1
|
Anantha P, Raj P, Saracino E, Kim JH, Kim JH, Convertino A, Gu L, Barman I. Uncovering Astrocyte Morphological Dynamics Using Optical Diffraction Tomography and Shape-Based Trajectory Inference. Adv Healthc Mater 2024:e2402960. [PMID: 39740118 DOI: 10.1002/adhm.202402960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Astrocytes, integral components of the central nervous system, are increasingly recognized for their multifaceted roles beyond support cells. Despite their acknowledged importance, understanding the intricacies of astrocyte morphological dynamics remains limited. Our study marks the first exploration of astrocytes using optical diffraction tomography (ODT), establishing a label-free, quantitative method to observe morphological changes in astrocytes over a 7-day in-vitro period. ODT offers quantitative insights into cell volume, dry mass, and area through label-free, real-time measurements-capabilities that are challenging to achieve with conventional imaging techniques. Through comprehensive analysis of 3D refractive index maps and shape characterization techniques, we capture the developmental trajectory and dynamic morphological transformations of astrocytes. Specifically, our observations reveal increased area and a transition to larger, flattened shapes, with alterations in cell volume and density, indicating shifts in cellular composition. By employing unsupervised clustering and pseudotime trajectory analysis, we introduce a novel morphological trajectory inference for neural cells, tracking the morphological evolution of astrocytes from elongated to evenly spread shapes. This analysis marks the first use of trajectory inference based solely on morphology for neural cell types, laying a foundation for future studies employing ODT to examine astrocyte dynamics and neural cell interactions across diverse substrates.
Collapse
Affiliation(s)
- Pooja Anantha
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Joo Ho Kim
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Annalisa Convertino
- Institute for Microelectronics and Microsystems, National Research Council, via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Luo Gu
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
2
|
Dinelli F, Modestino M, Galluzzi A, Posati T, Seri M, Zamboni R, Sotgiu G, Polichetti M. Magnetic Analysis of MgFe Hydrotalcites as Powder and Dispersed in Thin Films within a Keratin Matrix. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2029. [PMID: 37513040 PMCID: PMC10384693 DOI: 10.3390/nano13142029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Hydrotalcites (HTlcs) are a class of nanostructured layered materials that may be employed in a variety of applications, from green to bio technologies. In this paper, we report an investigation on HTlcs made of Mg and Fe, recently employed to improve the growth in vitro of osteoblasts within a keratin sponge. We carried out an analysis of powder materials and of HTlcs dispersed in keratin and spin-coated on a Si/SiO2 substrate at different temperatures. A magnetic study of the powders was carried out with a Quantum Design Physical Property Measurement System equipped with a Vibrating Sample Magnetometer. The data gathered prove that these HTlcs are fully paramagnetic, and keratin showed a very small magnetic response. Optical and Atomic Force Microscopy analyses of the thin films provide a detailed picture of clusters randomly dispersed in the films with various dimensions. The magnetic properties of these films were characterized using the Nano Magneto Optical Kerr Effect (NanoMOKE) down to 7.5 K. The data collected show that the local magnetic properties can be mapped with a micrometric resolution distinguishing HTlc regions from keratin ones. This approach opens new perspectives in the characterization of these composite materials.
Collapse
Affiliation(s)
- Franco Dinelli
- Istituto Nazionale di Ottica (INO) CNR, via Moruzzi 1, 56124 Pisa, Italy
- Dipartimento di Fisica, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Michele Modestino
- Dipartimento di Fisica, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Armando Galluzzi
- Dipartimento di Fisica, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Istituto Superconduttori, Materiali Innovativi e Dispositivi (SPIN) CNR, Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Tamara Posati
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Mirko Seri
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Roberto Zamboni
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) CNR, Via Gobetti 101, 40129 Bologna, Italy
- Kerline srl, Via Gobetti 101, 40129 Bologna, Italy
| | - Giovanna Sotgiu
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) CNR, Via Gobetti 101, 40129 Bologna, Italy
- Kerline srl, Via Gobetti 101, 40129 Bologna, Italy
| | - Massimiliano Polichetti
- Dipartimento di Fisica, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Istituto Superconduttori, Materiali Innovativi e Dispositivi (SPIN) CNR, Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
3
|
O'Neill KM, Saracino E, Barile B, Mennona NJ, Mola MG, Pathak S, Posati T, Zamboni R, Nicchia GP, Benfenati V, Losert W. Decoding Natural Astrocyte Rhythms: Dynamic Actin Waves Result from Environmental Sensing by Primary Rodent Astrocytes. Adv Biol (Weinh) 2023; 7:e2200269. [PMID: 36709481 DOI: 10.1002/adbi.202200269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes are key regulators of brain homeostasis, equilibrating ion, water, and neurotransmitter concentrations and maintaining essential conditions for proper cognitive function. Recently, it has been shown that the excitability of the actin cytoskeleton manifests in second-scale dynamic fluctuations and acts as a sensor of chemophysical environmental cues. However, it is not known whether the cytoskeleton is excitable in astrocytes and how the homeostatic function of astrocytes is linked to the dynamics of the cytoskeleton. Here it is shown that homeostatic regulation involves the excitable dynamics of actin in certain subcellular regions of astrocytes, especially near the cell boundary. The results further indicate that actin dynamics concentrate into "hotspot" regions that selectively respond to certain chemophysical stimuli, specifically the homeostatic challenges of ion or water concentration increases. Substrate topography makes the actin dynamics of astrocytes weaker. Super-resolution images demonstrate that surface topography is also associated with the predominant perpendicular alignment of actin filaments near the cell boundary, whereas flat substrates result in an actin cortex mainly parallel to the cell boundary. Additionally, coculture with neurons increases both the probability of actin dynamics and the strength of hotspots. The excitable systems character of actin thus makes astrocytes direct participants in neural cell network dynamics.
Collapse
Affiliation(s)
- Kate M O'Neill
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Emanuela Saracino
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Barbara Barile
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Nicholas J Mennona
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| | - Maria Grazia Mola
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Spandan Pathak
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Tamara Posati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Grazia P Nicchia
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Valentina Benfenati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
4
|
Fabbri R, Spennato D, Conte G, Konstantoulaki A, Lazzarini C, Saracino E, Nicchia GP, Frigeri A, Zamboni R, Spray DC, Benfenati V. The emerging science of Glioception: Contribution of glia in sensing, transduction, circuit integration of interoception. Pharmacol Ther 2023; 245:108403. [PMID: 37024060 DOI: 10.1016/j.pharmthera.2023.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Interoception is the process by which the nervous system regulates internal functions to achieve homeostasis. The role of neurons in interoception has received considerable recent attention, but glial cells also contribute. Glial cells can sense and transduce signals including osmotic, chemical, and mechanical status of extracellular milieu. Their ability to dynamically communicate "listening" and "talking" to neurons is necessary to monitor and regulate homeostasis and information integration in the nervous system. This review introduces the concept of "Glioception" and focuses on the process by which glial cells sense, interpret and integrate information about the inner state of the organism. Glial cells are ideally positioned to act as sensors and integrators of diverse interoceptive signals and can trigger regulatory responses via modulation of the activity of neuronal networks, both in physiological and pathological conditions. We believe that understanding and manipulating glioceptive processes and underlying molecular mechanisms provide a key path to develop new therapies for the prevention and alleviation of devastating interoceptive dysfunctions, among which pain is emphasized here with more focused details.
Collapse
Affiliation(s)
- Roberta Fabbri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, viale del Risorgimento 2, 40136 Bologna, Italy.
| | - Diletta Spennato
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Giorgia Conte
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Aikaterini Konstantoulaki
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126 Bologna, BO, Italy
| | - Chiara Lazzarini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Grazia Paola Nicchia
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, BA, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Antonio Frigeri
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Roberto Zamboni
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| |
Collapse
|
5
|
Conklin B, Conley BM, Hou Y, Chen M, Lee KB. Advanced theragnostics for the central nervous system (CNS) and neurological disorders using functional inorganic nanomaterials. Adv Drug Deliv Rev 2023; 192:114636. [PMID: 36481291 DOI: 10.1016/j.addr.2022.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Various types of inorganic nanomaterials are capable of diagnostic biomarker detection and the therapeutic delivery of a disease or inflammatory modulating agent. Those multi-functional nanomaterials have been utilized to treat neurodegenerative diseases and central nervous system (CNS) injuries in an effective and personalized manner. Even though many nanomaterials can deliver a payload and detect a biomarker of interest, only a few studies have yet to fully utilize this combined strategy to its full potential. Combining a nanomaterial's ability to facilitate targeted delivery, promote cellular proliferation and differentiation, and carry a large amount of material with various sensing approaches makes it possible to diagnose a patient selectively and sensitively while offering preventative measures or early disease-modifying strategies. By tuning the properties of an inorganic nanomaterial, the dimensionality, hydrophilicity, size, charge, shape, surface chemistry, and many other chemical and physical parameters, different types of cells in the central nervous system can be monitored, modulated, or further studies to elucidate underlying disease mechanisms. Scientists and clinicians have better understood the underlying processes of pathologies for many neurologically related diseases and injuries by implementing multi-dimensional 0D, 1D, and 2D theragnostic nanomaterials. The incorporation of nanomaterials has allowed scientists to better understand how to detect and treat these conditions at an early stage. To this end, having the multi-modal ability to both sense and treat ailments of the central nervous system can lead to favorable outcomes for patients suffering from such injuries and diseases.
Collapse
Affiliation(s)
- Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Sucha P, Hermanova Z, Chmelova M, Kirdajova D, Camacho Garcia S, Marchetti V, Vorisek I, Tureckova J, Shany E, Jirak D, Anderova M, Vargova L. The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front Cell Neurosci 2022; 16:1054919. [PMID: 36568889 PMCID: PMC9773096 DOI: 10.3389/fncel.2022.1054919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. Methods and results In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. Conclusion Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.
Collapse
Affiliation(s)
- Petra Sucha
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Zuzana Hermanova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Martina Chmelova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Valeria Marchetti
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Eyar Shany
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia,First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia,*Correspondence: Miroslava Anderova,
| | - Lydia Vargova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| |
Collapse
|
7
|
Furlani F, Montanari M, Sangiorgi N, Saracino E, Campodoni E, Sanson A, Benfenati V, Tampieri A, Panseri S, Sandri M. Electroconductive and injectable hydrogels based on gelatin and PEDOT:PSS for a minimally invasive approach in nervous tissue regeneration. Biomater Sci 2022; 10:2040-2053. [PMID: 35302129 DOI: 10.1039/d2bm00116k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
This work describes the development of electroconductive hydrogels as injectable matrices for neural tissue regeneration by exploiting a biocompatible conductive polymer - poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) - combined with a biomimetic polymer network made of gelatin. Our approach involved also genipin - a natural cross-linking agent - to promote gelation of gelatin networks embedding PEDOT:PSS. The achieved results suggest that physical-chemical properties of the resulting hydrogels, like impedance, gelation time, mechanical properties, swelling and degradation in physiological conditions, can be finely tuned by the amount of PEDOT:PSS and genipin used in the formulation. Furthermore, the presence of PEDOT:PSS (i) enhances the electrical conductivity, (ii) improves the shear modulus of the resulting hydrogels though (iii) partially impairing their resistance to shear deformation, (iv) reduces gelation time and (v) reduces their swelling ability in physiological medium. Additionally, the resulting electroconductive hydrogels demonstrate enhanced adhesion and growth of primary rat cortical astrocytes. Given the permissive interaction of hydrogels with primary astrocytes, the presented biomimetic, electroconductive and injectable hydrogels display potential applications as minimally invasive systems for neurological therapies and damaged brain tissue repair.
Collapse
Affiliation(s)
- Franco Furlani
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Margherita Montanari
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Nicola Sangiorgi
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Emanuela Saracino
- National Research Council of Italy - Institute of Organic Synthesis and Photoreactivity (ISOF-CNR), via Gobetti, 101, I - 40129, Bologna, Italy
| | - Elisabetta Campodoni
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Alessandra Sanson
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Valentina Benfenati
- National Research Council of Italy - Institute of Organic Synthesis and Photoreactivity (ISOF-CNR), via Gobetti, 101, I - 40129, Bologna, Italy
| | - Anna Tampieri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Silvia Panseri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Monica Sandri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| |
Collapse
|
8
|
Wang Z, Li Y, Zeng Z, Guo S, Chen W, Luo Y. Leucine-rich repeat containing 8A contributes to the expansion of The potential role of leucine-rich repeat-containing protein 8A in central nervous system: current situation and prospect. Neuroscience 2022; 488:122-131. [PMID: 35276302 DOI: 10.1016/j.neuroscience.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Cell swelling usually initiates the regulatory volume decrease (RVD) process mediated mainly by volume-regulated anion channels (VRACs), which are formed by multiple different leucine-rich repeat-containing protein 8 (LRRC8) family members. VRAC currents have been widely recorded in astrocytes, neurons and microglia in the brain, and VRACs have been suggested to be involved in the important pathogenesis of cell swelling-related central nervous system (CNS) diseases, such as ischemic stroke, epilepsy and epileptogenesis, glioblastoma (GBM), and so on. Recently, the increasing studies started to focus on LRRC8A (SWELL1), an obligatory subunit of VRAC indentified in 2014, which may be the key target to regulate the VRAC functions. After cerebral ischemia, the swollen astrocytes, neurons and microglia can activate LRRC8A-dependent VRACs, which may respectively promote the release of excitatory amino acids (EAA), interaction with ionotropic glutamate receptors, and regulating inflammation, suggesting the pleiotropic roles of LRRC8A in swollen brain cells. For the treatment of cell swelling-related CNS diseases, specific targeting LRRC8A may be a superior strategy to inhibit swollen-induced VRAC hyperactivity without blocking the normal VRAC function.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, Hubei, China
| | - Yunhui Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Zhikun Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Shuang Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
9
|
Woeppel KM, Cui XT. Nanoparticle and Biomolecule Surface Modification Synergistically Increases Neural Electrode Recording Yield and Minimizes Inflammatory Host Response. Adv Healthc Mater 2021; 10:e2002150. [PMID: 34190425 DOI: 10.1002/adhm.202002150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
Due to their ability to interface with neural tissues, neural electrodes are the key tool used for neurophysiological studies, electrochemical detection, brain computer interfacing, and countless neuromodulation therapies and diagnostic procedures. However, the long-term applications of neural electrodes are limited by the inflammatory host tissue response, decreasing detectable electrical signals, and insulating the device from the native environment. Surface modification methods are proposed to limit these detrimental responses but each has their own limitations. Here, a combinatorial approach is presented toward creating a stable interface between the electrode and host tissues. First, a thiolated nanoparticle (TNP) coating is utilized to increase the surface area and roughness. Next, the neural adhesion molecule L1 is immobilized to the nanoparticle modified substrate. In vitro, the combined nanotopographical and bioactive modifications (TNP+L1) elevate the bioactivity of L1, which is maintained for 28 d. In vivo, TNP+L1 modification improves the recording performance of the neural electrode arrays compared to TNP or L1 modification alone. Postmortem histology reveals greater neural cell density around the TNP+L1 coating while eliminating any inflammatory microglial encapsulation after 4 weeks. These results demonstrate that nanotopographical and bioactive modifications synergistically produce a seamless neural tissue interface for chronic neural implants.
Collapse
Affiliation(s)
- Kevin M. Woeppel
- Department of Bioengineering University of Pittsburgh Pittsburgh PA 15260 USA
- Center for the Neural basis of Cognition Pittsburgh PA 15260 USA
| | - Xinyan Tracy Cui
- Department of Bioengineering University of Pittsburgh Pittsburgh PA 15260 USA
- Center for the Neural basis of Cognition Pittsburgh PA 15260 USA
- McGowan Institute for Regenerative Medicine Pittsburgh PA 15260 USA
| |
Collapse
|
10
|
Gao J, Liao C, Liu S, Xia T, Jiang G. Nanotechnology: new opportunities for the development of patch-clamps. J Nanobiotechnology 2021; 19:97. [PMID: 33794903 PMCID: PMC8017657 DOI: 10.1186/s12951-021-00841-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
The patch-clamp technique is one of the best approaches to investigate neural excitability. Impressive improvements towards the automation of the patch-clamp technique have been made, but obvious limitations and hurdles still exist, such as parallelization, volume displacement in vivo, and long-term recording. Nanotechnologies have provided opportunities to overcome these hurdles by applying electrical devices on the nanoscale. Electrodes based on nanowires, nanotubes, and nanoscale field-effect transistors (FETs) are confirmed to be robust and less invasive tools for intracellular electrophysiological recording. Research on the interface between the nanoelectrode and cell membrane aims to reduce the seal conductance and further improve the recording quality. Many novel recording approaches advance the parallelization, and precision with reduced invasiveness, thus improving the overall intracellular recording system. The combination of nanotechnology and the present intracellular recording framework is a revolutionary and promising orientation, potentially becoming the next generation electrophysiological recording technique and replacing the conventional patch-clamp technique. Here, this paper reviews the recent advances in intracellular electrophysiological recording techniques using nanotechnology, focusing on the design of noninvasive and greatly parallelized recording systems based on nanoelectronics.
Collapse
Affiliation(s)
- Jia Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Saracino E, Zuppolini S, Guarino V, Benfenati V, Borriello A, Zamboni R, Ambrosio L. Polyaniline nano-needles into electrospun bio active fibres support in vitro astrocyte response. RSC Adv 2021; 11:11347-11355. [PMID: 35423613 PMCID: PMC8695954 DOI: 10.1039/d1ra00596k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have proposed that the bioelectrical response of glial cells, called astrocytes, currently represents a key target for neuroregenerative purposes. Here, we propose the fabrication of electrospun nanofibres containing gelatin and polyaniline (PANi) synthesized in the form of nano-needles (PnNs) as electrically conductive scaffolds to support the growth and functionalities of primary astrocytes. We report a fine control of the morphological features in terms of fibre size and spatial distribution and fibre patterning, i.e. random or aligned fibre organization, as revealed by SEM- and TEM-supported image analysis. We demonstrate that the peculiar morphological properties of fibres - i.e., the fibre size scale and alignment - drive the adhesion, proliferation, and functional properties of primary cortical astrocytes. In addition, the gradual transmission of biochemical and biophysical signals due to the presence of PnNs combined with the presence of gelatin results in a permissive and guiding environment for astrocytes. Accordingly, the functional properties of astrocytes measured via cell patch-clamp experiments reveal that PnNs do not alter the bioelectrical properties of resting astrocytes, thus setting the scene for the use of PnN-loaded nanofibres as bioconductive platforms for interfacing astrocytes and controlling their bioelectrical properties.
Collapse
Affiliation(s)
- Emanuela Saracino
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Simona Zuppolini
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Valentina Benfenati
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Anna Borriello
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Luigi Ambrosio
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| |
Collapse
|
12
|
Dai D, He L, Chen Y, Zhang C. Astrocyte responses to nanomaterials: Functional changes, pathological changes and potential applications. Acta Biomater 2021; 122:66-81. [PMID: 33326883 DOI: 10.1016/j.actbio.2020.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Astrocytes are responsible for regulating and optimizing the functional environment of neurons in the brain and can reduce the adverse impacts of external factors by protecting neurons. However, excessive astrocyte activation upon stimulation may alter their initial protective effect and actually lead to aggravation of injury. Similar to the dual effects of astrocytes in the response to injury within the central nervous system (CNS), nanomaterials (NMs) can have either toxic or beneficial effects on astrocytes, serving to promote injury or inhibit tumors. As the important physiological functions of astrocytes have been gradually revealed, the effects of NMs on astrocytes and the underlying mechanisms have become a new frontier in nanomedicine and neuroscience. This review summarizes the in vitro and in vivo findings regarding the effects of various NMs on astrocytes, focusing on functional alterations and pathological processes in astrocytes, as well as the possible underlying mechanisms. We also emphasize the importance of co-culture models in studying the interaction between NMs and cells of the CNS. Finally, we discuss NMs that have shown promise for application in astrocyte-related diseases and propose some challenges and suggestions for further investigations, with the aim of providing guidance for the widespread application of NMs in the CNS.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longwen He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuming Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
13
|
Maiolo L, Guarino V, Saracino E, Convertino A, Melucci M, Muccini M, Ambrosio L, Zamboni R, Benfenati V. Glial Interfaces: Advanced Materials and Devices to Uncover the Role of Astroglial Cells in Brain Function and Dysfunction. Adv Healthc Mater 2021; 10:e2001268. [PMID: 33103375 DOI: 10.1002/adhm.202001268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Research over the past four decades has highlighted the importance of certain brain cells, called glial cells, and has moved the neurocentric vision of structure, function, and pathology of the nervous system toward a more holistic perspective. In this view, the demand for technologies that are able to target and both selectively monitor and control glial cells is emerging as a challenge across neuroscience, engineering, chemistry, and material science. Frequently neglected or marginally considered as a barrier to be overcome between neural implants and neuronal targets, glial cells, and in particular astrocytes, are increasingly considered as active players in determining the outcomes of device implantation. This review provides a concise overview not only of the previously established but also of the emerging physiological and pathological roles of astrocytes. It also critically discusses the most recent advances in biomaterial interfaces and devices that interact with glial cells and thus have enabled scientists to reach unprecedented insights into the role of astroglial cells in brain function and dysfunction. This work proposes glial interfaces and glial engineering as multidisciplinary fields that have the potential to enable significant advancement of knowledge surrounding cognitive function and acute and chronic neuropathologies.
Collapse
Affiliation(s)
- Luca Maiolo
- Consiglio Nazionale delle Ricerche Istituto per la Microelettronica e i Microsistemi Via del Fosso del Cavaliere n.100 Roma 00133 Italy
| | - Vincenzo Guarino
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri Compositi e Biomateriali Viale J.F. Kennedy 54, Mostra d'Oltremare, Pad 20 Napoli 80125 Italy
| | - Emanuela Saracino
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Annalisa Convertino
- Consiglio Nazionale delle Ricerche Istituto per la Microelettronica e i Microsistemi Via del Fosso del Cavaliere n.100 Roma 00133 Italy
| | - Manuela Melucci
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche Istituto per la Studio dei Materiali Nanostrutturati via P. Gobetti 101 Bologna 40129 Italy
| | - Luigi Ambrosio
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri Compositi e Biomateriali Viale J.F. Kennedy 54, Mostra d'Oltremare, Pad 20 Napoli 80125 Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| |
Collapse
|
14
|
Structural and functional properties of astrocytes on PCL based electrospun fibres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111363. [DOI: 10.1016/j.msec.2020.111363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 01/18/2023]
|
15
|
Abstract
Many biomaterials have been developed which aim to match the elastic modulus of the brain for improved interfacing. However, other properties such as ultimate toughness, tensile strength, poroviscoelastic responses, energy dissipation, conductivity, and mass diffusivity also need to be considered.
Collapse
|
16
|
Borrachero-Conejo AI, Adams WR, Saracino E, Mola MG, Wang M, Posati T, Formaggio F, De Bellis M, Frigeri A, Caprini M, Hutchinson MR, Muccini M, Zamboni R, Nicchia GP, Mahadevan-Jansen A, Benfenati V. Stimulation of water and calcium dynamics in astrocytes with pulsed infrared light. FASEB J 2020; 34:6539-6553. [PMID: 32202681 DOI: 10.1096/fj.201903049r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 06/14/2024]
Abstract
Astrocytes are non-neuronal cells that govern the homeostatic regulation of the brain through ions and water transport, and Ca2+ -mediated signaling. As they are tightly integrated into neural networks, label-free tools that can modulate cell function are needed to evaluate the role of astrocytes in brain physiology and dysfunction. Using live-cell fluorescence imaging, pharmacology, electrophysiology, and genetic manipulation, we show that pulsed infrared light can modulate astrocyte function through changes in intracellular Ca2+ and water dynamics, providing unique mechanistic insight into the effect of pulsed infrared laser light on astroglial cells. Water transport is activated and, IP3 R, TRPA1, TRPV4, and Aquaporin-4 are all involved in shaping the dynamics of infrared pulse-evoked intracellular calcium signal. These results demonstrate that astrocyte function can be modulated with infrared light. We expect that targeted control over calcium dynamics and water transport will help to study the crucial role of astrocytes in edema, ischemia, glioma progression, stroke, and epilepsy.
Collapse
Affiliation(s)
- Ana I Borrachero-Conejo
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Wilson R Adams
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
| | - Emanuela Saracino
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Manqing Wang
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Bioengineering College, Chongqing University, Chongqing, China
| | - Tamara Posati
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Francesco Formaggio
- Dipartimento di Farmacia e Biotecnologie, University of Bologna, Bologna, Italy
| | - Manuela De Bellis
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
| | - Marco Caprini
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Bologna, Italy
- Dipartimento di Farmacia e Biotecnologie, University of Bologna, Bologna, Italy
| | - Mark R Hutchinson
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michele Muccini
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Roberto Zamboni
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Grazia Paola Nicchia
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
| | - Anita Mahadevan-Jansen
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valentina Benfenati
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| |
Collapse
|
17
|
Saracino E, Maiolo L, Polese D, Semprini M, Borrachero-Conejo AI, Gasparetto J, Murtagh S, Sola M, Tomasi L, Valle F, Pazzini L, Formaggio F, Chiappalone M, Hussain S, Caprini M, Muccini M, Ambrosio L, Fortunato G, Zamboni R, Convertino A, Benfenati V. A Glial-Silicon Nanowire Electrode Junction Enabling Differentiation and Noninvasive Recording of Slow Oscillations from Primary Astrocytes. ACTA ACUST UNITED AC 2020; 4:e1900264. [PMID: 32293156 DOI: 10.1002/adbi.201900264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/22/2020] [Indexed: 01/02/2023]
Abstract
The correct human brain function is dependent on the activity of non-neuronal cells called astrocytes. The bioelectrical properties of astrocytes in vitro do not closely resemble those displayed in vivo and the former are incapable of generating action potential; thus, reliable approaches in vitro for noninvasive electrophysiological recording of astrocytes remain challenging for biomedical engineering. Here it is found that primary astrocytes grown on a device formed by a forest of randomly oriented gold coated-silicon nanowires, resembling the complex structural and functional phenotype expressed by astrocytes in vivo. The device enables noninvasive extracellular recording of the slow-frequency oscillations generated by differentiated astrocytes, while flat electrodes failed on recording signals from undifferentiated cells. Pathophysiological concentrations of extracellular potassium, occurring during epilepsy and spreading depression, modulate the power of slow oscillations generated by astrocytes. A reliable approach to study the role of astrocytes function in brain physiology and pathologies is presented.
Collapse
Affiliation(s)
- Emanuela Saracino
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Luca Maiolo
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Davide Polese
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - M Semprini
- Fondazione Istituto Italiano di Tecnologia (IIT), Rehab Technologies IIT-INAIL Lab, Via Morego 30, 16163, Genova, Italy
| | - Ana Isabel Borrachero-Conejo
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, 40129, Bologna, Italy
| | - Jacopo Gasparetto
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Stefano Murtagh
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Margherita Sola
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Lorenzo Tomasi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, 40129, Bologna, Italy
| | - Luca Pazzini
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Francesco Formaggio
- Università di Bologna, Dipartimento di Farmacia e Biotecnologie FaBit, University of Bologna, via San Donato 19/2, 40127, Bologna, Italy
| | - Michela Chiappalone
- Fondazione Istituto Italiano di Tecnologia (IIT), Rehab Technologies IIT-INAIL Lab, Via Morego 30, 16163, Genova, Italy
| | - Saber Hussain
- US Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Marco Caprini
- Università di Bologna, Dipartimento di Farmacia e Biotecnologie FaBit, University of Bologna, via San Donato 19/2, 40127, Bologna, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, 40129, Bologna, Italy
| | - Luigi Ambrosio
- Istituto per i Polimeri Composti e i Biomateriali, Viale J.F. Kennedy 54, Mostra d'Oltremare, Pad 20, 80125, Napoli, Italy
| | - Guglielmo Fortunato
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| | - Annalisa Convertino
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi, Via del Fosso del Cavaliere n.100, 00133, Roma, Italy
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, via Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
18
|
Barbalinardo M, Di Giosia M, Polishchuk I, Magnabosco G, Fermani S, Biscarini F, Calvaresi M, Zerbetto F, Pellegrini G, Falini G, Pokroy B, Valle F. Retinoic acid/calcite micro-carriers inserted in fibrin scaffolds modulate neuronal cell differentiation. J Mater Chem B 2019; 7:5808-5813. [PMID: 31486471 DOI: 10.1039/c9tb01148j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The controlled release of cell differentiating agents is crucial in many aspects of regenerative medicine. Here we propose the use of hybrid calcite single crystals as micro-carriers for the controlled and localized release of retinoic acid, which is entrapped within the crystalline lattice. The release of retinoic acid occurs only in the proximity of stem cells, upon dissolution of the calcite hybrid crystals that are dispersed in the fibrin scaffold. These hybrid crystals provide a sustained dosage of the entrapped agent. The environment provided by this composite scaffold enables differentiation towards neuronal cells that form a three-dimensional neuronal network.
Collapse
Affiliation(s)
- Marianna Barbalinardo
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Iryna Polishchuk
- Department of Material Sciences and Engineering and the Russel Berrie Nanotechnology Institute Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Giulia Magnabosco
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Simona Fermani
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Fabio Biscarini
- Dipartimento di Scienze della vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Zerbetto
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Graziella Pellegrini
- Center for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, Modena, Italy and Holostem Terapie Avanzate, Modena, Italy
| | - Giuseppe Falini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Boaz Pokroy
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy. and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), ISMN-CNR, 40129 Bologna, Italy
| |
Collapse
|
19
|
Giuri D, Barbalinardo M, Sotgiu G, Zamboni R, Nocchetti M, Donnadio A, Corticelli F, Valle F, Gennari CGM, Selmin F, Posati T, Aluigi A. Nano-hybrid electrospun non-woven mats made of wool keratin and hydrotalcites as potential bio-active wound dressings. NANOSCALE 2019; 11:6422-6430. [PMID: 30888347 DOI: 10.1039/c8nr10114k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, nano-hybrid electrospun non-woven mats made of wool keratin combined with diclofenac loaded hydrotalcites (HTD) were prepared and characterized as potential drug delivery systems and scaffolds for fibroblast cell growth. Nano-hybrid electrospun non-woven mats showed a good adaptability to wet skin, effortlessly conforming to the three-dimensional topography of the tissue. Nanosized HTD exercised an overall reinforcing action on the electrospun non-woven mats since the nanohybrid samples displayed a reduced swelling ratio and a slower degradation profile compared to keratin-based nanofiber non-woven mats containing free diclofenac, without negative effects on drug release. The cell viability test indicated a decreased toxicity of the drug when loaded into nanofibers and confirmed the biocompatibility of keratin/HTD electrospun non-woven mats; moreover, a controlled diclofenac release within the first 24 hours does not compromise the fibroblast cell growth in a significant manner.
Collapse
Affiliation(s)
- Demetra Giuri
- Institute of Organic Synthesis and Photoreactivity, National Research Council, via P. Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Borrachero‐Conejo AI, Saracino E, Natali M, Prescimone F, Karges S, Bonetti S, Nicchia GP, Formaggio F, Caprini M, Zamboni R, Mercuri F, Toffanin S, Muccini M, Benfenati V. Electrical Stimulation by an Organic Transistor Architecture Induces Calcium Signaling in Nonexcitable Brain Cells. Adv Healthc Mater 2019; 8:e1801139. [PMID: 30565894 DOI: 10.1002/adhm.201801139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Indexed: 12/31/2022]
Abstract
Organic bioelectronics have a huge potential to generate interfaces and devices for the study of brain functions and for the therapy of brain pathologies. In this context, increasing efforts are needed to develop technologies for monitoring and stimulation of nonexcitable brain cells, called astrocytes. Astroglial calcium signaling plays, indeed, a pivotal role in the physiology and pathophysiology of the brain. Here, the use of transparent organic cell stimulating and sensing transistor (O-CST) architecture, fabricated with N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13), to elicit and monitor intracellular calcium concentration ([Ca2+ ]i ) in primary rat neocortical astrocytes is demonstrated. The transparency of O-CST allows performing calcium imaging experiments, showing that extracellular electrical stimulation of astrocytes induces a drastic increase in [Ca2+ ]i . Pharmacological studies indicate that transient receptor potential (TRP) superfamily are critical mediators of the [Ca2+ ]i increase. Experimental and computational analyses show that [Ca2+ ]i response is enabled by the O-CST device architecture. Noteworthy, the extracellular field application induces a slight but significant increase in the cell volume. Collectively, it is shown that the O-CST is capable of selectively evoking astrocytes [Ca2+ ]i , paving the way to the development of organic bioelectronic devices as glial interfaces to excite and control physiology of non-neuronal brain cells.
Collapse
Affiliation(s)
- Ana Isabel Borrachero‐Conejo
- Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via Gobetti 101 40129 Bologna Italy
| | - Emanuela Saracino
- Consiglio Nazionale delle Ricerche (CNR) Istituto per la Sintesi Organica e la Fotoreattività (ISOF) Via Gobetti 101 40129 Bologna Italy
| | - Marco Natali
- Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via Gobetti 101 40129 Bologna Italy
| | - Federico Prescimone
- Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via Gobetti 101 40129 Bologna Italy
| | - Saskia Karges
- Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via Gobetti 101 40129 Bologna Italy
| | - Simone Bonetti
- Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via Gobetti 101 40129 Bologna Italy
| | - Grazia Paola Nicchia
- Prof. G. P. Nicchia Biotecnologie e Biofarmaceutica University of Bari Aldo Moro Via Orabona 4 70125 Bari Italy
| | - Francesco Formaggio
- Dipartimento di Farmacia e Biotecnologie (FaBit) University of Bologna Via San Donato 15 Bologna 40129 Italy
| | - Marco Caprini
- Dipartimento di Farmacia e Biotecnologie (FaBit) University of Bologna Via San Donato 15 Bologna 40129 Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche (CNR) Istituto per la Sintesi Organica e la Fotoreattività (ISOF) Via Gobetti 101 40129 Bologna Italy
| | - Francesco Mercuri
- Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via Gobetti 101 40129 Bologna Italy
| | - Stefano Toffanin
- Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via Gobetti 101 40129 Bologna Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via Gobetti 101 40129 Bologna Italy
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche (CNR) Istituto per la Sintesi Organica e la Fotoreattività (ISOF) Via Gobetti 101 40129 Bologna Italy
| |
Collapse
|
21
|
Li Q, Wang D, Qiu J, Peng F, Liu X. Regulating the local pH level of titanium via Mg-Fe layered double hydroxides films for enhanced osteogenesis. Biomater Sci 2018; 6:1227-1237. [PMID: 29589018 DOI: 10.1039/c8bm00100f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hard tissue implant materials which can cause a suitable alkaline microenvironment are thought to be beneficial for stimulating osteoblast differentiation while suppressing osteoclast generation. To make the local pH around the interface between materials and cells controllable, we prepared a series of Mg-Fe layered double hydroxide (LDH) films on acid-etched pure titanium surfaces via hydrothermal treatment. By adjusting the Mg/Fe proportion ratio, the interlayer spacing of Mg-Fe LDHs was regulated, making their OH- exchange abilities adjustable, and this ultimately resulted in a microenvironment with a controllable pH value. In vitro experiments demonstrated that the Mg-Fe LDH film-modified titanium surface possessed good biocompatibility and osteogenic activity, especially the Mg-Fe LDH film with Mg/Fe proportion ratio of 4, which could form a suitable alkaline microenvironment for the growth and osteogenetic differentiation of stem cells. These results demonstrate the potential application of the prepared Mg-Fe LDH films in enhancing the osteogenesis of implant materials while providing a new way into the design of controllable alkaline environment.
Collapse
Affiliation(s)
- Qianwen Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | | | | | | | | |
Collapse
|
22
|
Chiacchiaretta M, Bramini M, Rocchi A, Armirotti A, Giordano E, Vázquez E, Bandiera T, Ferroni S, Cesca F, Benfenati F. Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. NANO LETTERS 2018; 18:5827-5838. [PMID: 30088941 DOI: 10.1021/acs.nanolett.8b02487] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Graphene-based materials are the focus of intense research efforts to devise novel theranostic strategies for targeting the central nervous system. In this work, we have investigated the consequences of long-term exposure of primary rat astrocytes to pristine graphene (GR) and graphene oxide (GO) flakes. We demonstrate that GR/GO interfere with a variety of intracellular processes as a result of their internalization through the endolysosomal pathway. Graphene-exposed astrocytes acquire a more differentiated morphological phenotype associated with extensive cytoskeletal rearrangements. Profound functional alterations are induced by GO internalization, including the upregulation of inward-rectifying K+ channels and of Na+-dependent glutamate uptake, which are linked to the astrocyte capacity to control the extracellular homeostasis. Interestingly, GO-pretreated astrocytes promote the functional maturation of cocultured primary neurons by inducing an increase in intrinsic excitability and in the density of GABAergic synapses. The results indicate that graphene nanomaterials profoundly affect astrocyte physiology in vitro with consequences for neuronal network activity. This work supports the view that GO-based materials could be of great interest to address pathologies of the central nervous system associated with astrocyte dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | - Ester Vázquez
- Departamento de Química Orgánica , Universidad de Castilla La-Mancha , 13071 Ciudad Real , Spain
| | | | - Stefano Ferroni
- Department of Pharmacy and Biotechnology , University of Bologna , 40126 Bologna , Italy
| | - Fabrizia Cesca
- IRCCS Ospedale Policlinico , San Martino, Genova , Italy
| | | |
Collapse
|
23
|
Durso M, Borrachero-Conejo AI, Bettini C, Treossi E, Scidà A, Saracino E, Gazzano M, Christian M, Morandi V, Tuci G, Giambastiani G, Ottaviano L, Perrozzi F, Benfenati V, Melucci M, Palermo V. Biomimetic graphene for enhanced interaction with the external membrane of astrocytes. J Mater Chem B 2018; 6:5335-5342. [PMID: 32254499 DOI: 10.1039/c8tb01410h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Graphene and graphene substrates display huge potential as material interfaces for devices and biomedical tools targeting the modulation or recovery of brain functionality. However, to be considered reliable neural interfaces, graphene-derived substrates should properly interact with astrocytes, favoring their growth and avoiding adverse gliotic reactions. Indeed, astrocytes are the most abundant cells in the human brain and they have a crucial physiological role to maintain its homeostasis and modulate synaptic transmission. In this work, we describe a new strategy based on the chemical modification of graphene oxide (GO) with a synthetic phospholipid (PL) to improve interaction of GO with brain astroglial cells. The PL moieties were grafted on GO sheets through polymeric brushes obtained by atom-transfer radical-polymerization (ATRP) between acryloyl-modified PL and GO nanosheets modified with a bromide initiator. The adhesion of primary rat cortical astrocytes on GO-PL substrates increased by about three times with respect to that on glass substrates coated with standard adhesion agents (i.e. poly-d-lysine, PDL) as well as with respect to that on non-functionalized GO. Moreover, we show that astrocytes seeded on GO-PL did not display significant gliotic reactivity, indicating that the material interface did not cause a detrimental inflammatory reaction when interacting with astroglial cells. Our results indicate that the reported biomimetic approach could be applied to neural prosthesis to improve cell colonization and avoid glial scar formation in brain implants. Additionally, improved adhesion could be extremely relevant in devices targeting neural cell sensing/modulation of physiological activity.
Collapse
Affiliation(s)
- M Durso
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Young AT, Cornwell N, Daniele MA. Neuro-Nano Interfaces: Utilizing Nano-Coatings and Nanoparticles to Enable Next-Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1700239. [PMID: 33867903 PMCID: PMC8049593 DOI: 10.1002/adfm.201700239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neural interfaces provide a window into the workings of the nervous system-enabling both biosignal recording and modulation. Traditionally, neural interfaces have been restricted to implanted electrodes to record or modulate electrical activity of the nervous system. Although these electrode systems are both mechanically and operationally robust, they have limited utility due to the resultant macroscale damage from invasive implantation. For this reason, novel nanomaterials are being investigated to enable new strategies to chronically interact with the nervous system at both the cellular and network level. In this feature article, the use of nanomaterials to improve current electrophysiological interfaces, as well as enable new nano-interfaces to modulate neural activity via alternative mechanisms, such as remote transduction of electromagnetic fields are explored. Specifically, this article will review the current use of nanoparticle coatings to enhance electrode function, then an analysis of the cutting-edge, targeted nanoparticle technologies being utilized to interface with both the electrophysiological and biochemical behavior of the nervous system will be provided. Furthermore, an emerging, specialized-use case for neural interfaces will be presented: the modulation of the blood-brain barrier.
Collapse
Affiliation(s)
- Ashlyn T Young
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Neil Cornwell
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| |
Collapse
|
25
|
Guarino V, Benfenati V, Cruz-Maya I, Saracino E, Zamboni R, Ambrosio L. Instructive proteins for tissue regeneration. FUNCTIONAL 3D TISSUE ENGINEERING SCAFFOLDS 2018:23-49. [DOI: 10.1016/b978-0-08-100979-6.00002-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|