1
|
Zolfo M, Silverj A, Blanco-Míguez A, Manghi P, Rota-Stabelli O, Heidrich V, Jensen J, Maharjan S, Franzosa E, Menni C, Visconti A, Pinto F, Ciciani M, Huttenhower C, Cereseto A, Asnicar F, Kitano H, Yamada T, Segata N. Discovering and exploring the hidden diversity of human gut viruses using highly enriched virome samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.580813. [PMID: 38464031 PMCID: PMC10925137 DOI: 10.1101/2024.02.19.580813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Viruses are an abundant and crucial component of the human microbiome, but accurately discovering them via metagenomics is still challenging. Currently, the available viral reference genomes poorly represent the diversity in microbiome samples, and expanding such a set of viral references is difficult. As a result, many viruses are still undetectable through metagenomics even when considering the power of de novo metagenomic assembly and binning, as viruses lack universal markers. Here, we describe a novel approach to catalog new viral members of the human gut microbiome and show how the resulting resource improves metagenomic analyses. We retrieved >3,000 viral-like particles (VLP) enriched metagenomic samples (viromes), evaluated the efficiency of the enrichment in each sample to leverage the viromes of highest purity, and applied multiple analysis steps involving assembly and comparison with hundreds of thousands of metagenome-assembled genomes to discover new viral genomes. We reported over 162,000 viral sequences passing quality control from thousands of gut metagenomes and viromes. The great majority of the retrieved viral sequences (~94.4%) were of unknown origin, most had a CRISPR spacer matching host bacteria, and four of them could be detected in >50% of a set of 18,756 gut metagenomes we surveyed. We included the obtained collection of sequences in a new MetaPhlAn 4.1 release, which can quantify reads within a metagenome matching the known and newly uncovered viral diversity. Additionally, we released the viral database for further virome and metagenomic studies of the human microbiome.
Collapse
Affiliation(s)
- Moreno Zolfo
- Department CIBIO, University of Trento, Italy
- Integrated Open Systems Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| | - Andrea Silverj
- Department CIBIO, University of Trento, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Italy
- Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | | | | | - Omar Rota-Stabelli
- Department CIBIO, University of Trento, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Italy
- Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | | | - Jordan Jensen
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sagun Maharjan
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric Franzosa
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Alessia Visconti
- Center for Biostatistics, Epidemiology and Public Health, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Hiroaki Kitano
- Integrated Open Systems Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
- The Systems Biology Institute (SBI), Tokyo, Japan
- IOM Bioworks Pvt. Ltd., Centre for Cellular and Molecular Platforms (C-CAMP), GKVK Post, Bellary Rd, Bengaluru, Karnataka-560065, India
| | - Takuji Yamada
- Integrated Open Systems Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
- Metagen, Inc., Yamagata, Japan
- Metagen Therapeutics, Inc., Yamagata, Japan
- digzyme, Inc., Tokyo, Japan
| | - Nicola Segata
- Department CIBIO, University of Trento, Italy
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
2
|
Kosznik-Kwaśnicka K, Topka G, Mantej J, Grabowski Ł, Necel A, Węgrzyn G, Węgrzyn A. Propagation, Purification, and Characterization of Bacteriophages for Phage Therapy. Methods Mol Biol 2024; 2738:357-400. [PMID: 37966610 DOI: 10.1007/978-1-0716-3549-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Phage therapy is an alternative approach to combat bacterial infections. In this approach, bacteriophages are used as antimicrobial agents due to their properties to infect specific bacterial cells, to propagate inside their hosts, and to lyse host cell to release progeny phages. However, to introduce bacteriophages to clinical or veterinary practice, it is necessary to construct a large library of precisely characterized phages. Therefore, in this chapter, methods for propagation, purification, and microbiological characterization of bacteriophages are presented in the light of their potential use in phage therapy. Isolation of newly discovered bacteriophages from different habitats is also described as it is a preliminary assessment of their efficacy in combating bacterial biofilms and in the treatment of bacterial infections in a simple insect model-Galleria mellonella.
Collapse
Affiliation(s)
| | | | | | - Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Alicja Węgrzyn
- Phage Therapy Laboratory, University Center for Applied and Interdisciplinary Research, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
3
|
Le HT, Lubian AF, Bowring B, van der Poorten D, Iredell J, George J, Venturini C, Ahlenstiel G, Read S. Using a human colonoid-derived monolayer to study bacteriophage translocation. Gut Microbes 2024; 16:2331520. [PMID: 38517357 PMCID: PMC10962583 DOI: 10.1080/19490976.2024.2331520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Bacteriophages (phages) are estimated to be the most abundant microorganisms on Earth. Their presence in human blood suggests that they can translocate from non-sterile sites such as the gastrointestinal tract where they are concentrated. To examine phage translocation ex vivo, we adapted a primary colonoid monolayer model possessing cell diversity and architecture, and a thick layer of mucus akin to the colonic environment in vivo. We show that the colonoid monolayer is superior to the Caco-2 cell-line model, possessing intact and organized tight junctions and generating a physiologically relevant mucus layer. We showed, using two different phages, that translocation across the colonoid monolayer was largely absent in differentiated monolayers that express mucus, unlike Caco-2 cultures that expressed little to no mucus. By stimulating mucus production or removing mucus, we further demonstrated the importance of colonic mucus in preventing phage translocation. Finally, we used etiological drivers of gut permeability (alcohol, fat, and inflammatory cytokines) to measure their effects on phage translocation, demonstrating that all three stimuli have the capacity to amplify phage translocation. These findings suggest that phage translocation does occur in vivo but may be largely dependent on colonic mucus, an important insight to consider in future phage applications.
Collapse
Affiliation(s)
- Huu Thanh Le
- Blacktown Clinical School, Western Sydney University, Sydney, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
| | - David van der Poorten
- Department of Hepatology and Gastroenterology, Westmead Hospital, Westmead, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
- Department of Hepatology and Gastroenterology, Westmead Hospital, Westmead, Australia
- School of Medicine, The University of Sydney, Sydney, Australia
| | - Carola Venturini
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
- Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School, Western Sydney University, Sydney, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
- Blacktown Mt Druitt Hospital, Sydney, Australia
| | - Scott Read
- Blacktown Clinical School, Western Sydney University, Sydney, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
- Blacktown Mt Druitt Hospital, Sydney, Australia
| |
Collapse
|
4
|
Gil J, Paulson J, Zahn H, Brown M, Nguyen MM, Erickson S. Development of a Replication-Deficient Bacteriophage Reporter Lacking an Essential Baseplate Wedge Subunit. Viruses 2023; 16:8. [PMID: 38275943 PMCID: PMC10821221 DOI: 10.3390/v16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Engineered bacteriophages (phages) can be effective diagnostic reporters for detecting a variety of bacterial pathogens. Although a promising biotechnology, the large-scale use of these reporters may result in the unintentional release of genetically modified viruses. In order to limit the potential environmental impact, the ability of these phages to propagate outside the laboratory was targeted. The phage SEA1 has been previously engineered to facilitate food safety as an accurate and sensitive reporter for Salmonella contamination. In this study, homologous recombination was used to replace the expression of an essential baseplate wedge subunit (gp141) in SEA1 with a luciferase, NanoLuc®. This reporter, referred to as SEA1Δgp141.NL, demonstrated a loss of plaque formation and a failure to increase in titer following infection of Salmonella. SEA1Δgp141.NL was thus incapable of producing infectious progeny in the absence of gp141. In contrast, production of high titer stocks was possible when gp141 was artificially supplied in trans during infection. As a reporter, SEA1Δgp141.NL facilitated rapid, sensitive, and robust detection of Salmonella despite an inability to replicate. These results suggest that replication-deficient reporter phages are an effective method to obtain improved containment without sacrificing significant performance or the ease of production associated with many phage-based diagnostic methods.
Collapse
Affiliation(s)
- Jose Gil
- Laboratory Corporation of America Holdings, Los Angeles, CA 90062, USA;
| | - John Paulson
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| | - Henriett Zahn
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| | - Matthew Brown
- Laboratory Corporation of America Holdings, Burlington, NC 27215, USA;
| | - Minh M. Nguyen
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| | - Stephen Erickson
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| |
Collapse
|
5
|
Yuan X, Zhu Z, Huang Z, Yu S, Jin H, Chen B, Yu S, Xue L, Chen M, Zhang J, Wang J, Wu Q, Ding Y. Engineered lytic phage of Bacillus cereus and its application in milk. Int J Food Microbiol 2023; 405:110339. [PMID: 37517118 DOI: 10.1016/j.ijfoodmicro.2023.110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Phages have been approved for use in the food industry to control bacterial contamination in some countries. However, their broader adoption is hindered by some limitations. For instance, the persistence of infectious phages in the food industry can lead to the emergence of resistant bacteria, which negatively impacts the long-term effectiveness of phages. Additionally, the narrow host range of phages limits their effectiveness against various strains. To address these deficiencies, phage engineering has been proposed as a rational approach for modifying phages. In this study, we developed a simple and efficient engineering method for Bacillus cereus phage, using DK1 as an example, to reduce the number of residual phages and expand its range of hosts. Specifically, we knocked out the appendage gene, which codes for the receptor-binding protein, to produce phage progeny with structural defects in their appendages, resulting in the loss of infectivity after host elimination. Furthermore, we used plasmid-mediated means to express different appendage proteins during phage preparation, which allowed altering the host spectrum of the engineered phages without gene insertion. In practical applications, our engineered phages effectively reduced the number of B. cereus in milk and prevented the amplification of active progeny. Our strategy transformed phages from active viruses into more controllable antibacterial agents, making them safer and more efficient for the prevention and control of B. cereus. Moreover, we believe this strategy will help drive the use of engineered phages in the food industry.
Collapse
Affiliation(s)
- Xiaoming Yuan
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhenjun Zhu
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Zhichao Huang
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shan Yu
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Jin
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Bo Chen
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shubo Yu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Torres-Boncompte J, Catalá-Gregori P, Garcia-Llorens J, Soriano JM, Sevilla-Navarro S. Simultaneous Salmonella and bacteriophage isolation on Modified Semisolid Rappaport Vassiliadis media. Poult Sci 2023; 102:102960. [PMID: 37579648 PMCID: PMC10429287 DOI: 10.1016/j.psj.2023.102960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Salmonella represents a food safety concern worldwide. Despite the application of National Control Programs (NCP) against Salmonella, regulated by the European Union, every year the European Food Safety Authority reports new cases. On the look for new alternatives to antibiotics, bacteriophages, or phages, rise as a promising alternative to treat multidrug resistance infections. Although they are known to be ubiquitous in the environment, their high specificity to host cells hinders their isolation and usage for phage therapy. The ISO 6579-1:2017 is performed as a reference method in the NCP and uses an unspecific media to enrich the sample the same way most phage isolation protocols do. Later, the protocol uses a more selective media to isolate the Salmonella, Modified Semisolid Rappaport Vassiliadis (MSRV). This paper aims to find out whether, due to the similarity between phage isolation protocols and the ISO 6579-1:2017, this last one could be used as a protocol to also isolate phages against the same bacterium that is being simultaneously isolated. To do so, 2 experiments were performed to assess phage isolation from MSRV media in in-vivo conditions. The results from experiments 1 and 2 proved that the MSRV media was usable for simultaneous phage and pathogen isolation through a single procedure. Additionally, there is a correlation between the antigenic formulae from the bacteria and the phage's host range, seeming to be effective against bacteria with similar antigenic formulae.
Collapse
Affiliation(s)
- Jan Torres-Boncompte
- Food & Health Lab, Institute of Materials Science, University of Valencia, Valencia, 46980, Spain; Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, 12539, Spain
| | - Pablo Catalá-Gregori
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, 12539, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113, Spain
| | - Josep Garcia-Llorens
- Food & Health Lab, Institute of Materials Science, University of Valencia, Valencia, 46980, Spain; Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, 12539, Spain
| | - José M Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, Valencia, 46980, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, Valencia, 46026, Spain
| | - Sandra Sevilla-Navarro
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, 12539, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113, Spain.
| |
Collapse
|
7
|
Castro VS, Ngo S, Stanford K. Influence of temperature and pH on induction of Shiga toxin Stx1a in Escherichia coli. Front Microbiol 2023; 14:1181027. [PMID: 37485504 PMCID: PMC10359099 DOI: 10.3389/fmicb.2023.1181027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Shiga toxin-producing strains represent pathogenic group that is of concern in food production. The present study evaluated forty-eight E. coli isolates (11 with intact stx gene, while remaining isolates presented only stx-fragments) for Shiga toxin production. The four most expressive stx-producers (O26, O103, O145, and O157) were selected to evaluate effects of pH (3.5, 4.5, and 7) and temperature (35, 40, and 50°C). After determining acid stress effects in media on Stx-induction, we mimicked "in natura" conditions using milk, apple, and orange juices. Only isolates that showed the presence of intact stx gene (11/48) produced Shiga toxin. In addition, acid pH had a role in down-regulating the production of Shiga toxin, in both lactic acid and juices. In contrast, non-lethal heating (40°C), when in neutral pH and milk was a favorable environment to induce Shiga toxin. Lastly, two isolates (O26 and O103) showed a higher capacity to produce Shiga toxin and were included in a genomic cluster with other E. coli involved in worldwide foodborne outbreaks. The induction of this toxin when subjected to 40°C may represent a potential risk to the consumer, since the pathogenic effect of oral ingestion of Shiga toxin has already been proved in an animal model.
Collapse
|
8
|
Singh J, Fitzgerald DA, Jaffe A, Hunt S, Barr JJ, Iredell J, Selvadurai H. Single-arm, open-labelled, safety and tolerability of intrabronchial and nebulised bacteriophage treatment in children with cystic fibrosis and Pseudomonas aeruginosa. BMJ Open Respir Res 2023; 10:e001360. [PMID: 37160359 PMCID: PMC10173968 DOI: 10.1136/bmjresp-2022-001360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Cystic fibrosis (CF) is a multisystem condition that is complicated by recurrent pulmonary infections requiring aggressive antibiotic treatment. This predisposes the patient to complications such as sensorineural hearing loss, renal impairment, hypersensitivity and the development of antibiotic resistance. Pseudomonas aeruginosa is one of the more common organisms which cause recurrent infections and result in greater morbidity and mortality in people living with CF. Bacteriophages have been identified as a potential alternative or adjunct to antibiotics. We hypothesise that bacteriophage therapy is a safe and well-tolerated treatment in children with CF infected with P. aeruginosa infection in their airways. METHODS This single-arm, open-labelled, non-randomised trial will run for a maximum period of 36 months with up to 10 participants. Adolescents (≥12 years and <18 years of age) who continue to shed P.aeruginosa (within 3 months of enrolment) despite undergoing eradication therapy previously, will be considered for this trial. Non-genetically modified bacteriophages that have demonstrated obligate lytic activity against each of the study participants' P. aeruginosa strains will be selected and prepared according to a combination of established protocols (isolation, purification, sterility testing and packaging) to achieve close to good manufacturing practice recommendations. The selected bacteriophage will be administered endo-bronchially first under direct vision, followed by two times a day nebulisation for 7 days in addition to standard CF treatment (intravenous antibiotics, physiotherapy to be completed as inpatient for 10-14 days). Safety and tolerability will be defined as the absence of (1) fever above 38.5°C occurring within 1 hour of the administration of the nebulised bacteriophage, (2) a 10% decline in spirometry (forced expiratory volume in 1 s %) measured preadministration and postadministration of the first dose of nebulised bacteriophage. Clinical reviews including repeat sputum cultures and spirometry will be performed at 3, 6, 9 and 12 months following bacteriophage treatment. ETHICS AND DISSEMINATION Our clinical trial is conducted in accordance with (1) good clinical practice, (2) Australian legislation, (3) National Health and Medical Research Council guidelines for the ethical conduct of research. TRIAL REGISTRATION NUMBER Australia and New Zealand Clinical Trial Registry (ACTRN12622000767707).
Collapse
Affiliation(s)
- Jagdev Singh
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Dominic A Fitzgerald
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sharon Hunt
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | | | - Jonathan Iredell
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Department of Infectious Diseases, Westmead Hospital, Westmead, New South Wales, Australia
| | - Hiran Selvadurai
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Ali S, Karaynir A, Salih H, Öncü S, Bozdoğan B. Characterization, genome analysis and antibiofilm efficacy of lytic Proteus phages RP6 and RP7 isolated from university hospital sewage. Virus Res 2023; 326:199049. [PMID: 36717023 DOI: 10.1016/j.virusres.2023.199049] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
The crystalline formation of biofilms by Proteus blocks the urine flow which often complicates the health care of catheterized patients. Bacteriophages has been highlighted as a promising tool to control biofilm-mediated bacterial infections. Here, we isolated and characterized two newly isolated lytic phages capable of infecting clinical isolates of P. mirabilis and P. vulgaris. Moreover, insights regarding the biological and molecular characterization were analysed. Both RP6 and RP7 phages showed a Proteus-genus-specific profile, administering no lytic activity against other family of Enterobacteriaceae. The optimal MOI value of the RP6 and RP7 phages were determined as 0.1 and 0.01, respectively. The one-step growth curve showed that RP6 and RP7 phages have a short latent period of 20 min and large burst size of 220-371 PFU/ML per infected host cell. Bacteria growth was reduced immediately after the phages were added, which is shown by the optical density (OD) measurement after 24 hr. Proteus phage RP6 and RP7 were found to eradicate both the planktonic and mature biofilms produced by the Proteus isolates tested. Genome sequence of Proteus phage RP6 was found to be 58,619 bp, and a G-C content of 47%. Also, Proteus phage RP7 genome size was 103,593 bp with G-C ratio of 38.45%. A total of 70 and 172 open reading frame (ORF) was encoded in RP6 and RP7 phage genomes, respectively. Interestingly, there were no tRNA encoded by Proteus phage RP6 genome even though there is a significant G-C content difference between the phage and its host. Additionally, the exhibition of highly lytic activity and absence of virulence and antibiotic-resistant genes in both Proteus RP6 and RP7 phages emphasized that this newly isolated phages are promising for potential therapeutic phages.
Collapse
Affiliation(s)
- Sahd Ali
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye.
| | - Abdulkerim Karaynir
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye
| | - Hanife Salih
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye
| | - Serkan Öncü
- Medical Faculty, Department of Infectious Diseases and Clinical Microbiology, Aydin Adnan Menderes University, Turkiye
| | - Bülent Bozdoğan
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye; Medical Faculty, Department of Medical Microbiology, Aydın Adnan Menderes University, Turkiye
| |
Collapse
|
10
|
Chen C, Chen S, Wang B. A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Front Microbiol 2023; 14:1035944. [PMID: 37125200 PMCID: PMC10140447 DOI: 10.3389/fmicb.2023.1035944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Research on the gut microbiota, which involves a large and complex microbial community, is an important part of infectious disease control. In China, few studies have been reported on the diversity of the gut microbiota of wild marmots. To obtain full details of the gut microbiota, including bacteria, fungi, viruses and archaea, in wild marmots, we have sequenced metagenomes from five sample-sites feces on the Hulun Buir Grassland in Inner Mongolia, China. We have created a comprehensive database of bacterial, fungal, viral, and archaeal genomes and aligned metagenomic sequences (determined based on marmot fecal samples) against the database. We delineated the detailed and distinct gut microbiota structures of marmots. A total of 5,891 bacteria, 233 viruses, 236 fungi, and 217 archaea were found. The dominant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinomycetes. The viral families were Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae and Podoviridae. The dominant fungi phyla were Ascomycota, Basidiomycota, and Blastocladiomycota. The dominant archaea were Biobacteria, Omoarchaea, Nanoarchaea, and Microbacteria. Furthermore, the gut microbiota was affected by host species and environment, and environment was the most important factor. There were 36,989 glycoside hydrolase genes in the microbiota, with 365 genes homologous to genes encoding β-glucosidase, cellulase, and cellulose β-1,4-cellobiosidase. Additionally, antibiotic resistance genes such as macB, bcrA, and msbA were abundant. To sum up, the gut microbiota of marmot had population diversity and functional diversity, which provides a basis for further research on the regulatory effects of the gut microbiota on the host. In addition, metagenomics revealed that the gut microbiota of marmots can degrade cellulose and hemicellulose.
Collapse
Affiliation(s)
- Chuizhe Chen
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shu Chen
- Medical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Wang
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Bo Wang,
| |
Collapse
|
11
|
Blanco-Picazo P, Gómez-Gómez C, Tormo M, Ramos-Barbero MD, Rodríguez-Rubio L, Muniesa M. Prevalence of bacterial genes in the phage fraction of food viromes. Food Res Int 2022; 156:111342. [DOI: 10.1016/j.foodres.2022.111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 11/04/2022]
|
12
|
Schulz P, Pajdak-Czaus J, Siwicki AK. In Vivo Bacteriophages' Application for the Prevention and Therapy of Aquaculture Animals-Chosen Aspects. Animals (Basel) 2022; 12:1233. [PMID: 35625078 PMCID: PMC9137707 DOI: 10.3390/ani12101233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
To meet the nutritional requirements of our growing population, animal production must double by 2050, and due to the exhaustion of environmental capacity, any growth will have to come from aquaculture. Aquaculture is currently undergoing a dynamic development, but the intensification of production increases the risk of bacterial diseases. In recent years, there has been a drastic development in the resistance of pathogenic bacteria to antibiotics and chemotherapeutic agents approved for use, which has also taken place in aquaculture. Consequently, animal mortality and economic losses in livestock have increased. The use of drugs in closed systems is an additional challenge as it can damage biological filters. For this reason, there has been a growing interest in natural methods of combating pathogens. One of the methods is the use of bacteriophages both for prophylactic purposes and therapy. This work summarizes the diverse results of the in vivo application of bacteriophages for the prevention and control of bacterial pathogens in aquatic animals to provide a reference for further research on bacteriophages in aquaculture and to compare major achievements in the field.
Collapse
Affiliation(s)
- Patrycja Schulz
- Department of Ichthyopathology and Fish Health Prevention, S. Sakowicz Inland Fisheries Institute, Główna 48, 05-500 Żabieniec, Poland
| | - Joanna Pajdak-Czaus
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland;
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland;
| |
Collapse
|
13
|
Blanco-Picazo P, Gómez-Gómez C, Aguiló-Castillo S, Fernández-Orth D, Cerdà-Cuéllar M, Muniesa M, Rodríguez-Rubio L. Chicken liver is a potential reservoir of bacteriophages and phage-derived particles containing antibiotic resistance genes. Microb Biotechnol 2022; 15:2464-2475. [PMID: 35485188 PMCID: PMC9437878 DOI: 10.1111/1751-7915.14056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Poultry meat production is one of the most important agri‐food industries in the world. The selective pressure exerted by widespread prophylactic or therapeutic use of antibiotics in intensive chicken farming favours the development of drug resistance in bacterial populations. Chicken liver, closely connected with the intestinal tract, has been directly involved in food‐borne infections and found to be contaminated with pathogenic bacteria, including Campylobacter and Salmonella. In this study, 74 chicken livers, divided into sterile and non‐sterile groups, were analysed, not only for microbial indicators but also for the presence of phages and phage particles containing antibiotic resistance genes (ARGs). Both bacteria and phages were detected in liver tissues, including those dissected under sterile conditions. The phages were able to infect Escherichia coli and showed a Siphovirus morphology. The chicken livers contained from 103 to 106 phage particles per g, which carried a range of ARGs (blaTEM, blaCTx‐M‐1, sul1, qnrA, armA and tetW) detected by qPCR. The presence of phages in chicken liver, mostly infecting E. coli, was confirmed by metagenomic analysis, although this technique was not sufficiently sensitive to identify ARGs. In addition, ARG‐carrying phages were detected in chicken faeces by qPCR in a previous study of the group. Comparison of the viromes of faeces and liver showed a strong coincidence of species, which suggests that the phages found in the liver originate in faeces. These findings suggests that phages, like bacteria, can translocate from the gut to the liver, which may therefore constitute a potential reservoir of antibiotic resistance genes.
Collapse
Affiliation(s)
- Pedro Blanco-Picazo
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| | - Clara Gómez-Gómez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| | - Sergi Aguiló-Castillo
- Spanish National Bioinformatics Institute (INB)/ELIXIR-ES, Barcelona Supercomputing Center, Barcelona, Spain
| | - Dietmar Fernández-Orth
- Department of Bioinformatics and Molecular Biology, Cerba Internacional Pl. Ramon Llull, 7-10, Sabadell, Barcelona, 08203, Spain
| | - Marta Cerdà-Cuéllar
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maite Muniesa
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| | - Lorena Rodríguez-Rubio
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| |
Collapse
|
14
|
Raza S, Folga M, Łoś M, Foltynowicz Z, Paczesny J. The Effect of Zero-Valent Iron Nanoparticles (nZVI) on Bacteriophages. Viruses 2022; 14:867. [PMID: 35632609 PMCID: PMC9144403 DOI: 10.3390/v14050867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/05/2022] Open
Abstract
Bacteriophages are viruses that attack and usually kill bacteria. Their appearance in the industrial facilities using bacteria to produce active compounds (e.g., drugs, food, cosmetics, etc.) causes considerable financial losses. Instances of bacteriophage resistance towards disinfectants and decontamination procedures (such as thermal inactivation and photocatalysis) have been reported. There is a pressing need to explore new ways of phage inactivation that are environmentally neutral, inexpensive, and more efficient. Here, we study the effect of zero-valent iron nanoparticles (nZVI) on four different bacteriophages (T4, T7, MS2, M13). The reduction of plaque-forming units (PFU) per mL varies from greater than 7log to around 0.5log depending on bacteriophages (M13 and T7, respectively). A comparison of the importance of oxidation of nZVI versus the release of Fe2+/Fe3+ ions is shown. The mechanism of action is proposed in connection to redox reactions, adsorption of virions on nZVI, and the effect of released iron ions. The nZVI constitutes a critical addition to available antiphagents (i.e., anti-bacteriophage agents).
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (M.F.)
| | - Michał Folga
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (M.F.)
| | - Marcin Łoś
- Department of Molecular Genetics of Bacteria, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Phage Consultants, Partyzantów 10/18, 80-254 Gdańsk, Poland
| | - Zenon Foltynowicz
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (M.F.)
| |
Collapse
|
15
|
Salabura A, Łuniewski A, Kucharska M, Myszak D, Dołęgowska B, Ciechanowski K, Kędzierska-Kapuza K, Wojciuk B. Urinary Tract Virome as an Urgent Target for Metagenomics. Life (Basel) 2021; 11:life11111264. [PMID: 34833140 PMCID: PMC8618529 DOI: 10.3390/life11111264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Virome—a part of a microbiome—is a term used to describe all viruses found in the specific organism or system. Recently, as new technologies emerged, it has been confirmed that kidneys and the lower urinary tract are colonized not only by the previously described viruses, but also completely novel species. Viruses can be both pathogenic and protective, as they often carry important virulence factors, while at the same time represent anti-inflammatory functions. This paper aims to show and compare the viral species detected in various, specific clinical conditions. Because of the unique characteristics of viruses, new sequencing techniques and databases had to be developed to conduct research on the urinary virome. The dynamic development of research on the human microbiome suggests that the detailed studies on the urinary system virome will provide answers to many questions about the risk factors for civilization, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Agata Salabura
- Clinic of Nephrology, Internal Medicine and Transplantation, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland;
- Correspondence: ; Tel.: +48-664-477-450
| | - Aleksander Łuniewski
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.Ł.); (M.K.); (D.M.); (B.D.); (B.W.)
| | - Maria Kucharska
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.Ł.); (M.K.); (D.M.); (B.D.); (B.W.)
| | - Denis Myszak
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.Ł.); (M.K.); (D.M.); (B.D.); (B.W.)
| | - Barbara Dołęgowska
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.Ł.); (M.K.); (D.M.); (B.D.); (B.W.)
| | - Kazimierz Ciechanowski
- Clinic of Nephrology, Internal Medicine and Transplantation, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland;
| | - Karolina Kędzierska-Kapuza
- Center of Postgraduate Medical Education in Warsaw, Department of Gastroenterological Surgery and Transplantology, 137 Wołoska St., 02-507 Warsaw, Poland;
| | - Bartosz Wojciuk
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.Ł.); (M.K.); (D.M.); (B.D.); (B.W.)
| |
Collapse
|
16
|
Podlacha M, Grabowski Ł, Kosznik-Kawśnicka K, Zdrojewska K, Stasiłojć M, Węgrzyn G, Węgrzyn A. Interactions of Bacteriophages with Animal and Human Organisms-Safety Issues in the Light of Phage Therapy. Int J Mol Sci 2021; 22:8937. [PMID: 34445641 PMCID: PMC8396182 DOI: 10.3390/ijms22168937] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages are viruses infecting bacterial cells. Since there is a lack of specific receptors for bacteriophages on eukaryotic cells, these viruses were for a long time considered to be neutral to animals and humans. However, studies of recent years provided clear evidence that bacteriophages can interact with eukaryotic cells, significantly influencing the functions of tissues, organs, and systems of mammals, including humans. In this review article, we summarize and discuss recent discoveries in the field of interactions of phages with animal and human organisms. Possibilities of penetration of bacteriophages into eukaryotic cells, tissues, and organs are discussed, and evidence of the effects of phages on functions of the immune system, respiratory system, central nervous system, gastrointestinal system, urinary tract, and reproductive system are presented and discussed. Modulations of cancer cells by bacteriophages are indicated. Direct and indirect effects of virulent and temperate phages are discussed. We conclude that interactions of bacteriophages with animal and human organisms are robust, and they must be taken under consideration when using these viruses in medicine, especially in phage therapy, and in biotechnological applications.
Collapse
Affiliation(s)
- Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (Ł.G.); (K.K.-K.)
| | - Katarzyna Kosznik-Kawśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (Ł.G.); (K.K.-K.)
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (Ł.G.); (K.K.-K.)
| |
Collapse
|
17
|
Improving Phage-Biofilm In Vitro Experimentation. Viruses 2021; 13:v13061175. [PMID: 34205417 PMCID: PMC8234374 DOI: 10.3390/v13061175] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages or phages, the viruses of bacteria, are abundant components of most ecosystems, including those where bacteria predominantly occupy biofilm niches. Understanding the phage impact on bacterial biofilms therefore can be crucial toward understanding both phage and bacterial ecology. Here, we take a critical look at the study of bacteriophage interactions with bacterial biofilms as carried out in vitro, since these studies serve as bases of our ecological and therapeutic understanding of phage impacts on biofilms. We suggest that phage-biofilm in vitro experiments often may be improved in terms of both design and interpretation. Specific issues discussed include (a) not distinguishing control of new biofilm growth from removal of existing biofilm, (b) inadequate descriptions of phage titers, (c) artificially small overlying fluid volumes, (d) limited explorations of treatment dosing and duration, (e) only end-point rather than kinetic analyses, (f) importance of distinguishing phage enzymatic from phage bacteriolytic anti-biofilm activities, (g) limitations of biofilm biomass determinations, (h) free-phage interference with viable-count determinations, and (i) importance of experimental conditions. Toward bettering understanding of the ecology of bacteriophage-biofilm interactions, and of phage-mediated biofilm disruption, we discuss here these various issues as well as provide tips toward improving experiments and their reporting.
Collapse
|
18
|
Perea L, Rodríguez-Rubio L, Nieto JC, Zamora C, Cantó E, Soriano G, Poca M, Blanco-Picazo P, Navarro F, Muniesa M, Vidal S. Bacteriophages immunomodulate the response of monocytes. Exp Biol Med (Maywood) 2021; 246:1263-1268. [PMID: 33641443 PMCID: PMC8371303 DOI: 10.1177/1535370221995154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/24/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteriophages are present in fluids from cirrhosis patients. However, their effect on the immune response is unknown. In this work, we explore the role of phages in the phenotype, function, and cytokine production of monocytes. We stimulated healthy monocytes with five different butanol-purified phage suspensions infective for Gram-negative and Gram-positive bacteria. We studied the expression of the monocyte markers involved in lipopolysaccharide recognition (LPS; CD14), antigen presentation (HLA-DR) and co-stimulation (CD86), and the concentration of induced cytokines (TNF-α, IFN-α, and IL-10) by phages. To confirm the direct role of phages without the interference of contaminating soluble LPS in phage suspensions, polymyxin B was added to the cell cultures. Phagocytosis experiments were assessed by flow cytometry using labeled phage suspensions. We observed that butanol-purified phages reduced the surface levels of CD14 and CD86 in monocytes and increased the secreted levels of TNF-α and IL-10 compared with the control sample containing only butanol buffer. All phage suspensions showed downregulation of HLA-DR expression but only Staphylococcus aureus phage contaminated with Escherichia coli reached statistical significance. The addition of polymyxin B did not restore the monocytic response induced by phages, suggesting that the effect was not caused by the presence of LPS. Monocytes were able to phagocyte phages in a dose- and time-dependent manner. To conclude, the phagocytosis of butanol-purified phages altered the phenotype and cytokine production of monocytes suggesting they become tolerogenic.
Collapse
Affiliation(s)
- Lídia Perea
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain
| | - Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
| | - Juan C Nieto
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain
| | - Carlos Zamora
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain
| | - Elisabet Cantó
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain
| | - German Soriano
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain. Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Poca
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain. Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Pedro Blanco-Picazo
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
| | - Ferran Navarro
- Microbiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain. Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Vidal
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain
| |
Collapse
|
19
|
Fernández L, Duarte AC, Rodríguez A, García P. The relationship between the phageome and human health: are bacteriophages beneficial or harmful microbes? Benef Microbes 2021; 12:107-120. [PMID: 33789552 DOI: 10.3920/bm2020.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the context of the global antibiotic resistance crisis, bacteriophages are increasingly becoming promising antimicrobial agents against multi-resistant bacteria. Indeed, a huge effort is being made to bring phage-derived products to the market, a process that will also require revising the current regulations in order to facilitate their approval. However, despite the evidence supporting the safety of phages for humans, the general public would still be reluctant to use 'viruses' for therapeutic purposes. In this scenario, we consider that it is important to discuss the role of these microorganisms in the equilibrium of the microbiota and how this relates to human health. To do that, this review starts by examining the role of phages as key players in bacterial communities (including those that naturally inhabit the human body), modulating the species composition and contributing to maintain a 'healthy' status quo. Additionally, in specific situations, e.g. an infectious disease, bacteriophages can be used as target-specific antimicrobials against pathogenic bacteria (phage therapy), while being harmless to the desirable microbiota. Apart from that, incipient research shows the potential application of these viruses to treat diseases caused by bacterial dysbiosis. This latter application would be comparable to the use of probiotics or prebiotics, since bacteriophages can indirectly improve the growth of beneficial bacteria in the gastrointestinal tract by removing undesirable competitors. On the other hand, possible adverse effects do not appear to be an impediment to promote phage therapy. Nonetheless, it is important to remember their potentially negative impact, mainly concerning their immunogenicity or their potential spread of virulence and antibiotic resistance genes, especially by temperate phages. Overall, we believe that phages should be largely considered beneficial microbes, although it is paramount not to overlook their potential risks.
Collapse
Affiliation(s)
- L Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - A C Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - A Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - P García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
20
|
Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 2021; 10:404. [PMID: 33805526 PMCID: PMC8065619 DOI: 10.3390/pathogens10040404] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Shiga toxins (Stx) of Shiga toxin-producing Escherichia coli (STEC) are generally encoded in the genome of lambdoid bacteriophages, which spend the most time of their life cycle integrated as prophages in specific sites of the bacterial chromosome. Upon spontaneous induction or induction by chemical or physical stimuli, the stx genes are co-transcribed together with the late phase genes of the prophages. After being assembled in the cytoplasm, and after host cell lysis, mature bacteriophage particles are released into the environment, together with Stx. As members of the group of lambdoid phages, Stx phages share many genetic features with the archetypical temperate phage Lambda, but are heterogeneous in their DNA sequences due to frequent recombination events. In addition to Stx phages, the genome of pathogenic STEC bacteria may contain numerous prophages, which are either cryptic or functional. These prophages may carry foreign genes, some of them related to virulence, besides those necessary for the phage life cycle. Since the production of one or more Stx is considered the major pathogenicity factor of STEC, we aim to highlight the new insights on the contribution of Stx phages and other STEC phages to pathogenicity.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Nadja Haarmann
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maike Schwidder
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| |
Collapse
|
21
|
Shan J, Jia Y, Teulières L, Patel F, Clokie MRJ. Targeting Multicopy Prophage Genes for the Increased Detection of Borrelia burgdorferi Sensu Lato (s.l.), the Causative Agents of Lyme Disease, in Blood. Front Microbiol 2021; 12:651217. [PMID: 33790883 PMCID: PMC8005754 DOI: 10.3389/fmicb.2021.651217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
The successful treatment of Lyme disease (LD) is contingent on accurate diagnosis. However, current laboratory detection assays lack sensitivity in the early stages of the disease. Because delayed diagnosis of LD incurs high healthcare costs and great suffering, new highly sensitive tests are in need. To overcome these challenges, we developed an internally controlled quantitative PCR (Ter-qPCR) that targets the multicopy terminase large subunit (terL) gene encoded by prophages that are only found in LD-causing bacteria. The terL protein helps phages pack their DNA. Strikingly, the detection limit of the Ter-qPCR was analytically estimated to be 22 copies and one bacterial cell in bacteria spiked blood. Furthermore, significant quantitative differences was observed in terms of the amount of terL detected in healthy individuals and patients with either early or late disease. Together, the data suggests that the prophage-targeting PCR has significant power to improve success detection for LD. After rigorous clinical validation, this new test could deliver a step-change in the detection of LD. Prophage encoded markers are prevalent in many other pathogenic bacteria rendering this approach highly applicable to bacterial identification in general.
Collapse
Affiliation(s)
- Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ying Jia
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Louis Teulières
- PhelixRD Charity 230 Rue du Faubourg St Honoré, Paris, France
| | - Faizal Patel
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
22
|
Zeng Y, Wang Z, Zou T, Chen J, Li G, Zheng L, Li S, You J. Bacteriophage as an Alternative to Antibiotics Promotes Growth Performance by Regulating Intestinal Inflammation, Intestinal Barrier Function and Gut Microbiota in Weaned Piglets. Front Vet Sci 2021; 8:623899. [PMID: 33585620 PMCID: PMC7874526 DOI: 10.3389/fvets.2021.623899] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the effects of dietary bacteriophage supplementation on growth performance, intestinal morphology, barrier function, and intestinal microbiota of weaned piglets fed antibiotic-free diet. A total of 120 weaned piglets were allotted to four dietary treatments with five pens/treatment and six piglets/pen in a 21-d feeding trial. The control diet was supplemented with 25 mg/kg quinocetone and 11.25 mg/kg aureomycin in the basal diet, while the three treatment diets were supplemented with 200, 400, or 600 mg/kg bacteriophage in the basal diet, respectively. There was no difference for growth performance and all measured indices of serum and intestinal tissues between 200 mg/kg bacteriophage group and the control group with antibiotics (P > 0.05). More importantly, compared with the control diet, dietary 400 mg/kg bacteriophage inclusion increased average daily gain and average daily feed intake, and decreased feed/gain ratio and diarrhea incidence of weaned piglets (P < 0.05). Also, piglets fed 400 mg/kg bacteriophage had elevated villi height (VH) in jejunum and ileum, reduced crypt depth (CD) in jejunum and ileum, and elevated VH/CD ratio in duodenum, jejunum and ileum (P < 0.05). Compared to the control group, piglets fed 400 mg/kg bacteriophage had lower interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and higher interleukin-10 (IL-10) concentration in serum, and higher secretory immunoglobulin A (sIgA), intestinal trefoil factor (ITF), and tumor growth factor-alpha (TGF-α) content in the ileal mucosa (P < 0.05). Besides, dietary addition with 400 mg/kg bacteriophage decreased the D-lactate concentration and diamine oxidase (DAO) activity in serum, and increased the relative mRNA expression of ZO-1, Claudin-1, Occludin, TLR2, TLR4, and TLR9, as well as the relative protein expression of Occludin in the jejunum (P < 0.05). However, the growth performance and all analyzed parameters in serum and intestinal tissues were not further improved when piglets fed 600 vs. 400 mg/kg bacteriophage (P > 0.05). MiSeq sequencing analysis showed that bacteriophage regulated the microbial composition in caecum digesta, as indicated by higher observed_species, Chao1, and ACE richness indices, as well as changes in the relative abundance of Firmicutes, Bacteroidetes, and Tenericutes (P < 0.05). Collectively, 400 mg/kg bacteriophage can be used as an antibiotics alternative for promoting the growth of weaned piglets. The underlying mechanism is associated with a positive effect of bacteriophage on intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets.
Collapse
Affiliation(s)
- Yongdi Zeng
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Liuzhen Zheng
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Shuo Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
23
|
Tzani-Tzanopoulou P, Skliros D, Megremis S, Xepapadaki P, Andreakos E, Chanishvili N, Flemetakis E, Kaltsas G, Taka S, Lebessi E, Doudoulakakis A, Papadopoulos NG. Interactions of Bacteriophages and Bacteria at the Airway Mucosa: New Insights Into the Pathophysiology of Asthma. FRONTIERS IN ALLERGY 2021; 1:617240. [PMID: 35386933 PMCID: PMC8974763 DOI: 10.3389/falgy.2020.617240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The airway epithelium is the primary site where inhaled and resident microbiota interacts between themselves and the host, potentially playing an important role on allergic asthma development and pathophysiology. With the advent of culture independent molecular techniques and high throughput technologies, the complex composition and diversity of bacterial communities of the airways has been well-documented and the notion of the lungs' sterility definitively rejected. Recent studies indicate that the microbial composition of the asthmatic airways across the spectrum of disease severity, differ significantly compared with healthy individuals. In parallel, a growing body of evidence suggests that bacterial viruses (bacteriophages or simply phages), regulating bacterial populations, are present in almost every niche of the human body and can also interact directly with the eukaryotic cells. The triptych of airway epithelial cells, bacterial symbionts and resident phages should be considered as a functional and interdependent unit with direct implications on the respiratory and overall homeostasis. While the role of epithelial cells in asthma pathophysiology is well-established, the tripartite interactions between epithelial cells, bacteria and phages should be scrutinized, both to better understand asthma as a system disorder and to explore potential interventions.
Collapse
Affiliation(s)
- Panagiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research of the Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nina Chanishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi, GA, United States
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Grigoris Kaltsas
- Department of Electrical and Electronic Engineering, University of West Attica, Athens, Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Lebessi
- Department of Microbiology, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | | | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Górski A. Phage Prevalence in the Human Urinary Tract-Current Knowledge and Therapeutic Implications. Microorganisms 2020; 8:microorganisms8111802. [PMID: 33212807 PMCID: PMC7696197 DOI: 10.3390/microorganisms8111802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Recent metagenomic analyses imply an immense abundance of phages in the human body. Samples collected from different sites (lungs, skin, oral cavity, intestines, ascitic fluid, and urine) reveal a generally greater number of phage particles than that of eukaryotic viruses. The presence of phages in those tissues and fluids reflects the paths they must overcome in the human body, but may also relate to the health statuses of individuals. Besides shaping bacterial metabolism and community structure, the role of phages circulating in body fluids has not been fully understood yet. The lack of relevant reports is especially visible with regard to the human urobiome. Certainly, phage presence and the role they have to fulfill in the human urinary tract raises questions on potential therapeutic connotations. Urinary tract infections (UTIs) are among the most common bacterial infections in humans and their treatment poses a difficult therapeutic dilemma. Despite effective antibiotic therapy, these infections tend to recur. In this review, we summarized the recent data on phage presence in the human urinary tract and its possible implications for health and disease.
Collapse
Affiliation(s)
- Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, Medical University of Warsaw, 02-005 Warsaw, Poland
- Correspondence:
| |
Collapse
|
25
|
Blanco-Picazo P, Fernández-Orth D, Brown-Jaque M, Miró E, Espinal P, Rodríguez-Rubio L, Muniesa M, Navarro F. Unravelling the consequences of the bacteriophages in human samples. Sci Rep 2020; 10:6737. [PMID: 32317653 PMCID: PMC7174282 DOI: 10.1038/s41598-020-63432-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
Bacteriophages are abundant in human biomes and therefore in human clinical samples. Although this is usually not considered, they might interfere with the recovery of bacterial pathogens at two levels: 1) by propagating in the enrichment cultures used to isolate the infectious agent, causing the lysis of the bacterial host and 2) by the detection of bacterial genes inside the phage capsids that mislead the presence of the bacterial pathogen. To unravel these interferences, human samples (n = 271) were analyzed and infectious phages were observed in 11% of blood culture, 28% of serum, 45% of ascitic fluid, 14% of cerebrospinal fluid and 23% of urine samples. The genetic content of phage particles from a pool of urine and ascitic fluid samples corresponded to bacteriophages infecting different bacterial genera. In addition, many bacterial genes packaged in the phage capsids, including antibiotic resistance genes and 16S rRNA genes, were detected in the viromes. Phage interference can be minimized applying a simple procedure that reduced the content of phages up to 3 logs while maintaining the bacterial load. This method reduced the detection of phage genes avoiding the interference with molecular detection of bacteria and reduced the phage propagation in the cultures, enhancing the recovery of bacteria up to 6 logs.
Collapse
Affiliation(s)
- Pedro Blanco-Picazo
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028, Barcelona, Spain
| | - Dietmar Fernández-Orth
- European Genome-phenome Archive, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Maryury Brown-Jaque
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028, Barcelona, Spain
| | - Elisenda Miró
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Sant Quintí 89, 08041, Barcelona, Spain
| | - Paula Espinal
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Sant Quintí 89, 08041, Barcelona, Spain
| | - Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028, Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028, Barcelona, Spain.
| | - Ferran Navarro
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Sant Quintí 89, 08041, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Abstract
The discovery of bacteria in the female urinary bladder has fundamentally changed current dogma regarding the urinary tract and related urinary disorders. Previous research characterized many of the bacterial components of the female urinary tract, but the viral fraction of this community is largely unknown. Viruses within the human microbiota far outnumber bacterial cells, with the most abundant viruses being those that infect bacteria (bacteriophages). Similar to observations within the microbiota of the gut and oral cavity, preliminary surveys of the urinary tract and bladder microbiota indicate a rich diversity of uncharacterized bacteriophage (phage) species. Phages are vital members of the microbiota, having critical roles in shaping bacterial metabolism and community structure. Although phages have been discovered in the urinary tract, such as phages that infect Escherichia coli, sampling them is challenging owing to low biomass, possible contamination when using non-invasive methods and the invasiveness of methods that reduce the potential for contamination. Phages could influence bladder health, but an understanding of the association between phage communities, bacterial populations and bladder health is in its infancy. However, evidence suggests that phages can defend the host against pathogenic bacteria and, therefore, modulation of the microbiome using phages has therapeutic potential for lower urinary tract symptoms. Furthermore, as natural predators of bacteria, phages have garnered renewed interest for their use as antimicrobial agents, for instance, in the treatment of urinary tract infections.
Collapse
|
27
|
Bacteriophages as Potential Tools for Detection and Control of Salmonella spp. in Food Systems. Microorganisms 2019; 7:microorganisms7110570. [PMID: 31744260 PMCID: PMC6920764 DOI: 10.3390/microorganisms7110570] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/21/2023] Open
Abstract
The global problem of antibiotic resistance in bacteria is quickly developing in most antibiotics used in hospitals and livestock. Recently, the infections with multi-drug resistant (MDR) bacteria become a major cause of death worldwide. Current antibiotics are not very effective in treating MDR Salmonella infections, which have become a public health threat. Therefore, novel approaches are needed to rapidly detect and effectively control antibiotic-resistant pathogens. Bacteriophages (phages) have seen renewed attention for satisfying those requirements due to their host-specific properties. Therefore, this review aims to discuss the possibility of using phages as a detection tool for recognizing bacterial cell surface receptors and an alternative approach for controlling antibiotic-resistant pathogens in food systems.
Collapse
|
28
|
Wojciuk B, Salabura A, Grygorcewicz B, Kędzierska K, Ciechanowski K, Dołęgowska B. Urobiome: In Sickness and in Health. Microorganisms 2019; 7:microorganisms7110548. [PMID: 31717688 PMCID: PMC6921077 DOI: 10.3390/microorganisms7110548] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022] Open
Abstract
The human microbiome has been proven to contribute to the human condition, both in health and in disease. The metagenomic approach based on next-generation sequencing has challenged the dogma of urine sterility. The human urobiome consists of bacteria and eukaryotic viruses as well as bacteriophages, which potentially represent the key factor. There have been several significant findings with respect to the urobiome in the context of urological disorders. Still, the research on the urobiome in chronic kidney disease and kidney transplantation remains underrepresented, as does research on the role of the virome in the urinary microbiota. In this review, we present recent findings on the urobiome with a particular emphasis on chronic kidney disease and post-kidney transplantation status. Challenges and opportunities arising from the research on the human urobiome will also be discussed.
Collapse
Affiliation(s)
- Bartosz Wojciuk
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-661-654
| | - Agata Salabura
- Clinic of Nephrology, Internal Medicine and Transplantation, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.S.); (K.K.); (K.C.)
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (B.G.); (B.D.)
| | - Karolina Kędzierska
- Clinic of Nephrology, Internal Medicine and Transplantation, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.S.); (K.K.); (K.C.)
| | - Kazimierz Ciechanowski
- Clinic of Nephrology, Internal Medicine and Transplantation, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.S.); (K.K.); (K.C.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (B.G.); (B.D.)
| |
Collapse
|
29
|
Pacífico C, Hilbert M, Sofka D, Dinhopl N, Pap IJ, Aspöck C, Carriço JA, Hilbert F. Natural Occurrence of Escherichia coli-Infecting Bacteriophages in Clinical Samples. Front Microbiol 2019; 10:2484. [PMID: 31736918 PMCID: PMC6834657 DOI: 10.3389/fmicb.2019.02484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
The interaction between bacteriophages, bacteria and the human host as a tripartite system has recently captured attention. The taxonomic diversity of bacteriophages, as a natural parasite of bacteria, still remains obscure in human body biomes, representing a so-called “viral dark matter.” Here, we isolated and characterized coliphages from blood, urine and tracheal aspirates samples collected at a tertiary care hospital in Austria. Phages were more often isolated from blood, followed by urine and tracheal aspirates. Phylogenetic analysis and genome comparisons allowed the identification of phages belonging to the Tunavirinae subfamily, and to the Peduovirus and Tequintavirus genera. Tunavirinae phages cluster together and are found in samples from 14 patients, suggesting their prevalence across a variety of human samples. When compared with other phage genomes, the highest similarity level was at 87.69% average nucleotide identity (ANI), which suggests that these are in fact a newly isolated phage species. Tequintavirus phages share a 95.90% with phage 3_29, challenging the ANI threshold currently accepted to differentiate phage species. The isolated phages appear to be virulent, with the exception of the Peduovirus members, which are integrative and seem to reside as prophages in bacterial genomes.
Collapse
Affiliation(s)
- Cátia Pacífico
- Department of Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Miriam Hilbert
- Department of Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dmitrij Sofka
- Department of Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Nora Dinhopl
- Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Ildiko-Julia Pap
- Institute of Hygiene and Microbiology, University Hospital St. Pölten, St. Pölten, Austria
| | - Christoph Aspöck
- Karl Landsteiner University of Health Sciences, Krems, Austria.,Institute of Hygiene and Microbiology, University Hospital St. Pölten, St. Pölten, Austria
| | - João André Carriço
- Faculty of Medicine, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | - Friederike Hilbert
- Department of Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
30
|
Johnson G, Putonti C. Genome Sequence of Pseudomonas Phage UMP151, Isolated from the Female Bladder Microbiota. Microbiol Resour Announc 2019; 8:e00853-19. [PMID: 31416880 PMCID: PMC6696655 DOI: 10.1128/mra.00853-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 11/20/2022] Open
Abstract
A temperate bacteriophage, designated UMP151, was isolated from a Pseudomonas aeruginosa strain from a catheterized urine sample of a woman with overactive bladder (OAB) symptoms. The 41,303-bp genome sequence of Pseudomonas phage UMP151 exhibits sequence similarity to prophage and lytic phage sequences isolated from other areas of the human body.
Collapse
Affiliation(s)
- Genevieve Johnson
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Department of Computer Science, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
31
|
Fister S, Mester P, Witte AK, Sommer J, Schoder D, Rossmanith P. Part of the problem or the solution? Indiscriminate use of bacteriophages in the food industry can reduce their potential and impair growth-based detection methods. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Jończyk-Matysiak E, Łodej N, Kula D, Owczarek B, Orwat F, Międzybrodzki R, Neuberg J, Bagińska N, Weber-Dąbrowska B, Górski A. Factors determining phage stability/activity: challenges in practical phage application. Expert Rev Anti Infect Ther 2019; 17:583-606. [PMID: 31322022 DOI: 10.1080/14787210.2019.1646126] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Phages consist of nucleic acids and proteins that may lose their activity under different physico-chemical conditions. The production process of phage formulations may decrease phage infectivity. Ingredients present in the preparation may influence phage particles, although preparation and storage conditions may also cause variations in phage titer. Significant factors are the manner of phage application, the patient's immune system status, the type of medication being taken, and diet. Areas covered: We discuss factors determining phage activity and stability, which is relevant for the preparation and application of phage formulations with the highest therapeutic efficacy. Our article should be helpful for more insightful implementation of clinical trials, which could pave the way for successful phage therapy. Expert opinion: The number of naturally occurring phages is practically unlimited and phages vary in their susceptibility to external factors. Modern methods offer engineering techniques which should lead to enhanced precision in phage delivery and anti-bacterial activity. Recent data suggesting that phages may also be used in treating nonbacterial infections as well as anti-inflammatory and immunomodulatory agents add further weight to such studies. It may be anticipated that different phage activities could have varying susceptibility to factors determining their actions.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Norbert Łodej
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Dominika Kula
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Barbara Owczarek
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Filip Orwat
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Ryszard Międzybrodzki
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,b Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw , Warsaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Joanna Neuberg
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Natalia Bagińska
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Beata Weber-Dąbrowska
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Andrzej Górski
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,b Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw , Warsaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| |
Collapse
|
33
|
Sommer J, Trautner C, Witte AK, Fister S, Schoder D, Rossmanith P, Mester PJ. Don't Shut the Stable Door after the Phage Has Bolted-The Importance of Bacteriophage Inactivation in Food Environments. Viruses 2019; 11:E468. [PMID: 31121941 PMCID: PMC6563225 DOI: 10.3390/v11050468] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
In recent years, a new potential measure against foodborne pathogenic bacteria was rediscovered-bacteriophages. However, despite all their advantages, in connection to their widespread application in the food industry, negative consequences such as an uncontrolled phage spread as well as a development of phage resistant bacteria can occur. These problems are mostly a result of long-term persistence of phages in the food production environment. As this topic has been neglected so far, this article reviews the current knowledge regarding the effectiveness of disinfectant strategies for phage inactivation and removal. For this purpose, the main commercial phage products, as well as their application fields are first discussed in terms of applicable inactivation strategies and legal regulations. Secondly, an overview of the effectiveness of disinfectants for bacteriophage inactivation in general and commercial phages in particular is given. Finally, this review outlines a possible strategy for users of commercial phage products in order to improve the effectiveness of phage inactivation and removal after application.
Collapse
Affiliation(s)
- Julia Sommer
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Christoph Trautner
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Anna Kristina Witte
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
- HTK Hygiene Technologie Kompetenzzentrum GmbH, Buger Str. 80, 96049 Bamberg, Germany.
| | - Susanne Fister
- Former member of Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animal and Public Veterinary Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Dagmar Schoder
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Peter Rossmanith
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Patrick-Julian Mester
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
34
|
Rajnovic D, Muñoz-Berbel X, Mas J. Fast phage detection and quantification: An optical density-based approach. PLoS One 2019; 14:e0216292. [PMID: 31071103 PMCID: PMC6508699 DOI: 10.1371/journal.pone.0216292] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/17/2019] [Indexed: 12/04/2022] Open
Abstract
Since 1959 with the proposal of Double Agar Layer (DAL) method for phage detection and quantification, many sophisticated methods have emerged meanwhile. However, many of them are either too complex/expensive or insensitive to replace routine utilization of DAL method in clinical, environmental and industrial environments. For that purpose, we have explored an alternative method for the detection and quantification of bacteriophages that fulfills the criteria of being rapid, simple and inexpensive. In this paper we have developed a method based on the analysis of optical density kinetics in bacterial cultures exposed to phage-containing samples. Although the decrease in optical density caused by cell lysis was one of the first observable consequences of the effect of viral infection in bacterial cultures, the potential of the method for the assessment of phage abundance has never been fully exploited. In this work we carry out a detailed study of optical density kinetics in phage-infected bacterial cultures, as a function of both, phage abundance and initial concentration of the host organisms. In total, 90 different combinations of bacteria/phage concentrations have been used. The data obtained provide valuable information about sensitivity ranges, duration of the assay, percentages of inhibition and type of lysing behavior for each phage concentration. The method described can detect, as few as 10 phage particles per assay volume after a phage incubation period of 3.5h. The duration of the assay can be shortened to 45min at the expense of losing sensitivity and increasing the limit of detection to 108 pfu/ml. Despite using non-sophisticated technology, the method described has shown sensitivity and response time comparable to other high-end methods. The simplicity of the technology and of the analytical steps involved, make the system susceptible of miniaturization and automation for high-throughput applications which can be implemented in routine analysis in many environments.
Collapse
Affiliation(s)
- Denis Rajnovic
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Edifici C. Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
- * E-mail: (DR); (JM)
| | - Xavier Muñoz-Berbel
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Cerdanyola del Vallès, Barcelona, Spain
| | - Jordi Mas
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Edifici C. Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
- * E-mail: (DR); (JM)
| |
Collapse
|
35
|
Huh H, Wong S, St Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: Therapeutic applications. Adv Drug Deliv Rev 2019; 145:4-17. [PMID: 30659855 DOI: 10.1016/j.addr.2019.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
The human body is a large reservoir for bacterial viruses known as bacteriophages (phages), which participate in dynamic interactions with their bacterial and human hosts that ultimately affect human health. The current growing interest in human resident phages is paralleled by new uses of phages, including the design of engineered phages for therapeutic applications. Despite the increasing number of clinical trials being conducted, the understanding of the interaction of phages and mammalian cells and tissues is still largely unknown. The presence of phages in compartments within the body previously considered purely sterile, suggests that phages possess a unique capability of bypassing anatomical and physiological barriers characterized by varying degrees of selectivity and permeability. This review will discuss the direct evidence of the accumulation of bacteriophages in various tissues, focusing on the unique capability of phages to traverse relatively impermeable barriers in mammals and its relevance to its current applications in therapy.
Collapse
Affiliation(s)
- Haein Huh
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Jesse St Jean
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada.
| |
Collapse
|
36
|
Abedon ST. Use of phage therapy to treat long-standing, persistent, or chronic bacterial infections. Adv Drug Deliv Rev 2019; 145:18-39. [PMID: 31708017 DOI: 10.1016/j.addr.2018.06.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/10/2018] [Accepted: 06/23/2018] [Indexed: 01/01/2023]
Abstract
Viruses of bacteria - known as bacteriophages or phages - have been used clinically as antibacterial agents for nearly 100 years. Often this phage therapy is of long-standing, persistent, or chronic bacterial infections, and this can be particularly so given prior but insufficiently effective infection treatment using standard antibiotics. Such infections, in turn, often have a biofilm component. Phages in modern medicine thus are envisaged to serve especially as anti-biofilm/anti-persistent infection agents. Here I review the English-language literature concerning in vivo experimental and clinical phage treatment of longer-lived bacterial infections. Overall, published data appears to be supportive of a relatively high potential for phages to cure infections which are long standing and which otherwise have resisted treatment with antibieiotics.
Collapse
|
37
|
Sangiovanni M, Granata I, Thind AS, Guarracino MR. From trash to treasure: detecting unexpected contamination in unmapped NGS data. BMC Bioinformatics 2019; 20:168. [PMID: 30999839 PMCID: PMC6472186 DOI: 10.1186/s12859-019-2684-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Next Generation Sequencing (NGS) experiments produce millions of short sequences that, mapped to a reference genome, provide biological insights at genomic, transcriptomic and epigenomic level. Typically the amount of reads that correctly maps to the reference genome ranges between 70% and 90%, leaving in some cases a consistent fraction of unmapped sequences. This ’misalignment’ can be ascribed to low quality bases or sequence differences between the sample reads and the reference genome. Investigating the source of the unmapped reads is definitely important to better assess the quality of the whole experiment and to check for possible downstream or upstream ’contamination’ from exogenous nucleic acids. Results Here we propose DecontaMiner, a tool to unravel the presence of contaminating sequences among the unmapped reads. It uses a subtraction approach to identify bacteria, fungi and viruses genome contamination. DecontaMiner generates several output files to track all the processed reads, and to provide a complete report of their characteristics. The good quality matches on microorganism genomes are counted and compared among samples. DecontaMiner builds an offline HTML page containing summary statistics and plots. The latter are obtained using the state-of-the-art D3 javascript libraries. DecontaMiner has been mainly used to detect contamination in human RNA-Seq data. The software is freely available at http://www-labgtp.na.icar.cnr.it/decontaminer. Conclusions DecontaMiner is a tool designed and developed to investigate the presence of contaminating sequences in unmapped NGS data. It can suggest the presence of contaminating organisms in sequenced samples, that might derive either from laboratory contamination or from their biological source, and in both cases can be considered as worthy of further investigation and experimental validation. The novelty of DecontaMiner is mainly represented by its easy integration with the standard procedures of NGS data analysis, while providing a complete, reliable, and automatic pipeline. Electronic supplementary material The online version of this article (10.1186/s12859-019-2684-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mara Sangiovanni
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy
| | - Ilaria Granata
- High Performance Computing and Networking Institute, National Research Council of Italy, Via P. Castellino, 111, Napoli, 80131, Italy.
| | - Amarinder Singh Thind
- High Performance Computing and Networking Institute, National Research Council of Italy, Via P. Castellino, 111, Napoli, 80131, Italy
| | - Mario Rosario Guarracino
- High Performance Computing and Networking Institute, National Research Council of Italy, Via P. Castellino, 111, Napoli, 80131, Italy
| |
Collapse
|
38
|
Bacteriocins and Bacteriophages: Therapeutic Weapons for Gastrointestinal Diseases? Int J Mol Sci 2019; 20:ijms20010183. [PMID: 30621339 PMCID: PMC6337595 DOI: 10.3390/ijms20010183] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
Bacteriocins are bactericidal peptides, ribosomally synthesized, with an inhibitory activity against diverse groups of undesirable microorganisms. Bacteriocins are produced by both gram-positive and gram-negative bacteria, and to a lesser extent by some archaea. Bacteriophages are viruses that are able to infect bacterial cells and force them to produce viral components, using a lytic or lysogenic cycle. They constitute a large community in the human gut called the phageome, the most abundant part of the gut virome. Bacteriocins and bacteriophages may have an influence on both human health and diseases, thanks to their ability to modulate the gut microbiota and regulate the competitive relationship among the different microorganisms, strains and cells living in the human intestine. In this review, we explore the role of bacteriocins and bacteriophages in the most frequent gastrointestinal diseases by dissecting their interaction with the complex environment of the human gut, analyzing a possible link with extra-intestinal diseases, and speculating on their possible therapeutic application with the end goal of promoting gut health.
Collapse
|
39
|
Garretto A, Thomas-White K, Wolfe AJ, Putonti C. Detecting viral genomes in the female urinary microbiome. J Gen Virol 2018; 99:1141-1146. [PMID: 29889019 PMCID: PMC6171713 DOI: 10.1099/jgv.0.001097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
Viruses are the most abundant component of the human microbiota. Recent evidence has uncovered a rich diversity of viruses within the female bladder, including both bacteriophages and eukaryotic viruses. We conducted whole-genome sequencing of the bladder microbiome of 30 women: 10 asymptomatic 'healthy' women and 20 women with an overactive bladder. These metagenomes include sequences representative of human, bacterial and viral DNA. This analysis, however, focused specifically on viral sequences. Using the bioinformatic tool virMine, we discovered sequence fragments, as well as complete genomes, of bacteriophages and the eukaryotic virus JC polyomavirus. The method employed here is a critical proof of concept: the genomes of viral populations within the low-biomass bladder microbiota can be reconstructed through whole-genome sequencing of the entire microbial community.
Collapse
Affiliation(s)
- Andrea Garretto
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | - Krystal Thomas-White
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Present address: 325 Sharon Park Dr, Suite 522, Menlo Park, CA, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
40
|
Yang S, Gao X, Meng J, Zhang A, Zhou Y, Long M, Li B, Deng W, Jin L, Zhao S, Wu D, He Y, Li C, Liu S, Huang Y, Zhang H, Zou L. Metagenomic Analysis of Bacteria, Fungi, Bacteriophages, and Helminths in the Gut of Giant Pandas. Front Microbiol 2018; 9:1717. [PMID: 30108570 PMCID: PMC6080571 DOI: 10.3389/fmicb.2018.01717] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/10/2018] [Indexed: 11/13/2022] Open
Abstract
To obtain full details of gut microbiota, including bacteria, fungi, bacteriophages, and helminths, in giant pandas (GPs), we created a comprehensive microbial genome database and used metagenomic sequences to align against the database. We delineated a detailed and different gut microbiota structures of GPs. A total of 680 species of bacteria, 198 fungi, 185 bacteriophages, and 45 helminths were found. Compared with 16S rRNA sequencing, the dominant bacterium phyla not only included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria but also Cyanobacteria and other eight phyla. Aside from Ascomycota, Basidiomycota, and Glomeromycota, Mucoromycota, and Microsporidia were the dominant fungi phyla. The bacteriophages were predominantly dsDNA Myoviridae, Siphoviridae, Podoviridae, ssDNA Inoviridae, and Microviridae. For helminths, phylum Nematoda was the dominant. In addition to previously described parasites, another 44 species of helminths were found in GPs. Also, differences in abundance of microbiota were found between the captive, semiwild, and wild GPs. A total of 1,739 genes encoding cellulase, β-glucosidase, and cellulose β-1,4-cellobiosidase were responsible for the metabolism of cellulose, and 128,707 putative glycoside hydrolase genes were found in bacteria/fungi. Taken together, the results indicated not only bacteria but also fungi, bacteriophages, and helminths were diverse in gut of giant pandas, which provided basis for the further identification of role of gut microbiota. Besides, metagenomics revealed that the bacteria/fungi in gut of GPs harbor the ability of cellulose and hemicellulose degradation.
Collapse
Affiliation(s)
- Shengzhi Yang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xin Gao
- Department of Nutrition and Food Science, University of Maryland, College Park, College Park, MD, United States
| | - Jianghong Meng
- Department of Nutrition and Food Science, University of Maryland, College Park, College Park, MD, United States
| | - Anyun Zhang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yingmin Zhou
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Mei Long
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Bei Li
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wenwen Deng
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lei Jin
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Siyue Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Daifu Wu
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Yongguo He
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Caiwu Li
- The China Conservation and Research Center for the Giant Panda, Wolong, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Yan Huang
- The China Conservation and Research Center for the Giant Panda, Wolong, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), Wolong, China
| | - Hemin Zhang
- The China Conservation and Research Center for the Giant Panda, Wolong, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), Wolong, China
| | - Likou Zou
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
41
|
Górski A, Jończyk-Matysiak E, Międzybrodzki R, Weber-Dąbrowska B, Łusiak-Szelachowska M, Bagińska N, Borysowski J, Łobocka MB, Węgrzyn A, Węgrzyn G. Phage Therapy: Beyond Antibacterial Action. Front Med (Lausanne) 2018; 5:146. [PMID: 29876350 PMCID: PMC5974148 DOI: 10.3389/fmed.2018.00146] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Until recently, phages were considered as mere “bacteria eaters” with potential for use in combating antimicrobial resistance. The real value of phage therapy assessed according to the standards of evidence-based medicine awaits confirmation by clinical trials. However, the progress in research on phage biology has shed more light on the significance of phages. Accumulating data indicate that phages may also interact with eukaryotic cells. How such interactions could be translated into advances in medicine (especially novel means of therapy) is discussed herein.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata B Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
42
|
Namdee K, Khongkow M, Boonrungsiman S, Nittayasut N, Asavarut P, Temisak S, Saengkrit N, Puttipipatkhachorn S, Hajitou A, Ruxrungtham K, Yata T. Thermoresponsive Bacteriophage Nanocarrier as a Gene Delivery Vector Targeted to the Gastrointestinal Tract. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:33-44. [PMID: 30195771 PMCID: PMC6023791 DOI: 10.1016/j.omtn.2018.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 11/21/2022]
Abstract
The use of the gastrointestinal tract as a site for the local delivery of DNA is an exciting prospect. In order to obtain an effective vector capable of delivering a gene of interest to target cells to achieve sufficient and sustained transgene expression, with minimal toxicity, we developed a new generation of filamentous bacteriophage. This particular bacteriophage was genetically engineered to display an arginine-glycine-aspartic acid (RGD) motif (an integrin-binding peptide) on the major coat protein pVIII and carry a mammalian DNA cassette. One unanticipated observation is the thermoresponsive behavior of engineered bacteriophage. This finding has led us to simplify the isolation method to purify bacteriophage particles from cell culture supernatant by low-temperature precipitation. Our results showed that, in contrast to non-surface modified, the RGD-modified bacteriophage was successfully used to deliver a transgene to mammalian cells. Our in vitro model of the human intestinal follicle-associated epithelium also demonstrated that bacteriophage particles were stable in simulated gastrointestinal fluids and able to cross the human intestinal barrier. In addition, we confirmed an adjuvant property of the engineered bacteriophage to induce nitric oxide production by macrophages. In conclusion, our study demonstrated the possibility of using bacteriophage for gene transfer in the gastrointestinal tract.
Collapse
Affiliation(s)
- Katawut Namdee
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Naiyaphat Nittayasut
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Paladd Asavarut
- Cancer Phage Therapy Group, Division of Brain Sciences, Imperial College London, London, UK
| | - Sasithon Temisak
- Bio Analysis Group, Chemical Metrology and Biometry Department, National Institute of Metrology (NIMT), Pathumthani, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Satit Puttipipatkhachorn
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Amin Hajitou
- Cancer Phage Therapy Group, Division of Brain Sciences, Imperial College London, London, UK
| | - Kiat Ruxrungtham
- Vaccine and Cellular Immunology Laboratory, Vaccine Research Center (ChulaVRC) and Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Yata
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani, Thailand.
| |
Collapse
|
43
|
Brown-Jaque M, Rodriguez Oyarzun L, Cornejo-Sánchez T, Martín-Gómez MT, Gartner S, de Gracia J, Rovira S, Alvarez A, Jofre J, González-López JJ, Muniesa M. Detection of Bacteriophage Particles Containing Antibiotic Resistance Genes in the Sputum of Cystic Fibrosis Patients. Front Microbiol 2018; 9:856. [PMID: 29765367 PMCID: PMC5938348 DOI: 10.3389/fmicb.2018.00856] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is a chronic disease in which the bacterial colonization of the lung is linked to an excessive inflammatory response that leads to respiratory failure. The microbiology of CF is complex. Staphylococcus aureus is the first bacterium to colonize the lungs in 30% of pediatric CF patients, and 80% of adult patients develop a chronic Pseudomonas aeruginosa infection, but other microorganisms can also be found. The use of antibiotics is essential to treat the disease, but antibiotic performance is compromised by resistance mechanisms. Among various mechanisms of transfer of antibiotic resistance genes (ARGs), the recently been reported bacteriophages are the least explored in clinical settings. To determine the role of phages in CF as mobile genetic elements (MGEs) carrying ARGs, we evaluated their presence in 71 CF patients. 71 sputum samples taken from these patients were screened for eight ARGs (blaTEM, blaCTX-M-1-group, blaCTX-M-9-group, blaOXA-48, blaVIM, mecA, qnrA, and qnrS) in the bacteriophage DNA fraction. The phages found were also purified and observed by electron microscopy. 32.4% of CF patients harbored ARGs in phage DNA. β-lactamase genes, particularly blaVIM and blaTEM, were the most prevalent and abundant, whereas mecA, qnrA, and qnrS were very rare. Siphoviridae phage particles capable of infecting P. aeruginosa and Klebsiella pneumoniae were detected in CF sputum. Phage particles harboring ARGs were found to be abundant in the lungs of both CF patients and healthy individuals and could contribute to the colonization of multiresistant strains.
Collapse
Affiliation(s)
- Maryury Brown-Jaque
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Lirain Rodriguez Oyarzun
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Thais Cornejo-Sánchez
- Department of Clinical Microbiology, Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria T Martín-Gómez
- Department of Clinical Microbiology, Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gartner
- Cystic Fibrosis Unit, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, CIBER of Respiratory Diseases (Ciberes CB06/06/0030), Carlos III Health Institute, Barcelona, Spain
| | - Javier de Gracia
- Cystic Fibrosis Unit, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, CIBER of Respiratory Diseases (Ciberes CB06/06/0030), Carlos III Health Institute, Barcelona, Spain
| | - Sandra Rovira
- Cystic Fibrosis Unit, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, CIBER of Respiratory Diseases (Ciberes CB06/06/0030), Carlos III Health Institute, Barcelona, Spain
| | - Antonio Alvarez
- Cystic Fibrosis Unit, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, CIBER of Respiratory Diseases (Ciberes CB06/06/0030), Carlos III Health Institute, Barcelona, Spain
| | - Joan Jofre
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Juan J González-López
- Department of Clinical Microbiology, Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Bacteriophages of the Urinary Microbiome. J Bacteriol 2018; 200:JB.00738-17. [PMID: 29378882 DOI: 10.1128/jb.00738-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 01/01/2023] Open
Abstract
Bacterial viruses (bacteriophages) play a significant role in microbial community dynamics. Within the human gastrointestinal tract, for instance, associations among bacteriophages (phages), microbiota stability, and human health have been discovered. In contrast to the gastrointestinal tract, the phages associated with the urinary microbiota are largely unknown. Preliminary metagenomic surveys of the urinary virome indicate a rich diversity of novel lytic phage sequences at an abundance far outnumbering that of eukaryotic viruses. These surveys, however, exclude the lysogenic phages residing within the bacteria of the bladder. To characterize this phage population, we examined 181 genomes representative of the phylogenetic diversity of bacterial species within the female urinary microbiota and found 457 phage sequences, 226 of which were predicted with high confidence. Phages were prevalent within the bladder bacteria: 86% of the genomes examined contained at least one phage sequence. Most of these phages are novel, exhibiting no discernible sequence homology to sequences in public data repositories. The presence of phages with substantial sequence similarity within the microbiota of different women supports the existence of a core community of phages within the bladder. Furthermore, the observed variation between the phage populations of women with and without overactive bladder symptoms suggests that phages may contribute to urinary health. To complement our bioinformatic analyses, viable phages were cultivated from the bacterial isolates for characterization; a novel coliphage was isolated, which is obligately lytic in the laboratory strain Escherichia coli C. Sequencing of bacterial genomes facilitates a comprehensive cataloguing of the urinary virome and reveals phage-host interactions.IMPORTANCE Bacteriophages are abundant within the human body. However, while some niches have been well surveyed, the phage population within the urinary microbiome is largely unknown. Our study is the first survey of the lysogenic phage population within the urinary microbiota. Most notably, the abundance of prophage exceeds that of the bacteria. Furthermore, many of the prophage sequences identified exhibited no recognizable sequence homology to sequences in data repositories. This suggests a rich diversity of uncharacterized phage species present in the bladder. Additionally, we observed a variation in the abundances of phages between bacteria isolated from asymptomatic "healthy" individuals and those with urinary symptoms, thus suggesting that, like phages within the gut, phages within the bladder may contribute to urinary health.
Collapse
|
45
|
Brown-Jaque M, Calero-Cáceres W, Espinal P, Rodríguez-Navarro J, Miró E, González-López JJ, Cornejo T, Hurtado JC, Navarro F, Muniesa M. Antibiotic resistance genes in phage particles isolated from human faeces and induced from clinical bacterial isolates. Int J Antimicrob Agents 2017; 51:434-442. [PMID: 29180282 DOI: 10.1016/j.ijantimicag.2017.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/07/2017] [Accepted: 11/18/2017] [Indexed: 12/31/2022]
Abstract
Phage particles have emerged as elements with the potential to mobilise antibiotic resistance genes (ARGs) in different environments, including the intestinal habitat. This study aimed to determine the occurrence of ARGs in phage particles present in faecal matter and induced from strains isolated from faeces. Nine ARGs (blaTEM, blaCTX-M-1 group, blaCTX-M-9 group, blaOXA-48, qnrA, qnrS, mecA, sul1 and armA) were quantified by qPCR in the phage DNA fractions of 150 faecal samples obtained from healthy individuals who had not received antibiotic treatment or travelled abroad in the 3 months prior to sample collection. On the suspicion that the detected particles originated from bacterial flora, 82 Escherichia coli and Klebsiella pneumoniae isolates possessing at least one identified ARG (blaTEM, blaCTX-M-1 group, blaCTX-M-9 group, armA, qnrA, qnrS and sul1) were isolated and their capacity to produce phage particles carrying these ARGs following induction was evaluated. Of 150 samples, 72.7% were positive for at least one ARG, with blaTEM and blaCTX-M-9 group being the most prevalent and abundant. Of the 82 isolates, 51 (62%) showed an increase in the number of copies of the respective ARG in the phage fraction following induction, with blaTEM, blaCTX-M-1 group, blaCTX-M-9 group and sul1 being the most abundant. Phages induced from the isolates were further purified and visualised using microscopy and their DNA showed ARG levels of up to 1010 gene copies/mL. This study highlights the abundance of phage particles harbouring ARGs and indicates that bacterial strains in the intestinal habitat could be source of these particles.
Collapse
Affiliation(s)
- Maryury Brown-Jaque
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - William Calero-Cáceres
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Paula Espinal
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Sant Quintí 89, 08041 Barcelona, Spain
| | - Judith Rodríguez-Navarro
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Sant Quintí 89, 08041 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisenda Miró
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Sant Quintí 89, 08041 Barcelona, Spain
| | - Juan José González-López
- Department of Clinical Microbiology, Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Thais Cornejo
- Department of Clinical Microbiology, Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Juan Carlos Hurtado
- ISGlobal, Barcelona Centre for International Health Research, Department of Microbiology, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Ferran Navarro
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Sant Quintí 89, 08041 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain.
| |
Collapse
|
46
|
Holman D, Lungren MP, Hardy J, Contag C, Blankenberg F. Preparation of Tc99m-Labeled Pseudomonas Bacteriophage without Adversely Impacting Infectivity or Biodistribution. Bioconjug Chem 2017; 28:2698-2706. [PMID: 29020448 DOI: 10.1021/acs.bioconjchem.7b00395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriophages (phages) are ubiquitous viruses which have adapted to infect and replicate within target bacteria, their only known hosts, in a strain specific fashion with minimal cross infectivity. The recent steep rise in antibiotic resistance throughout the world has renewed interest in adapting phages for the imaging and treatment of bacterial infection in humans. In this article, we describe the current limitations surrounding the radiolabeling of phage for the imaging and treatment of bacterial infection and methods to overcome these difficulties. Specifically, we examined the effects of hydrazinonicotinamide conjugation and removal of bacterial DNA on the infectivity, biodistribution, and radionuclide imaging of a phage lytic for a clinically relevant strain of Pseudomonas aeruginosa, a common Gram-negative bacterial pathogen often resistant to multiple antibiotics. We found that all but the briefest reaction of concentrated phage with hydrazinonicotinamide (≤3 min) resulted in nearly complete loss of infectivity. Furthermore, we determined that digestion and removal of bacterial DNA was needed to avoid high nonspecific uptake of hydrazinonicotinamide-labeled phage within the liver and spleen as well as prolonged circulation in the blood. We also demonstrate the surprisingly wide soft tissue and organ biodistribution and rapid pharmacokinetics of 99mTc-hydrazinonicotinamide-labeled phage in normal mice as well as its imaging characteristics and efficacy in wounded mice infected with bioluminescent Pseudomonas aeruginosa. In conclusion, the preservation of phage infectivity and removal of all bacterial containments including DNA are critical methodologic considerations in the labeling of phages for imaging and therapy.
Collapse
Affiliation(s)
- Derek Holman
- Department of Pediatrics, Division of Medical Genetics and Biochemistry, Stanford University School of Medicine , Stanford, California 94305, United States
| | - Matthew P Lungren
- Department of Radiology, Division of Pediatric Radiology and Nuclear Medicine, Lucile Packard Children's Hospital , Stanford, California 94305, United States
| | - Jonathan Hardy
- Department of Microbiology and Immunology, Stanford University School of Medicine , E150 Clark Center MC 5427, Stanford, California 94305, United States
| | - Chris Contag
- Department of Pediatrics, Division of Medical Genetics and Biochemistry, Stanford University School of Medicine , Stanford, California 94305, United States.,Department of Radiology, Division of Pediatric Radiology and Nuclear Medicine, Lucile Packard Children's Hospital , Stanford, California 94305, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine , E150 Clark Center MC 5427, Stanford, California 94305, United States
| | - Francis Blankenberg
- Department of Radiology, Division of Pediatric Radiology and Nuclear Medicine, Lucile Packard Children's Hospital , Stanford, California 94305, United States
| |
Collapse
|
47
|
Łusiak-Szelachowska M, Weber-Dąbrowska B, Jończyk-Matysiak E, Wojciechowska R, Górski A. Bacteriophages in the gastrointestinal tract and their implications. Gut Pathog 2017; 9:44. [PMID: 28811841 PMCID: PMC5553654 DOI: 10.1186/s13099-017-0196-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/06/2017] [Indexed: 12/22/2022] Open
Abstract
The gut microbiota plays an essential role in health and disease of humans. Bacteriophages are the most abundant members of the gut virobiota and display great diversity. Phages can translocate through the mucosa to lymph and internal organs and play a role as regulators of the bacterial population in the gut. Increasing abundance of phages in the gut mucosa may reduce colonization by bacteria. Moreover, phages may have an immunomodulatory role in the immune response in the human gut. The role of phages in inflammatory bowel disease (IBD) remains unknown. Phages may take part in the development of IBD, but there are also data suggesting the protective role of phages in the gut of patients with IBD. Furthermore, recent data suggest that phages may mediate the beneficial effects of fecal microbiota transplantation (FMT). Therefore, evidence is accumulating to highlight the protective immunomodulating activity of the gut phages.
Collapse
Affiliation(s)
- Marzanna Łusiak-Szelachowska
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
| | - Ewa Jończyk-Matysiak
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
| | - Renata Wojciechowska
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
| | - Andrzej Górski
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
48
|
Abedon ST. Information Phage Therapy Research Should Report. Pharmaceuticals (Basel) 2017; 10:ph10020043. [PMID: 28468287 PMCID: PMC5490400 DOI: 10.3390/ph10020043] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, or phages, are viruses which infect bacteria. A large subset of phages infect bactericidally and, consequently, for nearly one hundred years have been employed as antibacterial agents both within and outside of medicine. Clinically these applications are described as phage or bacteriophage therapy. Alternatively, and especially in the treatment of environments, this practice instead may be described as a phage-mediated biocontrol of bacteria. Though the history of phage therapy has involved substantial clinical experimentation, current standards along with drug regulations have placed a premium on preclinical approaches, i.e., animal experiments. As such, it is important for preclinical experiments not only to be held to high standards but also to be reported in a manner which improves translation to clinical utility. Here I address this latter issue, that of optimization of reporting of preclinical as well as clinical experiments. I do this by providing a list of pertinent information and data which, in my opinion, phage therapy experiments ought to present in publications, along with tips for best practices. The goal is to improve the ability of readers to gain relevant information from reports on phage therapy research, to allow other researchers greater potential to repeat or extend findings, to ease transitions from preclinical to clinical development, and otherwise simply to improve phage therapy experiments. Targeted are not just authors but also reviewers, other critical readers, writers of commentaries, and, perhaps, formulators of guidelines or policy. Though emphasizing therapy, many points are applicable to phage-mediated biocontrol of bacteria more generally.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA.
| |
Collapse
|
49
|
Abstract
Bacteriophages, viruses that infect bacteria, have re-emerged as powerful regulators of bacterial populations in natural ecosystems. Phages invade the human body, just as they do other natural environments, to such an extent that they are the most numerous group in the human virome. This was only revealed in recent metagenomic studies, despite the fact that the presence of phages in the human body was reported decades ago. The influence of the presence of phages in humans has yet to be evaluated; but as in marine environments, a clear role in the regulation of bacterial populations could be envisaged, that might have an impact on human health. Moreover, phages are excellent vehicles of genetic transfer, and they contribute to the evolution of bacterial cells in the human body by spreading and acquiring DNA horizontally. The abundance of phages in the human body does not pass unnoticed and the immune system reacts to them, although it is not clear to what extent. Finally, the presence of phages in human samples, which most of the time is not considered, can influence and bias microbiological and molecular results; and, in view of the evidences, some studies suggest that more attention needs to be paid to their interference.
Collapse
Affiliation(s)
- Ferran Navarro
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant PauBarcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, University of BarcelonaBarcelona, Spain
| |
Collapse
|