1
|
Wang D, Song J, Wang J, Quan R. Serum metabolic alterations in chickens upon infectious bursal disease virus infection. BMC Vet Res 2024; 20:569. [PMID: 39696379 DOI: 10.1186/s12917-024-04402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Infectious bursal disease virus (IBDV) is a highly contagious immunosuppressive virus of chickens. Chickens acquire infection by the oral route under natural conditions. Although the histological and pathological changes after IBDV infection are well described, the alterations in serum metabolome have not been reported. In this study, SPF chickens were infected with attenuated IBDV (atIBDV) strain LM and very virulent IBDV (vvIBDV) strain LX, respectively. On the seventh day after oral infection, serum samples of experimental chickens were identified using ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS). The serum metabolic profiles were analyzed by multivariate statistical methods. KEGG enrichment analysis was performed to evaluate the dysregulated biological pathways. RESULTS We identified 368 significantly altered metabolites in response to both atIBDV and vvIBDV infection. The metabolic disorder of amino acid and lipid was associated with IBDV infection, especially tryptophan, glycerophospholipid, lysine, and tyrosine metabolism. The differential metabolites enriched in the four metabolic pathways were PC(20:4(5Z,8Z,11Z,14Z)/18:0), PE(16:0/18:2(9Z,12Z)), PE(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(18:0/20:4(5Z,8Z,11Z,14Z)), PE(18:0/20:4(8Z,11Z,14Z,17Z)), PE(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(20:3(8Z,11Z,14Z)/16:0), PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0), PE-NMe(20:5(5Z,8Z,11Z,14Z,17Z)/18:0), PS(20:3(5Z,8Z,11Z)/18:2(9Z,12Z)), 2-aminobenzoic acid, 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylserotonin, 5-hydroxyindoleacetate, indole-3-acetaldehyde, indole-3-acetate, p-coumaric acid, L-tyrosine, homovanillin, and S-glutaryldihydrolipoamide. CONCLUSION The atIBDV and vvIBDV infection causes metabolic changes in chicken serum. The differential metabolites and dysregulated metabolic pathways reflect the host response to the IBDV infection.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China.
| |
Collapse
|
2
|
Renga G, D'Onofrio F, Pariano M, Galarini R, Barola C, Stincardini C, Bellet MM, Ellemunter H, Lass-Flörl C, Costantini C, Napolioni V, Ehrlich AK, Antognelli C, Fini M, Garaci E, Nunzi E, Romani L. Bridging of host-microbiota tryptophan partitioning by the serotonin pathway in fungal pneumonia. Nat Commun 2023; 14:5753. [PMID: 37717018 PMCID: PMC10505232 DOI: 10.1038/s41467-023-41536-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
The aromatic amino acid L-tryptophan (Trp) is essentially metabolized along the host and microbial pathways. While much is known about the role played by downstream metabolites of each pathways in intestinal homeostasis, their role in lung immune homeostasis is underappreciated. Here we have examined the role played by the Trp hydroxylase/5-hydroxytryptamine (5-HT) pathway in calibrating host and microbial Trp metabolism during Aspergillus fumigatus pneumonia. We found that 5-HT produced by mast cells essentially contributed to pathogen clearance and immune homeostasis in infection by promoting the host protective indoleamine-2,3-dioxygenase 1/kynurenine pathway and limiting the microbial activation of the indole/aryl hydrocarbon receptor pathway. This occurred via regulation of lung and intestinal microbiota and signaling pathways. 5-HT was deficient in the sputa of patients with Cystic fibrosis, while 5-HT supplementation restored the dysregulated Trp partitioning in murine disease. These findings suggest that 5-HT, by bridging host-microbiota Trp partitioning, may have clinical effects beyond its mood regulatory function in respiratory pathologies with an inflammatory component.
Collapse
Affiliation(s)
- Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Fiorella D'Onofrio
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati,", Perugia, Italy
| | - Carolina Barola
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati,", Perugia, Italy
| | | | - Marina M Bellet
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Allison K Ehrlich
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimo Fini
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Rome, Italy
| | - Enrico Garaci
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Rome, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Rome, Italy.
| |
Collapse
|
3
|
Zhao L, Liu M, Sun H, Yang JC, Huang YX, Huang JQ, Lei X, Sun LH. Selenium deficiency-induced multiple tissue damage with dysregulation of immune and redox homeostasis in broiler chicks under heat stress. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2056-2069. [PMID: 36795182 DOI: 10.1007/s11427-022-2226-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 02/17/2023]
Abstract
Broiler chicks are fast-growing and susceptible to dietary selenium (Se) deficiency. This study sought to reveal the underlying mechanisms of how Se deficiency induces key organ dysfunctions in broilers. Day-old male chicks (n=6 cages/diet, 6 chicks/cage) were fed with a Se-deficient diet (Se-Def, 0.047 mg Se/kg) or the Se-Def+0.3 mg Se/kg (Control, 0.345 mg Se/kg) for 6 weeks. The serum, liver, pancreas, spleen, heart, and pectoral muscle of the broilers were collected at week 6 to assay for Se concentration, histopathology, serum metabolome, and tissue transcriptome. Compared with the Control group, Se deficiency induced growth retardation and histopathological lesions and reduced Se concentration in the five organs. Integrated transcriptomics and metabolomics analysis revealed that dysregulation of immune and redox homeostasis related biological processes and pathways contributed to Se deficiency-induced multiple tissue damage in the broilers. Meanwhile, four metabolites in the serum, daidzein, epinephrine, L-aspartic acid and 5-hydroxyindoleacetic acid, interacted with differentially expressed genes with antioxidative effects and immunity among all the five organs, which contributed to the metabolic diseases induced by Se deficiency. Overall, this study systematically elucidated the underlying molecular mechanisms in the pathogenesis of Se deficiency-related diseases, which provides a better understanding of the significance of Se-mediated heath in animals.
Collapse
Affiliation(s)
- Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, 14853, USA
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Barbero F, Mannino G, Casacci LP. The Role of Biogenic Amines in Social Insects: With a Special Focus on Ants. INSECTS 2023; 14:386. [PMID: 37103201 PMCID: PMC10142254 DOI: 10.3390/insects14040386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Eusociality represents the higher degree of interaction in insects. This complex social structure is maintained through a multimodal communication system that allows colony members to be flexible in their responses, fulfilling the overall society's needs. The colony plasticity is supposedly achieved by combining multiple biochemical pathways through the neuromodulation of molecules such as biogenic amines, but the mechanisms through which these regulatory compounds act are far from being fully disentangled. Here, we review the potential function of major bioamines (dopamine, tyramine, serotine, and octopamine) on the behavioral modulation of principal groups of eusocial Hymenoptera, with a special focus on ants. Because functional roles are species- and context-dependent, identifying a direct causal relationship between a biogenic amine variation and behavioral changes is extremely challenging. We also used a quantitative and qualitative synthesis approach to summarize research trends and interests in the literature related to biogenic amines of social insects. Shedding light on the aminergic regulation of behavioral responses will pave the way for an entirely new approach to understanding the evolution of sociality in insects.
Collapse
Affiliation(s)
- Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Gioacchino Quarello 15/A, 10135 Turin, Italy;
| | - Luca Pietro Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| |
Collapse
|
5
|
Kang SW, Christensen KD, Kidd Jr MT, Orlowski SK, Clark J. Effects of a variable light intensity lighting program on the welfare and performance of commercial broiler chickens. Front Physiol 2023; 14:1059055. [PMID: 36909223 PMCID: PMC9998933 DOI: 10.3389/fphys.2023.1059055,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/08/2023] [Indexed: 12/31/2023] Open
Abstract
Our previous variable-light intensity lighting program studies indicate the light intensity preference behavior of broilers for their daily activity including eating and resting. To evaluate the effects of variable-light intensity lighting program on performance and welfare of broilers, four commercial trials were conducted for looking at behaviors, mortality, leg-health, performance, and brain welfare indicator genes including tryptophan hydroxylase 2 and tyrosine hydroxylase (TH), glucocorticoid receptor (GR), brain-derived neurotropic factor (BDNF), and melanopsin (Opn4) gene expression. One-day-old broilers were housed in four commercial broiler houses. Each quadrant (section) of the house was placed with 4,800 chicks. A total of four lighting programs began on day 7 with 5 lux (lx), 20 lx, natural light (NL, 480 lx), and variable light (2-5/40 lx) using LED lights on a 16L:8D photoperiod. In the variable-light house, the number of dustbathing holes was significantly higher than that in natural-light houses and 5-lx and 20-lx houses. Daily physical activities, footpad condition, fear response to novel objects, body weight, feed conversion ratio, and the number of leg-problem induced culled birds were affected by the variable-light intensity lighting program. Expression of tryptophan hydroxylase 2 in the DRN and VTA of variable-light treated birds was lower than that of 5-lx- and 20-lx-treated birds on day 42 (p < 0.05). Higher expression of VTA-TH in 5-lx-treated birds than that in 20-lx-, NL-, and variable-light-treated birds suggests the high stress-susceptibility of 5-lx treated birds. Lower VTA-GR expression in 20-lx- and variable-light-treated birds indicates lower stress than that in NL- and 5-lx-treated birds (p < 0.05). The VTA-BDNF expression of NL-treated birds was 2.5 fold higher than that of 5-lx-, 20-lx-, and variable-light-treated birds (p < 0.05), and variable-light-treated birds showed the lowest level of BDNF expression (p < 0.05), suggesting the chronic social defeat stress in NL-treated birds. The result of VTA-Opn4 expression on day 42 suggests the possible role of VTA-Opn4 in broiler welfare through central light perception. Taken together, the variable-light intensity lighting program increased volunteer natural behaviors and physical activity, which may improve footpad condition and leg health of birds, consequently. Performance data including the increased daily weight gain and the lowered feed conversion ratio and results of brain welfare indicator gene expression showed the beneficial effect of the variable-light intensity lighting program on the performance and welfare of commercial broilers.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | | | - Michael T. Kidd Jr
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | - Sara K. Orlowski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | - James Clark
- Tyson Foods, Inc, Springdale, AR, United States
| |
Collapse
|
6
|
Vitale G, Carra S, Alessi Y, Campolo F, Pandozzi C, Zanata I, Colao A, Faggiano A. Carcinoid Syndrome: Preclinical Models and Future Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24043610. [PMID: 36835022 PMCID: PMC9961914 DOI: 10.3390/ijms24043610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Carcinoid syndrome represents a debilitating paraneoplastic disease, caused by the secretion of several substances, occurring in about 10-40% of patients with well-differentiated neuroendocrine tumors (NETs). The main signs and symptoms associated with carcinoid syndrome are flushing, diarrhea, hypotension, tachycardia, bronchoconstriction, venous telangiectasia, dyspnea and fibrotic complications (mesenteric and retroperitoneal fibrosis, and carcinoid heart disease). Although there are several drugs available for the treatment of carcinoid syndrome, the lack of therapeutic response, poor tolerance or resistance to drugs are often reported. Preclinical models are indispensable tools for investigating the pathogenesis, mechanisms for tumor progression and new therapeutic approaches for cancer. This paper provides a state-of-the-art overview of in vitro and in vivo models in NETs with carcinoid syndrome, highlighting the future developments and therapeutic approaches in this field.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
- Correspondence: ; Tel.: +39-02-6191-12023; Fax: +39-02-6191-13033
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Ylenia Alessi
- Endocrine Unit, University Hospital “Gaetano Martino” of Messina, 98125 Messina, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carla Pandozzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Isabella Zanata
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Rome, Italy
| | | |
Collapse
|
7
|
Kang SW, Christensen KD, Kidd MT, Orlowski SK, Clark J. Effects of a variable light intensity lighting program on the welfare and performance of commercial broiler chickens. Front Physiol 2023; 14:1059055. [PMID: 36909223 PMCID: PMC9998933 DOI: 10.3389/fphys.2023.1059055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Our previous variable-light intensity lighting program studies indicate the light intensity preference behavior of broilers for their daily activity including eating and resting. To evaluate the effects of variable-light intensity lighting program on performance and welfare of broilers, four commercial trials were conducted for looking at behaviors, mortality, leg-health, performance, and brain welfare indicator genes including tryptophan hydroxylase 2 and tyrosine hydroxylase (TH), glucocorticoid receptor (GR), brain-derived neurotropic factor (BDNF), and melanopsin (Opn4) gene expression. One-day-old broilers were housed in four commercial broiler houses. Each quadrant (section) of the house was placed with 4,800 chicks. A total of four lighting programs began on day 7 with 5 lux (lx), 20 lx, natural light (NL, 480 lx), and variable light (2-5/40 lx) using LED lights on a 16L:8D photoperiod. In the variable-light house, the number of dustbathing holes was significantly higher than that in natural-light houses and 5-lx and 20-lx houses. Daily physical activities, footpad condition, fear response to novel objects, body weight, feed conversion ratio, and the number of leg-problem induced culled birds were affected by the variable-light intensity lighting program. Expression of tryptophan hydroxylase 2 in the DRN and VTA of variable-light treated birds was lower than that of 5-lx- and 20-lx-treated birds on day 42 (p < 0.05). Higher expression of VTA-TH in 5-lx-treated birds than that in 20-lx-, NL-, and variable-light-treated birds suggests the high stress-susceptibility of 5-lx treated birds. Lower VTA-GR expression in 20-lx- and variable-light-treated birds indicates lower stress than that in NL- and 5-lx-treated birds (p < 0.05). The VTA-BDNF expression of NL-treated birds was 2.5 fold higher than that of 5-lx-, 20-lx-, and variable-light-treated birds (p < 0.05), and variable-light-treated birds showed the lowest level of BDNF expression (p < 0.05), suggesting the chronic social defeat stress in NL-treated birds. The result of VTA-Opn4 expression on day 42 suggests the possible role of VTA-Opn4 in broiler welfare through central light perception. Taken together, the variable-light intensity lighting program increased volunteer natural behaviors and physical activity, which may improve footpad condition and leg health of birds, consequently. Performance data including the increased daily weight gain and the lowered feed conversion ratio and results of brain welfare indicator gene expression showed the beneficial effect of the variable-light intensity lighting program on the performance and welfare of commercial broilers.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | | | - Michael T Kidd
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | - Sara K Orlowski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | - James Clark
- Tyson Foods, Inc, Springdale, AR, United States
| |
Collapse
|
8
|
Tangmahakul N, Sakarin S, Techangamsuwan S, Rungsipipat A, Surachetpong SD. Investigation of Genes and Proteins Expression Associating Serotonin Signaling Pathway in Lung and Pulmonary Artery Tissues of Dogs with Pulmonary Hypertension Secondary to Degenerative Mitral Valve Disease: The Preliminary Study. Vet Sci 2022; 9:530. [PMID: 36288144 PMCID: PMC9612059 DOI: 10.3390/vetsci9100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Pulmonary hypertension (PH) is defined as an increase in pulmonary vascular pressure. It is one of the most common complications that occur as a result of degenerative mitral valve disease (DMVD) in dogs. Serotonin (5-HT) can trigger the development of PH. Accordingly, this study investigated the changes in the expression of genes and proteins associated with local 5-HT signaling in the lungs and pulmonary arteries (PA) of dogs with PH secondary to DMVD. Lung and PA tissue samples were collected from the cadavers of fourteen small-breed dogs and divided into normal (n = 4), DMVD (n = 5) and DMVD with PH (n = 5) groups. Gene expression (tph1, slc6a4 and htr2a) was analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression of proteins (TPH-1, SERT, 5-HTR2A, ERK1/2 and pERK1/2) was examined by Western blot analysis and immunohistochemical staining. The results showed that the expression of genes and proteins evaluated by qRT-PCR and Western blot analysis in lung and PA tissues did not differ among groups. However, the expression of proteins related to 5-HT signaling tended to be upregulated in PA tissues from DMVD dogs with and without PH. Immunohistochemical examination revealed the overexpression of these proteins in the DMVD and DMVD with PH groups in lung tissue. These findings suggest a local effect of 5-HT signaling in DMVD dogs with and without PH.
Collapse
Affiliation(s)
- Nattawan Tangmahakul
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriwan Sakarin
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somporn Techangamsuwan
- Companion Animal Center Research Unit (CAC-RU), Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anudep Rungsipipat
- Companion Animal Center Research Unit (CAC-RU), Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
9
|
Xu Z, Zhang X, Wang W, Zhang D, Ma Y, Zhang D, Chen M. Fructus Mume (Wu Mei) Attenuates Acetic Acid-Induced Ulcerative Colitis by Regulating Inflammatory Cytokine, Reactive Oxygen Species, and Neuropeptide Levels in Model Rats. J Med Food 2022; 25:389-401. [PMID: 35438553 DOI: 10.1089/jmf.2021.k.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disorder of the large intestine. Fructus mume (FM), a natural food with nutritive and pharmaceutical value, has demonstrated therapeutic efficacy against UC. In this study, we investigated the protective effects and mechanisms of FM against UC. We induced UC in rats with 4% (v/v) acetic acid (AA), orally administered 0.7 or 0.325 g/kg FM and 0.3 g/kg sulfasalazine (SASP) for 7 days, and explored the responses the drugs elicited in the rats. We assessed the general conditions of the rats by the disease active index. We evaluated colon tissue damage macroscopically and by Hematoxylin & Eosin, Alcian Blue-periodic acid-Schiff, and Masson's staining, and explored the potential mechanisms of FM on inflammation, oxidative stress, and neuropeptides by measuring TNF-α, IL-6, IL-8, IL-10, MMP9, CXCR-1, SOD, GSH-px, MDA, ROS, SIRT3, SP, VIP, ghrelin, and 5-HT. FM treatment significantly attenuated colon damage and submucosal fibrosis compared with the model. It lowered serum proinflammatory TNF-α, IL-8, and colonic MMP9 and CXCR-1, and raised serum anti-inflammatory IL-10 levels. FM upregulated the antioxidant enzymes SOD, GSH-px, and SITR3 protein but inhibited ROS and MDA production. It downregulated colonic SP, VIP, ghrelin, and 5-HT. The beneficial effects of FM might be dose dependent. Around 0.7 g/kg FM and SASP displayed similar efficacy for treating AA-induced colitis in rats. Our results provide empirical evidence that FM protects against AA-induced UC in rats via anti-inflammatory and antioxidant mechanisms, and regulates neuropeptides; thus, FM may be a promising, safe, and efficacious alternative therapy for UC, if its efficacy can be confirmed in human trials.
Collapse
Affiliation(s)
- Zongying Xu
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Zhang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenya Wang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Di Zhang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Ma
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dongmei Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Chen
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Correia AS, Duarte D, Silva I, Reguengo H, Oliveira JC, Vale N. Serotonin after β-Adrenoreceptors' Exposition: New Approaches for Personalized Data in Breast Cancer Cells. J Pers Med 2021; 11:jpm11100954. [PMID: 34683096 PMCID: PMC8537807 DOI: 10.3390/jpm11100954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
Serotonin is an important monoamine in the human body, playing crucial roles, such as a neurotransmitter in the central nervous system. Previously, our group reported that β-adrenergic drugs (ICI 118,551, isoprenaline, and propranolol) influence the proliferation of breast cancer cells (MCF-7 cells) and their inherent production of adrenaline. Thus, we aimed to investigate the production of serotonin in MCF-7 cells, clarifying if there is a relationship between this production and the viability of the cells. To address this question, briefly, we treated the MCF-7 cells with ICI 118,551, isoprenaline, and propranolol, and evaluated cellular viability and serotonin production by using MTT, Sulforhodamine B (SRB) and Neutral Red (NR) assays, and HPLC-ECD analysis, respectively. Our results demonstrate that isoprenaline promotes the most pronounced endogenous synthesis of serotonin, about 3.5-fold greater than control cells. Propranolol treatment also increased the synthesis of serotonin (when compared to control). On the other hand, treatment with the drug ICI 118,551 promoted a lower endogenous synthesis of serotonin, about 1.1-fold less than what was observed in the control. Together, these results reveal that MCF-7 cells can produce serotonin, and the drugs propranolol, isoprenaline and ICI 118,551 influence this endogenous production. For the first time, after modulation of the β-adrenergic system, a pronounced cellular growth can be related to higher consumption of serotonin by the cells, resulting in decreased levels of serotonin in cell media, indicative of the importance of serotonin in the growth of MCF-7 cells.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (A.S.C.); (D.D.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (A.S.C.); (D.D.)
- Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Isabel Silva
- Clinical Chemistry, Department of Laboratory Pathology, Centro Hospitalar Universitário do Porto (CHUP), Largo Prof. Abel Salazar, 4099-313 Porto, Portugal; (I.S.); (H.R.); (J.C.O.)
| | - Henrique Reguengo
- Clinical Chemistry, Department of Laboratory Pathology, Centro Hospitalar Universitário do Porto (CHUP), Largo Prof. Abel Salazar, 4099-313 Porto, Portugal; (I.S.); (H.R.); (J.C.O.)
- Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José Carlos Oliveira
- Clinical Chemistry, Department of Laboratory Pathology, Centro Hospitalar Universitário do Porto (CHUP), Largo Prof. Abel Salazar, 4099-313 Porto, Portugal; (I.S.); (H.R.); (J.C.O.)
- Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (A.S.C.); (D.D.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-225-513-622
| |
Collapse
|
11
|
Mordhorst A, Dhandapani P, Matthes S, Mosienko V, Rothe M, Todiras M, Self J, Schunck WH, Schütz A, Bader M, Alenina N. Phenylalanine hydroxylase contributes to serotonin synthesis in mice. FASEB J 2021; 35:e21648. [PMID: 33993565 DOI: 10.1096/fj.202100366r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Serotonin is an important signaling molecule in the periphery and in the brain. The hydroxylation of tryptophan is the first and rate-limiting step of its synthesis. In most vertebrates, two enzymes have been described to catalyze this step, tryptophan hydroxylase (TPH) 1 and 2, with expression localized to peripheral and neuronal cells, respectively. However, animals lacking both TPH isoforms still exhibit about 10% of normal serotonin levels in the blood demanding an additional source of the monoamine. In this study, we provide evidence by the gain and loss of function approaches in in vitro and in vivo systems, including stable-isotope tracing in mice, that phenylalanine hydroxylase (PAH) is a third TPH in mammals. PAH contributes to serotonin levels in the blood, and may be important as a local source of serotonin in organs in which no other TPHs are expressed, such as liver and kidney.
Collapse
Affiliation(s)
- Alexander Mordhorst
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Charite - University Medicine, Berlin, Germany
| | - Priyavathi Dhandapani
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Susann Matthes
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Valentina Mosienko
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Nicolae Testemiţanu State University of Medicine and Pharmacy, Chișinău, Moldova
| | - Julie Self
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Wolf-Hagen Schunck
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anja Schütz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Charite - University Medicine, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Institute of Cytology, Russian Academy of Science, St. Petersburg, Russia
| |
Collapse
|
12
|
Valente EEL, Damasceno ML, Klotz JL, Harmon DL. Residual effects of abomasal 5-hydroxytryptophan administration on serotonin metabolism in cattle. Domest Anim Endocrinol 2021; 76:106627. [PMID: 33882449 DOI: 10.1016/j.domaniend.2021.106627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/06/2023]
Abstract
Studies of serotonin in animal husbandry has received growing interest. However, there is limited information about serotonin manipulation using 5-HTP administered postruminally and its residual effects in cattle. The objective of this study was to evaluate the effectiveness of 5-HTP infused into the abomasum for enhancing circulating serotonin in cattle. Four Holstein steers (487 ± 7.6 kg) fitted with ruminal cannulas were used in a 4 × 4 Latin Square design experiment. The treatments were intra-abomasal infusion of 5-HTP at 0, 0.25, 0.5, and 1 mg/kg BW. Blood was collected from the jugular vein of each steer at -60, -30, 0, 30, 60, 120, 240, and 480 min from 5-HTP infusion for basal and short term evaluation and, at 1, 2, 4, and 7 d after 5-HTP infusion for long term evaluation. Dry matter intake was not affected (P > 0.05) by intra-abomasal infusions. The half-life of 5-HTP was dose-independent (128 min). The serum 5-HTP, serotonin, and 5-hydroxyindoleacetic acid area under the curve increased (P < 0.05) linearly with an increased dose of 5-HTP. Serum 5-HTP reached peak concentration in approximately 30 min after dosing while serum and plasma serotonin peaked after 240 min postinfusion. Serotonin was greater than control for all 5-HTP doses 1 d and 2 d after infusion in serum and plasma, respectively. Intra-abomasal infusion of 5-HTP at doses up to 1 mg/ kg BW increases circulating serotonin for up 2 days.
Collapse
Affiliation(s)
- E E L Valente
- Animal Science Department, State University of Western Parana, Brazil
| | - M L Damasceno
- Animal Science Department, State University of Western Parana, Brazil
| | - J L Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY
| | - D L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY.
| |
Collapse
|
13
|
Serum 5-Hydroxyindoleacetic Acid and Ratio of 5-Hydroxyindoleacetic Acid to Serotonin as Metabolomics Indicators for Acute Oxidative Stress and Inflammation in Vancomycin-Associated Acute Kidney Injury. Antioxidants (Basel) 2021; 10:antiox10060895. [PMID: 34199555 PMCID: PMC8228749 DOI: 10.3390/antiox10060895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
The incidence of vancomycin-associated acute kidney injury (VAKI) varies from 5–43%, and early detection of VAKI is important in deciding whether to discontinue nephrotoxic agents. Oxidative stress is the main mechanism of VAKI, and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been examined with respect to their involvement in ischemia/reperfusion damage in experimental animal models. In the current study, we assessed 5-HT and 5-HIAA as novel biomarkers for detecting VAKI in patients who have infections or compromised renal function, using a mass spectrometry–based metabolomics approach. We conducted amino acid profiling analysis and measurements of 5-HT and 5-HIAA using serum from subjects with VAKI (n = 28) and non-VAKI control subjects (n = 69), consisting of the infection subgroup (n = 23), CKD subgroup (n = 23), and healthy controls (HCs, n = 23). 5-HT was significantly lower in the VAKI group than in the non-VAKI groups, and the concentration of 5-HIAA and the ratio of 5-HIAA to 5-HT (5-HIAA/5-HT) showed higher values in the VAKI group. The infection subgroup presented a significantly greater 5-HIAA/5-HT ratio compared with the HC subgroup. Our study revealed that increased 5-HIAA/5-HT ratio has the potential to act as a VAKI surrogate marker, reflecting acute oxidative stress and inflammation.
Collapse
|
14
|
Connelly MK, Weaver SR, Kuehnl JM, Fricke HP, Klister M, Hernandez L. Elevated serotonin coordinates mammary metabolism in dairy cows. Physiol Rep 2021; 9:e14798. [PMID: 33835711 PMCID: PMC8034258 DOI: 10.14814/phy2.14798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Serotonin plays a diverse role in maternal and mammary metabolism. Recent research in the dairy cow has shown a relationship between serotonin and calcium, with increased serotonin concentrations improving calcium homeostasis in the peri‐partum dairy cow. Therefore, the objective was to elucidate how administration of 5‐hydroxy‐l‐tryptophan (5‐HTP), the immediate precursor to serotonin, altered serotonin and calcium metabolism in lactating dairy cows. Twelve mid‐late lactation multiparous cows were blocked by parity, production and days in milk and allocated to a daily intravenous infusion of (i) 1.5 mg/kg of 5‐HTP (n = 6) or (ii) saline (n = 6) for 3 consecutive days. Milk samples were collected daily. Blood samples were collected before and after each infusion with mammary biopsies and blood samples collected at 48, 56, and 72 h relative to termination of first infusion. Infusion of 5‐HTP increased (p = 0.001) circulating serotonin concentrations and decreased blood calcium via a transient hypocalcemia immediately after each infusion (p = 0.02). Treatment with 5‐HTP increased milk calcium concentrations (p = 0.02) and calcium release‐activated channel protein 1 (ORAI1) mRNA at 56 h and protein at 48 h relative to termination of first infusion (p = 0.008 and p = 0.09, respectively). Fifty‐six hours from termination of the first infusion mRNA of parathyroid hormone‐related protein and mammary serotonin content were increased relative to control (p = 0.03 and p = 0.05, respectively). These findings demonstrate the ability of 5‐HTP infusion to increase circulating serotonin concentrations and alter endocrine and mammary autocrine/paracrine calcium and serotonin metabolism in the lactating dairy cow.
Collapse
Affiliation(s)
- Meghan K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| | - Samantha R Weaver
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| | - Jordan M Kuehnl
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| | - Hannah P Fricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| | - Marisa Klister
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| | - Laura Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
15
|
Löfdahl A, Tornling G, Wigén J, Larsson-Callerfelt AK, Wenglén C, Westergren-Thorsson G. Pathological Insight into 5-HT 2B Receptor Activation in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2020; 22:ijms22010225. [PMID: 33379351 PMCID: PMC7796180 DOI: 10.3390/ijms22010225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022] Open
Abstract
Interstitial lung disease (ILD) encompasses a heterogeneous group of more than 200 conditions, of which primarily idiopathic pulmonary fibrosis (IPF), idiopathic nonspecific interstitial pneumonia, hypersensitivity pneumonitis, ILD associated with autoimmune diseases and sarcoidosis may present a progressive fibrosing (PF) phenotype. Despite different aetiology and histopathological patterns, the PF-ILDs have similarities regarding disease mechanisms with self-sustaining fibrosis, which suggests that the diseases may share common pathogenetic pathways. Previous studies show an enhanced activation of serotonergic signaling in pulmonary fibrosis, and the serotonin (5-HT)2 receptors have been implicated to have important roles in observed profibrotic actions. Our research findings in support by others, demonstrate antifibrotic effects with 5-HT2B receptor antagonists, alleviating several key events common for the fibrotic diseases such as myofibroblast differentiation and connective tissue deposition. In this review, we will address the potential role of 5-HT and in particular the 5-HT2B receptors in three PF-ILDs: ILD associated with systemic sclerosis (SSc-ILD), ILD associated with rheumatoid arthritis (RA-ILD) and IPF. Highlighting the converging pathways in these diseases discloses the 5-HT2B receptor as a potential disease target for PF-ILDs, which today have an urgent unmet need for therapeutic strategies.
Collapse
Affiliation(s)
- Anna Löfdahl
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
- Correspondence:
| | - Göran Tornling
- AnaMar AB, Medicon Village, Scheeletorget 1, 22381 Lund, Sweden; (C.W.); (G.T.)
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jenny Wigén
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| | - Anna-Karin Larsson-Callerfelt
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| | - Christina Wenglén
- AnaMar AB, Medicon Village, Scheeletorget 1, 22381 Lund, Sweden; (C.W.); (G.T.)
| | - Gunilla Westergren-Thorsson
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| |
Collapse
|
16
|
Smith SA, Trotter PD, McGlone FP, Walker SC. Effects of Acute Tryptophan Depletion on Human Taste Perception. Chem Senses 2020; 46:6024443. [PMID: 33277648 DOI: 10.1093/chemse/bjaa078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Taste perception has been reported to vary with changes in affective state. Distortions of taste perception, including blunted recognition thresholds, intensity, and hedonic ratings have been identified in those suffering from depressive disorders. Serotonin is a key neurotransmitter implicated in the etiology of anxiety and depression; systemic and peripheral manipulations of serotonin signaling have previously been shown to modulate taste detection. However, the specific effects of central serotonin function on taste processing have not been widely investigated. Here, in a double-blind placebo-controlled study, acute tryptophan depletion was used to investigate the effect of reduced central serotonin function on taste perception. Twenty-five female participants aged 18-28 attended the laboratory on two occasions at least 1 week apart. On one visit, they received a tryptophan depleting drink and on the other, a control drink was administered. Approximately, 6 h after drink consumption, they completed a taste perception task which measured detection thresholds and supra-threshold perceptions of the intensity and pleasantness of four basic tastes (sweet, sour, bitter, and salt). While acutely reducing central levels of serotonin had no effect on the detection thresholds of sweet, bitter, or sour tastes, it significantly enhanced detection of salt. For supra-threshold stimuli, acutely reduced serotonin levels significantly enhanced the perceived intensity of both bitter and sour tastes and blunted pleasantness ratings of bitter quinine. These findings show manipulation of central serotonin levels can modulate taste perception and are consistent with previous reports that depletion of central serotonin levels enhances neural and behavioral responsiveness to aversive signals.
Collapse
Affiliation(s)
- Sharon A Smith
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK
| | - Paula D Trotter
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK
| | - Francis P McGlone
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK.,Department of Psychology, University of Liverpool, Liverpool, UK
| | - Susannah C Walker
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
17
|
Koumarianou A, Alexandraki KI, Wallin G, Kaltsas G, Daskalakis K. Pathogenesis and Clinical Management of Mesenteric Fibrosis in Small Intestinal Neuroendocine Neoplasms: A Systematic Review. J Clin Med 2020; 9:E1777. [PMID: 32521677 PMCID: PMC7357094 DOI: 10.3390/jcm9061777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenteric fibrosis (MF) constitutes an underrecognized sequela in patients with small intestinal neuroendocrine neoplasms (SI-NENs), often complicating the disease clinical course. The aim of the present systematic review, carried out by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, is to provide an update in evolving aspects of MF pathogenesis and its clinical management in SI-NENs. Complex and dynamic interactions are present in the microenvironment of tumor deposits in the mesentery. Serotonin, as well as the signaling pathways of certain growth factors play a pivotal, yet not fully elucidated role in the pathogenesis of MF. Clinically, MF often results in significant morbidity by causing either acute complications, such as intestinal obstruction and/or acute ischemia or more chronic conditions involving abdominal pain, venous stasis, malabsorption and malnutrition. Surgical resection in patients with locoregional disease only or symptomatic distant stage disease, as well as palliative minimally invasive interventions in advanced inoperable cases seem clinically meaningful, whereas currently available systemic and/or targeted treatments do not unequivocally affect the development of MF in SI-NENs. Increased awareness and improved understanding of the molecular pathogenesis of MF in SI-NENs may provide better diagnostic and predictive tools for its timely recognition and intervention and also facilitates the development of agents targeting MF.
Collapse
Affiliation(s)
- Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Krystallenia I. Alexandraki
- 1st Department of Propaedeutic Internal Medicine, Endocrine Unit, National and Kapodistrian, University of Athens, 11527 Athens, Greece; (K.I.A.); (G.K.); (K.D.)
| | - Göran Wallin
- Department of Surgery, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden;
| | - Gregory Kaltsas
- 1st Department of Propaedeutic Internal Medicine, Endocrine Unit, National and Kapodistrian, University of Athens, 11527 Athens, Greece; (K.I.A.); (G.K.); (K.D.)
| | - Kosmas Daskalakis
- 1st Department of Propaedeutic Internal Medicine, Endocrine Unit, National and Kapodistrian, University of Athens, 11527 Athens, Greece; (K.I.A.); (G.K.); (K.D.)
- Department of Surgery, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden;
| |
Collapse
|
18
|
Rosser EC, Piper CJM, Matei DE, Blair PA, Rendeiro AF, Orford M, Alber DG, Krausgruber T, Catalan D, Klein N, Manson JJ, Drozdov I, Bock C, Wedderburn LR, Eaton S, Mauri C. Microbiota-Derived Metabolites Suppress Arthritis by Amplifying Aryl-Hydrocarbon Receptor Activation in Regulatory B Cells. Cell Metab 2020; 31:837-851.e10. [PMID: 32213346 PMCID: PMC7156916 DOI: 10.1016/j.cmet.2020.03.003] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/20/2019] [Accepted: 02/29/2020] [Indexed: 12/19/2022]
Abstract
The differentiation of IL-10-producing regulatory B cells (Bregs) in response to gut-microbiota-derived signals supports the maintenance of tolerance. However, whether microbiota-derived metabolites can modulate Breg suppressive function remains unknown. Here, we demonstrate that rheumatoid arthritis (RA) patients and arthritic mice have a reduction in microbial-derived short-chain fatty acids (SCFAs) compared to healthy controls and that in mice, supplementation with the SCFA butyrate reduces arthritis severity. Butyrate supplementation suppresses arthritis in a Breg-dependent manner by increasing the level of the serotonin-derived metabolite 5-Hydroxyindole-3-acetic acid (5-HIAA), which activates the aryl-hydrocarbon receptor (AhR), a newly discovered transcriptional marker for Breg function. Thus, butyrate supplementation via AhR activation controls a molecular program that supports Breg function while inhibiting germinal center (GC) B cell and plasmablast differentiation. Our study demonstrates that butyrate supplementation may serve as a viable therapy for the amelioration of systemic autoimmune disorders.
Collapse
Affiliation(s)
- Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK; Centre for Rheumatology Research, Division of Medicine, UCL, London WC1E 6JF, UK; Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
| | | | - Diana E Matei
- Centre for Rheumatology Research, Division of Medicine, UCL, London WC1E 6JF, UK
| | - Paul A Blair
- Centre for Rheumatology Research, Division of Medicine, UCL, London WC1E 6JF, UK
| | - André F Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael Orford
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Dagmar G Alber
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Diego Catalan
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK; Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Nigel Klein
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Jessica J Manson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK; Department of Rheumatology, University College Hospital, London, UK
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK; Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Simon Eaton
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Claudia Mauri
- Centre for Rheumatology Research, Division of Medicine, UCL, London WC1E 6JF, UK.
| |
Collapse
|
19
|
Transcriptome Modifications in the Porcine Intramuscular Adipocytes during Differentiation and Exogenous Stimulation with TNF-α and Serotonin. Int J Mol Sci 2020; 21:ijms21020638. [PMID: 31963662 PMCID: PMC7013444 DOI: 10.3390/ijms21020638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Adipocytes are dynamic cells that have critical functions to maintain body energy homeostasis. Adipocyte physiology is affected by the adipogenic differentiation, cell program, as well as by the exogenous stimulation of biochemical factors, such as serotonin and TNF-α. In this work, we investigated the global transcriptome modifications when porcine intramuscular preadipocyte (PIP) was differentiated into porcine mature adipocyte (pMA). Moreover, we studied transcriptome changes in pMA after stimulation with serotonin or TNF-α by using a microarray approach. Transcriptome analysis revealed that the expression of 270, 261, and 249 genes were modified after differentiation, or after serotonin and TNF-α stimulation, respectively. Expression changes in APP, HNF4A, ESR1, EGR1, SRC, HNF1A, FN1, ALB, STAT3, CBL, CEBPB, AR, FOS, CFTR, PAN2, PTPN6, VDR, PPARG, STAT5A and NCOA3 genes which are enriched in the ‘PPAR signaling’ and ‘insulin resistance’ pathways were found in adipocytes during the differentiation process. Dose-dependent serotonin stimulation resulted in a decreased fat accumulation in pMAs. Serotonin-induced differentially expressed genes in pMAs were found to be involved in the significant enrichment of ′GPCR ligand-binding′, ‘cell chemotaxis’, ‘blood coagulation and complement’, ‘metabolism of lipid and lipoproteins’, ‘regulation of lipid metabolism by PPARA’, and ‘lipid digestion, mobilization and transport’ pathways. TNF-α stimulation also resulted in transcriptome modifications linked with proinflammatory responses in the pMA of intramuscular origin. Our results provide a landscape of transcriptome modifications and their linked-biological pathways in response to adipogenesis, and exogenous stimulation of serotonin- and TNF-α to the pMA of intramuscular origin.
Collapse
|
20
|
Kang SW, Christensen KD, Aldridge D, Kuenzel WJ. Effects of light intensity and dual light intensity choice on plasma corticosterone, central serotonergic and dopaminergic activities in birds, Gallus gallus. Gen Comp Endocrinol 2020; 285:113289. [PMID: 31557469 DOI: 10.1016/j.ygcen.2019.113289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/21/2019] [Accepted: 09/22/2019] [Indexed: 01/01/2023]
Abstract
Light intensity plays an important role in the regulation of growth, behavior, reproduction, and welfare of avian species. Light intensity preference behavior has been suggested to be involved in welfare of birds. This study aims to investigate the effects of different light intensity and dual light intensity choice (DLIC) lighting program on plasma corticosterone (CORT), and tryptophan hydroxylase 2 (TPH2, the rate-limiting enzyme of serotonin biosynthesis) and tyrosine hydroxylase (TH, the rate-limiting enzyme of dopamine biosynthesis) gene expression in the brainstem of male chickens. Day old broilers were housed in two commercial houses, and placed in 24 pens. All the treatment groups were provided with 23 h light (L) /1 h dark (D) and 30 lx (lx) light intensity during the first week and then 18L:6D (10 lx) from day 7 to 14. Blood and brain were sampled at 14 days of age (10 lx) before the onset of light treatments. On day 15, four treatments (2, 10, 20, and 100 lx), and DLIC treatment (2/20 lx) were initiated. Samples were collected on days 15, 16, 17, 30 and 41. TPH2 expression in the dorsal raphe nucleus (DRN) and caudal raphe nucleus (CRN) of brainstem, and TPH2 and TH expression in ventral tegmental areas (VTN) of the midbrain were determined by qPCR. Results showed that bright light and DLIC lighting program temporarily attenuated plasma CORT, suggesting the short-term stress attenuating effect of bright light and DLIC lighting program. Differential TPH2 expression in the DRN and CRN observed in the DLIC birds indicate a significant effect of DLIC lighting program on the serotonergic activity in the avian brainstem. At the 41 days of age, the significant downregulation of TPH2 and TH expression occurred in the VTA of DLIC treated birds compared to the other group of birds. Taken together, temporal and spatial regulation of TPH2 and TH expression by DLIC lighting program indicate that compensatory regulation of serotonergic and dopaminergic activities might be involved in the light intensity preference behavior of birds, suggesting a possible beneficial effect of the DLIC lighting program on broiler welfare.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | - Douglas Aldridge
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wayne J Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
21
|
Herrera-Martínez AD, Feelders RA, Van den Dungen R, Dogan-Oruc F, van Koetsveld PM, Castaño JP, de Herder WW, Hofland LJ. Effect of the Tryptophan Hydroxylase Inhibitor Telotristat on Growth and Serotonin Secretion in 2D and 3D Cultured Pancreatic Neuroendocrine Tumor Cells. Neuroendocrinology 2020; 110:351-363. [PMID: 31319410 DOI: 10.1159/000502200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Serotonin, a biologically active amine, is related to carcinoid syndrome in functioning neuroendocrine tumors (NETs). Telotristat ethyl is a novel inhibitor of the tryptophan hydroxylase (TPH), a key enzyme in the production of serotonin. While its use in patients with carcinoid syndrome and uncontrolled diarrhea under somatostatin analogs (SSAs) has been recently approved, in vitro data evaluating its effectiveness are lacking. For this reason, we aimed to evaluate the effect of telotristat as monotherapy, and in combination with SSAs, on proliferation and secretion in a NET cell line model. The human pancreatic NET cell lines BON-1/QGP-1 were used as 2D and 3D cultured models; somatostatin receptor and TPH mRNA expression, as well as the potential autocrine effect of serotonin on tumor cell proliferation using a 3D culture system were evaluated. Telotristat decreased serotonin production in a dose-dependent manner at a clinically feasible concentration, without affecting cell proliferation. Its combination with pasireotide, but not with octreotide, had an additive inhibitory effect on serotonin secretion. The effect of telotristat was slightly less potent, when BON-1 cells were co-treated with octreotide. Octreotide and pasireotide had no effect on the expression of TPH. Telotristat did not have an effect on mRNA expression of somatostatin receptor subtypes. Finally, we showed that serotonin did not have an autocrine effect on NET cell proliferation on the 3D cell model. These results suggest that telotristat is an effective drug for serotonin inhibition, but the effectiveness of its combination with SST2 (somatostatin receptor subtype 2)-preferring SSA should be evaluated in more detail.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain,
| | - Richard A Feelders
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rosanna Van den Dungen
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fadime Dogan-Oruc
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter M van Koetsveld
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
| | - Wouter W de Herder
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leo J Hofland
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Kaur S, DasGupta G, Singh S. Altered Neurochemistry in Alzheimer’s Disease: Targeting Neurotransmitter Receptor Mechanisms and Therapeutic Strategy. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09823-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Abstract
The rate-limiting enzyme in serotonin synthesis is tryptophan hydroxylase (TPH). There are two independent serotonin systems in the body characterized by two isoforms of TPH, TPH1 and TPH2. While TPH2 synthesizes serotonin in the brain, TPH1 is expressed in the gut and in other peripheral tissues and supplies platelets in the circulation with serotonin. This duality of the serotonin system is enforced by the blood-brain barrier which is impermeable for serotonin. In the brain serotonin acts as neurotransmitter and is a main target for the treatment of psychiatric disorders. In the periphery it is released by platelets at the site of activation and elicits numerous physiological effects. TPH1 deficient mice were shown to be protected from diverse diseases including hemostatic, inflammatory, fibrotic, gastrointestinal, and metabolic disorders and therefore serotonin synthesis inhibition emerged as a reasonable therapeutic paradigm. Recently the first TPH inhibitor, telotristat ethyl, came on the market for the treatment of carcinoid syndrome. This review summarizes the state of development and the therapeutic opportunities of such compounds.
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany; Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.
| |
Collapse
|
24
|
Ranzil S, Ellery S, Walker DW, Vaillancourt C, Alfaidy N, Bonnin A, Borg A, Wallace EM, Ebeling PR, Erwich JJ, Murthi P. Disrupted placental serotonin synthetic pathway and increased placental serotonin: Potential implications in the pathogenesis of human fetal growth restriction. Placenta 2019; 84:74-83. [PMID: 31176514 PMCID: PMC6724713 DOI: 10.1016/j.placenta.2019.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Placental insufficiency contributes to altered maternal-fetal amino acid transfer, and thereby to poor fetal growth. An important placental function is the uptake of tryptophan and its metabolism to serotonin (5-HT) and kynurenine metabolites, which are essential for fetal development. We hypothesised that placental 5-HT content will be increased in pregnancies affected with fetal growth restriction (FGR). METHODS The components of the 5-HT synthetic pathway were determined in chorionic villus samples (CVS) from small-for gestation (SGA) and matched control collected at 10-12 weeks of human pregnancy; and in placentae from third trimester FGR and gestation-matched control pregnancies using the Fluidigm Biomarker array for mRNA expression, the activity of the enzyme TPH and 5-HT concentrations using an ELISA. RESULTS Gene expression for the rate limiting enzymes, TPH1 and TPH2; 5-HT transporter, SLC6A4; and 5-HT receptors HTR5A, HTR5B, HTR1D and HTR1E were detected in all CVS and third trimester placentae. No significant difference in mRNA was observed in SGA compared with control. Although there was no significant change in TPH1 mRNA, the mRNA of TPH2 and SLC6A4 was significantly decreased in FGR placentae (p < 0.05), while 5-HT receptor mRNA was significantly increased in FGR compared with control (p < 0.01). Placental TPH enzyme activity was significantly increased with a concomitant increase in the total placental 5-HT concentrations in FGR compared with control. CONCLUSION This study reports differential expression and activity of the key components of the 5-HT synthetic pathway associated with the pathogenesis of FGR. Further studies are required to elucidate the functional consequences of increased placental 5-HT in FGR pregnancies.
Collapse
Affiliation(s)
- Suveena Ranzil
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Stacey Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - David W Walker
- Royal Melbourne Institute of Technology University - Bundoora Campus, Melbourne, Victoria, Australia
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, Laval, QC, Canada; BioMed Research Centre, Laval, QC, Canada Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Universite du Quebec a Montreal, Montreal, QC, Canada
| | - Nadia Alfaidy
- Institut National de la Santé, et de la Recherche Médicale, Unité, 1036, Grenoble, France; Univ. Grenoble-Alpes, 38000, Grenoble, France; Commissariat à l'Energie Atomique (CEA), iRTSV- Biology of Cancer and infection, Grenoble, France
| | - Alexander Bonnin
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, USA
| | - Anthony Borg
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Victoria, Australia
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jan Jaap Erwich
- Department of Obstetrics and Gynecology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Padma Murthi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Victoria, Australia; Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Kwon YJ, Hong KW, Park BJ, Jung DH. Serotonin receptor 3B polymorphisms are associated with type 2 diabetes: The Korean Genome and Epidemiology Study. Diabetes Res Clin Pract 2019; 153:76-85. [PMID: 31152805 DOI: 10.1016/j.diabres.2019.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
AIMS Serotonin, or 5-hydroxytryptamine (5-HT), and serotonin receptor (HTR) subtypes contribute to controlling energy homeostasis. We investigated the association of polymorphisms of serotonin related genes with type 2 diabetes in Korean adults using a community-based prospective cohort study. METHODS A total of 8840 participants (4205 Ansung, 4635 Ansan) from the Korean Genome and Epidemiology Study (KoGES)-Ansan and Ansung were included. The mean follow-up duration was 7.6 years, and the Ansan and Ansung cohorts were treated as independent replicates. Individuals with existing and new-onset type 2 diabetes were identified at baseline and follow-up evaluations, respectively. Logistic regression analysis was used to evaluate the association of 3402 single nucleotide polymorphisms (SNPs) in serotonin related genes with type 2 diabetes after adjusting for baseline age, sex, body mass index, drinking status, and smoking status. RESULTS The baseline case-control comparison revealed significant association of 26 SNPs in HTR3B and HTR2A with type 2 diabetes. Interestingly, HTR3B SNP rs1176744, which is involved in behavioral disorders, was associated with type 2 diabetes (p-value = 0.0002). Furthermore, HTR3B polymorphisms that significantly associated with type 2 diabetes were located in the 3' downstream region. The new-onset type 2 diabetes case-control study revealed significant association of 3 additional SNPs of the HTR4. CONCLUSIONS We found that rs1176744 in HTR3B was associated with type 2 diabetes. Additionally, our study suggests that polymorphisms in the downstream region of HTR3B may contribute to the development of type 2 diabetes.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yonsei University College of Medicine, Yong-in Severance Hospital, Gyeonggi-do, Republic of Korea; Department of Medicine, Graduate School of Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Won Hong
- TheragenEtex BioInstitue Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Byung Jin Park
- Department of Family Medicine, Yonsei University College of Medicine, Yong-in Severance Hospital, Gyeonggi-do, Republic of Korea
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Yong-in Severance Hospital, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
26
|
Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. Eosinophils in Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:1140-1151. [PMID: 30856253 DOI: 10.1093/ibd/izz024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical investigations in inflammatory bowel disease (IBD) patients have provided increasing evidence that eosinophils contribute to chronic intestinal inflammation. Accumulation of eosinophils in the gastrointestinal tract correlates with the variations of eosinophil regulatory molecules; however, their role in gastrointestinal dysfunction in IBD has not been fully elucidated. This review will describe the development and characterization of gastrointestinal eosinophils, mechanisms of eosinophil recruitment to the gastrointestinal tract. Moreover, the eosinophil-induced changes to the enteric nervous system associated with disease severity and gastrointestinal dysfunction will be analyzed with suggestive molecular pathways for enteric neuronal injury. Current and potential therapeutic interventions targeting eosinophils will be discussed.
Collapse
Affiliation(s)
- Rhiannon T Filippone
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Lauren Sahakian
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine Western Health, Melbourne University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| |
Collapse
|
27
|
Phenotyping of Human CYP450 Enzymes by Endobiotics: Current Knowledge and Methodological Approaches. Clin Pharmacokinet 2019; 58:1373-1391. [DOI: 10.1007/s40262-019-00783-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Castells M, Butterfield J. Mast Cell Activation Syndrome and Mastocytosis: Initial Treatment Options and Long-Term Management. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1097-1106. [DOI: 10.1016/j.jaip.2019.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
|
29
|
Lushchak O, Strilbytska OM, Yurkevych I, Vaiserman AM, Storey KB. Implications of amino acid sensing and dietary protein to the aging process. Exp Gerontol 2019; 115:69-78. [DOI: 10.1016/j.exger.2018.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 01/16/2023]
|
30
|
Gehin M, Welford RW, Garzotti M, Vercauteren M, Groenen PM, Nayler O, Sidharta PN, Dingemanse J. Assessment of Peripheral Serotonin Synthesis Using Stable Isotope-Labeled Tryptophan. Clin Pharmacol Ther 2018; 104:1260-1267. [DOI: 10.1002/cpt.1087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Martine Gehin
- Clinical Pharmacology; Idorsia Pharmaceuticals Ltd; Allschwil Switzerland
| | | | - Marco Garzotti
- Drug Discovery; Idorsia Pharmaceuticals Ltd; Allschwil Switzerland
| | | | | | - Oliver Nayler
- Drug Discovery; Idorsia Pharmaceuticals Ltd; Allschwil Switzerland
| | | | - Jasper Dingemanse
- Clinical Pharmacology; Idorsia Pharmaceuticals Ltd; Allschwil Switzerland
| |
Collapse
|
31
|
Matthes S, Bader M. Peripheral Serotonin Synthesis as a New Drug Target. Trends Pharmacol Sci 2018; 39:560-572. [PMID: 29628275 DOI: 10.1016/j.tips.2018.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
Abstract
The first step in serotonin (5-HT) biosynthesis is catalyzed by tryptophan hydroxylase (TPH). There are two independent sources of the monoamine that have distinct functions: first, the TPH1-expressing enterochromaffin cells (ECs) of the gut; second, TPH2-expressing serotonergic neurons. TPH1-deficient mice revealed that peripheral 5-HT plays important roles in platelet function and in inflammatory and fibrotic diseases of gut, pancreas, lung, and liver. Therefore, TPH inhibitors were developed which cannot pass the blood-brain barrier to specifically block peripheral 5-HT synthesis. They showed therapeutic efficacy in several rodent disease models, and telotristat ethyl is the first TPH inhibitor to be approved for the treatment of carcinoid syndrome. We review this development and discuss further therapeutic options for these compounds.
Collapse
Affiliation(s)
- Susann Matthes
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany; Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
32
|
Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, Franceschi C. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci 2018; 75:129-148. [PMID: 29032502 PMCID: PMC5752746 DOI: 10.1007/s00018-017-2674-y] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022]
Abstract
The gut microbiota (GM) is a complex, evolutionarily molded ecological system, which contributes to a variety of physiological functions. The GM is highly dynamic, being sensitive to environmental stimuli, and its composition changes over the host's entire lifespan. However, the basic question of how much these changes may be ascribed to variables such as population, diet, genetics and gender, and/or to the aging process per se is still largely unanswered. We argue that comparison among studies on centenarians-the best model of healthy aging and longevity-recruited from different geographical areas/populations (different genetics and dietary habits) can help to disentangle the contribution of aging and non-aging-related variables to GM remodeling with age. The current review focuses on the role of population, gender and host genetics as possible drivers of GM modification along the human aging process. The feedback impact of age-associated GM variation on the GM-brain axis and GM metabolomics is also discussed. We likewise address the role of GM in neurodegenerative diseases such as Parkinson's and Alzheimer's, and its possible therapeutic use, taking advantage of the fact that centenarians are characterized by an extreme (healthy) phenotype versus patients suffering from age-related pathologies. Finally, it is argued that longitudinal studies combining metagenomics sequencing and in-depth phylogenetic analysis with a comprehensive phenotypic characterization of centenarians and patients using up-to-date omics (metabolomics, transcriptomics and meta-transcriptomics) are urgently needed.
Collapse
Affiliation(s)
- Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum-University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy.
- Interdepartmental Centre "L. Galvani" (CIG) Alma Mater Studiorum-University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy.
| | - Rita Ostan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum-University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
- Interdepartmental Centre "L. Galvani" (CIG) Alma Mater Studiorum-University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum-University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
- Interdepartmental Centre "L. Galvani" (CIG) Alma Mater Studiorum-University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Claudio Franceschi
- Institute of Neurological Sciences (IRCCS), Via Altura 3, 40139, Bologna, Italy
| |
Collapse
|
33
|
Brown-Borg HM, Buffenstein R. Cutting back on the essentials: Can manipulating intake of specific amino acids modulate health and lifespan? Ageing Res Rev 2017; 39:87-95. [PMID: 27570078 DOI: 10.1016/j.arr.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Abstract
With few exceptions, nutritional and dietary interventions generally impact upon both old-age quality of life and longevity. The life prolonging effects, commonly observed with dietary restriction reportedly are linked to alterations in protein intake and specifically limiting the dietary intake of certain essential amino acids. There is however a paucity of data methodically evaluating the various essential amino acids on health- and lifespan and the mechanisms involved. Rodent diets containing either lower methionine content, or tryptophan, than that found in commercially available chow, appear to elicit beneficial effects. It is unclear whether all of these favorable effects associated with restricted intake of methionine and tryptophan are due to their specific unique properties or if restriction of other essential amino acids, or proteins in general, may produce similar results. Considerably more work remains to be done to elucidate the mechanisms by which limiting these vital molecules may delay the onset of age-associated diseases and improve quality of life at older ages.
Collapse
|
34
|
Waløen K, Kleppe R, Martinez A, Haavik J. Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin Ther Targets 2016; 21:167-180. [PMID: 27973928 DOI: 10.1080/14728222.2017.1272581] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The ancient and ubiquitous monoamine signalling molecules serotonin, dopamine, norepinephrine, and epinephrine are involved in multiple physiological functions. The aromatic amino acid hydroxylases tyrosine hydroxylase (TH), tryptophan hydroxylase 1 (TPH1), and tryptophan hydroxylase 2 (TPH2) catalyse the rate-limiting steps in the biosynthesis of these monoamines. Genetic variants of TH, TPH1, and TPH2 genes are associated with neuropsychiatric disorders. The interest in these enzymes as therapeutic targets is increasing as new roles of these monoamines have been discovered, not only in brain function and disease, but also in development, cardiovascular function, energy and bone homeostasis, gastrointestinal motility, hemostasis, and liver function. Areas covered: Physiological roles of TH, TPH1, and TPH2. Enzyme structures, catalytic and regulatory mechanisms, animal models, and associated diseases. Interactions with inhibitors, pharmacological chaperones, and regulatory proteins relevant for drug development. Expert opinion: Established inhibitors of these enzymes mainly target their amino acid substrate binding site, while tetrahydrobiopterin analogues, iron chelators, and allosteric ligands are less studied. New insights into monoamine biology and 3D-structural information and new computational/experimental tools have triggered the development of a new generation of more selective inhibitors and pharmacological chaperones. The enzyme complexes with their regulatory 14-3-3 proteins are also emerging as therapeutic targets.
Collapse
Affiliation(s)
- Kai Waløen
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Rune Kleppe
- b Computational Biology Unit, Department of Informatics , University of Bergen , Bergen , Norway
| | - Aurora Martinez
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Jan Haavik
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| |
Collapse
|