|
Kozak GM, Wadsworth CB, Kahne SC, Bogdanowicz SM, Harrison RG, Coates BS, Dopman EB. Genomic Basis of Circannual Rhythm in the European Corn Borer Moth. Curr Biol 2019; 29:3501-3509.e5. [DOI: 10.1016/j.cub.2019.08.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
|
29
|
Garczynski SF, Hendrickson CA, Harper A, Unruh TR, Dhingra A, Ahn SJ, Choi MY. Neuropeptides and peptide hormones identified in codling moth, Cydia pomonella (Lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21587. [PMID: 31271487 DOI: 10.1002/arch.21587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
The codling moth, Cydia pomonella, is a worldwide pest of pome fruits. Neuropeptides regulate most physiological functions in insects and represent new targets for the development of control agents. The only neuropeptides reported from the codling moth to date are the allatostatin A family peptides. To identify other neuropeptides and peptide hormones from codling moth, we analyzed head transcriptomes, identified 50 transcripts, and predicted 120 prepropeptides for the codling moth neuropeptides and peptide hormones. All transcripts were amplified, and these sequences were verified. One of the notable findings in this study is that diapause hormones (DHs) reported from Tortricid moths, including the codling moth, do not have the WFGPRL sequence in C-terminal ends in the pban genes. The C-terminal motif is critical to characterize insect DH peptides, and always conserved in pban/dh genes in Lepidoptera and many insect orders. Interestingly, the WFGPRL sequence was produced only from the capa gene in the codling moth. The allatostatin A-family encoding transcript predicted nine peptides, seven of which, as expected, are identical to those previously isolated from the moth. We also identified new codling moth orthologs of insect neuropeptides including CCHamides, allatostatin CC, RYamides, and natalisins. The information provided in this study will benefit future codling moth investigations using peptidoproteomics to determine peptide presence and functions.
Collapse
Affiliation(s)
| | | | - Artemus Harper
- Department of Horticulture, Washington State University, Pullman, Washington
| | - Thomas R Unruh
- Yakima Agricultural Research Laboratory, USDA-ARS, Wapato, Washington
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, Washington
| | - Seung-Joon Ahn
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon
| |
Collapse
|
30
|
Kolosov D, O'Donnell MJ. Helicokinin alters ion transport in the secondary cell-containing region of the Malpighian tubule of the larval cabbage looper Trichoplusia ni. Gen Comp Endocrinol 2019; 278:12-24. [PMID: 30012538 DOI: 10.1016/j.ygcen.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/26/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022]
Abstract
Excretion in insects is accomplished by the combined actions of the Malpighian tubules (MTs) and hindgut, which together form the functional kidney. MTs of many insect groups consist of principal cells (PC) and secondary cells (SC). In most insect groups SCs are reported to secrete ions from haemolymph into the tubule lumen. Paradoxically, SCs in the MTs of the lepidopteran cabbage looper T. ni are used to reabsorb Na+ and K+ back into haemolymph. The current study was designed to investigate the effects and mode of action of the lepidopteran kinin, Helicokinin (HK), on ion transport in the SC-containing region of MT of T. ni. We identified a HK receptor (HK-R) homologue in T. ni and detected its expression in the SC-containing region of the MTs. The mRNA abundance of hk-r altered in response to changes in dietary K+ and Na+ content. HK-R immunolocalized to both PCs and SCs. Ramsay assays of preparations of the isolated distal ileac plexus (DIP) indicated that [HK] = 10-8 M: (i) decreased fluid secretion rate in unstimulated and serotonin-stimulated preparations, and (ii) increased [Na+]/[K+] ratio in the secreted fluid. Scanning ion-selective electrode technique measurements revealed that HK reduced: (i) K+ secretion by the PCs, and (ii) Na+ reabsorption by the SCs in intact tubules. In vitro incubation of the DIP with HK resulted in reduced mRNA abundance of hk-r as well as Na+/K+-ATPase subunit α (NKAα), Na+/K+/Cl- co-transporter (nkcc), Na+/H+ exchangers (nhe) 7 and 8, and aquaporin (aqp) 1. Taken together, results of the current study suggest that HK is capable of altering fluid secretion rate and [Na+]/[K+] ratio of the fluid, and that HK targets both PCs and SCs in the DIP of T. ni.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada.
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
31
|
Llopis-Giménez A, Han Y, Kim Y, Ros VID, Herrero S. Identification and expression analysis of the Spodoptera exigua neuropeptidome under different physiological conditions. INSECT MOLECULAR BIOLOGY 2019; 28:161-175. [PMID: 30171635 DOI: 10.1111/imb.12535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neuropeptides are small signalling molecules acting as neurohormones, neurotransmitters and neuromodulators. Being part of the chemical communication system between cells within an organism, they are involved in the regulation of different aspects of animal physiology and behaviour such as feeding, reproduction, development and locomotion. Transcriptomic data from larval and adult tissues have been obtained and mined to generate a comprehensive neuropeptidome for the polyphagous insect pest Spodoptera exigua. Sixty-three neuropeptides have been identified and described based on their tissue specificity and their regulation in response to different abiotic perturbations. Expression analyses have identified those neuropeptides involved in ingestive and digestive behaviour of S. exigua larvae and revealed a general pattern of upregulation in the midgut during larval starvation. Our results represent a comprehensive neuropeptidome of a lepidopteran species that will be highly relevant to future studies and provide novel information of the insect's perception of its environment.
Collapse
Affiliation(s)
- A Llopis-Giménez
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Burjassot (Valencia), Spain
| | - Y Han
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Y Kim
- Department of Bio-Sciences, Andong National University, Andong, Republic of Korea
| | - V I D Ros
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - S Herrero
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Burjassot (Valencia), Spain
| |
Collapse
|
32
|
Duan Şahbaz B, Birgül Iyison N. Prediction and expression analysis of G protein-coupled receptors in the laboratory stick insect, Carausius morosus. ACTA ACUST UNITED AC 2019; 43:77-88. [PMID: 30930638 PMCID: PMC6426647 DOI: 10.3906/biy-1809-27] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are 7-transmembrane proteins that transduce various extracellular signals into intracellular pathways. They are the major target of neuropeptides, which regulate the development, feeding behavior, mating behavior, circadian rhythm, and many other physiological functions of insects. In the present study, we performed RNA sequencing and de novo transcriptome assembly to uncover the GPCRs expressed in the stick insect Carausius morosus. The transcript assemblies were predicted for the presence of 7-transmembrane GPCR domains. As a result, 430 putative GPCR transcripts were obtained and 43 of these revealed full-length sequences with highly significant similarity to known GPCR sequences in the databases. Thirteen different GPCRs were chosen for tissue expression analysis. Some of these receptors, such as calcitonin, inotocin, and tyramine receptors, showed specific expression in some of the tissues. Additionally, GPCR prediction yielded a novel uncharacterized GPCR sequence, which was specifically expressed in the central nervous system and ganglia. Previously, the only information about the anatomy of the stick insect was on its gastrointestinal system. This study provides complete anatomical information about the adult insect.
Collapse
Affiliation(s)
- Burçin Duan Şahbaz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University , İstanbul , Turkey
| | - Necla Birgül Iyison
- Center for Life Sciences and Technologies, Boğaziçi University , İstanbul , Turkey.,Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University , İstanbul , Turkey
| |
Collapse
|
33
|
Characterization and Expression Profiling of Neuropeptides and G-Protein-Coupled Receptors (GPCRs) for Neuropeptides in the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Psyllidae). Int J Mol Sci 2018; 19:ijms19123912. [PMID: 30563248 PMCID: PMC6321106 DOI: 10.3390/ijms19123912] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides are endogenous active substances that widely exist in multicellular biological nerve tissue and participate in the function of the nervous system, and most of them act on neuropeptide receptors. In insects, neuropeptides and their receptors play important roles in controlling a multitude of physiological processes. In this project, we sequenced the transcriptome from twelve tissues of the Asian citrus psyllid, Diaphorina citri Kuwayama. A total of 40 candidate neuropeptide genes and 42 neuropeptide receptor genes were identified. Among the neuropeptide receptor genes, 35 of them belong to the A-family (or rhodopsin-like), four of them belong to the B-family (or secretin-like), and three of them are leucine-rich repeat-containing G-protein-coupled receptors. The expression profile of the 82 genes across developmental stages was determined by qRT-PCR. Our study provides the first investigation on the genes of neuropeptides and their receptors in D. citri, which may play key roles in regulating the physiology and behaviors of D. citri.
Collapse
|
34
|
Pandit AA, Ragionieri L, Marley R, Yeoh JGC, Inward DJG, Davies SA, Predel R, Dow JAT. Coordinated RNA-Seq and peptidomics identify neuropeptides and G-protein coupled receptors (GPCRs) in the large pine weevil Hylobius abietis, a major forestry pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:94-107. [PMID: 30165105 DOI: 10.1016/j.ibmb.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Hylobius abietis (Linnaeus), or large pine weevil (Coleoptera, Curculionidae), is a pest of European coniferous forests. In order to gain understanding of the functional physiology of this species, we have assembled a de novo transcriptome of H. abietis, from sequence data obtained by Next Generation Sequencing. In particular, we have identified genes encoding neuropeptides, peptide hormones and their putative G-protein coupled receptors (GPCRs) to gain insights into neuropeptide-modulated processes. The transcriptome was assembled de novo from pooled paired-end, sequence reads obtained from RNA from whole adults, gut and central nervous system tissue samples. Data analysis was performed on the transcripts obtained from the assembly including, annotation, gene ontology and functional assignment as well as transcriptome completeness assessment and KEGG pathway analysis. Pipelines were created using Bioinformatics tools and techniques for prediction and identification of neuropeptides and neuropeptide receptors. Peptidomic analysis was also carried out using a combination of MALDI-TOF as well as Q-Exactive Orbitrap mass spectrometry to confirm the identified neuropeptide. 41 putative neuropeptide families were identified in H. abietis, including Adipokinetic hormone (AKH), CAPA and DH31. Neuropeptide F, which has not been yet identified in the model beetle T. castaneum, was identified. Additionally, 24 putative neuropeptide and 9 leucine-rich repeat containing G protein coupled receptor-encoding transcripts were determined using both alignment as well as non-alignment methods. This information, submitted to the NCBI sequence read archive repository (SRA accession: SRP133355), can now be used to inform understanding of neuropeptide-modulated physiology and behaviour in H. abietis; and to develop specific neuropeptide-based tools for H. abietis control.
Collapse
Affiliation(s)
- Aniruddha A Pandit
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lapo Ragionieri
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Joseph G C Yeoh
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Reinhard Predel
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
35
|
Oliphant A, Alexander JL, Swain MT, Webster SG, Wilcockson DC. Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas. BMC Genomics 2018; 19:711. [PMID: 30257651 PMCID: PMC6158917 DOI: 10.1186/s12864-018-5057-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 09/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background Ecdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis. Results Transcriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis. Conclusions The data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans. Electronic supplementary material The online version of this article (10.1186/s12864-018-5057-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Oliphant
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Jodi L Alexander
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Simon G Webster
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - David C Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK.
| |
Collapse
|
36
|
Lu HP, Luo T, Fu HW, Wang L, Tan YY, Huang JZ, Wang Q, Ye GY, Gatehouse AMR, Lou YG, Shu QY. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. NATURE PLANTS 2018; 4:338-344. [PMID: 29735983 DOI: 10.1038/s41477-018-0152-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/13/2018] [Indexed: 05/18/2023]
Abstract
Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control1,2. However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals3, is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice2. Serotonin and salicylic acid derive from chorismate4. In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin5. In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.
Collapse
Affiliation(s)
- Hai-Ping Lu
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Ting Luo
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hao-Wei Fu
- Jiaxing Academy of Agricultural Sciences, Zhejiang, China
| | - Long Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yuan-Yuan Tan
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Jian-Zhong Huang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Qing Wang
- Wuxi Hupper Bioseed Ltd., Wuxi, Jiangsu, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | - Yong-Gen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| | - Qing-Yao Shu
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, China.
- Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, Hubei, China.
| |
Collapse
|
37
|
Chang J, Zhao J, Tian X. In silico prediction of neuropeptides in Hymenoptera parasitoid wasps. PLoS One 2018; 13:e0193561. [PMID: 29489917 PMCID: PMC5831470 DOI: 10.1371/journal.pone.0193561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
Parasitoid wasps of the order Hymenoptera, the most diverse groups of animals, are important natural enemies of arthropod hosts in natural ecosystems and can be used in biological control. To date, only one neuropeptidome of a parasitoid wasp, Nasonia vitripennis, has been identified. This study aimed to identify more neuropeptides of parasitoid wasps, by using a well-established workflow that was previously adopted for predicting insect neuropeptide sequences. Based on publicly accessible databases, totally 517 neuropeptide precursors from 24 parasitoid wasp species were identified; these included five neuropeptides (CNMamide, FMRFamide-like, ITG-like, ion transport peptide-like and orcokinin B) that were identified for the first time in parasitoid wasps, to our knowledge. Next, these neuropeptides from parasitoid wasps were compared with those from other insect species. Phylogenetic analysis suggested the divergence of AST-CCC within Hymenoptera. Further, the encoding patterns of CAPA/PK family genes were found to be different between Hymenoptera species and other insect species. Some neuropeptides that were not found in some parasitoid superfamilies (e.g., sulfakinin), or considerably divergent between different parasitoid superfamilies (e.g., sNPF) might be related to distinct physiological processes in the parasitoid life. Information of neuropeptide sequences in parasitoid wasps can be useful for better understanding the phylogenetic relationships of Hymenoptera and further elucidating the physiological functions of neuropeptide signaling systems in parasitoid wasps.
Collapse
Affiliation(s)
- Juhua Chang
- College of Life Science, Yangtze University, Jingzhou, China
- Pesticide Research Institute, Yangtze University, Jingzhou, China
- * E-mail:
| | - Jianhua Zhao
- Vegetable Technology Center of Xiyang County, Xiyang, China
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou, China
| |
Collapse
|
38
|
Diesner M, Gallot A, Binz H, Gaertner C, Vitecek S, Kahnt J, Schachtner J, Jacquin-Joly E, Gadenne C. Mating-Induced Differential Peptidomics of Neuropeptides and Protein Hormones in Agrotis ipsilon Moths. J Proteome Res 2018; 17:1397-1414. [PMID: 29466015 DOI: 10.1021/acs.jproteome.7b00779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In many insects, mating induces drastic changes in male and female responses to sex pheromones or host-plant odors. In the male moth Agrotis ipsilon, mating induces a transient inhibition of behavioral and neuronal responses to the female sex pheromone. As neuropeptides and peptide hormones regulate most behavioral processes, we hypothesize that they could be involved in this mating-dependent olfactory plasticity. Here we used next-generation RNA sequencing and a combination of liquid chromatography, matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and direct tissue profiling to analyze the transcriptome and peptidome of different brain compartments in virgin and mated males and females of A. ipsilon. We identified 37 transcripts encoding putative neuropeptide precursors and 54 putative bioactive neuropeptides from 23 neuropeptide precursors (70 sequences in total, 25 neuropeptide precursors) in different areas of the central nervous system including the antennal lobes, the gnathal ganglion, and the corpora cardiaca-corpora allata complex. Comparisons between virgin and mated males and females revealed tissue-specific differences in peptide composition between sexes and according to physiological state. Mated males showed postmating differences in neuropeptide occurrence, which could participate in the mating-induced olfactory plasticity.
Collapse
Affiliation(s)
- Max Diesner
- Department of Biology - Animal Physiology , Philipps University Marburg , D-35032 Marburg , Germany
| | - Aurore Gallot
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR iEES-Paris) , INRA , Route de Saint-Cyr , 78026 Versailles Cedex , France
| | - Hellena Binz
- Institute of Zoology , University of Mainz , Johann-Joachim-Becher-Weg 6 , 55128 Mainz , Germany
| | - Cyril Gaertner
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR iEES-Paris) , INRA , Route de Saint-Cyr , 78026 Versailles Cedex , France
| | - Simon Vitecek
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR iEES-Paris) , INRA , Route de Saint-Cyr , 78026 Versailles Cedex , France
| | - Jörg Kahnt
- Max-Planck-Institute für terrestrische Mikrobiologie, Marburg , Germany
| | - Joachim Schachtner
- Department of Biology - Animal Physiology , Philipps University Marburg , D-35032 Marburg , Germany
| | - Emmanuelle Jacquin-Joly
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR iEES-Paris) , INRA , Route de Saint-Cyr , 78026 Versailles Cedex , France
| | - Christophe Gadenne
- Institut de Génétique, Environnement et Protection des Plantes (UMR IGEPP) , INRA , Agrocampus Ouest, rue Le Nôtre , 49054 Angers cedex 01 , France
| |
Collapse
|
39
|
Nguyen TV, Rotllant GE, Cummins SF, Elizur A, Ventura T. Insights Into Sexual Maturation and Reproduction in the Norway Lobster ( Nephrops norvegicus) via in silico Prediction and Characterization of Neuropeptides and G Protein-coupled Receptors. Front Endocrinol (Lausanne) 2018; 9:430. [PMID: 30100897 PMCID: PMC6073857 DOI: 10.3389/fendo.2018.00430] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple biological processes across development and reproduction are modulated by neuropeptides that are predominantly produced and secreted from an animal's central nervous system. In the past few years, advancement of next-generation sequencing technologies has enabled large-scale prediction of putative neuropeptide genes in multiple non-model species, including commercially important decapod crustaceans. In contrast, knowledge of the G protein-coupled receptors (GPCRs), through which neuropeptides act on target cells, is still very limited. In the current study, we have used in silico transcriptome analysis to elucidate genes encoding neuropeptides and GPCRs in the Norway lobster (Nephrops norvegicus), which is one of the most valuable crustaceans in Europe. Fifty-seven neuropeptide precursor-encoding transcripts were detected, including phoenixin, a vertebrate neurohormone that has not been detected in any invertebrate species prior to this study. Neuropeptide gene expression analysis of immature and mature female N. norvegicus, revealed that some reproduction-related neuropeptides are almost exclusively expressed in immature females. In addition, a total of 223 GPCR-encoding transcripts were identified, of which 116 encode GPCR-A (Rhodopsin), 44 encode GPCR-B (Secretin) and 63 encode other GPCRs. Our findings increase the molecular toolbox of neural signaling components in N. norvegicus, allowing for further advances in the fisheries/larvae culture of this species.
Collapse
Affiliation(s)
- Tuan V. Nguyen
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Guiomar E. Rotllant
- Institute de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Scott F. Cummins
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Abigail Elizur
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Tomer Ventura
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
- *Correspondence: Tomer Ventura
| |
Collapse
|
40
|
Yang L, Mei Y, Fang Q, Wang J, Yan Z, Song Q, Lin Z, Ye G. Identification and characterization of serine protease inhibitors in a parasitic wasp, Pteromalus puparum. Sci Rep 2017; 7:15755. [PMID: 29147019 PMCID: PMC5691223 DOI: 10.1038/s41598-017-16000-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/03/2017] [Indexed: 11/08/2022] Open
Abstract
Serine protease inhibitors (SPIs) regulate protease-mediated activities by inactivating their cognate proteinases, and are involved in multiple physiological processes. SPIs have been extensively studied in vertebrates and invertebrates; however, little SPI information is available in parasitoids. Herein, we identified 57 SPI genes in total through the genome of a parasitoid wasp, Pteromalus puparum. Gene structure analyses revealed that these SPIs contain 7 SPI domains. Depending on their mode of action, these SPIs can be categorized into serpins, canonical inhibitors and alpha-2-macroglobulins (A2Ms). For serpins and canonical inhibitors, we predicted their putative inhibitory activities to trypsin/chymotrypsin/elastase-like enzymes based on the amino acids in cleaved reactive sites. Sequence alignment and phylogenetic tree indicated that some serpins similar to known functional inhibitory serpins may participate in immune responses. Transcriptome analysis also showed some canonical SPI genes displayed distinct expression patterns in the venom gland and this was confirmed by quantitative real-time PCR (qPCR) analysis, suggesting their specific physiological functions as venom proteins in suppressing host immune responses. The study provides valuable information to clarify the functions of SPIs in digestion, development, reproduction and innate immunity.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaotian Mei
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Yan G, Zhang G, Huang J, Lan Y, Sun J, Zeng C, Wang Y, Qian PY, He L. Comparative Transcriptomic Analysis Reveals Candidate Genes and Pathways Involved in Larval Settlement of the Barnacle Megabalanus volcano. Int J Mol Sci 2017; 18:E2253. [PMID: 29077039 PMCID: PMC5713223 DOI: 10.3390/ijms18112253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/14/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Abstract
Megabalanus barnacle is one of the model organisms for marine biofouling research. However, further elucidation of molecular mechanisms underlying larval settlement has been hindered due to the lack of genomic information thus far. In the present study, cDNA libraries were constructed for cyprids, the key stage for larval settlement, and adults of Megabalanus volcano. After high-throughput sequencing and de novo assembly, 42,620 unigenes were obtained with a N50 value of 1532 bp. These unigenes were annotated by blasting against the NCBI non-redundant (nr), Swiss-Prot, Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, 19,522, 15,691, 14,459, and 10,914 unigenes were identified correspondingly. There were 22,158 differentially expressed genes (DEGs) identified between two stages. Compared with the cyprid stage, 8241 unigenes were down-regulated and 13,917 unigenes were up-regulated at the adult stage. The neuroactive ligand-receptor interaction pathway (ko04080) was significantly enriched by KEGG enrichment analysis of the DEGs, suggesting that it possibly involved in larval settlement. Potential functions of three conserved allatostatin neuropeptide-receptor pairs and two light-sensitive opsin proteins were further characterized, indicating that they might regulate attachment and metamorphosis at cyprid stage. These results provided a deeper insight into the molecular mechanisms underlying larval settlement of barnacles.
Collapse
Affiliation(s)
- Guoyong Yan
- Department of Life Sciences, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100864, China.
| | - Gen Zhang
- The Shenzhen Nobel Science and Technology Service Co., Ltd., Nanshan District, Shenzhen 440305, China.
| | - Jiaomei Huang
- Department of Life Sciences, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Yi Lan
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Jin Sun
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Cong Zeng
- Department of Life Sciences, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Yong Wang
- Department of Life Sciences, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Pei-Yuan Qian
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Lisheng He
- Department of Life Sciences, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| |
Collapse
|
42
|
The African froghopper Ptyelus flavescens (suborder: Cicadomorpha) contains two novel and one known peptides of the adipokinetic hormone (AKH) family: structure, function and comparison with aphid AKH (suborder: Sternorrhyncha). Amino Acids 2017; 49:1679-1690. [DOI: 10.1007/s00726-017-2461-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
|
43
|
Xu G, Wu SF, Gu GX, Teng ZW, Ye GY, Huang J. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:80-93. [PMID: 28302436 DOI: 10.1016/j.ibmb.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 06/06/2023]
Abstract
Dopamine is an important neurotransmitter and neuromodulator in both vertebrates and invertebrates and is the most abundant monoamine present in the central nervous system of insects. A complement of functionally distinct dopamine receptors mediate the signal transduction of dopamine by modifying intracellular Ca2+ and cAMP levels. In the present study, we pharmacologically characterized three types of dopamine receptors, CsDOP1, CsDOP2 and CsDOP3, from the rice striped stem borer, Chilo suppressalis. All three receptors show considerable sequence identity with orthologous dopamine receptors. The phylogenetic analysis also clusters the receptors within their respective groups. Transcript levels of CsDOP1, CsDOP2 and CsDOP3 were all expressed at high levels in the central nervous system, indicating their important roles in neural processes. After heterologous expression in HEK 293 cells, CsDOP1, CsDOP2 and CsDOP3 were dose-dependently activated by dopamine and synthetic dopamine receptor agonists. They can also be blocked by different series of antagonists. This study offers important information on three dopamine receptors from C. suppressalis that will provide the basis for forthcoming studies investigating their roles in behaviors and physiology, and facilitate the development of new insecticides for pest control.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jia Huang
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
44
|
Veenstra JA, Khammassi H. Rudimentary expression of RYamide in Drosophila melanogaster relative to other Drosophila species points to a functional decline of this neuropeptide gene. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:68-79. [PMID: 28286046 DOI: 10.1016/j.ibmb.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
RYamides are arthropod neuropeptides with unknown function. In 2011 two RYamides were isolated from D. melanogaster as the ligands for the G-protein coupled receptor CG5811. The D. melanogaster gene encoding these neuropeptides is highly unusual, as there are four RYamide encoding exons in the current genome assembly, but an exon encoding a signal peptide is absent. Comparing the D. melanogaster gene structure with those from other species, including D. virilis, suggests that the gene is degenerating. RNAseq data from 1634 short sequence read archives at NCBI containing more than 34 billion spots yielded numerous individual spots that correspond to the RYamide encoding exons, of which a large number include the intron-exon boundary at the start of this exon. Although 72 different sequences have been spliced onto this RYamide encoding exon, none codes for the signal peptide of this gene. Thus, the RNAseq data for this gene reveal only noise and no signal. The very small quantities of peptide recovered during isolation and the absence of credible RNAseq data, indicates that the gene is very little expressed, while the RYamide gene structure in D. melanogaster suggests that it might be evolving into a pseudogene. Yet, the identification of the peptides it encodes clearly shows it is still functional. Using region specific antisera, we could localize numerous neurons and enteroendocrine cells in D. willistoni, D. virilis and D. pseudoobscura, but only two adult abdominal neurons in D. melanogaster. Those two neurons project to and innervate the rectal papillae, suggesting that RYamides may be involved in the regulation of water homeostasis.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA, UMR 5287 CNRS, Université de Bordeaux, Pessac, France.
| | - Hela Khammassi
- INCIA, UMR 5287 CNRS, Université de Bordeaux, Pessac, France
| |
Collapse
|