1
|
Kelty TJ, Kerr NR, Chou CH, Shryack GE, Taylor CL, Krause AA, Knutson AR, Bunten J, Childs TE, Meers GM, Dashek RJ, Puchalska P, Crawford PA, Thyfault JP, Booth FW, Rector RS. Cognitive impairment caused by compromised hepatic ketogenesis is prevented by endurance exercise. J Physiol 2025. [PMID: 39808588 DOI: 10.1113/jp287573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Extensive research has demonstrated endurance exercise to be neuroprotective. Whether these neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. To investigate the role of hepatic ketone production on brain health during exercise, healthy 6-month-old female rats underwent viral knockdown of the rate-limiting enzyme in the liver that catalyses the first reaction in ketogenesis: 3-hydroxymethylglutaryl-CoA synthase 2 (HMGCS2). Rats were then subjected to either a bout of acute exercise or 4 weeks of chronic treadmill running (5 days/week) and cognitive behavioural testing. Acute exercise elevated ketone plasma concentration 1 h following exercise. Hepatic HMGCS2 knockdown, verified by protein expression, reduced ketone plasma concentration 1 h after acute exercise and 48 h after chronic exercise. Proteomic analysis and enrichment of the frontal cortex revealed hepatic HMGCS2 knockdown reduced markers of mitochondrial function 1 h after acute exercise. HMGCS2 knockdown significantly reduced state 3 complex I + II respiration in isolated mitochondria from the frontal cortex after chronic exercise. Spatial memory and protein markers of synaptic plasticity were significantly reduced by HMGCS2 knockdown. These deficiencies were prevented by chronic endurance exercise training. In summary, these are the first data to propose that hepatic ketogenesis is required to maintain cognition and mitochondrial function, irrespective of training status, and that endurance exercise can overcome neuropathology caused by insufficient hepatic ketogenesis. These results establish a mechanistic link between liver and brain health that enhance our understanding of how peripheral tissue metabolism influences brain health. KEY POINTS: Decades of literature demonstrate endurance exercise to be neuroprotective. Whether neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. This study provides the first set of data that suggest hepatic ketogenesis is required to maintain cognition, synaptic plasticity and mitochondrial function. These data indicate endurance exercise can protect against cognitive decline caused by compromised hepatic ketogenesis. These results establish a mechanistic link between liver and brain function, prompting further investigation of how hepatic metabolism influences brain health.
Collapse
Affiliation(s)
- Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Chih H Chou
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Grace E Shryack
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Christopher L Taylor
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Alexa A Krause
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Alexandra R Knutson
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Josh Bunten
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Tom E Childs
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Grace M Meers
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Ryan J Dashek
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter A Crawford
- Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - John P Thyfault
- Departments of Cellular Biology and Physiology and Internal Medicine-Division of Endocrinology, KU Diabetes Institute University of Kansas Medical Center, Kansas City, Kansas, USA
- Research Service, Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
- NextGen Precision Health, University of Missouri-Columbia, Columbia, Missouri, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri-Columbia, Columbia, Missouri, USA
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
| |
Collapse
|
2
|
Carracedo S, Launay A, Dechelle-Marquet PA, Faivre E, Blum D, Delarasse C, Boué-Grabot E. Purinergic-associated immune responses in neurodegenerative diseases. Prog Neurobiol 2024; 243:102693. [PMID: 39579963 DOI: 10.1016/j.pneurobio.2024.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The chronic activation of immune cells can participate in the development of pathological conditions such as neurodegenerative diseases including Alzheimer's disease (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, compelling evidence indicates that purinergic signaling plays a key role in neuro-immune cell functions. The extracellular release of adenosine 5'-triphosphate (ATP), and its breakdown products (ADP and adenosine) provide the versatile basis for complex purinergic signaling through the activation of several families of receptors. G-protein coupled adenosine A2A receptors, ionotropic P2X and G-protein coupled P2Y receptors for ATP and other nucleotides are abundant and widely distributed in neurons, microglia, and astrocytes of the central nervous system as well as in peripheral immune cells. These receptors are strongly linked to inflammation, with a functional interplay that may influence the intricate purinergic signaling involved in inflammatory responses. In the present review, we examine the roles of the purinergic receptors in neuro-immune cell functions with particular emphasis on A2AR, P2X4 and P2X7 and their possible relevance to specific neurodegenerative disorders. Understanding the molecular mechanisms governing purinergic receptor interaction will be crucial for advancing the development of effective immunotherapies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Carracedo
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Agathe Launay
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | | | - Emilie Faivre
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - David Blum
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - Cécile Delarasse
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17, rue Moreau, Paris F-75012, France
| | | |
Collapse
|
3
|
Yang R, Lei Q, Liu Z, Shan X, Han S, Tang Y, Niu F, Liu H, Jiang W, Wei W, Han T. Relationship between timing of coffee and tea consumption with mortality (total, cardiovascular disease and diabetes) in people with diabetes: the U.S. National Health and Nutrition Examination Survey, 2003-2014. BMC Med 2024; 22:526. [PMID: 39523296 PMCID: PMC11552133 DOI: 10.1186/s12916-024-03736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Previous observational studies have suggested diabetic patients should synchronize their foods and nutrient intake with their biological rhythm; however, the optimal intake time of coffee and tea for reducing all-cause and disease-specific mortality in diabetes is still unknown. This study aims to examine by investigating the association of timing for coffee and tea consumption with long-term survival in people with diabetes. METHODS A total of 5378 people with diabetes who enrolled in the National Health and Nutrition Examination Survey from 2003 to 2014 were recruited for this study. Coffee and tea intakes were measured by a 24-h dietary recall, which were divided by different time intervals across the day, including dawn to forenoon, forenoon to noon, noon to evening, and evening to dawn. Weighted cox proportional hazards regression models were developed to evaluate the survival-relationship of coffee and tea consumption with mortality of all-cause, cardiovascular disease (CVD), stroke, and diabetes. RESULTS During 47,361 person-year follow up, total 1639 death cases were documented, including 731 CVD deaths, 467 heart disease deaths, 99 stroke deaths, and 462 diabetes deaths. After adjustment for potential confounders, compared with participants without drinking coffee during dawn to forenoon, drinking coffee at this period was associated with increased mortality risk of all-cause (HR 1.25, 95% CI 1.05-1.50), CVD (HR 1.41, 95% CI 1.07-1.86), heart-disease (HR 1.47, 95% CI 1.05-2.07), and diabetes (HR 1.50, 95% CI 1.10-2.04). In contrast, drinking coffee during forenoon to noon had lower mortality risk of all-cause (HR 0.80, 95% CI 0.69-0.92), CVD (HR 0.79, 95% CI 0.63-0.99), and heart disease (HR 0.70, 95% CI 0.52-0.94). Similarly, drinking tea during forenoon to noon had lower risk of CVD mortality (HR = 0.62, 95% CI 0.44-0.87). CONCLUSIONS This study suggests that drinking coffee in dawn to forenoon is linked to a higher risk of death, but having coffee and tea from forenoon to noon is linked to a lower risk of overall mortality, CVD, and heart disease in individuals with diabetes.
Collapse
Affiliation(s)
- Ruiming Yang
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Qianqian Lei
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zijie Liu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xinyu Shan
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Sijia Han
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yiwei Tang
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Fengru Niu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Hui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China.
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China.
| | - Wei Wei
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China.
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China.
| | - Tianshu Han
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China.
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Zhao Y, Zhou YG, Chen JF. Targeting the adenosine A 2A receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson's disease. Chin J Traumatol 2024; 27:125-133. [PMID: 37679245 PMCID: PMC11138351 DOI: 10.1016/j.cjtee.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors, called A1 and A2A receptors. The adenosine A2A receptor (A2AR) antagonists have been clinically pursued for the last 2 decades, leading to final approval of the istradefylline, an A2AR antagonist, for the treatment of OFF-Parkinson's disease (PD) patients. The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury (TBI), namely neuroprotection or improving cognition. In this review, we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment. We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity, and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation. Moreover, we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients. Collectively, the convergence of clinical, epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
5
|
Oliveros A, Poleschuk M, Cole PD, Boison D, Jang MH. Chemobrain: An accelerated aging process linking adenosine A 2A receptor signaling in cancer survivors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:267-305. [PMID: 37741694 PMCID: PMC10947554 DOI: 10.1016/bs.irn.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/25/2023]
Abstract
Chemotherapy has a significant positive impact in cancer treatment outcomes, reducing recurrence and mortality. However, many cancer surviving children and adults suffer from aberrant chemotherapy neurotoxic effects on learning, memory, attention, executive functioning, and processing speed. This chemotherapy-induced cognitive impairment (CICI) is referred to as "chemobrain" or "chemofog". While the underlying mechanisms mediating CICI are still unclear, there is strong evidence that chemotherapy accelerates the biological aging process, manifesting as effects which include telomere shortening, epigenetic dysregulation, oxidative stress, mitochondrial defects, impaired neurogenesis, and neuroinflammation, all of which are known to contribute to increased anxiety and neurocognitive decline. Despite the increased prevalence of CICI, there exists a lack of mechanistic understanding by which chemotherapy detrimentally affects cognition in cancer survivors. Moreover, there are no approved therapeutic interventions for this condition. To address this gap in knowledge, this review attempts to identify how adenosine signaling, particularly through the adenosine A2A receptor, can be an essential tool to attenuate accelerated aging phenotypes. Importantly, the adenosine A2A receptor uniquely stands at the crossroads of cancer treatment and improved cognition, given that it is widely known to control tumor induced immunosuppression in the tumor microenvironment, while also posited to be an essential regulator of cognition in neurodegenerative disease. Consequently, we propose that the adenosine A2A receptor may provide a multifaceted therapeutic strategy to enhance anticancer activity, while combating chemotherapy induced cognitive deficits, both which are essential to provide novel therapeutic interventions against accelerated aging in cancer survivors.
Collapse
Affiliation(s)
- Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Michael Poleschuk
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Peter D Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| |
Collapse
|
6
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Wang M, Li P, Li Z, da Silva BS, Zheng W, Xiang Z, He Y, Xu T, Cordeiro C, Deng L, Dai Y, Ye M, Lin Z, Zhou J, Zhou X, Ye F, Cunha RA, Chen J, Guo W. Lateral septum adenosine A 2A receptors control stress-induced depressive-like behaviors via signaling to the hypothalamus and habenula. Nat Commun 2023; 14:1880. [PMID: 37019936 PMCID: PMC10076302 DOI: 10.1038/s41467-023-37601-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Major depressive disorder ranks as a major burden of disease worldwide, yet the current antidepressant medications are limited by frequent non-responsiveness and significant side effects. The lateral septum (LS) is thought to control of depression, however, the cellular and circuit substrates are largely unknown. Here, we identified a subpopulation of LS GABAergic adenosine A2A receptors (A2AR)-positive neurons mediating depressive symptoms via direct projects to the lateral habenula (LHb) and the dorsomedial hypothalamus (DMH). Activation of A2AR in the LS augmented the spiking frequency of A2AR-positive neurons leading to a decreased activation of surrounding neurons and the bi-directional manipulation of LS-A2AR activity demonstrated that LS-A2ARs are necessary and sufficient to trigger depressive phenotypes. Thus, the optogenetic modulation (stimulation or inhibition) of LS-A2AR-positive neuronal activity or LS-A2AR-positive neurons projection terminals to the LHb or DMH, phenocopied depressive behaviors. Moreover, A2AR are upregulated in the LS in two male mouse models of repeated stress-induced depression. This identification that aberrantly increased A2AR signaling in the LS is a critical upstream regulator of repeated stress-induced depressive-like behaviors provides a neurophysiological and circuit-based justification of the antidepressant potential of A2AR antagonists, prompting their clinical translation.
Collapse
Affiliation(s)
- Muran Wang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Peijun Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
| | - Zewen Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Beatriz S da Silva
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
- Portuguese National Institute of Legal Medicine and Forensic Sciences (INMLCF, IP), Coimbra, Portugal
| | - Wu Zheng
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Zhenghua Xiang
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Naval Medical University, Shanghai, China
| | - Yan He
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Tao Xu
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Cristina Cordeiro
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
- Portuguese National Institute of Legal Medicine and Forensic Sciences (INMLCF, IP), Coimbra, Portugal
| | - Lu Deng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
| | - Yuwei Dai
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Mengqian Ye
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Zhiqing Lin
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Jianhong Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xuzhao Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Fenfen Ye
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Rodrigo A Cunha
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Jiangfan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Launay A, Nebie O, Vijaya Shankara J, Lebouvier T, Buée L, Faivre E, Blum D. The role of adenosine A 2A receptors in Alzheimer's disease and tauopathies. Neuropharmacology 2023; 226:109379. [PMID: 36572177 DOI: 10.1016/j.neuropharm.2022.109379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Adenosine signals through four distinct G protein-coupled receptors that are located at various synapses, cell types and brain areas. Through them, adenosine regulates neuromodulation, neuronal signaling, learning and cognition as well as the sleep-wake cycle, all strongly impacted in neurogenerative disorders, among which Alzheimer's Disease (AD). AD is a complex form of cognitive deficits characterized by two pathological hallmarks: extracellular deposits of aggregated β-amyloid peptides and intraneuronal fibrillar aggregates of hyper- and abnormally phosphorylated Tau proteins. Both lesions contribute to the early dysfunction and loss of synapses which are strongly associated to the development of cognitive decline in AD patients. The present review focuses on the pathophysiological impact of the A2ARs dysregulation observed in cognitive area from AD patients. We are reviewing not only evidence of the cellular changes in A2AR levels in pathological conditions but also describe what is currently known about their consequences in term of synaptic plasticity, neuro-glial miscommunication and memory abilities. We finally summarize the proof-of-concept studies that support A2AR as credible targets and the clinical interest to repurpose adenosine drugs for the treatment of AD and related disorders. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Agathe Launay
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Ouada Nebie
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Jhenkruthi Vijaya Shankara
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Thibaud Lebouvier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France; CHU Lille, Memory Clinic, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Emilie Faivre
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France.
| |
Collapse
|
9
|
Development of Human Adrenocortical Adenoma (HAA1) Cell Line from Zona Reticularis. Int J Mol Sci 2022; 24:ijms24010584. [PMID: 36614027 PMCID: PMC9820690 DOI: 10.3390/ijms24010584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
The human adrenal cortex is composed of distinct zones that are the main source of steroid hormone production. The mechanism of adrenocortical cell differentiation into several functionally organized populations with distinctive identities remains poorly understood. Human adrenal disease has been difficult to study, in part due to the absence of cultured cell lines that faithfully represent adrenal cell precursors in the early stages of transformation. Here, Human Adrenocortical Adenoma (HAA1) cell line derived from a patient's macronodular adrenocortical hyperplasia and was treated with histone deacetylase inhibitors (HDACis) and gene expression was examined. We describe a patient-derived HAA1 cell line derived from the zona reticularis, the innermost zone of the adrenal cortex. The HAA1 cell line is unique in its ability to exit a latent state and respond with steroidogenic gene expression upon treatment with histone deacetylase inhibitors. The gene expression pattern of differentiated HAA1 cells partially recreates the roster of genes in the adrenal layer that they have been derived from. Gene ontology analysis of whole genome RNA-seq corroborated increased expression of steroidogenic genes upon HDAC inhibition. Surprisingly, HDACi treatment induced broad activation of the Tumor Necrosis Factor (TNF) alpha pathway. This novel cell line we developed will hopefully be instrumental in understanding the molecular and biochemical mechanisms controlling adrenocortical differentiation and steroidogenesis.
Collapse
|
10
|
The Role of the Adenosine System on Emotional and Cognitive Disturbances Induced by Ethanol Binge Drinking in the Immature Brain and the Beneficial Effects of Caffeine. Pharmaceuticals (Basel) 2022; 15:ph15111323. [DOI: 10.3390/ph15111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Binge drinking intake is the most common pattern of ethanol consumption by adolescents, which elicits emotional disturbances, mainly anxiety and depressive symptoms, as well as cognitive alterations. Ethanol exposure may act on the adenosine neuromodulation system by increasing adenosine levels, consequently increasing the activation of adenosine receptors in the brain. The adenosine modulation system is involved in the control of mood and memory behavior. However, there is a gap in the knowledge about the exact mechanisms related to ethanol exposure’s hazardous effects on the immature brain (i.e., during adolescence) and the role of the adenosine system thereupon. The present review attempts to provide a comprehensive picture of the role of the adenosinergic system on emotional and cognitive disturbances induced by ethanol during adolescence, exploring the potential benefits of caffeine administration in view of its action as a non-selective antagonist of adenosine receptors.
Collapse
|
11
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
12
|
Madeira D, Dias L, Santos P, Cunha RA, Agostinho P, Canas PM. Adenosine A 2A receptors blockade attenuates dexamethasone-induced alterations in cultured astrocytes. Purinergic Signal 2022; 18:199-204. [PMID: 35476241 PMCID: PMC9123136 DOI: 10.1007/s11302-022-09864-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Anxiety involves abnormal glucocorticoid signalling and altered glia-neuron communication in brain regions processing emotional responses. Adenosine A2A receptor (A2AR) blockade ameliorates mood and memory impairments by preventing synaptic dysfunction and astrogliosis. Since the glucocorticoid dexamethasone (DEX) can mimic early life-stress conditions, leading to anxiety-like behaviours, we now tested if A2AR blockade prevents alterations in the morphology and function of astrocytes exposed to DEX. Cultured astrocytes exposed to DEX exhibited an up-regulation of astrocytic markers (GFAP, connexin-43 and glutamine synthetase), as well as of A2AR. Moreover, DEX enhanced ATP and glutamate release and increased basal astrocytic Ca2+ levels. The selective A2AR antagonist SCH58261 prevented DEX-induced alterations in ATP release and basal Ca2+ levels but did not affect DEX-induced alteration of glutamate release and astrocytic markers. These findings suggest that alterations in astrocytes function, which might contribute to abnormal glucocorticoid brain signalling, are controlled by A2AR, and therefore, reinforce the relevance of A2AR as a potential therapeutic target to manage mood disorders.
Collapse
Affiliation(s)
- Daniela Madeira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Liliana Dias
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Patrícia Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Paula M Canas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Ingegnoli F, Cavalli S, Giudice L, Caporali R. Caffeine and rheumatoid arthritis: A complicated relationship. Clin Exp Rheumatol 2022; 21:103117. [PMID: 35595049 DOI: 10.1016/j.autrev.2022.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
Abstract
The current ideal goal of rheumatoid arthritis (RA) management is to resolve joint and systemic inflammation by using pharmacological interventions, assuming this will correspondingly lead to overall well-being. Nonetheless, it has emerged that a substantial number of RA patients do not reach optimal disease control. Thus suggesting the holistic management of subjective symptoms might be overlooked. This poses significant medical challenges; hence the proposal of incorporating lifestyle interventions as part of a multidimensional approach. Among these aspects, both patients and physicians perceive the important role of nutrition. This review shall examine how caffeine, one of the most studied bioactive components of the most widely consumed beverages, may potentially interfere with RA management. In particular, the mechanism by which caffeine affects RA pathogenesis, as a trigger for RA onset or flare, including its influence on rheumatic drug metabolism and the most common RA comorbidities and constitutional symptoms are outlined, highlighting important knowledge gaps and unmet research needs.
Collapse
Affiliation(s)
- Francesca Ingegnoli
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy.
| | - Silvia Cavalli
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| | - Laura Giudice
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| | - Roberto Caporali
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
14
|
Mori A, Chen JF, Uchida S, Durlach C, King SM, Jenner P. The Pharmacological Potential of Adenosine A 2A Receptor Antagonists for Treating Parkinson's Disease. Molecules 2022; 27:2366. [PMID: 35408767 PMCID: PMC9000505 DOI: 10.3390/molecules27072366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The adenosine A2A receptor subtype is recognized as a non-dopaminergic pharmacological target for the treatment of neurodegenerative disorders, notably Parkinson's disease (PD). The selective A2A receptor antagonist istradefylline is approved in the US and Japan as an adjunctive treatment to levodopa/decarboxylase inhibitors in adults with PD experiencing OFF episodes or a wearing-off phenomenon; however, the full potential of this drug class remains to be explored. In this article, we review the pharmacology of adenosine A2A receptor antagonists from the perspective of the treatment of both motor and non-motor symptoms of PD and their potential for disease modification.
Collapse
Affiliation(s)
- Akihisa Mori
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou 325015, China;
| | - Shinichi Uchida
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | | | | | - Peter Jenner
- Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| |
Collapse
|
15
|
S327 phosphorylation of the presynaptic protein SEPTIN5 increases in the early stages of neurofibrillary pathology and alters the functionality of SEPTIN5. Neurobiol Dis 2022; 163:105603. [DOI: 10.1016/j.nbd.2021.105603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
|
16
|
A novel bedtime pulsatile-release caffeine formula ameliorates sleep inertia symptoms immediately upon awakening. Sci Rep 2021; 11:19734. [PMID: 34611208 PMCID: PMC8492773 DOI: 10.1038/s41598-021-98376-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
Sleep inertia is a disabling state of grogginess and impaired vigilance immediately upon awakening. The adenosine receptor antagonist, caffeine, is widely used to reduce sleep inertia symptoms, yet the initial, most severe impairments are hardly alleviated by post-awakening caffeine intake. To ameliorate this disabling state more potently, we developed an innovative, delayed, pulsatile-release caffeine formulation targeting an efficacious dose briefly before planned awakening. We comprehensively tested this formulation in two separate studies. First, we established the in vivo caffeine release profile in 10 young men. Subsequently, we investigated in placebo-controlled, double-blind, cross-over fashion the formulation's ability to improve sleep inertia in 22 sleep-restricted volunteers. Following oral administration of 160 mg caffeine at 22:30, we kept volunteers awake until 03:00, to increase sleep inertia symptoms upon scheduled awakening at 07:00. Immediately upon awakening, we quantified subjective state, psychomotor vigilance, cognitive performance, and followed the evolution of the cortisol awakening response. We also recorded standard polysomnography during nocturnal sleep and a 1-h nap opportunity at 08:00. Compared to placebo, the engineered caffeine formula accelerated the reaction time on the psychomotor vigilance task, increased positive and reduced negative affect scores, improved sleep inertia ratings, prolonged the cortisol awakening response, and delayed nap sleep latency one hour after scheduled awakening. Based on these findings, we conclude that this novel, pulsatile-release caffeine formulation facilitates the sleep-to-wake transition in sleep-restricted healthy adults. We propose that individuals suffering from disabling sleep inertia may benefit from this innovative approach.Trials registration: NCT04975360.
Collapse
|
17
|
Paulo SL, Ribeiro-Rodrigues L, Rodrigues RS, Mateus JM, Fonseca-Gomes J, Soares R, Diógenes MJ, Solá S, Sebastião AM, Ribeiro FF, Xapelli S. Sustained Hippocampal Neural Plasticity Questions the Reproducibility of an Amyloid-β-Induced Alzheimer's Disease Model. J Alzheimers Dis 2021; 82:1183-1202. [PMID: 34151790 DOI: 10.3233/jad-201567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The use of Alzheimer's disease (AD) models obtained by intracerebral infusion of amyloid-β (Aβ) has been increasingly reported in recent years. Nonetheless, these models may present important challenges. OBJECTIVE We have focused on canonical mechanisms of hippocampal-related neural plasticity to characterize a rat model obtained by an intracerebroventricular (icv) injection of soluble amyloid-β42 (Aβ42). METHODS Animal behavior was evaluated in the elevated plus maze, Y-Maze spontaneous or forced alternation, Morris water maze, and open field, starting 2 weeks post-Aβ42 infusion. Hippocampal neurogenesis was assessed 3 weeks after Aβ42 injection. Aβ deposition, tropomyosin receptor kinase B levels, and neuroinflammation were appraised at 3 and 14 days post-Aβ42 administration. RESULTS We found that immature neuronal dendritic morphology was abnormally enhanced, but proliferation and neuronal differentiation in the dentate gyrus was conserved one month after Aβ42 injection. Surprisingly, animal behavior did not reveal changes in cognitive performance nor in locomotor and anxious-related activity. Brain-derived neurotrophic factor related-signaling was also unchanged at 3 and 14 days post-Aβ icv injection. Likewise, astrocytic and microglial markers of neuroinflammation in the hippocampus were unaltered in these time points. CONCLUSION Taken together, our data emphasize a high variability and lack of behavioral reproducibility associated with these Aβ injection-based models, as well as the need for its further optimization, aiming at addressing the gap between preclinical AD models and the human disorder.
Collapse
Affiliation(s)
- Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
Marrocco J, Verhaeghe R, Bucci D, Di Menna L, Traficante A, Bouwalerh H, Van Camp G, Ghiglieri V, Picconi B, Calabresi P, Ravasi L, Cisani F, Bagheri F, Pittaluga A, Bruno V, Battaglia G, Morley-Fletcher S, Nicoletti F, Maccari S. Maternal stress programs accelerated aging of the basal ganglia motor system in offspring. Neurobiol Stress 2020; 13:100265. [PMID: 33344718 PMCID: PMC7739146 DOI: 10.1016/j.ynstr.2020.100265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2020] [Revised: 10/11/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022] Open
Abstract
Early-life stress involved in the programming of stress-related illnesses can have a toxic influence on the functioning of the nigrostriatal motor system during aging. We examined the effects of perinatal stress (PRS) on the neurochemical, electrophysiological, histological, neuroimaging, and behavioral correlates of striatal motor function in adult (4 months of age) and old (21 months of age) male rats. Adult PRS offspring rats showed reduced dopamine (DA) release in the striatum associated with reductions in tyrosine hydroxylase-positive (TH+) cells and DA transporter (DAT) levels, with no loss of striatal dopaminergic terminals as assessed by positron emission tomography analysis with fluorine-18-l-dihydroxyphenylalanine. Striatal levels of DA and its metabolites were increased in PRS rats. In contrast, D2 DA receptor signaling was reduced and A2A adenosine receptor signaling was increased in the striatum of adult PRS rats. This indicated enhanced activity of the indirect pathway of the basal ganglia motor circuit. Adult PRS rats also showed poorer performance in the grip strength test and motor learning tasks. The aged PRS rats also showed a persistent reduction in striatal DA release and defective motor skills in the pasta matrix and ladder rung walking tests. In addition, the old rats showed large increases in the levels of SNAP-25 and synaptophysin, which are synaptic vesicle-related proteins in the striatum, and in the PRS group only, reductions in Syntaxin-1 and Rab3a protein levels were observed. Our findings indicated that the age-dependent threshold for motor dysfunction was lowered in PRS rats. This area of research is underdeveloped, and our study suggests that early-life stress can contribute to an increased understanding of how aging diseases are programmed in early-life.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 10065, NY, USA
| | - Remy Verhaeghe
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy
| | - Domenico Bucci
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy
| | - Luisa Di Menna
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy
| | | | - Hammou Bouwalerh
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases": University of Lille - CNRS, UMR 8576, Sapienza University of Rome and IRCCS Neuromed, Italy
| | - Gilles Van Camp
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases": University of Lille - CNRS, UMR 8576, Sapienza University of Rome and IRCCS Neuromed, Italy
| | - Veronica Ghiglieri
- IRCCS Santa Lucia Foundation, Laboratory of Neurophysiology, via del Fosso di Fiorano, 64, 00143, Rome, Italy.,Department of Medicine, University of Perugia, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Piazzale Agostino Gemelli 8, 00168, Rome, Italy
| | - Laura Ravasi
- EA1046, IMPRT-IFR114, Faculty of Medicine, University of Lille, 59000, Lille, France
| | - Francesca Cisani
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,Dept. of Pharmacology, School of Medical and Pharmaceutical Sciences, Center of Excellence for Biochemical Research (CEBR), University of Genova, Italy
| | - Farzaneh Bagheri
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,School of Biology, Damghan University, Damghan, Iran
| | - Anna Pittaluga
- Dept. of Pharmacology, School of Medical and Pharmaceutical Sciences, Center of Excellence for Biochemical Research (CEBR), University of Genova, Italy.,IRCCS San Martino Hospital Genova Italy, Italy
| | - Valeria Bruno
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy.,Departments of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, 00185, Rome, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy.,Departments of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, 00185, Rome, Italy
| | - Sara Morley-Fletcher
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases": University of Lille - CNRS, UMR 8576, Sapienza University of Rome and IRCCS Neuromed, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy.,Departments of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, 00185, Rome, Italy
| | - Stefania Maccari
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,Science and Medical - Surgical Biotechnology, University Sapienza of Rome, 00185, Rome, Italy
| |
Collapse
|
19
|
Gomes JI, Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastião AM, Vaz SH. Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 2020; 163:105363. [PMID: 33285234 DOI: 10.1016/j.phrs.2020.105363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.
Collapse
Affiliation(s)
- Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
20
|
Bouji M, Lecomte A, Gamez C, Blazy K, Villégier AS. Impact of Cerebral Radiofrequency Exposures on Oxidative Stress and Corticosterone in a Rat Model of Alzheimer's Disease. J Alzheimers Dis 2020; 73:467-476. [PMID: 31796670 DOI: 10.3233/jad-190593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of neurodegenerative disease leading to dementia. Several studies suggested that mobile phone radiofrequency electromagnetic field (RF-EMF) exposures modified AD memory deficits in rodent models. OBJECTIVE Here we aimed to test the hypothesis that RF-EMF exposure may modify memory through corticosterone and oxidative stress in the Samaritan rat model of AD. METHODS Long-Evans male rats received intracerebroventricular infusion with ferrous sulphate, amyloid-beta 1-42 peptide, and buthionine-sufloximine (AD rats) or with vehicle (control rats). To mimic cell phone use, RF-EMF were exposed to the head for 1 month (5 days/week, in restraint). To look for hazard thresholds, high brain averaged specific absorption rates (BASAR) were tested: 1.5 W/Kg (15 min), 6 W/Kg (15 min), and 6 W/Kg (45 min). The sham group was in restraint for 45 min. Endpoints were spatial memory in the radial maze, plasmatic corticosterone, heme oxygenase-1 (HO1), and amyloid plaques. RESULTS Results indicated similar corticosterone levels but impaired memory performances and increased cerebral staining of thioflavine and of HO1 in the sham AD rats compared to the controls. A correlative increase of cortical HO1 staining was the only effect of RF-EMF in control rats. In AD rats, RF-EMF exposures induced a correlative increase of hippocampal HO1 staining and reduced corticosterone. DISCUSSION According to our data, neither AD nor control rats showed modified memory after RF-EMF exposures. Unlike control rats, AD rats showed higher hippocampal oxidative stress and reduced corticosterone with the higher BASAR. This data suggests more fragility related to neurodegenerative disease toward RF-EMF exposures.
Collapse
Affiliation(s)
- Marc Bouji
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France
| | - Anthony Lecomte
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| | - Christelle Gamez
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| | - Kelly Blazy
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| | - Anne-Sophie Villégier
- Unité de Toxicologie Expérimentale, Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, Verneuil-en-Halatte, France.,PERITOX UMR I-01 INERIS 01 UFR de médecine, Amiens, France
| |
Collapse
|
21
|
Miranda-Lourenço C, Duarte ST, Palminha C, Gaspar C, Rodrigues TM, Magalhães-Cardoso T, Rei N, Colino-Oliveira M, Gomes R, Ferreira S, Rosa J, Xapelli S, Armstrong J, García-Cazorla À, Correia-de-Sá P, Sebastião AM, Diógenes MJ. Impairment of adenosinergic system in Rett syndrome: Novel therapeutic target to boost BDNF signalling. Neurobiol Dis 2020; 145:105043. [PMID: 32798727 DOI: 10.1016/j.nbd.2020.105043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 01/20/2023] Open
Abstract
Rett syndrome (RTT; OMIM#312750) is mainly caused by mutations in the X-linked MECP2 gene (methyl-CpG-binding protein 2 gene; OMIM*300005), which leads to impairments in the brain-derived neurotrophic factor (BDNF) signalling. The boost of BDNF mediated effects would be a significant breakthrough but it has been hampered by the difficulty to administer BDNF to the central nervous system. Adenosine, an endogenous neuromodulator, may accomplish that role since through A2AR it potentiates BDNF synaptic actions in healthy animals. We thus characterized several hallmarks of the adenosinergic and BDNF signalling in RTT and explored whether A2AR activation could boost BDNF actions. For this study, the RTT animal model, the Mecp2 knockout (Mecp2-/y) (B6.129P2 (C)-Mecp2tm1.1Bird/J) mouse was used. Whenever possible, parallel data was also obtained from post-mortem brain samples from one RTT patient. Ex vivo extracellular recordings of field excitatory post-synaptic potentials in CA1 hippocampal area were performed to evaluate synaptic transmission and long-term potentiation (LTP). RT-PCR was used to assess mRNA levels and Western Blot or radioligand binding assays were performed to evaluate protein levels. Changes in cortical and hippocampal adenosine content were assessed by liquid chromatography with diode array detection (LC/DAD). Hippocampal ex vivo experiments revealed that the facilitatory actions of BDNF upon LTP is absent in Mecp2-/y mice and that TrkB full-length (TrkB-FL) receptor levels are significantly decreased. Extracts of the hippocampus and cortex of Mecp2-/y mice revealed less adenosine amount as well as less A2AR protein levels when compared to WT littermates, which may partially explain the deficits in adenosinergic tonus in these animals. Remarkably, the lack of BDNF effect on hippocampal LTP in Mecp2-/y mice was overcome by selective activation of A2AR with CGS21680. Overall, in Mecp2-/y mice there is an impairment on adenosinergic system and BDNF signalling. These findings set the stage for adenosine-based pharmacological therapeutic strategies for RTT, highlighting A2AR as a therapeutic target in this devastating pathology.
Collapse
Affiliation(s)
- Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal.
| | - Sofia T Duarte
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal; Child Neurology Department, Hospital Dona Estefânia - Centro Hospitalar Universitário de Lisboa Central, Portugal.
| | - Cátia Palminha
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal.
| | - Cláudia Gaspar
- Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal.
| | - Tiago M Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal; Institute of Molecular and Clinical Ophtalmology, Mittlere Strasse 91, CH-4031 Basel, Switzerland.
| | - Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia / MedInUP, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, Portugal.
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal.
| | - Mariana Colino-Oliveira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal.
| | - Rui Gomes
- Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal.
| | - Sara Ferreira
- Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal.
| | - Jéssica Rosa
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal.
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal.
| | - Judith Armstrong
- Genetics Department, Hospital Sant Joan de Deu. Institut Pediàtric de Recerca and CIBERER. (ISCIII), Barcelona, Spain.
| | - Àngels García-Cazorla
- Synaptic Metabolism Laboratory, Neurology Department; Institut Pediàtric de Recerca and CIBERER. (ISCIII), Barcelona, Spain.
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia / MedInUP, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, Portugal.
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal.
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
22
|
Temido-Ferreira M, Ferreira DG, Batalha VL, Marques-Morgado I, Coelho JE, Pereira P, Gomes R, Pinto A, Carvalho S, Canas PM, Cuvelier L, Buée-Scherrer V, Faivre E, Baqi Y, Müller CE, Pimentel J, Schiffmann SN, Buée L, Bader M, Outeiro TF, Blum D, Cunha RA, Marie H, Pousinha PA, Lopes LV. Age-related shift in LTD is dependent on neuronal adenosine A 2A receptors interplay with mGluR5 and NMDA receptors. Mol Psychiatry 2020; 25:1876-1900. [PMID: 29950682 PMCID: PMC7387321 DOI: 10.1038/s41380-018-0110-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/20/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 01/31/2023]
Abstract
Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca2+ influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity.
Collapse
Grants
- FCT - Fundação para a Ciência e Tecnologia
- Région Hauts de France (PARTNAIRR COGNADORA), ANR (ADORATAU and SPREADTAU), LECMA/Alzheimer Forschung Initiative, Programmes d’Investissements d’Avenir LabEx (excellence laboratory) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease), France Alzheimer/Fondation de France, the FHU VasCog research network (Lille, France), Fondation pour la Recherche Médicale, Fondation Plan Alzheimer, INSERM, CNRS, Université Lille 2, Lille Métropole Communauté Urbaine, FEDER, DN2M, LICEND and CoEN.
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen
- ATIP/AVENIR program (Centre National de la Recherche Scientifique - CNRS)
- ATIP/AVENIR program (Centre National de la Recherche Scientifique - CNRS), by the Foundation Plan Alzheimer (Senior Innovative Grant 2010)
Collapse
Affiliation(s)
- Mariana Temido-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Diana G Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-450, Porto, Portugal
| | - Vânia L Batalha
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Inês Marques-Morgado
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Pedro Pereira
- Laboratory of Neuropathology, Department of Neurosciences, Hospital de Santa Maria, CHLN, EPE, 1649-035, Lisbon, Portugal
| | - Rui Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Andreia Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Sara Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Laetitia Cuvelier
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Valerie Buée-Scherrer
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Emilie Faivre
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Younis Baqi
- PharmaCenter Bonn, Pharmazeutische Chemie I, Pharmazeutisches Institut, University of Bonn, Bonn, Germany
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Oman
| | - Christa E Müller
- PharmaCenter Bonn, Pharmazeutische Chemie I, Pharmazeutisches Institut, University of Bonn, Bonn, Germany
| | - José Pimentel
- Laboratory of Neuropathology, Department of Neurosciences, Hospital de Santa Maria, CHLN, EPE, 1649-035, Lisbon, Portugal
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Luc Buée
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125, Berlin, Germany
- Charité-University Medicine, 10117, Berlin, Germany
- Institute of Biology, University of Lübeck, 23652, Lübeck, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, 37075, Göttingen, Germany
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - David Blum
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Hélène Marie
- Université Côte d'Azur, CNRS UMR7276, IPMC, 06560, Valbonne, France
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS UMR7276, IPMC, 06560, Valbonne, France
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
23
|
Oseid DE, Song L, Lear S, Robinson AS. Nuclear translocation of the unliganded glucocorticoid receptor is influenced by membrane fluidity, but not A 2AR agonism. Steroids 2020; 160:108641. [PMID: 32289327 DOI: 10.1016/j.steroids.2020.108641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/10/2019] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
Epidemiological evidence suggests that chronic consumption of caffeine, a non-selective antagonist of adenosine A2AR receptors (A2AR), can be neuroprotective in a number of age-related neurodegenerative disorders including Alzheimer's disease. A growing body of work shows that this neuroprotection may act via a synergistic interaction with the glucocorticoid receptor (GR) and its associated genetic response elements. Therefore, we hypothesized that A2AR signaling may directly stimulate glucocorticoid receptor translocation via downstream signaling elements within the cell. Surprisingly, we found no effect of A2AR agonism on GR translocation in the absence of steroid. As expected, membrane-bound dexamethasone was capable of stimulating full GR translocation, albeit at a slower rate. This non-liganded translocation was unaffected by A2AR ligands, providing strong evidence that GR translocation occurs independently of activation of A2ARs. To identify other potential mechanisms of translocation, membrane fluidity was increased significantly by benzyl alcohol, which also induced full nuclear translocation of the GR, but unlike the membrane-bound dexamethasone, benzyl alcohol did result in transcriptional upregulation of GR-dependent genes. Taken together, our data shows that the unliganded GR is sensitive to changes in membrane state and can be transcriptionally active.
Collapse
Affiliation(s)
- Daniel E Oseid
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Liqing Song
- Department of Chemical Engineering, Carnegie Mellon, Pittsburgh, PA, 15213, USA
| | - Sierra Lear
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Anne S Robinson
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA; Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA; Department of Chemical Engineering, Carnegie Mellon, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
24
|
Mao ZF, Ouyang SH, Zhang QY, Wu YP, Wang GE, Tu LF, Luo Z, Li WX, Kurihara H, Li YF, He RR. New insights into the effects of caffeine on adult hippocampal neurogenesis in stressed mice: Inhibition of CORT-induced microglia activation. FASEB J 2020; 34:10998-11014. [PMID: 32619083 DOI: 10.1096/fj.202000146rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
Chronic stress-evoked depression has been implied to associate with the decline of adult hippocampal neurogenesis. Caffeine has been known to combat stress-evoked depression. Herein, we aim to investigate whether the protective effect of caffeine on depression is related with improving adult hippocampus neurogenesis and explore the mechanisms. Mouse chronic water immersion restraint stress (CWIRS) model, corticosterone (CORT)-established cell stress model, a coculture system containing CORT-treated BV-2 cells and hippocampal neural stem cells (NSCs) were utilized. Results showed that CWIRS caused obvious depressive-like disorders, abnormal 5-HT signaling, and elevated-plasma CORT levels. Notably, microglia activation-evoked brain inflammation and inhibited neurogenesis were also observed in the hippocampus of stressed mice. In comparison, intragastric administration of caffeine (10 and 20 mg/kg, 28 days) significantly reverted CWIRS-induced depressive behaviors, neurogenesis recession and microglia activation in the hippocampus. Further evidences from both in vivo and in vitro mechanistic experiments demonstrated that caffeine treatment significantly suppressed microglia activation via the A2AR/MEK/ERK/NF-κB signaling pathway. The results suggested that CORT-induced microglia activation contributes to stress-mediated neurogenesis recession. The antidepression effect of caffeine was associated with unlocking microglia activation-induced neurogenesis inhibition.
Collapse
Affiliation(s)
- Zhong-Fu Mao
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Qiong-Yi Zhang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Guo-En Wang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Long-Fang Tu
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhuo Luo
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Xi Li
- School of Traditional Chinese Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Yi-Fang Li
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Rong-Rong He
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Carvalho K, Faivre E, Pietrowski MJ, Marques X, Gomez-Murcia V, Deleau A, Huin V, Hansen JN, Kozlov S, Danis C, Temido-Ferreira M, Coelho JE, Mériaux C, Eddarkaoui S, Gras SL, Dumoulin M, Cellai L, Landrieu I, Chern Y, Hamdane M, Buée L, Boutillier AL, Levi S, Halle A, Lopes LV, Blum D. Exacerbation of C1q dysregulation, synaptic loss and memory deficits in tau pathology linked to neuronal adenosine A2A receptor. Brain 2020; 142:3636-3654. [PMID: 31599329 PMCID: PMC6821333 DOI: 10.1093/brain/awz288] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulating data support the role of tau pathology in cognitive decline in ageing and Alzheimer’s disease, but underlying mechanisms remain ill-defined. Interestingly, ageing and Alzheimer’s disease have been associated with an abnormal upregulation of adenosine A2A receptor (A2AR), a fine tuner of synaptic plasticity. However, the link between A2AR signalling and tau pathology has remained largely unexplored. In the present study, we report for the first time a significant upregulation of A2AR in patients suffering from frontotemporal lobar degeneration with the MAPT P301L mutation. To model these alterations, we induced neuronal A2AR upregulation in a tauopathy mouse model (THY-Tau22) using a new conditional strain allowing forebrain overexpression of the receptor. We found that neuronal A2AR upregulation increases tau hyperphosphorylation, potentiating the onset of tau-induced memory deficits. This detrimental effect was linked to a singular microglial signature as revealed by RNA sequencing analysis. In particular, we found that A2AR overexpression in THY-Tau22 mice led to the hippocampal upregulation of C1q complement protein—also observed in patients with frontotemporal lobar degeneration—and correlated with the loss of glutamatergic synapses, likely underlying the observed memory deficits. These data reveal a key impact of overactive neuronal A2AR in the onset of synaptic loss in tauopathies, paving the way for new therapeutic approaches.
Collapse
Affiliation(s)
- Kevin Carvalho
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Emilie Faivre
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | | | - Xavier Marques
- Institut du Fer à Moulin, Inserm UMR-S 1270, Sorbonne Université, F, Paris, France
| | - Victoria Gomez-Murcia
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Aude Deleau
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Vincent Huin
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Jan N Hansen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stanislav Kozlov
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Clément Danis
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France.,University of Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, LabEx DISTALZ, Lille, F Lille, France
| | - Mariana Temido-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Céline Mériaux
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Sabiha Eddarkaoui
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Stéphanie Le Gras
- CNRS, Inserm, UMR 7104, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, F Illkirch, France
| | | | - Lucrezia Cellai
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | | | - Isabelle Landrieu
- University of Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, LabEx DISTALZ, Lille, F Lille, France
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Malika Hamdane
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), CNRS UMR 7364, Université de Strasbourg, F Strasbourg, France
| | - Sabine Levi
- Institut du Fer à Moulin, Inserm UMR-S 1270, Sorbonne Université, F, Paris, France
| | - Annett Halle
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Luisa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - David Blum
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, F Lille, France
| |
Collapse
|
26
|
Temido-Ferreira M, Coelho JE, Pousinha PA, Lopes LV. Novel Players in the Aging Synapse: Impact on Cognition. J Caffeine Adenosine Res 2019; 9:104-127. [PMID: 31559391 PMCID: PMC6761599 DOI: 10.1089/caff.2019.0013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
While neuronal loss has long been considered as the main contributor to age-related cognitive decline, these alterations are currently attributed to gradual synaptic dysfunction driven by calcium dyshomeostasis and alterations in ionotropic/metabotropic receptors. Given the key role of the hippocampus in encoding, storage, and retrieval of memory, the morpho- and electrophysiological alterations that occur in the major synapse of this network-the glutamatergic-deserve special attention. We guide you through the hippocampal anatomy, circuitry, and function in physiological context and focus on alterations in neuronal morphology, calcium dynamics, and plasticity induced by aging and Alzheimer's disease (AD). We provide state-of-the art knowledge on glutamatergic transmission and discuss implications of these novel players for intervention. A link between regular consumption of caffeine-an adenosine receptor blocker-to decreased risk of AD in humans is well established, while the mechanisms responsible have only now been uncovered. We review compelling evidence from humans and animal models that implicate adenosine A2A receptors (A2AR) upsurge as a crucial mediator of age-related synaptic dysfunction. The relevance of this mechanism in patients was very recently demonstrated in the form of a significant association of the A2AR-encoding gene with hippocampal volume (synaptic loss) in mild cognitive impairment and AD. Novel pathways implicate A2AR in the control of mGluR5-dependent NMDAR activation and subsequent Ca2+ dysfunction upon aging. The nature of this receptor makes it particularly suited for long-term therapies, as an alternative for regulating aberrant mGluR5/NMDAR signaling in aging and disease, without disrupting their crucial constitutive activity.
Collapse
Affiliation(s)
- Mariana Temido-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana E. Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A. Pousinha
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Université Côte d'Azur, Valbonne, France
| | - Luísa V. Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
27
|
Kim J, Selvaraji S, Kang SW, Lee WT, Chen CLH, Choi H, Koo EH, Jo DG, Leong Lim K, Lim YA, Arumugam TV. Cerebral transcriptome analysis reveals age-dependent progression of neuroinflammation in P301S mutant tau transgenic male mice. Brain Behav Immun 2019; 80:344-357. [PMID: 30980950 DOI: 10.1016/j.bbi.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/17/2018] [Revised: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
Aggregation of the microtubule-associated protein, tau, can lead to neurofibrillary tangle formation in neurons and glia which is the hallmark of tauopathy. The cellular damage induced by the formation of neurofibrillary tangles leads to neuroinflammation and consecutive neuronal death. However, detailed observation of transcriptomic changes under tauopathy together with the comparison of age-dependent progression of neuroinflammatory gene expressions mediated by tau overexpression is required. Employing RNA sequencing on PS19 transgenic mice that overexpress human mutant tau harboring the P301S mutation, we have examined the effects of age-dependent tau overexpression on transcriptomic changes of immune and inflammatory responses in the cerebral cortex. Compared to age-matched wild type control, P301S transgenic mice exhibit significant transcriptomic alterations. We have observed age-dependent neuroinflammatory gene expression changes in both wild type and P301S transgenic mice where tau overexpression further promoted the expression of neuroinflammatory genes in 10-month old P301S transgenic mice. Moreover, functional gene network analyses (gene ontology and pathway enrichment) and prospective target protein interactions predicted the potential involvement of multiple immune and inflammatory pathways that may contribute to tau-mediated neuronal pathology. Our current study on P301S transgenic mice model revealed for the first time, the differences of gene expression patterns in both early and late stage of tau pathology in cerebral cortex. Our analyses also revealed that tau overexpression alone induces multiple inflammatory and immune transcriptomic changes and may provide a roadmap to elucidate the targets of anti-inflammatory therapeutic strategy focused on tau pathology and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Joonki Kim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Republic of Korea
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sung Wook Kang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Thye Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Li-Hsian Chen
- Department of Pharmacology, National University of Singapore, Singapore; Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore
| | - Edward H Koo
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Kah Leong Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore; Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yun-An Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
28
|
Lee CS, Tan PL, Eor JY, Choi DH, Park M, Seo SK, Yoon S, Yang S, Kim SH. Prophylactic use of probiotic chocolate modulates intestinal physiological functions in constipated rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3045-3056. [PMID: 30488458 DOI: 10.1002/jsfa.9518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/12/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND This study investigated the in vivo prophylactic effect of probiotic chocolate on constipation. Rats were administered chocolate containing 2.5 × 1010 CFU g-1 of probiotics daily for 4 weeks and treated with loperamide (5 mg kg-1 ) daily at the fourth week of treatment. RESULTS Probiotic chocolate treatment significantly (P < 0.05) increased the intestinal motility, colon length, fecal moisture content and number of excreted fecal pellets in constipated rats. Moreover, quantitative real-time polymerase chain reaction data and histological images also revealed that both probiotic chocolate LYC and BB12 treatments were capable of upregulating the mRNA expression levels of colonic ZO-1, occludin and AQP8, leading to the maintenance of the defensive barrier function in the constipated rats compared with the negative controls. Interestingly, these treatments also modulated gut bacterial populations by increasing the abundance levels of Lactobacillus and Bifidobacterium, as well as reducing the abundance level of Enterobacteriaceae. CONCLUSION The present study demonstrated that probiotic chocolate LYC and BB12 could potentially be used as alternative agents for prophylactic constipation. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chul Sang Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Pei Lei Tan
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Ju Young Eor
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | | | - Miri Park
- Lotte R&D Center, Seoul, South Korea
| | | | | | | | - Sae Hun Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
29
|
Redivo L, Anastasiadi RM, Pividori M, Berti F, Peressi M, Di Tommaso D, Resmini M. Prediction of self-assembly of adenosine analogues in solution: a computational approach validated by isothermal titration calorimetry. Phys Chem Chem Phys 2019; 21:4258-4267. [PMID: 30644470 DOI: 10.1039/c8cp05647a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
The recent discovery of the role of adenosine-analogues as neuroprotectants and cognitive enhancers has sparked interest in these molecules as new therapeutic drugs. Understanding the behavior of these molecules in solution and predicting their ability to self-assemble will accelerate new discoveries. We propose a computational approach based on density functional theory, a polarizable continuum solvation description of the aqueous environment, and an efficient search procedure to probe the potential energy surface, to determine the structure and thermodynamic stability of molecular clusters of adenosine analogues in solution, using caffeine as a model. The method was validated as a tool for the prediction of the impact of small structural variations on self-assembly using paraxanthine. The computational results were supported by isothermal titration calorimetry experiments. The thermodynamic parameters enabled the quantification of the actual percentage of dimer present in solution as a function of concentration. The data suggest that both caffeine and paraxanthine are present at concentrations comparable to the ones found in biological samples.
Collapse
Affiliation(s)
- Luca Redivo
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
Laxative effect of probiotic chocolate on loperamide-induced constipation in rats. Food Res Int 2019; 116:1173-1182. [DOI: 10.1016/j.foodres.2018.09.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2018] [Revised: 09/10/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
|
31
|
Canet G, Chevallier N, Zussy C, Desrumaux C, Givalois L. Central Role of Glucocorticoid Receptors in Alzheimer's Disease and Depression. Front Neurosci 2018; 12:739. [PMID: 30459541 PMCID: PMC6232776 DOI: 10.3389/fnins.2018.00739] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2018] [Accepted: 09/25/2018] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is the principal neurodegenerative pathology in the world displaying negative impacts on both the health and social ability of patients and inducing considerable economic costs. In the case of sporadic forms of AD (more than 95% of patients), even if mechanisms are unknown, some risk factors were identified. The principal risk is aging, but there is growing evidence that lifetime events like chronic stress or stress-related disorders may increase the probability to develop AD. This mini-review reinforces the rationale to consider major depressive disorder (MDD) as an important risk factor to develop AD and points the central role played by the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoids (GC) and their receptors (GR) in the etiology of MDD and AD. Several strategies directly targeting GR were tested to neutralize the HPA axis dysregulation and GC overproduction. Given the ubiquitous expression of GR, antagonists have many undesired side effects, limiting their therapeutic potential. However, a new class of molecules was developed, highly selective and acting as modulators. They present the advantage to selectively abrogate pathogenic GR-dependent processes, while retaining beneficial aspects of GR signaling. In fact, these “selective GR modulators” induce a receptor conformation that allows activation of only a subset of downstream signaling pathways, explaining their capacity to combine agonistic and antagonistic properties. Thus, targeting GR with selective modulators, alone or in association with current strategies, becomes particularly attractive and relevant to develop novel preventive and/or therapeutic strategies to tackle disorders associated with a dysregulation of the HPA axis.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| |
Collapse
|
32
|
Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2018; 117:72-81. [DOI: 10.1016/j.nbd.2018.05.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2018] [Revised: 05/08/2018] [Accepted: 05/30/2018] [Indexed: 11/23/2022] Open
|
33
|
Cellai L, Carvalho K, Faivre E, Deleau A, Vieau D, Buée L, Blum D, Mériaux C, Gomez-Murcia V. The Adenosinergic Signaling: A Complex but Promising Therapeutic Target for Alzheimer's Disease. Front Neurosci 2018; 12:520. [PMID: 30123104 PMCID: PMC6085480 DOI: 10.3389/fnins.2018.00520] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in elderly people. AD is characterized by a progressive cognitive decline and it is neuropathologically defined by two hallmarks: extracellular deposits of aggregated β-amyloid (Aβ) peptides and intraneuronal fibrillar aggregates of hyper- and abnormally phosphorylated Tau proteins. AD results from multiple genetic and environmental risk factors. Epidemiological studies reported beneficial effects of caffeine, a non-selective adenosine receptors antagonist. In the present review, we discuss the impact of caffeine and of adenosinergic system modulation on AD, in terms of pathology and therapeutics.
Collapse
Affiliation(s)
- Lucrezia Cellai
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Kevin Carvalho
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Emilie Faivre
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Aude Deleau
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Didier Vieau
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Luc Buée
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - David Blum
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Céline Mériaux
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Victoria Gomez-Murcia
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| |
Collapse
|
34
|
Mitani T, Nagano T, Harada K, Yamashita Y, Ashida H. Caffeine-Stimulated Intestinal Epithelial Cells Suppress Lipid Accumulation in Adipocytes. J Nutr Sci Vitaminol (Tokyo) 2018; 63:331-338. [PMID: 29225318 DOI: 10.3177/jnsv.63.331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
Abstract
Caffeine is a methylxanthine derived from plant foods such as coffee beans and tea leaves, and has multiple biological activities against physiological response and several diseases. Although there are some reports about the direct effect of caffeine against anti-lipid accumulation in vitro, the effect of caffeine on lipid accumulation in adipocytes through stimulating intestinal epithelial cells is unknown. Since direct treatment with caffeine to 3T3-L1 cells did not affect lipid accumulation, we determined whether caffeine-stimulated intestinal epithelial Caco-2 cells influence the lipid accumulation in 3T3-L1 adipocytes. Caco-2 cells were cultured on a transwell insert with or without caffeine for 24 h. Subsequently, the basolateral component of the Caco-2 cell culture on the transwell was collected and termed caffeine-conditioning medium (CCM). When 3T3-L1 adipocytes were incubated with CCM, CCM decreased lipid accumulation and suppressed gene expression of proliferator activated receptor (PPAR) γ and CCAAT/enhancer binding protein (C/EBP) α in 3T3-L1 adipocytes. Furthermore, CCM decreased the expression of C/EBPβ and C/EBPδ at the protein level, but not at the mRNA level. We observed that a proteasome inhibitor, MG132, inhibited CCM-caused down-expression of C/EBPβ and C/EBPδ proteins, and that CCM promoted the ubiquitination level of C/EBPβ and C/EBPδ proteins. Protein microarray analysis showed caffeine suppresses the secretion of inflammatory cytokines, interleukin-8 and plasminogen activator inhibitor-1 from Caco-2 cells. These results suggest that caffeine indirectly suppresses lipid accumulation in 3T3-L1 adipocytes through decreasing secretion of inflammatory cytokines from Caco-2 cells.
Collapse
Affiliation(s)
- Takakazu Mitani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| | - Tomoya Nagano
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Kiyonari Harada
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
35
|
Faivre E, Coelho JE, Zornbach K, Malik E, Baqi Y, Schneider M, Cellai L, Carvalho K, Sebda S, Figeac M, Eddarkaoui S, Caillierez R, Chern Y, Heneka M, Sergeant N, Müller CE, Halle A, Buée L, Lopes LV, Blum D. Beneficial Effect of a Selective Adenosine A 2A Receptor Antagonist in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease. Front Mol Neurosci 2018; 11:235. [PMID: 30050407 PMCID: PMC6052540 DOI: 10.3389/fnmol.2018.00235] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Consumption of caffeine, a non-selective adenosine A2A receptor (A2AR) antagonist, reduces the risk of developing Alzheimer’s disease (AD) and mitigates both amyloid and Tau lesions in transgenic mouse models of the disease. While short-term treatment with A2AR antagonists have been shown to alleviate cognitive deficits in mouse models of amyloidogenesis, impact of a chronic and long-term treatment on the development of amyloid burden, associated neuroinflammation and memory deficits has never been assessed. In the present study, we have evaluated the effect of a 6-month treatment of APPsw/PS1dE9 mice with the potent and selective A2AR antagonist MSX-3 from 3 to 9-10 months of age. At completion of the treatment, we found that the MSX-3 treatment prevented the development of memory deficits in APP/PS1dE9 mice, without significantly altering hippocampal and cortical gene expressions. Interestingly, MSX-3 treatment led to a significant decrease of Aβ1-42 levels in the cortex of APP/PS1dE9 animals, while Aβ1-40 increased, thereby strongly affecting the Aβ1-42/Aβ1-40 ratio. Together, these data support the idea that A2AR blockade is of therapeutic value for AD.
Collapse
Affiliation(s)
- Emilie Faivre
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert Research Centre UMR-S1172, Alzheimer & Tauopathies, Lille, France
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Katja Zornbach
- Center of Advanced European Studies and Research, Bonn, Germany
| | - Enas Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Younis Baqi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Oman
| | - Marion Schneider
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Lucrezia Cellai
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert Research Centre UMR-S1172, Alzheimer & Tauopathies, Lille, France
| | - Kevin Carvalho
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert Research Centre UMR-S1172, Alzheimer & Tauopathies, Lille, France
| | - Shéhérazade Sebda
- Plateau de Génomique Fonctionnelle et Structurale, CHU Lille, University of Lille, Lille, France
| | - Martin Figeac
- Plateau de Génomique Fonctionnelle et Structurale, CHU Lille, University of Lille, Lille, France
| | - Sabiha Eddarkaoui
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert Research Centre UMR-S1172, Alzheimer & Tauopathies, Lille, France
| | - Raphaëlle Caillierez
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert Research Centre UMR-S1172, Alzheimer & Tauopathies, Lille, France
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Michael Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Nicolas Sergeant
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert Research Centre UMR-S1172, Alzheimer & Tauopathies, Lille, France
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Annett Halle
- Center of Advanced European Studies and Research, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Luc Buée
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert Research Centre UMR-S1172, Alzheimer & Tauopathies, Lille, France
| | - Luisa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - David Blum
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert Research Centre UMR-S1172, Alzheimer & Tauopathies, Lille, France
| |
Collapse
|
36
|
Collins JJP, Lithopoulos MA, Dos Santos CC, Issa N, Möbius MA, Ito C, Zhong S, Vadivel A, Thébaud B. Impaired Angiogenic Supportive Capacity and Altered Gene Expression Profile of Resident CD146 + Mesenchymal Stromal Cells Isolated from Hyperoxia-Injured Neonatal Rat Lungs. Stem Cells Dev 2018; 27:1109-1124. [PMID: 29957134 DOI: 10.1089/scd.2017.0145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), the most common complication of extreme preterm birth, can be caused by oxygen-related lung injury and is characterized by impaired alveolar and vascular development. Mesenchymal stromal cells (MSCs) have lung protective effects. Conversely, BPD is associated with increased MSCs in tracheal aspirates. We hypothesized that endogenous lung (L-)MSCs are perturbed in a well-established oxygen-induced rat model mimicking BPD features. Rat pups were exposed to 21% or 95% oxygen from birth to postnatal day 10. On day 12, CD146+ L-MSCs were isolated and characterized according to the International Society for Cellular Therapy criteria. Epithelial and vascular repair potential were tested by scratch assay and endothelial network formation, respectively, immune function by mixed lymphocyte reaction assay. Microarray analysis was performed using the Affymetrix GeneChip and gene set enrichment analysis software. CD146+ L-MSCs isolated from rat pups exposed to hyperoxia had decreased CD73 expression and inhibited lung endothelial network formation. CD146+ L-MSCs indiscriminately promoted epithelial wound healing and limited T cell proliferation. Expression of potent antiangiogenic genes of the axonal guidance cue and CDC42 pathways was increased after in vivo hyperoxia, whereas genes of the anti-inflammatory Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and lung/vascular growth-promoting fibroblast growth factor (FGF) pathways were decreased. In conclusion, in vivo hyperoxia exposure alters the proangiogenic effects and FGF expression of L-MSCs. In addition, decreased CD73 and JAK/STAT expression suggests decreased immune function. L-MSC function may be perturbed and contribute to BPD pathogenesis. These findings may lead to improvements in manufacturing exogenous MSCs with superior repair capabilities.
Collapse
Affiliation(s)
- Jennifer J P Collins
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,2 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada
| | - Marissa A Lithopoulos
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,2 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada
| | - Claudia C Dos Santos
- 3 Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto, Canada .,4 Interdepartmental Division of Critical Care Medicine, University of Toronto , Toronto, Canada
| | - Nahla Issa
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,2 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada
| | - Marius A Möbius
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,5 Department of Neonatology and Pediatric Critical Care Medicine, Medical Faculty and University Hospital Carl Gustav Carus , Technische Universität Dresden, Dresden, Germany .,6 DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD) , Technische Universität Dresden, Dresden, Germany
| | - Caryn Ito
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,2 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada
| | - Shumei Zhong
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada
| | - Arul Vadivel
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada
| | - Bernard Thébaud
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute , Ottawa, Canada .,2 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada .,7 Children's Hospital of Eastern Ontario Research Institute , Ottawa, Canada
| |
Collapse
|
37
|
Abdelazim A, Khater S, Ali H, Shalaby S, Afifi M, Saddick S, Alkaladi A, Almaghrabi OA. Panax ginseng improves glucose metabolism in streptozotocin-induced diabetic rats through 5' adenosine monophosphate kinase up-regulation. Saudi J Biol Sci 2018; 26:1436-1441. [PMID: 31762606 PMCID: PMC6864146 DOI: 10.1016/j.sjbs.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2018] [Revised: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
5′ AMP-activated protein kinase (AMPK), insulin receptors and transporters are distorted in diabetes mellitus. In this study, the effect of Panax ginseng was assessed on glucose manipulating enzymes activities and gene expression of AMPK, IRA and GLUT2 in streptozotocin-induced diabetic male rats. Forty male albino rats were randomly divided to four groups 10 rats of each, group I, normal control group (received saline orally); group II, normal rats received 200 mg/kg of Panax ginseng orally; group III, Streptozotocin (STZ) –induced diabetic rats and group IV, STZ-induced diabetic rats received 200 mg/kg of Panax ginseng orally. The duration of experiment was 30 days. Results showed the ability of Panax ginseng to induce a significant decrease in the blood glucose and increase in the serum insulin levels, hepatic glucokinase (GK), and glycogen synthase (GS) activities with a modulation of lipid profile besides high expression levels of AMPK, insulin receptor A (IRA), glucose transporting protein-2 (GLUT-2) in liver of diabetic rats. In conclusion, the obtained results point to the ability of Panax ginseng to improve the glucose metabolism in diabetic models.
Collapse
Affiliation(s)
- Aaser Abdelazim
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Basic Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Safaa Khater
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
| | - Haytham Ali
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Shimaa Shalaby
- Department of Physiology, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Afifi
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia.,University of Jeddah Center for Scientific and Medical Research, University of Jeddah, Saudi Arabia
| | - Salina Saddick
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ali Alkaladi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Omar A Almaghrabi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Neuronal adenosine A 2A receptor overexpression is neuroprotective towards 3-nitropropionic acid-induced striatal toxicity: a rat model of Huntington's disease. Purinergic Signal 2018; 14:235-243. [PMID: 29770921 DOI: 10.1007/s11302-018-9609-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 10/16/2022] Open
Abstract
The A2A adenosine receptor (A2AR) is widely distributed on different cellular types in the brain, where it exerts a broad spectrum of pathophysiological functions, and for which a role in different neurodegenerative diseases has been hypothesized or demonstrated. To investigate the role of neuronal A2ARs in neurodegeneration, we evaluated in vitro and in vivo the effect of the neurotoxin 3-nitropropionic acid (3-NP) in a transgenic rat strain overexpressing A2ARs under the control of the neural-specific enolase promoter (NSEA2A rats). We recorded extracellular field potentials (FP) in corticostriatal slice and found that the synaptotoxic effect of 3-NP was significantly reduced in NSEA2A rats compared with wild-type animals (WT). In addition, after exposing corticostriatal slices to 3-NP 10 mM for 2 h, we found that striatal cell viability was significantly higher in NSEA2A rats compared to control rats. These in vitro results were confirmed by in vivo experiments: daily treatment of female rats with 3-NP 10 mg/kg for 8 days induced a selective bilateral lesion in the striatum, which was significantly reduced in NSEA2A compared to WT rats. These results demonstrate that the overexpression of the A2AR selectively at the neuronal level reduced 3-NP-induced neurodegeneration, and suggest an important function of the neuronal A2AR in the modulation of neurodegeneration.
Collapse
|
39
|
Pinheiro H, Gaspar R, Baptista FI, Fontes-Ribeiro CA, Ambrósio AF, Gomes CA. Adenosine A 2A Receptor Blockade Modulates Glucocorticoid-Induced Morphological Alterations in Axons, But Not in Dendrites, of Hippocampal Neurons. Front Pharmacol 2018; 9:219. [PMID: 29615903 PMCID: PMC5868516 DOI: 10.3389/fphar.2018.00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
The exposure to supra-physiological levels of glucocorticoids in prenatal life can lead to a long-term impact in brain cytoarchitecture, increasing the susceptibility to neuropsychiatric disorders. Dexamethasone, an exogenous glucocorticoid widely used in pregnant women in risk of preterm delivery, is associated with higher rates of neuropsychiatric conditions throughout life of the descendants. In animal models, prenatal dexamethasone exposure leads to anxious-like behavior and increased susceptibility to depressive-like behavior in adulthood, concomitant with alterations in neuronal morphology in brain regions implicated in the control of emotions and mood. The pharmacologic blockade of the purinergic adenosine A2A receptor, which was previously described as anxiolytic, is also able to modulate neuronal morphology, namely in the hippocampus. Additionally, recent observations point to an interaction between glucocorticoid receptors (GRs) and adenosine A2A receptors. In this work, we explored the impact of dexamethasone on neuronal morphology, and the putative implication of adenosine A2A receptor in the mediation of dexamethasone effects. We report that in vitro hippocampal neurons exposed to dexamethasone (250 nM), in the early phases of development, exhibit a polarized morphology alteration: dendritic atrophy and axonal hypertrophy. While the effect of dexamethasone in the axon is dependent on the activation of adenosine A2A receptor, the effect in the dendrites relies on the activation of GRs, regardless of the activation of adenosine A2A receptor. These results support the hypothesis of the interaction between GRs and adenosine A2A receptors and the potential therapeutic value of modulating adenosine A2A receptors activation in order to prevent glucocorticoid-induced alterations in developing neurons.
Collapse
Affiliation(s)
- Helena Pinheiro
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Carlos A Fontes-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catarina A Gomes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
40
|
Abstract
Most individuals adjust their caffeine intake according to the objective and subjective effects induced by the methylxanthine. However, to reach the desired effects, the quantity of caffeine consumed varies largely among individuals. It has been known for decades that the metabolism, clearance, and pharmacokinetics of caffeine is affected by many factors such as age, sex and hormones, liver disease, obesity, smoking, and diet. Caffeine also interacts with many medications. All these factors will be reviewed in the present document and discussed in light of the most recent data concerning the genetic variability affecting caffeine levels and effects at the pharmacokinetic and pharmacodynamic levels that both critically drive the level of caffeine consumption. The pharmacokinetics of caffeine are highly variable among individuals due to a polymorphism at the level of the CYP1A2 isoform of cytochrome P450, which metabolizes 95% of the caffeine ingested. Moreover there is a polymorphism at the level of another critical enzyme, N-acetyltransferase 2. At the pharmacodynamic level, there are several polymorphisms at the main brain target of caffeine, the adenosine A2A receptor or ADORA2. Genetic studies, including genome-wide association studies, identified several loci critically involved in caffeine consumption and its consequences on sleep, anxiety, and potentially in neurodegenerative and psychiatric diseases. We start reaching a better picture on how a multiplicity of biologic mechanisms seems to drive the levels of caffeine consumption, although much more knowledge is still required to understand caffeine consumption and effects on body functions.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 1129, Pediatric Neurology, Necker-Enfants Malades Hospital, University of Paris Descartes, Inserm U1129, Paris, France
| |
Collapse
|
41
|
Baeta-Corral R, Johansson B, Giménez-Llort L. Long-term Treatment with Low-Dose Caffeine Worsens BPSD-Like Profile in 3xTg-AD Mice Model of Alzheimer's Disease and Affects Mice with Normal Aging. Front Pharmacol 2018; 9:79. [PMID: 29497377 PMCID: PMC5818407 DOI: 10.3389/fphar.2018.00079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022] Open
Abstract
Coffee or caffeine has recently been suggested as prophylaxis for dementia. Although memory problems are hallmarks of Alzheimer's disease, this dementia is also characterized by neuropsychiatric symptoms called Behavioral and Psychological Symptoms of Dementia (BPSD). The impact of preventive/therapeutic strategies on both cognitive and non-cognitive symptoms can be addressed in the 3xTg-AD mice, since they exhibit cognitive but also BPSD-like profiles. Here, we studied the long-term effects of a low dose of caffeine in male 3xTg-AD mice and as compared to age-matched non-transgenic (NTg) counterparts with normal aging. Animals were treated (water or caffeine in drinking water) from adulthood (6 months of age) until middle-aged (13 months of age), that in 3xTg-AD mice correspond to onset of cognitive impairment and advanced stages, respectively. The low caffeine dosing used (0.3 mg/ml) was previously found to give a plasma concentration profile in mice roughly equivalent to that of a human coffee drinker. There were significant effects of caffeine on most behavioral variables, especially those related to neophobia and other anxiety-like behaviors, emotionality, and cognitive flexibility. The 3xTg-AD and NTg mice were differently influenced by caffeine. Overall, the increase of neophobia and other anxiety-related behaviors resulted in an exacerbation of BPSD-like profile in 3xTg-AD mice. Learning and memory, strongly influenced by anxiety in 3xTg-AD mice, got little benefit from caffeine, only shown after a detailed analysis of navigation strategies. The worsened pattern in NTg mice and the use of search strategies in 3xTg-AD mice make both groups more similar. Circadian motor activity showed genotype differences, which were found to be enhanced by caffeine. Selective effects of caffeine on NTg were found in the modulation of behaviors related to emotional profile and risk assessment. Caffeine normalized splenomegaly of 3xTg-AD mice, a physical indicator of their impaired peripheral immune system, and trended to increase their corticosterone levels. Our observations of adverse caffeine effects in an Alzheimer's disease model together with previous clinical observations suggest that an exacerbation of BPSD-like symptoms may partly interfere with the beneficial cognitive effects of caffeine. These results are relevant when coffee-derived new potential treatments for dementia are to be devised and tested.
Collapse
Affiliation(s)
- Raquel Baeta-Corral
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Björn Johansson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
- Department of Geriatrics, Karolinska University Hospital, Solna, Sweden
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Hinz S, Navarro G, Borroto-Escuela D, Seibt BF, Ammon YC, de Filippo E, Danish A, Lacher SK, Červinková B, Rafehi M, Fuxe K, Schiedel AC, Franco R, Müller CE. Adenosine A 2A receptor ligand recognition and signaling is blocked by A 2B receptors. Oncotarget 2018; 9:13593-13611. [PMID: 29568380 PMCID: PMC5862601 DOI: 10.18632/oncotarget.24423] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
The adenosine receptor (AR) subtypes A2A and A2B are rhodopsin-like Gs protein-coupled receptors whose expression is highly regulated under pathological, e.g. hypoxic, ischemic and inflammatory conditions. Both receptors play important roles in inflammatory and neurodegenerative diseases, are blocked by caffeine, and have now become major drug targets in immuno-oncology. By Förster resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), bimolecular fluorescence complementation (BiFC) and proximity ligation assays (PLA) we demonstrated A2A-A2BAR heteromeric complex formation. Moreover we observed a dramatically altered pharmacology of the A2AAR when co-expressed with the A2BAR (A2B ≥ A2A) in recombinant as well as in native cells. In the presence of A2BARs, A2A-selective ligands lost high affinity binding to A2AARs and displayed strongly reduced potency in cAMP accumulation and dynamic mass redistribution (DMR) assays. These results have major implications for the use of A2AAR ligands as drugs as they will fail to modulate the receptor in an A2A-A2B heteromer context. Accordingly, A2A-A2BAR heteromers represent novel pharmacological targets.
Collapse
Affiliation(s)
- Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Benjamin F Seibt
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - York-Christoph Ammon
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Elisabetta de Filippo
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Azeem Danish
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Svenja K Lacher
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Barbora Červinková
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anke C Schiedel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|
43
|
Borroto-Escuela DO, Hinz S, Navarro G, Franco R, Müller CE, Fuxe K. Understanding the Role of Adenosine A2AR Heteroreceptor Complexes in Neurodegeneration and Neuroinflammation. Front Neurosci 2018; 12:43. [PMID: 29467608 PMCID: PMC5808169 DOI: 10.3389/fnins.2018.00043] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Adenosine is a nucleoside mainly formed by degradation of ATP, located intracellularly or extracellularly, and acts as a neuromodulator. It operates as a volume transmission signal through diffusion and flow in the extracellular space to modulate the activity of both glial cells and neurons. The effects of adenosine are mediated via four adenosine receptor subtypes: A1R, A2AR, A2BR, A3R. The A2AR has a wide-spread distribution but it is especially enriched in the ventral and dorsal striatum where it is mainly located in the striato-pallidal GABA neurons at a synaptic and extrasynaptic location. A number of A2AR heteroreceptor complexes exist in the striatum. The existence of A2AR-D2R heteroreceptor complexes with antagonistic A2AR-D2R interactions in the striato-pallidal GABA neurons is well-known with A2AR activation inhibiting Gi/o mediated signaling of D2Rs. A2AR-mGluR5 heteroreceptor complexes were also found in with synergistic receptor-receptor interactions enhancing the inhibition of the D2R protomer signaling. They are located mainly in extrasynaptic regions of the striato-pallidal GABA neurons. Results recently demonstrated the existence of brain A2AR-A2BR heteroreceptor complexes, in which A2BR protomer constitutively inhibited the function of the A2AR protomer. These adenosine A2AR heteroreceptor complexes may modulate alpha-synuclein aggregation and toxicity through postulated bidirectional direct interactions leading to marked increases in A2AR signaling both in nerve cells and microglia. It is of high interest that formation of A2AR-A2ABR heteroreceptor complexes provides a brake on A2AR recognition and signaling opening up a novel strategy for treatment of A2AR mediated neurodegeneration.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Physiology, Department of Biomolecular Science, University of Urbino, Campus Scientifico Enrico Mattei, Urbino, Italy
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Yaguajay, Cuba
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Rafael Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Abstract
Psychiatric disorders are debilitating diseases, affecting >80 million people worldwide. There are no causal cures for psychiatric disorders and available therapies only treat the symptoms. The etiology of psychiatric disorders is unknown, although it has been speculated to be a combination of environmental, stress and genetic factors. One of the neurotransmitter systems implicated in the biology of psychiatric disorders is the purinergic system. In this review, we performed a comprehensive search of the literature about the role and function of the purinergic system in the development and predisposition to psychiatric disorders, with a focus on depression, schizophrenia, bipolar disorder, autism, anxiety and attention deficit/hyperactivity disorder. We also describe how therapeutics used for psychiatric disorders act on the purinergic system.
Collapse
|
45
|
Shen Y, Guo X, Han C, Wan F, Ma K, Guo S, Wang L, Xia Y, Liu L, Lin Z, Huang J, Xiong N, Wang T. The implication of neuronimmunoendocrine (NIE) modulatory network in the pathophysiologic process of Parkinson's disease. Cell Mol Life Sci 2017; 74:3741-3768. [PMID: 28623510 PMCID: PMC11107509 DOI: 10.1007/s00018-017-2549-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2017] [Revised: 05/23/2017] [Accepted: 05/29/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder implicitly marked by the substantia nigra dopaminergic neuron degeneration and explicitly characterized by the motor and non-motor symptom complexes. Apart from the nigrostriatal dopamine depletion, the immune and endocrine study findings are also frequently reported, which, in fact, have helped to broaden the symptom spectrum and better explain the pathogenesis and progression of PD. Nevertheless, based on the neural, immune, and endocrine findings presented above, it is still difficult to fully recapitulate the pathophysiologic process of PD. Therefore, here, in this review, we have proposed the neuroimmunoendocrine (NIE) modulatory network in PD, aiming to achieve a more comprehensive interpretation of the pathogenesis and progression of this disease. As a matter of fact, in addition to the classical motor symptoms, NIE modulatory network can also underlie the non-motor symptoms such as gastrointestinal, neuropsychiatric, circadian rhythm, and sleep disorders in PD. Moreover, the dopamine (DA)-melatonin imbalance in the retino-diencephalic/mesencephalic-pineal axis also provides an alternative explanation for the motor complications in the process of DA replacement therapy. In conclusion, the NIE network can be expected to deepen our understanding and facilitate the multi-dimensional management and therapy of PD in future clinical practice.
Collapse
Affiliation(s)
- Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Shiyi Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Luxi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Zhicheng Lin
- Division of Alcohol and Drug Abuse, Department of Psychiatry, and Mailman Neuroscience Research Center, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
46
|
α-synuclein interacts with PrP C to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci 2017; 20:1569-1579. [PMID: 28945221 DOI: 10.1038/nn.4648] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2016] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies, are neurodegenerative disorders that are characterized by the accumulation of α-synuclein (aSyn) in intracellular inclusions known as Lewy bodies. Prefibrillar soluble aSyn oligomers, rather than larger inclusions, are currently considered to be crucial species underlying synaptic dysfunction. We identified the cellular prion protein (PrPC) as a key mediator in aSyn-induced synaptic impairment. The aSyn-associated impairment of long-term potentiation was blocked in Prnp null mice and rescued following PrPC blockade. We found that extracellular aSyn oligomers formed a complex with PrPC that induced the phosphorylation of Fyn kinase via metabotropic glutamate receptors 5 (mGluR5). aSyn engagement of PrPC and Fyn activated NMDA receptor (NMDAR) and altered calcium homeostasis. Blockade of mGluR5-evoked phosphorylation of NMDAR in aSyn transgenic mice rescued synaptic and cognitive deficits, supporting the hypothesis that a receptor-mediated mechanism, independent of pore formation and membrane leakage, is sufficient to trigger early synaptic damage induced by extracellular aSyn.
Collapse
|