1
|
Gao PJ, Abbas H, Li FQ, Tang GR, Lv JZ, Zhou XB. Effect of planting methods and tillage practices on soil health and maize productivity. FRONTIERS IN PLANT SCIENCE 2024; 15:1436011. [PMID: 39574441 PMCID: PMC11578738 DOI: 10.3389/fpls.2024.1436011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024]
Abstract
Introduction To increase the crop yield, the amount of agrochemicals used in field has increased in recent years. Moreover, indiscriminate use of chemical fertilizers has led to soil deterioration and compaction. Inclusion of straw and tillage practices to the field could play an important role in improving the soil quality and crop yield. Therefore, we hypothesized that combination of straw return and different tillage practices would result in improvement in soil health and crop productivity. Methods Therefore an experiment was conducted a split plot design during 2018-2022. They were comprised of traditional planting with no straw return and straw return, accompanied by four different tillage methods: control (no tillage), rotary tillage (25 cm tillage depth), subsoiling (35 cm tillage depth), and subsoiling plus rotary tillage (35 + 25 cm tillage depth). Results Results showed that subsoiling along with rotary tillage enhanced soil total nitrogen (TN) by 9.0%, soil organic carbon (SOC) 7.5%, soil microbial biomass carbon (MBC) 6.8%, soil catalase (S-CAT) 9.6%, soil urease (S-UE) 4.1%, soil cellulase (S-CL) 14.5%, soil sucrase (S-SC) 10.8% and maize yield 3.0% compared to no tillage. Discussion Correlation analysis showed that (i) maize yield was significantly and positively correlated with S-SC, S-CL, S-UE, SOC, and TN. (ii) S-SC was significantly and positively correlated with TN, SOC, and MBC. (iii) TN was significantly and positively correlated with S-UE, and SOC was significantly and positively correlated with S-SC. It has been concluded that straw return coupled with subsoiling and rotary tillage is an appropriate approach to enrich soil nutrients, enzyme activities, and maize yield.
Collapse
Affiliation(s)
- Peng Ju Gao
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hasnain Abbas
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China
| | - Fa Qiao Li
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guo Rong Tang
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ju Zhi Lv
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
2
|
He N, Huang F, Luo D, Liu Z, Han M, Zhao Z, Sun X. Oilseed flax cultivation: optimizing phosphorus use for enhanced growth and soil health. FRONTIERS IN PLANT SCIENCE 2024; 15:1432875. [PMID: 39323530 PMCID: PMC11422101 DOI: 10.3389/fpls.2024.1432875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
Introduction Oilseed flax (Linum usitatissimum L.) yields are phosphate (P) fertilizer-limited, especially in the temperate semiarid dryland regions of North China. However, there are limited studies on the effects of P-fertilizer inputs on plant growth and soil microorganisms in flax planting systems. Methods To address this gap, a field experiment was conducted with four treatments: no P addition and application of 40, 80, and 120 kg P ha-¹, respectively. The aim was to investigate the influence of various P fertilizer inputs on yield, plant dry matter, P use efficiency, as well as the population of soil arbuscular mycorrhizal fungi (AMF) and bacteria in dryland oilseed flax. Results Our results show that the P addition increased the dry matter, and the yield of oilseed increased by ~200% at 120 kg P ha-1 addition with inhibition on the growth of AMF hyphae. The moderate P supply (80 kg ha-1) was adequate for promoting P translocation, P use efficiency, and P recovery efficiency. Soil pH, available P, and available K significantly (p< 0.05) promoted the abundance of the dominant taxa (Acidobacteria_GP6, Sphingobacteria and Bacteroidetes). In addition, it is imperative to comprehend the mechanism of interaction between phosphorus-fertilizer inputs and microbiota in oilseed flax soil. Discussion This necessitates further research to quantify and optimize the moderate phosphorus supply, regulate soil microbes to ensure high phosphorus utilization, and ultimately establish a sustainable system for oilseed flax cultivation in the local area.
Collapse
Affiliation(s)
- Ning He
- Yichun Key Laboratory of Functional Agriculture and Ecological Environment, Yichun University, Yichun, China
| | - Fang Huang
- Yichun Key Laboratory of Functional Agriculture and Ecological Environment, Yichun University, Yichun, China
| | - Dingyu Luo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Mingming Han
- Biology Program, School of Distance Education, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Zhigang Zhao
- Yichun Key Laboratory of Functional Agriculture and Ecological Environment, Yichun University, Yichun, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
3
|
Li X, Liu Q, Gao Y, Zang P, Zheng T. Effects of a co-bacterial agent on the growth, disease control, and quality of ginseng based on rhizosphere microbial diversity. BMC PLANT BIOLOGY 2024; 24:647. [PMID: 38977968 PMCID: PMC11229274 DOI: 10.1186/s12870-024-05347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The ginseng endophyte Paenibacillus polymyxa Pp-7250 (Pp-7250) has multifaceted roles such as preventing ginseng diseases, promoting growth, increasing ginsenoside accumulation, and degrading pesticide residues, however, these effects still have room for improvements. Composite fungicides are an effective means to improve the biocontrol effect of fungicides, but the effect of Pp-7250 in combination with its symbiotic bacteria on ginseng needs to be further investigated, and its mechanism of action has not been elucidated. In this study, a series of experiments was conducted to elucidate the effect of Paenibacillus polymyxa and Bacillus cereus co-bacterial agent on the yield and quality of understory ginseng, and to investigate their mechanism of action. RESULTS The results indicated that P. polymyxa and B. cereus co-bacterial agent (PB) treatment improved ginseng yield, ginsenoside accumulation, disease prevention, and pesticide degradation. The mechanism is that PB treatment increased the abundance of beneficial microorganisms, including Rhodanobacter, Pseudolabrys, Gemmatimonas, Bacillus, Paenibacillus, Cortinarius, Russula, Paecilomyces, and Trechispora, and decreased the abundance of pathogenic microorganisms, including Ellin6067, Acidibacter, Fusarium, Tetracladium, Alternaria, and Ilyonectria in ginseng rhizosphere soil. PB co-bacterial agents enhanced the function of microbial metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, biosynthesis of amino acids, carbon fixation pathways in prokaryotes, DNA replication, and terpenoid backbone biosynthesis, and decreased the function of microbial plant pathogens and animal pathogens. CONCLUSION The combination of P. polymyxa and B. cereus may be a potential biocontrol agent to promote the resistance of ginseng to disease and improve the yield, quality, and pesticide degradation.
Collapse
Affiliation(s)
- Xinyue Li
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 2100147, China
| | - Yugang Gao
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Pu Zang
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Zheng
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
4
|
Wang C, Zhang Y, Wang S, Lv X, Xu J, Zhang X, Yang Q, Meng F, Xu B. Differential effects of domesticated and wild Capsicum frutescens L. on microbial community assembly and metabolic functions in rhizosphere soil. Front Microbiol 2024; 15:1383526. [PMID: 39040904 PMCID: PMC11261347 DOI: 10.3389/fmicb.2024.1383526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024] Open
Abstract
Objective Rhizosphere microorganisms play crucial roles in the growth and development of plants, disease resistance, and environmental adaptability. As the only wild pepper variety resource in China, domesticated Capsicum frutescens Linn. (Xiaomila) exhibits varying beneficial traits and affects rhizosphere microbial composition compared with its wild counterparts. In this study, we aimed to identify specific rhizosphere microbiome and metabolism patterns established during the domestication process. Methods The rhizosphere microbial diversity and composition of domesticated and wild C. frutescens were detected and analyzed by metagenomics. Non-targeted metabolomics were used to explore the differences of metabolites in rhizosphere soil between wild and domesticated C. frutescens. Results We found that the rhizosphere microbial diversity of domesticated variety was significantly different from that of the wild variety, with Massilia being its dominant bacteria. However, the abundance of certain beneficial microbes such as Gemmatimonas, Streptomyces, Rambibacter, and Lysobacter decreased significantly. The main metabolites identified in the wild variety included serylthreonine, deoxyloganic acid, vitamin C, among others. In contrast, those identified in the domesticated group were 4-hydroxy-l-glutamic acid and benzoic acid. Furthermore, the differentially enriched pathways were concentrated in tyrosine and tryptophan biosynthesis, histidine and purine-derived alkaloids biosynthesis, benzoic acid family, two-component system, etc. Conclusion This study revealed that C. frutescens established specific rhizosphere microbiota and metabolites during domestication, which has important significance for the efficient utilization of beneficial microorganisms in breeding and cultivation practices.
Collapse
Affiliation(s)
- Can Wang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
- Institute of Medicinal Biological Technique, Wenshan Academy of Agricultural Sciences, Wenshan, Yunnan, China
| | - Yinghua Zhang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shaoxiang Wang
- Institute of Medicinal Biological Technique, Wenshan Academy of Agricultural Sciences, Wenshan, Yunnan, China
| | - Xia Lv
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junqiang Xu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xueting Zhang
- Institute of Medicinal Biological Technique, Wenshan Academy of Agricultural Sciences, Wenshan, Yunnan, China
| | - Qing Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fanlai Meng
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, China
| | - Bin Xu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Zhang Y, Yin Q, Guo L, Guo J, Chen Y, Li M. Chicken manure-derived biochar enhanced the potential of Comamonas testosteroni ZG2 to remediate Cd contaminated soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:198. [PMID: 38695979 DOI: 10.1007/s10653-024-01956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/13/2024] [Indexed: 06/17/2024]
Abstract
The combined remediation of Cd-contaminated soil using biochar and microorganisms has a good application value. In this study, the effect of chicken manure-derived biochar on CdCO3 precipitation induced by Comamonas testosteroni ZG2 was investigated. The results showed that biochar could be used as the carrier of strain ZG2, enhance the resistance of strain ZG2 to Cd, and reduce the toxicity of Cd to bacterial cells. Cd adsorbed by biochar could be induced by strain ZG2 to form CdCO3 precipitation. Strain ZG2 could also induce CdCO3 precipitation when biochar was added during precipitation formation and fermentation broth formation. The CdCO3 precipitation could enter the pores of the biochar and attach to the surface of the biochar. The single and combined effects of strain ZG2 and biochar could realize the remediation of Cd-contaminated soil to a certain extent. The overall effect was in the order of strain ZG2 with biochar > biochar > strain ZG2. The combination of strain ZG2 and biochar reduced soil available Cd by 48.2%, the aboveground biomass of pakchoi increased by 72.1%, and the aboveground Cd content decreased by 73.3%. At the same time, it promoted the growth and development of the root system and improved the microbial community structure of the rhizosphere soil. The results indicated that chicken manure-derived biochar could enhance the stability of CdCO3 precipitation induced by strain ZG2, and strain ZG2 combined with biochar could achieve a more stable remediation effect on Cd-contaminated soil.
Collapse
Affiliation(s)
- Yu Zhang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuxia Yin
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Lingling Guo
- Microbial Research Institute of Liaoning Province, Chaoyang, 122000, China
| | - Jiayi Guo
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Yuanhui Chen
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Mingtang Li
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
6
|
Wang J, Aghajani Delavar M. Techno-economic analysis of phytoremediation: A strategic rethinking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165949. [PMID: 37536595 DOI: 10.1016/j.scitotenv.2023.165949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Phytoremediation is a cost-effective and environmentally sound approach, which uses plants to immobilize/stabilize, extract, decay, or lessen toxicity and contaminants. Despite successful evidence of field application, such as natural attenuations, and self-purification, the main barriers remain from a "promising" to a "commercial" approach. Therefore, the ultimate goal of this paper is to examine factors that contribute to phytoremediation's underutilization and discuss the real costs of phytoremediation when the time and land values are considered. We revisit mechanisms and processes of phytoremediation. We synthesize existing information and understanding based on previous works done on phytoremediation and its applications to provide the technical assessment and perspective views in the commercial acceptance of phytoremediation. The results show that phytoremediation is the most suitable for remote regions with low land values. Since these regions allow a longer period to be restored, land vegetation covers can be established in more or less time like natural attenuation. Since the length of phytoremediation is an inherent limitation, this inherent disadvantage limits its adoption in developed business regions, such as growing urban areas. Because high land values could not be recovered in the short term, phytoremediation is not cost-effective in those regions. We examine the potential measures that can enhance the performance of phytoremediation, such as soil amendments, and agricultural practices. The results obtained through review can clarify where/what conditions phytoremediation can provide the most suitable solutions at a large scale. Finally, we identify the main barriers and knowledge gaps to establishing a vegetation cover in large-scale applications and highlight the research priorities for increased acceptance of phytoremediation.
Collapse
Affiliation(s)
- Junye Wang
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada.
| | - Mojtaba Aghajani Delavar
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
7
|
Dash PK, Bhattacharyya P, Shahid M, Kumar U, Padhy SR, Swain CK, Senapati A, Bihari P, Nayak AK. Impact of long-term resource conservation techniques on biogeochemical characteristics and biological soil quality indicators in a rice green-gram farming system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7979-7997. [PMID: 37515727 DOI: 10.1007/s10653-023-01713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
Nutrient management in resource conservation practices influence the structural and functional microbial diversities and thereby affect biological processes and biochemical properties in soil. We studied the long-term effects of resource conservation technologies on functional microbial diversity and their interactions with soil biochemical properties and enzymatic activities in tropical rice-green gram cropping system. The experiment includes seven treatments viz., conventional practice (CC), brown manuring (BM), green manuring (GM), wet direct drum sowing, zero tillage, green manuring-customized leaf colour chart based-N application (GM-CLCC-N) and biochar (BC) application. The result of the present study revealed that microbial biomass nitrogen (N), carbon (C) and phosphorus (P) in GM practice were increased by 23.3, 37.7 and 35.1%, respectively than CC. GM, BM and GM-CLCC-N treatments provide higher yields than conventional practice. The average well color development value, Shannon index and McIntosh index were significantly higher by 26.6%, 86.9% and 29.2% in GM as compared to control treatment. So, from this study we can conclude that resource conservation practices like GM, GM-CLCC N and BM in combination with chemical fertilizers provide easily decomposable carbon source to support the microbial growth. Moreover, dominance of microbial activity in biomass amended treatments (GM, GM-CLCC N and BM) indicated that these treatments could supply good amount of labile C sources on real time basis for microbial growth that may protect the stable C fraction in soil, hence could support higher yield and soil organic carbon build-up in long run under rice-green gram soil.
Collapse
Affiliation(s)
- P K Dash
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, 753006, India.
| | - P Bhattacharyya
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Mohammad Shahid
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - U Kumar
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - S R Padhy
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - C K Swain
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - A Senapati
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - P Bihari
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - A K Nayak
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, 753006, India.
| |
Collapse
|
8
|
Romano I, Bodenhausen N, Basch G, Soares M, Faist H, Trognitz F, Sessitsch A, Doubell M, Declerck S, Symanczik S. Impact of conservation tillage on wheat performance and its microbiome. FRONTIERS IN PLANT SCIENCE 2023; 14:1211758. [PMID: 37670872 PMCID: PMC10475739 DOI: 10.3389/fpls.2023.1211758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
Winter wheat is an important cereal consumed worldwide. However, current management practices involving chemical fertilizers, irrigation, and intensive tillage may have negative impacts on the environment. Conservation agriculture is often presented as a sustainable alternative to maintain wheat production, favoring the beneficial microbiome. Here, we evaluated the impact of different water regimes (rainfed and irrigated), fertilization levels (half and full fertilization), and tillage practices (occasional tillage and no-tillage) on wheat performance, microbial activity, and rhizosphere- and root-associated microbial communities of four winter wheat genotypes (Antequera, Allez-y, Apache, and Cellule) grown in a field experiment. Wheat performance (i.e., yield, plant nitrogen concentrations, and total nitrogen uptake) was mainly affected by irrigation, fertilization, and genotype, whereas microbial activity (i.e., protease and alkaline phosphatase activities) was affected by irrigation. Amplicon sequencing data revealed that habitat (rhizosphere vs. root) was the main factor shaping microbial communities and confirmed that the selection of endophytic microbial communities takes place thanks to specific plant-microbiome interactions. Among the experimental factors applied, the interaction of irrigation and tillage influenced rhizosphere- and root-associated microbiomes. The findings presented in this work make it possible to link agricultural practices to microbial communities, paving the way for better monitoring of these microorganisms in the context of agroecosystem sustainability.
Collapse
Affiliation(s)
- Ida Romano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
| | - Natacha Bodenhausen
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Gottlieb Basch
- MED – Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Évora, Portugal
| | - Miguel Soares
- MED – Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Évora, Portugal
| | - Hanna Faist
- AIT Austrian Institute of Technology, Tulln, Austria
| | | | | | - Marcé Doubell
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sarah Symanczik
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
9
|
Kumar R, Choudhary JS, Naik SK, Mondal S, Mishra JS, Poonia SP, Kumar S, Hans H, Kumar S, Das A, Kumar V, Bhatt BP, Chaudhari SK, Malik RK, Craufurd P, McDonald A, Sherpa SR. Influence of conservation agriculture-based production systems on bacterial diversity and soil quality in rice-wheat-greengram cropping system in eastern Indo-Gangetic Plains of India. Front Microbiol 2023; 14:1181317. [PMID: 37485518 PMCID: PMC10356824 DOI: 10.3389/fmicb.2023.1181317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Conservation agriculture (CA) is gaining attention in the South Asia as an environmentally benign and sustainable food production system. The knowledge of the soil bacterial community composition along with other soil properties is essential for evaluating the CA-based management practices for achieving the soil environment sustainability and climate resilience in the rice-wheat-greengram system. The long-term effects of CA-based tillage-cum-crop establishment (TCE) methods on earthworm population, soil parameters as well as microbial diversity have not been well studied. Methods Seven treatments (or scenarios) were laid down with the various tillage (wet, dry, or zero-tillage), establishment method (direct-or drill-seeding or transplantation) and residue management practices (mixed with the soil or kept on the soil surface). The soil samples were collected after 7 years of experimentation and analyzed for the soil quality and bacterial diversity to examine the effect of tillage-cum-crop establishment methods. Results and Discussion Earthworm population (3.6 times), soil organic carbon (11.94%), macro (NPK) (14.50-23.57%) and micronutrients (Mn, and Cu) (13.25 and 29.57%) contents were appreciably higher under CA-based TCE methods than tillage-intensive farming practices. Significantly higher number of OTUs (1,192 ± 50) and Chao1 (1415.65 ± 14.34) values were observed in partial CA-based production system (p ≤ 0.05). Forty-two (42) bacterial phyla were identified across the scenarios, and Proteobacteria, Actinobacteria, and Firmicutes were the most dominant in all the scenarios. The CA-based scenarios harbor a high abundance of Proteobacteria (2-13%), whereas the conventional tillage-based scenarios were dominated by the bacterial phyla Acidobacteria and Chloroflexi and found statistically differed among the scenarios (p ≤ 0.05). Composition of the major phyla, i.e., Proteobacteria, Actinobacteria, and Firmicutes were associated differently with either CA or farmers-based tillage management practices. Overall, the present study indicates the importance of CA-based tillage-cum-crop establishment methods in shaping the bacterial diversity, earthworms population, soil organic carbon, and plant nutrient availability, which are crucial for sustainable agricultural production and resilience in agro-ecosystem.
Collapse
Affiliation(s)
- Rakesh Kumar
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Jaipal Singh Choudhary
- ICAR Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, Jharkhand, India
| | - Sushanta Kumar Naik
- ICAR Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, Jharkhand, India
| | - Surajit Mondal
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | | | - Shish Pal Poonia
- Cereal Systems Initiative for South Asia (CSISA)-CIMMYT, Patna, India
| | - Saurabh Kumar
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Hansraj Hans
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Sanjeev Kumar
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Anup Das
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Virender Kumar
- International Rice Research Institute, Los Banos, Philippines
| | | | | | - Ram Kanwar Malik
- Cereal Systems Initiative for South Asia (CSISA)-CIMMYT, Patna, India
| | | | - Andrew McDonald
- Soil and Crop Sciences Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
10
|
Dondjou DT, Diedhiou AG, Mbodj D, Mofini MT, Pignoly S, Ndiaye C, Diedhiou I, Assigbetse K, Manneh B, Laplaze L, Kane A. Rice developmental stages modulate rhizosphere bacteria and archaea co-occurrence and sensitivity to long-term inorganic fertilization in a West African Sahelian agro-ecosystem. ENVIRONMENTAL MICROBIOME 2023; 18:42. [PMID: 37198640 PMCID: PMC10193678 DOI: 10.1186/s40793-023-00500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rhizosphere microbial communities are important components of the soil-plant continuum in paddy field ecosystems. These rhizosphere communities contribute to nutrient cycling and rice productivity. The use of fertilizers is a common agricultural practice in rice paddy fields. However, the long-term impact of the fertilizers usage on the rhizosphere microbial communities at different rice developmental stages remains poorly investigated. Here, we examined the effects of long-term (27 years) N and NPK-fertilization on bacterial and archaeal community inhabiting the rice rhizosphere at three developmental stages (tillering, panicle initiation and booting) in the Senegal River Delta. RESULTS We found that the effect of long-term inorganic fertilization on rhizosphere microbial communities varied with the rice developmental stage, and between microbial communities in their response to N and NPK-fertilization. The microbial communities inhabiting the rice rhizosphere at panicle initiation appear to be more sensitive to long-term inorganic fertilization than those at tillering and booting stages. However, the effect of developmental stage on microbial sensitivity to long-term inorganic fertilization was more pronounced for bacterial than archaeal community. Furthermore, our data reveal dynamics of bacteria and archaea co-occurrence patterns in the rice rhizosphere, with differentiated bacterial and archaeal pivotal roles in the microbial inter-kingdom networks across developmental stages. CONCLUSIONS Our study brings new insights on rhizosphere bacteria and archaea co-occurrence and the long-term inorganic fertilization impact on these communities across developmental stages in field-grown rice. It would help in developing strategies for the successful manipulation of microbial communities to improve rice yields.
Collapse
Affiliation(s)
- Donald Tchouomo Dondjou
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
- Centre d’Etude Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, Sénégal
| | - Abdala Gamby Diedhiou
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
| | - Daouda Mbodj
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
- Africa Rice Center (AfricaRice), Saint-Louis, Senegal
| | - Marie-Thérèse Mofini
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
- Centre d’Etude Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, Sénégal
| | - Sarah Pignoly
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Cheikh Ndiaye
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
| | - Issa Diedhiou
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
| | - Komi Assigbetse
- Laboratoire Mixte International Intensification Écologique Des Sols Cultivés en Afrique de L’Ouest (IESOL), Dakar, Sénégal
- Eco&Sols, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Baboucarr Manneh
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Africa Rice Center (AfricaRice), Saint-Louis, Senegal
| | - Laurent Laplaze
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA‑AGRISAN), UCAD, Dakar, Sénégal
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Aboubacry Kane
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d’Excellence Africain « Environnement, Sociétés » (CEA-AGIR), UCAD, Santé, Dakar, Sénégal
| |
Collapse
|
11
|
Arunrat N, Sereenonchai S, Sansupa C, Kongsurakan P, Hatano R. Effect of Rice Straw and Stubble Burning on Soil Physicochemical Properties and Bacterial Communities in Central Thailand. BIOLOGY 2023; 12:biology12040501. [PMID: 37106702 PMCID: PMC10135879 DOI: 10.3390/biology12040501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Rice straw and stubble burning is widely practiced to clear fields for new crops. However, questions remain about the effects of fire on soil bacterial communities and soil properties in paddy fields. Here, five adjacent farmed fields were investigated in central Thailand to assess changes in soil bacterial communities and soil properties after burning. Samples of soil prior to burning, immediately after burning, and 1 year after burning were obtained from depths of 0 to 5 cm. The results showed that the pH, electrical conductivity, NH4-N, total nitrogen, and soil nutrients (available P, K, Ca, and Mg) significantly increased immediately after burning due to an increased ash content in the soil, whereas NO3-N decreased significantly. However, these values returned to the initial values. Chloroflexi were the dominant bacteria, followed by Actinobacteria and Proteobacteria. At 1 year after burning, Chloroflexi abundance decreased remarkably, whereas Actinobacteria, Proteobacteria, Verrucomicrobia, and Gemmatimonadetes abundances significantly increased. Bacillus, HSB OF53-F07, Conexibacter, and Acidothermus abundances increased immediately after burning, but were lower 1 year after burning. These bacteria may be highly resistant to heat, but grow slowly. Anaeromyxobacter and Candidatus Udaeobacter dominated 1 year after burning, most likely because of their rapid growth and the fact that they occupy areas with increased soil nutrient levels after fires. Amidase, cellulase, and chitinase levels increased with increased organic matter levels, whereas β-glucosidase, chitinase, and urease levels positively correlated with the soil total nitrogen level. Although clay and soil moisture strongly correlated with the soil bacterial community’s composition, negative correlations were found for β-glucosidase, chitinase, and urease. In this study, rice straw and standing stubble were burnt under high soil moisture and within a very short time, suggesting that the fire was not severe enough to raise the soil temperature and change the soil microbial community immediately after burning. However, changes in soil properties due to ash significantly increased the diversity indices, which was noticeable 1 year after burning.
Collapse
|
12
|
Impact of crop residue burning and tillage practices on soil biological parameters of rice–wheat agro-ecosystems. Trop Ecol 2023. [DOI: 10.1007/s42965-022-00287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
13
|
Effects of different straw returning amounts and fertilizer conditions on bacteria of rice's different part in rare earth mining area. Sci Rep 2023; 13:412. [PMID: 36624178 PMCID: PMC9829865 DOI: 10.1038/s41598-023-27553-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Pot experiments were conducted to explore the effects of different rice straw returning soil on the community structure and function of bacteria in rice root, rhizosphere, leaf and phyllosphere under 7 conditions of rice straw combined with different fertilizers respectively. The results showed that: rice straw returning in different ways increased the content of soil pH and K, and reduced the accumulation of N, P and organic matter in soil, and different rice straw returning ways had different effects; rice straw returning reduced dry weight of rice grain, 2% of rice straw returning reduced rice grain greater than that of 1% rice straw returning; The reduction of NP combined fertilization is greater than that of NK combined fertilization and NPK combined fertilization. Except for the decrease of chao_1 index in rice root at maturity, rice straw returning significantly improved the abundance, diversity and evenness of bacteria in rice root, rhizosphere, leaf and phyllosphere. Rice straw returning increased the content of REEs in rice, and 2% of rice straw returning soil increased rare earth element (REE) content in rice grain greater than that of 1% rice straw returning soil. Different ways of rice straw returning soil reduced the abundance of Bacillus, while the abundance of Exiguobacterium in rice leaves was hundreds of times higher than that of the control group, and the genus in leaves was dozens of times higher than that of the control group, 2% of rice straw returning soil increased the abundance of harmful bacteria and pathogens of Acidovorax, Clostridium sensu stricto, Citrobacter, Curtobacterium, and 1% of rice straw returning soil promoted the abundance of nitrogen fixing bacteria, plant growth-promoting bacteria, stress resistant bacteria such as Lactobacillus, Azospira, Acinetobacter, Bradyrhizobium and Acidocella; Environmental factors such as available P, organic matter, total nitrogen, nitrate nitrogen, rare earth element content in rice roots, available K and soil moisture are important factors affecting the community structure of bacteria in rice roots, rhizosphere, leaf and phyllosphere at tillering stage of the rice. pH, REE content in rice roots, shoots, organic matter, total nitrogen, nitrate nitrogen and soil moisture content are the main environmental factors affecting the community structure of bacteria in rice roots, rhizosphere, leaf and phyllosphere at maturity stage of rice. 2% rice straw returning soil promoted the formation of harmful bacteria, which may be an important reason for its significant reduction in the dry weight of rice grains.
Collapse
|
14
|
Deng Z, Huang M, Zhang W, Wang G, Huang X, Liang G, Li N. Effects of five years conservation tillage for hedging against drought, stabilizing maize yield, and improving soil environment in the drylands of northern China. PLoS One 2023; 18:e0282359. [PMID: 36877719 PMCID: PMC9987771 DOI: 10.1371/journal.pone.0282359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Continuous tillage cultivation positioning trials can provide the basis for maintaining soil health, improving resource utilization efficiency and crop productivity, and achieving sustainable agricultural development. In this study, changes in soil stability and water-holding capacity characteristics were measured under different tillage cultivations from a multi-year microscopic perspective and analyzed to evaluate selected key indicators. Continuous monitoring of rainfall utilization efficiency and yield was carried out for five years. Here, we discuss the role of conservation tillage in buffering and stabilizing rainfall precipitation pattern on the fluctuation and uncertainty of soil water retention and water supply capacity and soil quality. The study was carried out on dryland areas of the Loess Plateau in northern China with eight tillage systems established in 2016: no-tillage (NT); no-tillage and straw (NTS); subsoiling (SU); subsoiling and straw (SUS); rotary tillage (RT); rotary tillage and straw (RTS); conventional tillage (CT); and conventional tillage and straw (CTS). All treatments were applied in conjunction with continuous cropping for five years. The evaluated soil parameters were mean weight diameter (MWD), geometric mean diameter (GMD), >0.25 mm aggregate content (R0.25) of water-stable aggregates (WSAs), soil moisture characteristic curve (SMCC), specific soil water capacity (Cθ), soil organic matter (SOM), rainfall utilization efficiency (RUE), and maize yields for five consecutive years. The MWD, GMD, and R0.25 of SUS were 27.38%, 17.57%, and 7.68% more than CTS (control), respectively. Overall, SOM, average annual RUE, and average annual yields increased by 14.64%, 11.89%, and 9.59%, respectively, compared with 2016. Our results strongly suggest that conservation tillage can considerably improve these characterization indicators. SUS was more effective than CTS in the 0-40 cm soil layer at hedging against drought in the area, stabilizing crop production, and achieving sustainable agricultural development.
Collapse
Affiliation(s)
- Zizheng Deng
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Jingzhong, Shanxi, China
| | - Mingjing Huang
- Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan, Shanxi, China
- State Key Laboratory of Integrative Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
- * E-mail: (MH); (WZ)
| | - Wuping Zhang
- College of Software, Shanxi Agricultural University, Taigu, Jingzhong, Shanxi, China
- * E-mail: (MH); (WZ)
| | - Guofang Wang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Jingzhong, Shanxi, China
| | - Xuefang Huang
- Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan, Shanxi, China
- State Key Laboratory of Integrative Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Gaimei Liang
- Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan, Shanxi, China
- State Key Laboratory of Integrative Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Nana Li
- Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan, Shanxi, China
- State Key Laboratory of Integrative Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Song Q, Fu H, Shi Q, Shan X, Wang Z, Sun Z, Li T. Overfertilization reduces tomato yield under long-term continuous cropping system via regulation of soil microbial community composition. Front Microbiol 2022; 13:952021. [PMID: 35992643 PMCID: PMC9386239 DOI: 10.3389/fmicb.2022.952021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Long-term monoculture cropping and overfertilization degrade soil fertility, which reduces crop growth and promotes the development of soil-borne diseases. However, it remains unclear what the temporal effects of the above factors are on the tomato yield and microbial community structure. Thus, a greenhouse experiment with different amounts of fertilization [2,196 kg ha−1 (control) and 6,588 kg ha−1 (overfertilization) of inorganic fertilizers (NPK)] was carried out with the soils used previously for 1, 2, and 12 years under monoculture of tomato. A 12-year overfertilization decreased soil pH by 1.37 units. Soil electrical conductivity (EC) and concentrations of soil nutrients are enhanced with the increase in tomato cropping duration. Higher content of soil nutrients was found under overfertilization compared to the control in the 12-year soil. Overfertilization decreased the activity of β-1,4-glucosidase (BG) and oxidase compared to the control in the 12-year soil. Bacterial diversity and richness decreased by 6 and 31%, respectively, under overfertilization in 12-year soil compared to the control. The relative abundance of Gemmatimonas and Gp6 in 12-year soil under overfertilization was 17 and 78%, respectively, lower than in control soil. Soil pH and total carbon (TC) were the major factors explaining changes in microbial composition. A 38% decrease in yield was caused by overfertilization in 12-year soil compared to the control. Microbial community composition was the main factor that moderated tomato yield. In addition, fertilization rather than cropping duration had a greater impact on tomato yield. Therefore, our results suggest that long-term overfertilization influenced soil pH, soil TC, and soil microbial community composition to regulate tomato yield.
Collapse
Affiliation(s)
- Qiaobo Song
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Hongdan Fu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
- *Correspondence: Hongdan Fu
| | - Qingwen Shi
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Xuan Shan
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Zhen Wang
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Zhouping Sun
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Tianlai Li
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
- Tianlai Li
| |
Collapse
|
16
|
Li P, Liu J, Saleem M, Li G, Luan L, Wu M, Li Z. Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems. MICROBIOME 2022; 10:108. [PMID: 35841078 PMCID: PMC9287909 DOI: 10.1186/s40168-022-01287-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rhizodeposits regulate rhizosphere interactions, processes, nutrient and energy flow, and plant-microbe communication and thus play a vital role in maintaining soil and plant health. However, it remains unclear whether and how alteration in belowground carbon allocation and chemodiversity of rhizodeposits influences microbiome functioning in the rhizosphere ecosystems. To address this research gap, we investigated the relationship of rhizosphere carbon allocation and chemodiversity with microbiome biodiversity and functioning during peanut (Arachis hypogaea) continuous mono-cropping. After continuously labeling plants with 13CO2, we studied the chemodiversity and composition of rhizodeposits, along with the composition and diversity of active rhizosphere microbiome using metabolomic, amplicon, and shotgun metagenomic sequencing approaches based on DNA stable-isotope probing (DNA-SIP). RESULTS Our results indicated that enrichment and depletion of rhizodeposits and active microbial taxa varied across plant growth stages and cropping durations. Specifically, a gradual decrease in the rhizosphere carbon allocation, chemodiversity, biodiversity and abundance of plant-beneficial taxa (such as Gemmatimonas, Streptomyces, Ramlibacter, and Lysobacter), and functional gene pathways (such as quorum sensing and biosynthesis of antibiotics) was observed with years of mono-cropping. We detected significant and strong correlations between rhizodeposits and rhizosphere microbiome biodiversity and functioning, though these were regulated by different ecological processes. For instance, rhizodeposits and active bacterial communities were mainly governed by deterministic and stochastic processes, respectively. Overall, the reduction in carbon deposition and chemodiversity during peanut continuous mono-cropping tended to suppress microbial biodiversity and its functions in the rhizosphere ecosystem. CONCLUSIONS Our results, for the first time, provide the evidence underlying the mechanism of rhizosphere microbiome malfunctioning in mono-cropped systems. Our study opens new avenues to deeply disentangle the complex plant-microbe interactions from the perspective of rhizodeposits chemodiversity and composition and will serve to guide future microbiome research for improving the functioning and services of soil ecosystems. Video abstract.
Collapse
Affiliation(s)
- Pengfa Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104 USA
| | - Guilong Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| |
Collapse
|
17
|
Chen H, Ren H, Liu J, Tian Y, Lu S. Soil acidification induced decline disease of Myrica rubra: aluminum toxicity and bacterial community response analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45435-45448. [PMID: 35147885 DOI: 10.1007/s11356-022-19165-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The decline disease of Myrica rubra tree is commonly induced by soil acidification, which affects the yield and the quality of fruits. It is hypothesized that aluminum toxicity and microbial community changes caused by soil acidification were the main causes of decline of Myrica rubra tree. In order to explore the decline mechanism of Myrica rubra tree, soils around healthy and decline trees of Myrica rubra were collected to compare the concentrations of different aluminum forms, enzyme activities, and bacterial community structure. In this study, soil samples were collected from the five main production areas of Myrica rubra, Eastern China. The results showed that diseased soils had higher exchangeable aluminum, lower enzyme activities, and lower microbial diversity than healthy soils at various sites. The toxic Al significantly decreased bacterial diversity and altered the bacterial community structure. The diseased soils had significantly lower α-diversity indices (ACE, Chao1, and Shannon) of bacterial community. The Al toxicity deceased the relative abundance of Acidobacteria and Planctomycetes, while enhanced the relative abundance of Cyanobacteria, Bacteroidetes, and Firmicutes in soils. Co-occurrence network analysis indicated that the Al toxicity simplified the bacterial network. The soil ExAl content was significantly and negatively correlated with the nodes (r = -0.69, p < 0.05) and edges (r = -0.77, p < 0.01) of the bacterial network. These results revealed that the Al toxicity altered soil bacterial community structure, resulting in the decline disease of Myrica rubra tree, while highlighted the role of Al forms in the plant growth. This finding is of considerable significance to the better management of acidification-induced soil degradation and the quality of fruits.
Collapse
Affiliation(s)
- Han Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jingjing Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenggao Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Tillage Practices and Residue Management Manipulate Soil Bacterial and Fungal Communities and Networks in Maize Agroecosystems. Microorganisms 2022; 10:microorganisms10051056. [PMID: 35630498 PMCID: PMC9143171 DOI: 10.3390/microorganisms10051056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Tillage practices and residue management are highly important agricultural practices. However, very few studies have examined the influence of tillage practices and residue management on both bacterial and fungal communities and network patterns in consecutive years. We examined the effects of different tillage practices, including no tillage, rotary tillage, and deep tillage, on soil bacterial and fungal communities and co-occurrence networks following residue removal and residue retention in 2017 and 2018. This study showed that both bacterial and fungal communities were unaffected by tillage practices in 2017, but they were significantly impacted in 2018. Soil fungal operational taxonomic unit (OTU) richness was significantly enhanced by deep tillage compared with no tillage in 2018, while bacterial OTU richness was unaffected in either year. Tillage practices had differing effects on soil microbial co-occurrence networks, with rotary and deep tillage increasing the complexity of bacterial networks but simplifying fungal networks. However, residue retention only induced a shift in the fungal community and simplified soil bacterial and fungal networks in 2018. This study highlights the dissimilar responses of bacterial and fungal networks to tillage practices and emphasizes that tillage practice is more important than residue management in shaping soil microbial communities.
Collapse
|
19
|
Du S, Trivedi P, Wei Z, Feng J, Hu HW, Bi L, Huang Q, Liu YR. The Proportion of Soil-Borne Fungal Pathogens Increases with Elevated Organic Carbon in Agricultural Soils. mSystems 2022; 7:e0133721. [PMID: 35311561 PMCID: PMC9040864 DOI: 10.1128/msystems.01337-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Soil-borne fungal phytopathogens are important threats to soil and crop health. However, their community composition and environmental determinants remain unclear. Here, we explored the effects of agricultural fertilization regime (i.e., organic material application) on soil fungal phytopathogens, using data sets from a combination of field survey and long-term experiment. We found that soil organic carbon was the key factor that affected the diversity and relative abundance of fungal phytopathogens in agricultural soils. The dominant genera of phytopathogens including Monographella was also strongly associated with soil organic carbon. In addition, the elevated soil organic carbon enhanced the node proportion of phytopathogens and the positive interactions within the fungal community in the network. Results of the long-term experiment revealed that applications of crop straw and fresh livestock manure significantly increased the proportion of phytopathogens, which were associated with the elevated soil organic carbon. This work offers new insights into the occurrence and environmental factors of fungal phytopathogens in agricultural soils, which are fundamental to control their impacts on the soil and crop systems. IMPORTANCE Fungal phytopathogens are important threats to soil and crop health, but their community composition and environmental determinants remain unclear. We found that soil organic carbon is the key factor of the prevalence of fungal phytopathogens through a field survey, which is also supported by our long-term (6-year) experiment showing the applications of crop straw and fresh livestock manure significantly increased the proportion of fungal phytopathogens. These findings advance our understanding of the occurrence and environmental drivers of soil-borne fungal phytopathogens under agricultural fertilization regime and have important implications for the control of soil-borne pathogens.
Collapse
Affiliation(s)
- Shuai Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Li Bi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Borjigin Q, Zhang B, Yu X, Gao J, Zhang X, Qu J, Ma D, Hu S, Han S. Metagenomics study to compare the taxonomic composition and metabolism of a lignocellulolytic microbial consortium cultured in different carbon conditions. World J Microbiol Biotechnol 2022; 38:78. [PMID: 35325312 DOI: 10.1007/s11274-022-03260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
A lignocellulolytic microbial consortium holds promise for the in situ biodegradation of crop straw and the comprehensive and effective utilization of agricultural waste. In this study, we applied metagenomics technology to comprehensively explore the metabolic functional potential and taxonomic diversity of the microbial consortia CS (cultured on corn stover) and FP (cultured on filter paper). Analyses of the data on metagenomics taxonomic affiliations revealed considerable differences in the taxonomic composition and carbohydrate-active enzymes profile of the microbial consortia CS and FP. Pseudomonas, Dysgonomonas and Sphingobacterium in CS and Cellvibrio and Pseudomonas in FP had a much wider distribution of lignocellulose degradative ability. The genes for more lignocellulose degradative enzymes were detected when the relatively simple substrate filter paper was used as the carbon source. Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses revealed considerable levels of similarity, and carbohydrate metabolic and amino acid metabolic pathways were the most enriched in CS and FP, respectively. The mechanism used by the two microbial consortia to degrade lignocellulose was similar, but the annotation of quantity of genes indicated that they are diverse and vary greatly. These data underlie the interactions between microorganisms and the synergism of enzymes during the degradative process of lignocellulose under different substrates and suggest the development of potential microbial resources.
Collapse
Affiliation(s)
- Qinggeer Borjigin
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China.,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Bizhou Zhang
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, No.22, ZhaoJun Road, Hohhot, 010031, China
| | - Xiaofang Yu
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China. .,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.
| | - Julin Gao
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China. .,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.
| | - Xin Zhang
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Jiawei Qu
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China.,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Daling Ma
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China.,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Shuping Hu
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.,Vocational and Technical College, Inner Mongolia Agricultural University, Altan street, Baotou, 014109, China
| | - Shengcai Han
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.,Hortlculture and Plant Protection College, Inner Mongolia Agricultural University, No. 29, Eerduosi East Street, Hohhot, 010019, China
| |
Collapse
|
21
|
Yang H, Zhao Y, Ma J, Rong Z, Chen J, Wang Y, Zheng X, Ye W. Wheat Straw Return Influences Soybean Root-Associated Bacterial and Fungal Microbiota in a Wheat-Soybean Rotation System. Microorganisms 2022; 10:microorganisms10030667. [PMID: 35336243 PMCID: PMC8951542 DOI: 10.3390/microorganisms10030667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/16/2023] Open
Abstract
Roots hold complex microbial communities at the soil–root interface, which can affect plant nutrition, growth, and health. Although the composition of plant microbiomes has been extensively described for various plant species and environments, little is known about the effect of wheat straw return (WSR) on the soybean root microbiota. We used Illumina-based 16S rRNA and ITS amplicon sequencing to track changes in bacterial and fungal microbiota in bulk soil and soybean rhizosphere, rhizoplane, s1and endosphere during the third and fourth years after implementing WSR in a wheat–soybean rotation system. The results revealed that WSR had a greater impact on fungal communities than bacterial communities, particularly in bulk soil, rhizosphere, and rhizoplane. WSR enriched the relative abundance of cellulose-degrading fungi (e.g., Acremonium, Trichoderma, and Myrmecridium, among which Trichoderma also had antimicrobial activity), saprotroph (e.g., Exophiala), and nitrogen cycling bacteria (e.g., Chryseolinea). Furthermore, WSR depleted the relative abundance of pathogenic fungi (e.g., Fusarium and Alternaria). These data revealed for the first time that WSR had diverse effects on soybean root-associated microbial community composition, not only in soil but also in the rhizosphere, rhizoplane, and endosphere.
Collapse
Affiliation(s)
- Hongjun Yang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
| | - Yao Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxin Ma
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenyang Rong
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajia Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
| | - Yuanchao Wang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Zheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
22
|
Zhang Y, Zhang Y, Xu W, Hu J, Zhang Z. Possible effects of temperature on bacterial communities in the rhizosphere of rice under different climatic regions. Arch Microbiol 2022; 204:212. [PMID: 35296917 DOI: 10.1007/s00203-022-02812-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/21/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
Abstract
Global warming is an indisputable fact. However, the effect of warming on the rhizosphere bacterial community of crops is not well understood. Therefore, we carried out pot experiments with three rice (Oryza sativa L.) varieties in black soil across three climatic regions of northeast China to simulate temperature change, and analyzed the response of the rhizosphere bacterial community to different temperatures. Results showed that climate had stronger effects on rhizosphere bacterial communities than rice variety. The rhizosphere bacterial diversity differed significantly among the three climatic regions and positively correlated with the mean daily average temperature (MAveT), mean daily maximum temperature (MMaxT), and mean daily minimum temperature (MMinT), and negatively correlated with the daily temperature range (DTR). Principal co-ordinate analysis revealed that bulk soil bacterial communities maintained a high similarity across the three climatic regions, while rhizosphere bacterial communities notably varied. This change was significantly correlated with MAveT, MMaxT, MMinT, and DTR. Compared with bulk soil, Proteobacteria and Bacteroidetes were enriched in the rhizosphere, while Actinobacteria was depleted. Moreover, these changes were strengthened by increasing the temperature and decreasing DTR. Additionally, correlation analysis revealed that changes in rhizosphere bacterial communities were closely related to the formation of rice yields. Our study revealed that the increasing temperature indirectly reshapes the rhizosphere bacterial community that may promote rice production in areas with lower temperatures.
Collapse
Affiliation(s)
- Yang Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Yujie Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Wenjie Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Jian Hu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, People's Republic of China.
| | - Zujian Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China.
- Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Key Laboratory of Crop Genetic and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
23
|
Hernández-Guzmán M, Pérez-Hernández V, Navarro-Noya YE, Luna-Guido ML, Verhulst N, Govaerts B, Dendooven L. Application of ammonium to a N limited arable soil enriches a succession of bacteria typically found in the rhizosphere. Sci Rep 2022; 12:4110. [PMID: 35260645 PMCID: PMC8904580 DOI: 10.1038/s41598-022-07623-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
Crop residue management and tillage are known to affect the soil bacterial community, but when and which bacterial groups are enriched by application of ammonium in soil under different agricultural practices from a semi-arid ecosystem is still poorly understood. Soil was sampled from a long-term agronomic experiment with conventional tilled beds and crop residue retention (CT treatment), permanent beds with crop residue burned (PBB treatment) or retained (PBC) left unfertilized or fertilized with 300 kg urea-N ha−1 and cultivated with wheat (Triticum durum L.)/maize (Zea mays L.) rotation. Soil samples, fertilized or unfertilized, were amended or not (control) with a solution of (NH4)2SO4 (300 kg N ha−1) and were incubated aerobically at 25 ± 2 °C for 56 days, while CO2 emission, mineral N and the bacterial community were monitored. Application of NH4+ significantly increased the C mineralization independent of tillage-residue management or N fertilizer. Oxidation of NH4+ and NO2− was faster in the fertilized soil than in the unfertilized soil. The relative abundance of Nitrosovibrio, the sole ammonium oxidizer detected, was higher in the fertilized than in the unfertilized soil; and similarly, that of Nitrospira, the sole nitrite oxidizer. Application of NH4+ enriched Pseudomonas, Flavisolibacter, Enterobacter and Pseudoxanthomonas in the first week and Rheinheimera, Acinetobacter and Achromobacter between day 7 and 28. The application of ammonium to a soil cultivated with wheat and maize enriched a sequence of bacterial genera characterized as rhizospheric and/or endophytic independent of the application of urea, retention or burning of the crop residue, or tillage.
Collapse
Affiliation(s)
- Mario Hernández-Guzmán
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico
| | - Valentín Pérez-Hernández
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico.,Department of Chemistry and Biochemistry, Instituto Tecnológico de Tuxtla-Gutiérrez, Tuxtla Gutiérrez, Mexico
| | - Yendi E Navarro-Noya
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Marco L Luna-Guido
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico
| | - Nele Verhulst
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Bram Govaerts
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico.,Cornell University, Ithaca, USA
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico.
| |
Collapse
|
24
|
Liu YX, Pan YQ, Yang L, Ahmad S, Zhou XB. Stover return and nitrogen application affect soil organic carbon and nitrogen in a double-season maize field. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:387-395. [PMID: 34866298 DOI: 10.1111/plb.13370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Cultivation techniques have an important influence on grain yield of maize. This experiment investigated the effect of stover return (SR) and different nitrogen (N) application rate on soil organic carbon (SOC) composition, soil nutrient and maize yield. Different nitrogen application rate 100 (N100), 150 (N150), 200 (N200), 250 (N250) or 300 (N300) kg ha-1 applied to the maize field with stover return and without stover return traditional planting (TP) method. Nitrogen application rate and stover return affected the SOC, labile organic carbon (LOC), microbial biomass (MBC), NO3 - -N, NH4 + -N and maize yield. Soil N, soil carbon content and maize yield of SR were all higher than TP. The SOC content of SR and TP were 9.67 and 9.19 g kg-1 , respectively. Nitrogen application was significantly and positively correlated with soil MBC, LOC, SOC, NO3 - -N, NH4 + -N and yield. The maximum values of SOC composition, soil nutrients and maize yield were reached at SR with 250 kg ha-1 . Stover return with application of N 250 kg ha-1 significantly increased the growth attribute and maize yield in subtropical region compared with traditional planting.
Collapse
Affiliation(s)
- Y X Liu
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Y Q Pan
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - L Yang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - S Ahmad
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - X B Zhou
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| |
Collapse
|
25
|
Impacts of short-term tillage and crop residue incorporation managements on soil microbial community in a double-cropping rice field. Sci Rep 2022; 12:2093. [PMID: 35136181 PMCID: PMC8827058 DOI: 10.1038/s41598-022-06219-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/25/2022] [Indexed: 11/08/2022] Open
Abstract
Soil microbial community were usually reconsidered as a sensitive indicator in soil quality and soil environment change of paddy field. However, the effects of different tillage and crop residue incorporation managements on soil bacterial community under the double-cropping rice cropping system were still need to further investigated. Therefore, the impacts of different tillage and crop residue incorporation managements on soil bacterial community under the double-cropping rice cropping system in southern of China were studied by using phospholipid fatty acids (PLFAs) profile method in the present paper. The experiment included four different tillage treatments: rotary tillage without crop residue input as a control (RTO), no-tillage with crop residue retention (NT), rotary tillage with crop residue incorporation (RT), and conventional tillage with crop residue incorporation (CT). Compared with RTO treatment, grain yield of rice with NT, RT and CT treatments increased by 1.21%, 3.13% and 6.40%, respectively. This results showed that soil aC15:0, C16:0, iC17:0, C19:0c9, 10 fatty acids with CT and RT treatments were higher than that of RTO treatment, while soil C16:1ω6c and C18:1ω9t fatty acids with NT treatment were higher than that of RTO treatment, respectively. Soil G+ and G− bacteria PLFAs contents with CT treatment were higher than that of NT, RT and RTO treatments, while the value of soil G+/G− bacteria PLFAs with NT treatment were higher than that of CT, RT and RTO treatments. This results indicated that Richness and McIntosh indices with CT treatment were significantly higher than that of RTO treatment. Principal component analysis (PCA) results showed that the first and second principal components (PC1 and PC2) were explained 93.2% of total variance with all tillage treatments. Except C12:0, C14:0 2OH and C18:2ω6, all unsaturated and cyclopropyl PLFAs contents were belong to PC1. PC1 and PC2 were explained 88.4% of total variance with all tillage treatments. There had significantly positive correlation between soil Richness, Shannon indices and soil PLFAs, G+ bacteria, G− bacteria, fungi contents. As a result, it were benefit practices for increasing soil bacterial community structure in the double-cropping rice field of southern China by combined application of rotary, conventional tillage with crop residue incorporation managements.
Collapse
|
26
|
Liu Q, Chen Z, Tang J, Luo J, Huang F, Wang P, Xiao R. Cd and Pb immobilisation with iron oxide/lignin composite and the bacterial community response in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149922. [PMID: 34525730 DOI: 10.1016/j.scitotenv.2021.149922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Iron oxide is a natural mineral that generally exists in the form of iron oxide-organic complexes (Fe-OM) in soil. Lignin is a naturally occurring polymer that is considered to be an important part of soil carbon cycling. In this study we prepared a composite material (MGE) with iron oxide and lignin based on the Fe-OM present in the soil. MGE was then applied to remediate Cd and Pb in contaminated soil. The results show that DTPA-Cd and DTPA-Pb levels were reduced by 58.87% and 78.09%, respectively. The bacterial community diversity index decreased in the iron oxide (GE) group, but a slight increase was observed in the MGE group. In terms of species composition in the MGE group, the abundance of Proteobacteria, Gemmatimonadota and Acidobacteriota increased, while the abundance of Bacteroidota, Actinobacteriota and Firmicutes decreased. The outcome in the GE group was the opposite. In the MGE group, HCl-Fe2+, HCl-Fe3+, and pH were significantly higher than in the other groups, indicating that MGE stimulated the growth of iron-reducing bacteria (FeRB) and promoted iron redox reactions. Iron oxide could be reduced to Fe2+ due to the activity of FeRB, and then Fe2+ would be oxidised and hydrolysed, which led to an increase in soil pH. Secondary minerals were formed during this process. With the oxidation of Fe2+ and the formation of secondary minerals, Cd and Pb could be stabilised in the oxides and were not easily released through a co-precipitation mechanism.
Collapse
Affiliation(s)
- Qianjun Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhaowei Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiepeng Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayi Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Rongbo Xiao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
27
|
Guerra VA, Beule L, Mackowiak CL, Dubeux JCB, Blount ARS, Wang XB, Rowland DL, Liao HL. Soil bacterial community response to rhizoma peanut incorporation into Florida pastures. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:55-65. [PMID: 34978336 DOI: 10.1002/jeq2.20307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Incorporating legumes is one option for improving pasture fertility, sustainability, and biodiversity. Diazotrophic microorganisms, including rhizobia that form symbioses with legumes, represent a small fraction of the total soil microbial community. Yet, they can offset nitrogen (N) fertilizer inputs through their ability to convert atmospheric N2 into plant-usable N via biological N2 fixation (BNF). This study used amplicon sequencing of 16S rRNA genes to investigate soil bacterial community composition and diversity in grazed 'Argentine' bahiagrass (Paspalum notatum Flügge) pastures where N fertilizer was supplanted with legume-derived N from BNF in some treatments. Treatments consisted of bahiagrass fertilized with (a) mineral N (224 kg N ha-1 yr-1 ), (b) combination mineral N (34 kg N ha-1 yr-1 ) and legume-derived N via cool-season clover (CSC) (Trifolium spp.) mix, or (c) combination mineral N (34 kg N ha-1 yr-1 ) and legume-derived N via CSC mix and strips of Ecoturf rhizoma peanut (Arachis glabrata Benth.). Bradyrhizobium spp. relative abundance was 44% greater in the mixed pasture. Other bacterial genera with BNF or denitrification potentials were greater in pastures with legumes, whereas sequences assigned to genera associated with high litter turnover were greater in bahiagrass pastures receiving only mineral N. Soil bacteria alpha diversity was greater in pastures receiving 34 kg ha-1 yr-1 N fertilizer application and the CSC mix than in pastures with the CSC mix and rhizoma peanut strips. Our results demonstrate soil microbial community shifts that may affect soil C and N cycling in pastures common to the southeastern United States.
Collapse
Affiliation(s)
- Victor A Guerra
- North Florida Research and Education Center, Univ. of Florida, 155 Research Road, Quincy, FL, 32351, USA
| | - Lukas Beule
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Strasse 19, Berlin, 14195, Germany
| | - Cheryl L Mackowiak
- North Florida Research and Education Center, Univ. of Florida, 155 Research Road, Quincy, FL, 32351, USA
| | - Jose C B Dubeux
- North Florida Research and Education Center, Univ. of Florida, 3925 Highway 71, Marianna, FL, 32446, USA
| | - Ann R S Blount
- North Florida Research and Education Center, Univ. of Florida, 155 Research Road, Quincy, FL, 32351, USA
| | - Xiao-Bo Wang
- State Key Laboratory of Grassland Agroecosystems, Center for Grassland Microbiome, and College of Pastoral, Agriculture Science and Technology, Lanzhou Univ., Lanzhou, 730020, PR China
| | - Diane L Rowland
- Agronomy Dep., Univ. of Florida, Gainesville, FL, 32611, USA
- Current address: College of Natural Sciences Forestry, and Agriculture, Univ. of Maine, Orono, ME, 04469, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, Univ. of Florida, 155 Research Road, Quincy, FL, 32351, USA
| |
Collapse
|
28
|
Ha J, Gao Y, Zhang R, Li K, Zhang Y, Niu X, Chen X, Luo K, Chen Y. Diversity of the Bacterial Microbiome Associated With the Endosphere and Rhizosphere of Different Cassava ( Manihot esculenta Crantz) Genotypes. Front Microbiol 2021; 12:729022. [PMID: 34659156 PMCID: PMC8515189 DOI: 10.3389/fmicb.2021.729022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Root-associated microbial communities play important roles in plant growth and development. However, little attention has been paid to the microbial community structures associated with cassava, which is a staple food for approximately 800 million people worldwide. Here, we studied the diversity and structure of tuber endosphere and rhizosphere bacterial communities in fourteen cassava genotypes: SC5, SC8, SC9, SC205, KU50, R72, XL1, FX01, SC16, 4612, 587, 045, S0061, and 1110. The results of bacterial 16S rDNA sequencing showed that the richness and diversity of bacteria in the rhizosphere were higher than those in the tuber endosphere across the 14 cassava genotypes. After sequencing, 21 phyla and 310 genera were identified in the tuberous roots, and 36 phyla and 906 genera were identified in the rhizosphere soils. The dominant phylum across all tuber samples was Firmicutes, and the dominant phyla across all rhizosphere samples were Actinobacteria, Proteobacteria, and Acidobacteria. The numbers of core bacterial taxa within the tuber endospheres and the rhizospheres of all cassava genotypes were 11 and 236, respectively. Principal coordinate analysis and hierarchical cluster analysis demonstrated significant differences in the compositions of rhizosphere soil microbiota associated with the different cassava genotypes. Furthermore, we investigated the metabolic changes in tuber roots of three genotypes, KU50, SC205, and SC9. The result showed that the abundances of Firmicutes, Proteobacteria, and Actinobacteria in tuber samples were positively correlated with organic acids and lipids and negatively correlated with vitamins and cofactors. These results strongly indicate that there are clear differences in the structure and diversity of the bacterial communities associated with different cassava genotypes.
Collapse
Affiliation(s)
- Jingwen Ha
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Yu Gao
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Rui Zhang
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Ke Li
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Yijie Zhang
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Xiaolei Niu
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Xin Chen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Kai Luo
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Yinhua Chen
- Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| |
Collapse
|
29
|
Zhang Y, Zhang J, Shi B, Li B, Du Z, Wang J, Zhu L, Wang J. Effects of cloransulam-methyl and diclosulam on soil nitrogen and carbon cycle-related microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126395. [PMID: 34329028 DOI: 10.1016/j.jhazmat.2021.126395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Cloransulam-methyl and diclosulam are applied to soybean fields to control broad-leaved weeds. These herbicides have become a focus of attention because of their low application dose and high-efficiency advantages. However, the effects of these two herbicides on soil microorganisms are unknown. The present study investigated the effects of 0.05, 0.5, and 2.5 mg kg-1 of cloransulam-methyl or diclosulam on soil microbes after 7, 14, 28, 42, and 56 days of exposure. The results showed that the two herbicides increased the abundances of functional bacteria related to pesticide degradation. Based on the genetic expression results, we speculated that 0.05 mg kg-1 of these two herbicides inhibited the nitrification reaction but promoted the denitrification reaction. Diclosulam at a concentration of 0.5 mg kg-1 may enhance the ability of microbes to fix carbon. β-glucosidase activity was activated by the two herbicides at a concentration of 2.5 mg kg-1. Diclosulam had a positive effect on urease, but cloransulam-methyl activated urease activity only at concentrations of 0.05 and 0.5 mg kg-1. The results of the integrated biomarker response showed that the toxicity of diclosulam was greater than that of cloransulam-methyl. Our research provides data for evaluating the environmental risks of cloransulam-methyl and diclosulam.
Collapse
Affiliation(s)
- Yuanqing Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
30
|
Liu Z, Tang J, Ren X, Schaeffer SM. Effects of phosphorus modified nZVI-biochar composite on emission of greenhouse gases and changes of microbial community in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116483. [PMID: 33508717 DOI: 10.1016/j.envpol.2021.116483] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The effect of modified biochar on the greenhouse gas emission in soil is not clear until now. In this study, biochar (BC) was modified by phosphoric acid (P) and further combined with nano-zero-valent iron (nZVI) to form nZVI-P-BC composite. The P modified biochar could significantly increase the available phosphorus in soil. The release of CO2 and N2O in soil was inhibited during the initial stage of the experiment, with inhibition becoming more obvious over time. On the contrary, CH4 and N2O emission in soil was enhanced by nZVI-P-BC composite. The proportion of Sphingomonas and Gemmatimonas were the most abundant bacterial species, which were related to the metabolism and transformation of nitrogen. The community structure of the fungus was also affected by nZVI-P-BC composite with Fusarium as the main species. PCoA analysis result suggested that bacterial community was more affected by the incubation time while fungal community was more related to the addition of different biochar and modified biochars.
Collapse
Affiliation(s)
- Zhihui Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Xinwei Ren
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee - Knoxville, 2506 E. J. Chapman Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
31
|
Karuppiah V, Zhixiang L, Liu H, Vallikkannu M, Chen J. Co-culture of Vel1-overexpressed Trichoderma asperellum and Bacillus amyloliquefaciens: An eco-friendly strategy to hydrolyze the lignocellulose biomass in soil to enrich the soil fertility, plant growth and disease resistance. Microb Cell Fact 2021; 20:57. [PMID: 33653343 PMCID: PMC7927390 DOI: 10.1186/s12934-021-01540-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background Retention of agricultural bio-mass residues without proper treatment could affect the subsequent plant growth. In the present investigation, the co-cultivation of genetically engineered T. asperellum and B. amyloliquefaciens has been employed for multiple benefits including the enrichment of lignocellulose biodegradation, plant growth, defense potential and disease resistance. Results The Vel1 gene predominantly regulates the secondary metabolites, sexual and asexual development as well as cellulases and polysaccharide hydrolases productions. Overexpression mutant of the Trichoderma asperellum Vel1 locus (TA OE-Vel1) enhanced the activity of FPAase, CMCase, PNPCase, PNPGase, xylanase I, and xylanase II through the regulation of transcription regulating factors and the activation of cellulase and xylanase encoding genes. Further, these genes were induced upon co-cultivation with Bacillus amyloliquefaciens (BA). The co-culture of TA OE-Vel1 + BA produced the best composition of enzymes and the highest biomass hydrolysis yield of 89.56 ± 0.61%. The co-culture of TA OE-Vel1 + BA increased the corn stover degradation by the secretion of cellulolytic enzymes and maintained the C/N ratio of the corn stover amended soil. Moreover, the TA OE-Vel1 + BA increased the maize plant growth, expression of defense gene and disease resistance against Fusarium verticillioides and Cohilohorus herostrophus. Conclusion The co-cultivation of genetically engineered T. asperellum and B. amyloliquefaciens could be utilized as a profound and meaningful technique for the retention of agro residues and subsequent plant growth.
Collapse
Affiliation(s)
- Valliappan Karuppiah
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800, Dongchuan Road, Minhang, Shanghai, 200240, PR China.,The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lu Zhixiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800, Dongchuan Road, Minhang, Shanghai, 200240, PR China.,The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, PR China
| | - Hongyi Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800, Dongchuan Road, Minhang, Shanghai, 200240, PR China.,The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, PR China
| | - Murugappan Vallikkannu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800, Dongchuan Road, Minhang, Shanghai, 200240, PR China.,The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800, Dongchuan Road, Minhang, Shanghai, 200240, PR China. .,The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
32
|
Jien SH, Kuo YL, Liao CS, Wu YT, Igalavithana AD, Tsang DCW, Ok YS. Effects of field scale in situ biochar incorporation on soil environment in a tropical highly weathered soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116009. [PMID: 33257150 DOI: 10.1016/j.envpol.2020.116009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Biochar has been proven as a soil amendment to improve soil environment. However, mechanistic understanding of biochar on soil physical properties and microbial community remains unclear. In this study, a wood biochar (WB), was incorporated into a highly weathered tropical soil, and after 1 year the in situ changes in soil properties and microbial community were evaluated. A field trial was conducted for application of compost, wood biochar, and polyacrylamide. Microstructure and morphological features of the soils were characterized through 3D X-ray microscopy and polarized microscopy. Soil microbial communities were identified through next-generation sequencing (NGS). After incubation, the number of pores and connection throats between the pores of biochar treated soil increased by 3.8 and 7.2 times, respectively, compared to the control. According to NGS results, most sequences belonged to Anaerolinea thermolimosa, Caldithrix palaeochoryensis, Chthoniobacter flavus, and Cohnella soli. Canonical correlation analysis (CCA) further demonstrated that the microbial community structure was determined by inorganic N (IN), available P (AP), pH, soil organic C (SOC), porosity, bulk density (BD), and aggregate stability. The treatments with co-application of biochar and compost facilitated the dominance of Cal. palaeochoryensis, Cht. flavus, and Coh. soli, all of which promoted organic matter decomposition and ammonia oxidation in the soil. The apparent increases in IN, AP, porosity, and SOC caused by the addition of biochar and compost may be the proponents of changes in soil microbial communities. The co-application of compost and biochar may be a suitable strategy for real world biochar incorporation in highly weathered soil.
Collapse
Affiliation(s)
- Shih-Hao Jien
- Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Yu-Lin Kuo
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Chien-Sen Liao
- Department of Civil and Ecological Engineering, I-Shou University, Kaohsiung, 84001, Taiwan
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea; Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
33
|
Metabarcoding Analysis of Bacterial Communities Associated with Media Grow Bed Zones in an Aquaponic System. Int J Microbiol 2020; 2020:8884070. [PMID: 33061984 PMCID: PMC7547338 DOI: 10.1155/2020/8884070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The development of environmentally sustainable plant and fish production in aquaponic systems requires a complete understanding of the systems' biological components. In order to better understand the role of microorganisms in this association, we studied the bacterial communities in the dry, root, and mineralized zones of a flood-and-drain media bed aquaponic system. Bacterial communities were characterized using metabarcoding of the V3-V4 16S rRNA regions obtained from paired-end Illumina MiSeq reads. Proteobacteria, Actinobacteria, and Bacteroidetes accounted for more than 90% of the total community in the dry zone and the effluent water. These phyla also accounted for more than 68% of the total community in the root and mineralized zones. The genera Massilia, Mucilaginibacter, Mizugakiibacter, and Rhodoluna were most dominant in the dry, root, and mineralized zones and in the effluent water, respectively. The number of shared operational taxonomic units (OTUs) for the three zones was 241, representing 7.15% of the total observed OTUs. The number of unique OTUs in samples from dry zone, root zone, mineralized zone, and effluent water was 485, 638, 445, and 383, respectively. The samples from the root zone harbored more diverse communities than either the dry or mineralized zones. This study is the first to report on the bacterial community within the zones of a flood-and-drain media bed. Thus, this information will potentially accelerate studies on other microbial communities involved in the bioconversion of nitrogen compounds and mineralization within these types of aquaponic systems.
Collapse
|
34
|
Rhizosphere Soil Microbial Properties on Tetraena mongolica in the Arid and Semi-Arid Regions, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145142. [PMID: 32708726 PMCID: PMC7400279 DOI: 10.3390/ijerph17145142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/02/2022]
Abstract
Tetraena mongolica is a rare and endangered species unique to China. The total number and density of Tetraena mongolica shrubs in desertification areas have experienced a sharp decrease with increases in coal mining activities. However, available information on the T. mongolica rhizosphere soil quality and microbial properties is scarce. Here, we investigated the effect of coal mining on the soil bacterial community and its response to the soil environment in the T. mongolica region. The results showed that the closer to the coal mining area, the lower the vegetation coverage and species diversity. The electrical conductivity (EC) in the contaminated area increased, while the total nitrogen (TN), available phosphorus (AP), available potassium (AK), and soil organic carbon (SOC) decreased. The activity of NAG, sucrose, β-glucosidase, and alkaline phosphatase further decreased. In addition, the mining area could alter the soil’s bacterial abundance and diversity. The organic pollutant degradation bacteria such as Sphingomonas, Gemmatimonas, Nocardioides, and Gaiella were enriched in the soil, and the carbon-nitrogen cycle was changed. Canonical correspondence analysis (CCA) and Pearson’s correlation coefficients showed that the change in the bacterial community structure was mainly caused by environmental factors such as water content (SWC) and EC. Taken together, these results suggested that open pit mining led to the salinization of the soil, reduction the soil nutrient content and enzyme activity, shifting the rhizosphere soil microbial community structure, and altering the carbon-nitrogen cycle, and the soil quality declined and the growth of T. mongolica was affected in the end. Therefore, the development of green coal mining technology is of great significance to protect the growth of T. mongolica.
Collapse
|
35
|
Wang S, Li H, Wei X, Zhu N, Sun P, Xia L, Tang C, Han Q, Zhang G, Liu C, Wang X, Dolfing J, Wu Y, Peñuelas J, Zhu YG. Dam Construction as an Important Anthropogenic Activity Disturbing Soil Organic Carbon in Affected Watersheds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7932-7941. [PMID: 32501717 DOI: 10.1021/acs.est.9b06304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To explore whether and how anthropogenic activities related to surface water regulation (i.e., dam construction) disturb soil ecosystems in the surrounding uplands, a long-term monitoring program was conducted from 1998 to 2017 in the Three Gorges Reservoir Region, China. The Three Gorges Dam (TGD) is the largest hydraulic engineering project in the world. We present a direct, ecosystem-scale demonstration of changes in the soil organic carbon (SOC) content in the TGD watershed before and after the surface water was reshaped. The average SOC content decreased from 12.9 to 9.5 g/kg between 2004 and 2012 and then recovered to 13.8 g/kg in 2017. Dynamics of SOC were partly attributed to shifts in the composition of soil microbial communities responsible for carbon biogeochemistry. The shifts in microbial taxa were associated with the changed microclimate affected by the TGD as well as global and regional climate variability. The microclimate, soil microorganisms, and plant organic carbon input explained 40.2% of the variation in the SOC content. This study revealed that dam construction was an important and indirect driver for the SOC turnover, and the subsequent effects on the upland soil ecosystem must be considered when large-scale disturbance activities (such as dam construction) are conducted in the future.
Collapse
Affiliation(s)
- Sichu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
- Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China
- College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongying Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
- Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ningyuan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
- Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
- Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Lizhong Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
- Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Cilai Tang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
| | - Qingzhong Han
- Zigui Center of Agricultural Technology Extension, Danyang Road, Zigui, Yichang 443600, Hubei, China
| | - Guangguo Zhang
- Zigui Center of Agricultural Technology Extension, Danyang Road, Zigui, Yichang 443600, Hubei, China
| | - Chiju Liu
- Zigui Meteorological Bureau, 1, Tianwen Road, Zigui, Yichang 443600, Hubei, China
| | - Xuefeng Wang
- Zigui Meteorological Bureau, 1, Tianwen Road, Zigui, Yichang 443600, Hubei, China
| | - Jan Dolfing
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
- Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Josep Peñuelas
- Consejo Superior de Investigaciones Cientı́ficas (CSIC), Global Ecology Unit, Centre for Ecological Research and Forestry Applications (CREAF)-CSIC, Universitat Autonoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
36
|
Jin S, Jin W, Dong C, Bai Y, Jin D, Hu Z, Huang Y. Effects of rice straw and rice straw ash on rice growth and α-diversity of bacterial community in rare-earth mining soils. Sci Rep 2020; 10:10331. [PMID: 32587300 PMCID: PMC7316728 DOI: 10.1038/s41598-020-67160-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Pot experiments were carried out to study the effects of rice straw (RS) and rice straw ash (RSA) on the growth of early rice and α-diversity of bacterial community in soils around rare earth mining areas of Xunwu and Xinfeng counties in South Jiangxi of China. The results showed that the exploitation of rare earth resources leads to soil pollution around rare earth mining areas and affects the growth of rice, and the content of rare earth elements (REEs) in rice was positively correlated with that in soils and negative correlated with dry weight of rice; The addition of RS to soils around REE mining area can inhibit growth of early rice, and the dry weight of rice grains, shoots, roots is lower when compared with the controls, while the content of REEs is higher. The α-diversity of soil bacterial decreases, which promotes the growth of Pseudorhodoferax, Phenylobacterium and other bacteria of the same kind, and inhibits the growth of beneficial bacteria. The addition of RSA to soils had no significant effect on α-diversity of soil bacterial but promoted the growth of Azospira and other beneficial bacteria, inhibited the growth of Bryobacter and other bacteria of the same kind, significantly improved the dry weight of grains, shoots and roots of early rice, and reduced the content of REEs in these parts of rice. It can be concluded that RS is unsuitable to be added to the planting soil of early rice in REE mining area, while RSA is suitable.
Collapse
Affiliation(s)
- Shulan Jin
- College of History, Geography and Tourism, Shangrao Normal University, Shangrao, 334000, China
| | - Wei Jin
- Shangrao Vocational and Technical College, Shangrao, 334109, China
| | - Chengxu Dong
- College of History, Geography and Tourism, Shangrao Normal University, Shangrao, 334000, China
| | - Yijun Bai
- College of History, Geography and Tourism, Shangrao Normal University, Shangrao, 334000, China
| | - Decai Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhongjun Hu
- College of History, Geography and Tourism, Shangrao Normal University, Shangrao, 334000, China.
| | - Yizong Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
37
|
Yu C, Li Y, Mo R, Deng W, Zhu Z, Liu D, Hu X. Effects of long-term straw retention on soil microorganisms under a rice-wheat cropping system. Arch Microbiol 2020; 202:1915-1927. [PMID: 32451591 DOI: 10.1007/s00203-020-01899-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 11/24/2022]
Abstract
The objective of this study was to investigate how straw-incorporating practices affect bacterial communities and carbon source utilization capacity under a rice-wheat rotational farming practice in central China. To clarify the effect of long-term straw incorporation in microbial abundance and carbon metabolism, a long-term field experiment was initiated in May 2005 (rice-planting season). Soil bacterial communities were revealed by high-throughput sequencing technology. After ten cycles of annual rice-wheat rotation (2005-2015), 2 M (straw incorporation) and 2 M + NPK (high straw incorporation + chemical fertilizer) treatments had significantly more bacterial phyla compared with CK (non-fertilization) and NPK (chemical fertilizer) treatments. Taxonomic analysis revealed that 2 M and NPK + 2 M treatments had a significantly greater abundance of microbial communities, especially the Gemmatimonadetes, Acidobacteria, Firmicutes, and Actinobacteria. In the NPK versus 2 M, 2 M treatment had a significantly greater abundance of Rozellomycota (P < 0.05). In the NPK + 2 M versus NPK, NPK + 2 M treatment also had significantly greater abundance of Ascomycota (P < 0.05). Principal component analysis (PCA) analysis showed that 2 M treatment was separate from other treatments. Using biolog-ECO method, the metabolic diversity and functional characteristics of microbial communities were used to indicate the ability of microorganisms to utilize carbon source. The carbon utilization ability of soil microorganisms in 2 M + NPK treatment was significantly higher than that of CK treatment (P < 0.05). The utilization ability of carboxylic acids, polymers, and other mixtures of carbon sources in 2 M treatment was higher than those of other treatments. These findings suggest that long-term straw incorporation affects the abundance and carbon utilization ability of soil microorganisms within 0-20 cm soil depths, among which, Gemmatimonadetes, Firmicutes, and Actinobacteria may play crucial roles in bacterial communities and carbon source utilization capacity.
Collapse
Affiliation(s)
- Cui Yu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, No. 43, Nanhu Road, Hongshan District, Wuhan, Hubei Province, China
| | - Yong Li
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, No. 43, Nanhu Road, Hongshan District, Wuhan, Hubei Province, China
| | - Rongli Mo
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, No. 43, Nanhu Road, Hongshan District, Wuhan, Hubei Province, China
| | - Wen Deng
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, No. 43, Nanhu Road, Hongshan District, Wuhan, Hubei Province, China
| | - Zhixian Zhu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, No. 43, Nanhu Road, Hongshan District, Wuhan, Hubei Province, China
| | - Dongbi Liu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Xingming Hu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, No. 43, Nanhu Road, Hongshan District, Wuhan, Hubei Province, China.
| |
Collapse
|
38
|
Long-term effects of straw return and straw-derived biochar amendment on bacterial communities in soil aggregates. Sci Rep 2020; 10:7891. [PMID: 32398757 PMCID: PMC7217948 DOI: 10.1038/s41598-020-64857-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Abstract
Improving soil structure, fertility, and production is of major concern for establishing sustainable agroecosystems. Further research is needed to evaluate whether different methods of straw returning determine the variations of soil aggregation and the microbial community in aggregates in the long term. In this study, we comparatively investigated the effects of long-term fertilization regimes performed over six years, namely, non-fertilization (CK), chemical fertilization (CF), continuous straw return (CS), and continuous straw-derived biochar amendment (CB), on soil aggregation and bacterial communities in rice-wheat rotation systems. The results showed that straw/biochar application increased soil nutrient content and soil aggregate size distribution and stability at both 0–20 cm and 20–40 cm soil depths, compared with those of CF and CK; CB performed better than CS. CB increased bacterial community diversity and richness in 0–20 cm soil, and evenness in 0–40 cm soil (p < 0.05); CS had no significant effect on these aspects. Variations in the relative abundance of Actinobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, Gemmatimonadetes, and Latescibacteria in specific aggregates confirmed the different effects of straw/biochar on bacterial community structure. The partial least squares discrimination analysis and permutation multivariate analysis of variance revealed that fertilization, aggregate size fractions, and soil depth affected the bacterial community, although their effects differed. This study suggests that CB may reduce chemical fertilizer usage and improve the sustainability of rice-wheat cropping systems over the long term, with a better overall outcome than CS.
Collapse
|
39
|
Su Y, He Z, Yang Y, Jia S, Yu M, Chen X, Shen A. Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon. Sci Rep 2020; 10:5526. [PMID: 32218459 PMCID: PMC7099027 DOI: 10.1038/s41598-020-62198-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 11/09/2022] Open
Abstract
Returning crop residues is a possible practice for balancing soil carbon (C) loss. The turnover rate of organic C from crop residues to soil C is dependent on soil microbial community dynamics. However, the relationship between any temporal changes in the soil microbial community after crop straw inputs and the dynamics of straw-C distribution in the soil organic carbon (SOC) pool remains unclear. The present study investigated the allocation of straw-C into soil dissolved organic carbon (DOC), microbial biomass carbon (MBC), particulate organic carbon (POC) and mineral-associated organic carbon (MaOC) using stable isotope probing, as well as the temporal changes in the soil bacterial and fungal communities using high-throughput sequencing. After the first 180 days of straw decomposition, approximately 3.93% and 19.82% of straw-C was transformed into soil MaOC and POC, respectively, while 0.02% and 2.25% of straw-C was transformed into soil DOC and MBC, respectively. The temporal change of the soil microbial community was positively correlated with the dynamics of straw-C distribution to SOC (R > 0.5, P < 0.05). The copiotrophic bacteria (e.g., Streptomyces, Massilia and Sphingobacterium), cellulolytic bacteria and fungi (e.g., Dyella and Fusarium, Talaromyces), acidophilic bacteria (e.g., Edaphobacter and unclassified Acidobacteriaceae), denitrifying and N-fixing microbes (e.g., Burkholderia-Paraburkholderia, Paraphaeosphaeria and Bradyrhizobium), and fungi unclassified Sordariomycetes were significantly correlated with straw-C distribution to specific SOC fractions (P < 0.05), which explained more than 90% of the variation of straw-C allocation into soils. Copiotrophic, certain cellulolytic and denitrifying microbes had positively correlated with DOC- and MaOC-derived from straw, and other cellulolytic fungi (e.g., Talaromyces) and specific bacteria (e.g. Bradyrhizobium) were positively correlated with POC-derived from straw. Our results highlight that the temporal change of soil microbial community structure well reflects the conversion and distribution process of straw-C to SOC fractions.
Collapse
Affiliation(s)
- Yao Su
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhenchao He
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanhua Yang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Environment and Resources, Zhejiang A & F University, Hangzhou, 311300, China
| | - Shengqiang Jia
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Environment and Resources, Zhejiang A & F University, Hangzhou, 311300, China
| | - Man Yu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xijing Chen
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Alin Shen
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
40
|
Bacteria with Different Assemblages in the Soil Profile Drive the Diverse Nutrient Cycles in the Sugarcane Straw Retention Ecosystem. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11100194] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Straw retention, an alternative to artificial fertilization, commonly mitigates soil degradation and positively affects soil fertility. In this study, we investigated the succession of soil bacteria during two sugarcane straw retention treatments (control (CK) and sugarcane straw retention (SR)) and at four depths (0–10, 10–20, 20–30, and 30–40 cm) in fallow soil in a sugarcane cropping system. Using an Illumina MiSeq (16S rRNA) and soil enzyme activity, we explored the SR influence on soil bacterial communities and enzyme activities and its inclusive impact on soil fertility, with an emphasis on topsoil (0–10 cm) and subsoil (10–40 cm). Our results show that SR effectively improved soil fertility indicators (C, N, and P), including enzyme activities (C and N cycling), throughout the soil profile: these soil parameters greatly improved in the topsoil compared to the control. Sugarcane straw retention and soil depth (0–10 cm vs. 10–40 cm) were associated with little variation in bacterial species richness and alpha diversity throughout the soil profile. Subsoil and topsoil bacterial communities differed in composition. Compared to the CK treatment, SR enriched the topsoil with Proteobacteria, Verrucomicrobia, Actinobacteria, Chloroflexi, and Nitrospirae, while the subsoil was depleted in Nitrospirae and Acidobacteria. Similarly, SR enriched the subsoil with Proteobacteria, Verrucomicrobia, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Bacteroidetes, while the topsoil was depleted in Acidobacteria, Gemmatimonadetes, and Planctomycetes compared to the CK. At the genus level, SR enriched the topsoil with Gp1, Gp2, Gp5, Gp7, Gemmatimonas, Kofleria, Sphingomonas, and Gaiella, which decompose lignocellulose and contribute to nutrient cycling. In summary, SR not only improved soil physicochemical properties and enzyme activities but also enriched bacterial taxa involved in lignocellulosic decomposition and nutrient cycling (C and N) throughout the soil profile. However, these effects were stronger in topsoil than in subsoil, suggesting that SR enhanced fertility more in topsoil than in subsoil in fallow land.
Collapse
|
41
|
He J, Shi Y, Zhao J, Yu Z. Strip rotary tillage with a two-year subsoiling interval enhances root growth and yield in wheat. Sci Rep 2019; 9:11678. [PMID: 31406270 PMCID: PMC6691134 DOI: 10.1038/s41598-019-48159-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/23/2019] [Indexed: 11/12/2022] Open
Abstract
Excessive tillage and soil compaction threaten the sustainable farmlands in the Huang-Huai-Hai Plains of China. Our study explores tillage practices to improve soil and root ecology and promote productivity in the winter wheat fields. We tested the impact of plowing, rotary, strip rotary tillage and strip rotary tillage with a two-year subsoiling interval (SRS) on wheat yield and root quality. SRS decreased soil bulk density compared with other treatments, resulting in lower soil penetration resistance. Root morphology and weight density decreased with the increased soil depth and was higher in SRS. Moreover, SRS increased the indoleacetic acid and trans zeatin riboside levels corresponding to greater TTC reduction activities, the total and active absorption root area. SRS increased the superoxide dismutase and catalase activities and soluble protein concentration and decreased the malondialdehyde concentration. The first two factors extracted using 11 root attributes in various soil layers through principal component analysis were selected as the integrated indicators for the minimum data set, and their integrated score was calculated to quantify the root quality. Our study suggests that SRS could significantly improve root morphology and enhance the root activity in subsoil layers, thus, delaying root senescence and increasing winter wheat yield.
Collapse
Affiliation(s)
- Jianning He
- National Key Laboratory of Crop Biology, Agronomy College of Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Yu Shi
- National Key Laboratory of Crop Biology, Agronomy College of Shandong Agricultural University, Tai'an, Shandong, P.R. China.
| | - Junye Zhao
- National Key Laboratory of Crop Biology, Agronomy College of Shandong Agricultural University, Tai'an, Shandong, P.R. China.,Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Zhenwen Yu
- National Key Laboratory of Crop Biology, Agronomy College of Shandong Agricultural University, Tai'an, Shandong, P.R. China
| |
Collapse
|
42
|
Yang H, Ma J, Rong Z, Zeng D, Wang Y, Hu S, Ye W, Zheng X. Wheat Straw Return Influences Nitrogen-Cycling and Pathogen Associated Soil Microbiota in a Wheat-Soybean Rotation System. Front Microbiol 2019; 10:1811. [PMID: 31440226 PMCID: PMC6694757 DOI: 10.3389/fmicb.2019.01811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
Returning straw to soil is an effective way to sustain or improve soil quality and crop yields. However, a robust understanding of the impact of straw return on the composition of the soil microbial communities under field conditions has remained elusive. In this study, we characterized the effects of wheat straw return on soil bacterial and fungal communities in a wheat–soybean rotation system over a 3-year period, using Illumina-based 16S rRNA, and internal transcribed region (ITS) amplicon sequencing. Wheat straw return significantly affected the α-diversity of the soil bacterial, but not fungal, community. It enhanced the relative abundance of the bacterial phylum Proteobacteria and the fungal phylum Zygomycota, but reduced that of the bacterial phylum Acidobacteria, and the fungal phylum Ascomycota. Notably, it enriched the relative abundance of nitrogen-cycling bacterial genera such as Bradyrhizobium and Rhizobium. Preliminary analysis of soil chemical properties indicated that straw return soils had significantly higher total nitrogen (TN) contents than no straw return soils. In addition, the relative abundance of fungal genera containing pathogens was significantly lower in straw return soils relative to control soils, such as Fusarium, Alternaria, and Myrothecium. These results suggested a selection effect from the 3-year continuous straw return treatment and the soil bacterial and fungal communities were moderately changed.
Collapse
Affiliation(s)
- Hongjun Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jiaxin Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhenyang Rong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Dandan Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.,Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
43
|
Hui C, Liu B, Wei R, Jiang H, Zhao Y, Liang Y, Zhang Q, Xu L. Dynamics, biodegradability, and microbial community shift of water-extractable organic matter in rice-wheat cropping soil under different fertilization treatments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:686-695. [PMID: 30933766 DOI: 10.1016/j.envpol.2019.03.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Although fertilization plays an important role in determining the contents of soil dissolved organic matters or water-extractable organic matter (DOM, WEOM), knowledge regarding the dynamics, biodegradability, and microbial community shifts of WEOM in response to different fertilization treatments is very limited, particularly in rice-wheat cropping soil. Thus, in the present study, we performed biodegradation experiments using WEOM extracted from samples of soil that had been subjected to four different fertilization treatments: unfertilized control (CK), chemical fertilizer (CF), 50% chemical fertilizer plus pig manure (PMCF), and 100% chemical fertilizer plus rice straw (SRCF). UV spectrum and fluorescence 3D excitation-emission matrix analyses applied to investigate the chemical composition of WEOM revealed that all examined WEOMs were derived from microbial activity and the dominant portion comprised humic acid-like compounds. After the incubation, 31.17, 31.63, 43.47, and 33.01% of soil WEOM from CK, CF, PMCF, and SRCF treatments, respectively, were biodegraded. PMCF- derived WEOM had the highest biodegradation rate. High-throughput sequencing analyses performed to determine the microbial community before and after the incubation indicated that Sphingomonas, Bacillus, and Flavisolibacter were the predominant bacterial genera in the original inoculum derived from the four fertilization treatments. Following biodegradation, we observed that the dominant bacteria differed according to fertilization treatments: Curvibacter (43.25%) and Sphingobium (10.47%) for CK, Curvibacter (29.68%) and Caulobacter (20.00%) for CF, Azospirillum (23.68%) and Caulobacter (13.29%) for PMCF, and Ralstonia (51.75%) for SRCF. Canonical correspondence analysis revealed that, shifts in the microbial community were closely correlated with pH and specific UV absorbance at 254 nm. We speculated that the inherent traits of different WEOM and the properties of soil solutions under different fertilization treatments shaped the soil microbial community structure, thereby influencing the biodegradation of WEOM.
Collapse
Affiliation(s)
- Cai Hui
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ran Wei
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Jiang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhua Zhao
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Institute of Soil and Water Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Qichun Zhang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ligen Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Dennert F, Imperiali N, Staub C, Schneider J, Laessle T, Zhang T, Wittwer R, van der Heijden MGA, Smits THM, Schlaeppi K, Keel C, Maurhofer M. Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance. FEMS Microbiol Ecol 2019; 94:4985836. [PMID: 29701793 DOI: 10.1093/femsec/fiy075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 01/29/2023] Open
Abstract
Conservation tillage and organic farming are strategies used worldwide to preserve the stability and fertility of soils. While positive effects on soil structure have been extensively reported, the effects on specific root- and soil-associated microorganisms are less known. The aim of this study was to investigate how conservation tillage and organic farming influence the frequency and activity of plant-beneficial pseudomonads. Amplicon sequencing using the 16S rRNA gene revealed that Pseudomonas is among the most abundant bacterial taxa in the root microbiome of field-grown wheat, independent of agronomical practices. However, pseudomonads carrying genes required for the biosynthesis of specific antimicrobial compounds were enriched in samples from conventionally farmed plots without tillage. In contrast, disease resistance tests indicated that soil from conventional no tillage plots is less resistant to the soilborne pathogen Pythium ultimum compared to soil from organic reduced tillage plots, which exhibited the highest resistance of all compared cropping systems. Reporter strain-based gene expression assays did not reveal any differences in Pseudomonas antimicrobial gene expression between soils from different cropping systems. Our results suggest that plant-beneficial pseudomonads can be favoured by certain soil cropping systems, but soil resistance against plant diseases is likely determined by a multitude of biotic factors in addition to Pseudomonas.
Collapse
Affiliation(s)
- Francesca Dennert
- ETH Zürich, Plant Pathology, Institute of Integrative Biology, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Nicola Imperiali
- University of Lausanne, Department of Fundamental Microbiology, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Cornelia Staub
- ETH Zürich, Plant Pathology, Institute of Integrative Biology, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Jana Schneider
- ETH Zürich, Plant Pathology, Institute of Integrative Biology, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Titouan Laessle
- University of Lausanne, Department of Fundamental Microbiology, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Tao Zhang
- Agroscope, Division of Agroecology and Environment, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland.,Institute of Grassland Sciences, Northeast Normal University, Key Laboratory for Vegetation Ecology, Ministry of Education, 130024 Changchun, China
| | - Raphaël Wittwer
- Agroscope, Division of Agroecology and Environment, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | | | - Theo H M Smits
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland
| | - Klaus Schlaeppi
- Agroscope, Division of Agroecology and Environment, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - Christoph Keel
- University of Lausanne, Department of Fundamental Microbiology, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Monika Maurhofer
- ETH Zürich, Plant Pathology, Institute of Integrative Biology, Universitätsstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
45
|
Liu H, Wang Y, Jiang H, Sun D, Yang F. Insight into the correlation between biochar amendment and shifts in bacterial community 4 years after a single incorporation in soybean- and maize-planted soils in northeastern China. Can J Microbiol 2019; 65:353-364. [PMID: 30649912 DOI: 10.1139/cjm-2018-0366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
To date, there have been few reports examining the correlation between biochar treatments, crop species, and microbiome shifts. In this study, shifts in the soil bacterial community were investigated 4 years after a single incorporation of biochar in soils planted with soybeans and maize. Clear changes in the bacterial community composition and structure were detected in the soybean-planted soil amended with low-titer biochar (7.89 t/ha), whereas such changes in the maize-planted soil were not observed at the same biochar amendment rate, suggesting a more sensitive influence on the bacterial community in the soybean-planted soil than that in the maize-planted soil. Bacterial abundance in the maize-planted soil was reduced significantly with increasing biochar addition (15.78 and 47.34 t/ha), which was probably due to the inhibitory substances originating from biochar. Both the bacterial community and biomarkers in soil under biochar amendment varied with planted crops, bacterial communities responding differently to biochar amendment. All these results suggested that biochar might influence the bacterial community in maize- and soybean-growing soils under different mechanisms. Our findings should be valuable for an in-depth understanding of the potential mechanism of soil microbiome changes following biochar incorporation and for biochar application in agriculture.
Collapse
Affiliation(s)
- Huixue Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Yafang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Haizhu Jiang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Dayu Sun
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
46
|
Microbial inhabitants of agricultural land have potential to promote plant growth but they are liable to traditional practice of wheat (T. aestivum L) straw burning. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Draghi WO, Degrossi J, Bialer M, Brelles-Mariño G, Abdian P, Soler-Bistué A, Wall L, Zorreguieta A. Biodiversity of cultivable Burkholderia species in Argentinean soils under no-till agricultural practices. PLoS One 2018; 13:e0200651. [PMID: 30001428 PMCID: PMC6042781 DOI: 10.1371/journal.pone.0200651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022] Open
Abstract
No-tillage crop production has revolutionized the agriculture worldwide. In our country more than 30 Mha are currently cultivated under no-till schemes, stressing the importance of this management system for crop production. It is widely recognized that soil microbiota is altered under different soil managements. In this regard the structure of Burkholderia populations is affected by soils management practices such as tillage, fertilization, or crop rotation. The stability of these structures, however, has not been evaluated under sustainable schemes where the impact of land practices could be less deleterious to physicochemical soils characteristics. In order to assess the structure of Burkholderia spp. populations in no-till schemes, culturable Burkholderia spp. strains were quantified and their biodiversity evaluated. Results showed that Burkholderia spp. biodiversity, but not their abundance, clearly displayed a dependence on agricultural managements. We also showed that biodiversity was mainly influenced by two soil factors: Total Organic Carbon and Total Nitrogen. Results showed that no-till schemes are not per se sufficient to maintain a richer Burkholderia spp. soil microbiota, and additional traits should be considered when sustainability of productive soils is a goal to fulfil productive agricultural schemes.
Collapse
Affiliation(s)
- Walter Omar Draghi
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
- Instituto de Biotecnología y Biología Molecular–CCT La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (AZ); (WOD)
| | - Jose Degrossi
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magalí Bialer
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
| | - Graciela Brelles-Mariño
- Center for Research and Development of Industrial Fermentations, (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Patricia Abdian
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
| | | | - Luis Wall
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
- * E-mail: (AZ); (WOD)
| |
Collapse
|
48
|
Yu D, Wen Z, Li X, Song X, Wu H, Yang P. Effects of straw return on bacterial communities in a wheat-maize rotation system in the North China Plain. PLoS One 2018; 13:e0198087. [PMID: 29879153 PMCID: PMC5991650 DOI: 10.1371/journal.pone.0198087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/14/2018] [Indexed: 11/18/2022] Open
Abstract
Straw return plays an important role in reducing the use of chemical fertilizer, promoting soil carbon sequestration, thus maintaining soil fertility and alleviating environmental pollution. To examine the effects of straw return on soil bacterial communities, quantitative PCR and high-throughput sequencing approaches were used to analyze the bacterial abundance and community structures at the depths of 5-25 cm and 25-45 cm in the soils under six-year continuous straw return and removal treatments in Langfang, Hebei, the North China Plain. As a result, straw return had no effects on soil chemical properties, bacterial abundance, richness or diversity at both soil depths. In contrast, vertical distributions of available nitrogen and available potassium were affected. Similarly, straw return also changed the vertical distributions of Proteobacteria and Chloroflexi. Principal coordinate analysis based on weighted UniFrac distance matrix indicated a moderate separation of the bacterial community in the soil treated with straw return from that with straw removal at 5-25 cm depth, but they were not distinctly distinguished at 25-45 cm depth. T-test identified increased abundance of Candidatus Latescibacteria in the soil under straw return treatment at 5-25 cm depth but no differentially abundant phyla at 25-45 cm depth was found. These results suggested a selection effect from the six-year continuous straw return treatment and the soil bacterial communities were moderately changed.
Collapse
Affiliation(s)
- Dali Yu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- School of Life Sciences, Qilu Normal University, Jinan, P. R. China
| | - Zhiguo Wen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiumei Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaojun Song
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huijun Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (HW); (PY)
| | - Peilong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (HW); (PY)
| |
Collapse
|
49
|
Sun R, Li W, Dong W, Tian Y, Hu C, Liu B. Tillage Changes Vertical Distribution of Soil Bacterial and Fungal Communities. Front Microbiol 2018; 9:699. [PMID: 29686662 PMCID: PMC5900040 DOI: 10.3389/fmicb.2018.00699] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/26/2018] [Indexed: 11/28/2022] Open
Abstract
Tillage can strongly affect the long-term productivity of an agricultural system by altering the composition and spatial distribution of nutrients and microbial communities. The impact of tillage methods on the vertical distribution of soil microbial communities is not well understood, and the correlation between microbial communities and soil nutrients vertical distributions is also not clear. In the present study, we investigated the effects of conventional plowing tillage (CT: moldboard plowing), reduced tillage (RT: rotary tillage), and no tillage (NT) on the composition of bacterial and fungal communities within the soil profile (0–5, 5–10, 10–20, and 20–30 cm) using high-throughput sequencing of the microbial 16S/ITS gene. Microbial communities differed by soil properties and sampling depth. Tillage treatment strongly affected the microbial community structure and distribution by soil depth, and changed the vertical distribution of soil bacterial and fungal communities differently. Depth decay of bacterial communities was significantly smaller in CT than in RT and NT, and that of fungal communities were significantly greater in RT than CT and NT. The presence/absence of species was the main contributing factor for the vertical variation of bacterial communities, whereas for fungal communities the main factor was the difference in relative abundance of the species, suggesting niche-based process was more important for bacterial than fungal community in structuring the vertical distribution. Soil total carbon was correlated more with soil bacterial (especially the anaerobic and facultatively anaerobic groups) than with fungal community. These results suggested different roles of bacteria and fungi in carbon sequestration of crop residue and in shaping soil carbon distribution, which might impact on soil fertility.
Collapse
Affiliation(s)
- Ruibo Sun
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenyan Li
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yinping Tian
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Binbin Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
50
|
Wang Y, Yu Z, Li Y, Wang G, Liu J, Liu J, Liu X, Jin J. Microbial association with the dynamics of particulate organic carbon in response to the amendment of elevated CO 2-derived wheat residue into a Mollisol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:972-981. [PMID: 28724229 DOI: 10.1016/j.scitotenv.2017.07.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
As the chemical quality of crop residue is likely to be affected by elevated CO2 (eCO2), residue amendments may influence soil organic carbon (SOC) sequestration. However, in Mollisols, the dynamics of the SOC fractions in response to amendment with wheat residue produced under eCO2 and the corresponding microbial community composition remain unknown. Such investigation is essential to residue management, which affects the soil quality and productivity of future farming systems. To narrow this knowledge gap, 13C-labeled shoot and root residue derived from ambient CO2 (aCO2) or eCO2 were amended into Mollisols and incubated for 200days. The soil was sampled during the incubation period to determine the residue-C retained in the three SOC fractions, i.e., coarse intra-aggregate particulate organic C (coarse iPOC), fine iPOC and mineral-associated organic C (MOC). The soil bacterial community was assessed using a MiSeq sequencing instrument. The results showed that the increase in SOC concentrations attributable to the application of the wheat residue primarily occurred in the coarse iPOC fraction. Compared with the aCO2-derived shoot residue, the amendment of eCO2-derived shoot residue resulted in greater SOC concentrations, whereas no significant differences (P>0.05) were observed between the aCO2- and eCO2-derived roots. Principal coordinates analysis (PCoA) showed that the residue amendment significantly (P≤0.05) altered the bacterial community composition compared with the non-residue amendment. Additionally, the bacterial community in the aCO2-derived shoot treatment differed from those in the other residue treatments until day 200 of the incubation period. The eCO2-derived shoot treatment significantly increased (P≤0.05) the relative abundances of the genera Acidobacteriaceae_(Subgroup_1)_uncultured, Bryobacter, Candidatus_Solibacter, Gemmatimonas and Nitrosomonadaceae_uncultured, whereas the opposite trend was observed in Nonomuraea, Actinomadura, Streptomyces and Arthrobacter (P≤0.05). These results imply that the response of the microbial community to the eCO2-derived shoot treatment is associated with its contribution to the POC fractions.
Collapse
Affiliation(s)
- Yanhong Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Judong Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia.
| |
Collapse
|