1
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
2
|
Gerashchenko BI, Sarnatskaya VV, Bardakhivska KI, Sydorenko OS, Kolesnik DL, Klymchuk DO. Myeloprotection with activated carbon in doxorubicin-treated rats. Heliyon 2023; 9:e18414. [PMID: 37539240 PMCID: PMC10393748 DOI: 10.1016/j.heliyon.2023.e18414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
Chemotherapy can often cause a variety of side effects including bone marrow (BM) suppression, termed as myelosuppression. Accordingly, facile and effective management of chemotherapy-induced myelosuppression is currently a pivotal task for experimental pathologists and oncologists. Here, we chose to use activated carbon (AC) with an extensive surface area for studying its possible protective effectiveness with respect to BM in doxorubicin (DOX)-treated rats. Spherical AC with an extended surface area up to 4490 m2/g was prepared for per os (p/o) delivery, whereas for intraperitoneal (i/p) delivery we used the powdered form of AC that was derived from the aforementioned spherical AC. During the monthly treatment of animals with AC and DOX these two components were delivered alternately (not in the same day). After treatment, BM cells were isolated from femurs of sacrificed animals, stained with acridine orange (AO) and analyzed by flow cytometry. Regardless of the route of AC delivery (p/o or i/p), apparent myeloprotection with a possible regenerative effect was observed in animals that received DOX, as evidenced by recovery of the populations of total nucleated cells (TNC) and polychromatic (immature) erythrocytes accompanied by a considerable reduction of the number of apoptotic/dead cells among TNC (≤2.0%). Moreover, as a result of AC administrations, there was a significant increase of AO green and far-red fluorescence intensities in the population of TNC, which is suggestive of the ongoing quantitative and conformational changes in DNA and RNA associated with cell recovery and proliferation. Thus, AC preparations under the present experimental conditions can effectively tackle DOX-induced myelosuppression via mechanisms not necessarily associated with adsorptive detoxification.
Collapse
Affiliation(s)
- Bogdan I. Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology (IEPOR), National Academy of Sciences of Ukraine, Vasylkivska Str. 45, Kyiv, 03022, Ukraine
| | - Veronika V. Sarnatskaya
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology (IEPOR), National Academy of Sciences of Ukraine, Vasylkivska Str. 45, Kyiv, 03022, Ukraine
| | - Kvitoslava I. Bardakhivska
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology (IEPOR), National Academy of Sciences of Ukraine, Vasylkivska Str. 45, Kyiv, 03022, Ukraine
| | - Oleksii S. Sydorenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology (IEPOR), National Academy of Sciences of Ukraine, Vasylkivska Str. 45, Kyiv, 03022, Ukraine
| | - Denis L. Kolesnik
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology (IEPOR), National Academy of Sciences of Ukraine, Vasylkivska Str. 45, Kyiv, 03022, Ukraine
| | - Dmytro O. Klymchuk
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereshchenkivska Str. 2, Kyiv, 01601, Ukraine
| |
Collapse
|
3
|
Fan YN, Zhao G, Zhang Y, Ye QN, Sun YQ, Shen S, Liu Y, Xu CF, Wang J. Progress in nanoparticle-based regulation of immune cells. MEDICAL REVIEW (2021) 2023; 3:152-179. [PMID: 37724086 PMCID: PMC10471115 DOI: 10.1515/mr-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/03/2023] [Indexed: 09/20/2023]
Abstract
Immune cells are indispensable defenders of the human body, clearing exogenous pathogens and toxicities or endogenous malignant and aging cells. Immune cell dysfunction can cause an inability to recognize, react, and remove these hazards, resulting in cancers, inflammatory diseases, autoimmune diseases, and infections. Immune cells regulation has shown great promise in treating disease, and immune agonists are usually used to treat cancers and infections caused by immune suppression. In contrast, immunosuppressants are used to treat inflammatory and autoimmune diseases. However, the key to maintaining health is to restore balance to the immune system, as excessive activation or inhibition of immune cells is a common complication of immunotherapy. Nanoparticles are efficient drug delivery systems widely used to deliver small molecule inhibitors, nucleic acid, and proteins. Using nanoparticles for the targeted delivery of drugs to immune cells provides opportunities to regulate immune cell function. In this review, we summarize the current progress of nanoparticle-based strategies for regulating immune function and discuss the prospects of future nanoparticle design to improve immunotherapy.
Collapse
Affiliation(s)
- Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Gui Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yue Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Qian-Ni Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yi-Qun Sun
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yang Liu
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Samrot AV, Ram Singh SP, Deenadhayalan R, Rajesh VV, Padmanaban S, Radhakrishnan K. Nanoparticles, a Double-Edged Sword with Oxidant as Well as Antioxidant Properties—A Review. OXYGEN 2022; 2:591-604. [DOI: https:/doi.org/10.3390/oxygen2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The usage of nanoparticles became inevitable in medicine and other fields when it was found that they could be administered to hosts to act as oxidants or antioxidants. These oxidative nanoparticles act as pro-oxidants and induce oxidative stress-mediated toxicity through the generation of free radicals. Some nanoparticles can act as antioxidants to scavenge these free radicals and help in maintaining normal metabolism. The oxidant and antioxidant properties of nanoparticles rely on various factors including size, shape, chemical composition, etc. These properties also help them to be taken up by cells and lead to further interaction with cell organelles/biological macromolecules, leading to either the prevention of oxidative damage, the creation of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. It is important to know the properties that make these nanoparticles act as oxidants/antioxidants and the mechanisms behind them. In this review, the roles and mechanisms of nanoparticles as oxidants and antioxidants are explained.
Collapse
|
5
|
Jiwanti PK, Wardhana BY, Sutanto LG, Dewi DMM, Putri IZD, Savitri INI. Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review. Molecules 2022; 27:7578. [PMID: 36364403 PMCID: PMC9654677 DOI: 10.3390/molecules27217578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Carbon nanomaterials have attracted researchers in pharmaceutical applications due to their outstanding properties and flexible dimensional structures. Carbon nanomaterials (CNMs) have electrical properties, high thermal surface area, and high cellular internalization, making them suitable for drug and gene delivery, antioxidants, bioimaging, biosensing, and tissue engineering applications. There are various types of carbon nanomaterials including graphene, carbon nanotubes, fullerenes, nanodiamond, quantum dots and many more that have interesting applications in the future. The functionalization of the carbon nanomaterial surface could modify its chemical and physical properties, as well as improve drug loading capacity, biocompatibility, suppress immune response and have the ability to direct drug delivery to the targeted site. Carbon nanomaterials could also be fabricated into composites with proteins and drugs to reduce toxicity and increase effectiveness in the pharmaceutical field. Thus, carbon nanomaterials are very effective for applications in pharmaceutical or biomedical systems. This review will demonstrate the extraordinary properties of nanocarbon materials that can be used in pharmaceutical applications.
Collapse
Affiliation(s)
- Prastika K. Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Brasstira Y. Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Laurencia G. Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Diva Meisya Maulina Dewi
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Ilmi Nur Indira Savitri
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
6
|
Haist M, Mailänder V, Bros M. Nanodrugs Targeting T Cells in Tumor Therapy. Front Immunol 2022; 13:912594. [PMID: 35693776 PMCID: PMC9174908 DOI: 10.3389/fimmu.2022.912594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
In contrast to conventional anti-tumor agents, nano-carriers allow co-delivery of distinct drugs in a cell type-specific manner. So far, many nanodrug-based immunotherapeutic approaches aim to target and kill tumor cells directly or to address antigen presenting cells (APC) like dendritic cells (DC) in order to elicit tumor antigen-specific T cell responses. Regulatory T cells (Treg) constitute a major obstacle in tumor therapy by inducing a pro-tolerogenic state in APC and inhibiting T cell activation and T effector cell activity. This review aims to summarize nanodrug-based strategies that aim to address and reprogram Treg to overcome their immunomodulatory activity and to revert the exhaustive state of T effector cells. Further, we will also discuss nano-carrier-based approaches to introduce tumor antigen-specific chimeric antigen receptors (CAR) into T cells for CAR-T cell therapy which constitutes a complementary approach to DC-focused vaccination.
Collapse
Affiliation(s)
| | | | - Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Mainz, Germany
| |
Collapse
|
7
|
Sarnatskaya V, Shlapa Y, Lykhova A, Brieieva O, Prokopenko I, Sidorenko A, Solopan S, Kolesnik D, Belous A, Nikolaev V. Structure and biological activity of particles produced from highly activated carbon adsorbent. Heliyon 2022; 8:e09163. [PMID: 35846471 PMCID: PMC9280586 DOI: 10.1016/j.heliyon.2022.e09163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/12/2021] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Over the recent years, carbon particles have gained relevance in the field of biomedical application to diminish the level of endo-/exogenous intoxication and oxidative stress products, which occur at different pathological states. However, it is very important that such carbon particles, specially developed for parenteral administration or per oral usage, possess a high adsorption potential and can remove hazard toxic substances of the hydrophilic, hydrophobic and amphiphilic nature usually accumulated in the blood due to the disease, and be absolutely safe for normal living cells and tissues of organism. In this work, the stable monodisperse suspension containing very small-sized (Dhydro = 1125.3 ± 243.8 nm) and highly pure carbon particles with an excellent accepting ability were obtained. UV-spectra, fluorescence quenching constant and binding association constant were provided by the information about conformational alterations in an albumin molecule in presence of carbon particles, about the dynamic type of quenching process and low binding affinity between carbon and protein. The later was confirmed by DSC method. In vitro cell culture experiments showed that carbon particles did not possess any cytotoxic effect towards all testing the normal cell lines of different histogenesis, did not show genotoxic effects and were absolutely safe for experimental animals during and after their parenteral administration. These observations may provide more information about how to develop a safe preparation of carbon particles for different biomedical applications, in particular, as a mean for intracorporeal therapy of various heavy diseases accompanied by the increased endogenous intoxication and the level of oxidative stress.
Collapse
Affiliation(s)
- Veronika Sarnatskaya
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Yuliia Shlapa
- V. I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina Ave., Kyiv, 03142, Ukraine
- Corresponding author.
| | - Alexandra Lykhova
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Olga Brieieva
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Igor Prokopenko
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Alexey Sidorenko
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Serhii Solopan
- V. I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina Ave., Kyiv, 03142, Ukraine
| | - Denis Kolesnik
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| | - Anatolii Belous
- V. I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina Ave., Kyiv, 03142, Ukraine
| | - Vladimir Nikolaev
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Ukraine
| |
Collapse
|
8
|
Rahiman N, Mohammadi M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. J Control Release 2022; 343:620-644. [PMID: 35176392 DOI: 10.1016/j.jconrel.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with complicated immunopathology which necessitates considering multifactorial aspects for its management. Nano-sized pharmaceutical carriers named nanoparticles (NPs) can support impressive management of disease not only in early detection and prognosis level but also in a therapeutic manner. The most prominent initiator of MS is the domination of cellular immunity to humoral immunity and increment of inflammatory cytokines. The administration of several platforms of NPs for MS management holds great promise so far. The efforts for MS management through in vitro and in vivo (experimental animal models) evaluations, pave a new way to a highly efficient therapeutic means and aiding its translation to the clinic in the near future.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Forbot N, Bolibok P, Wiśniewski M, Roszek K. Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress. Mini Rev Med Chem 2020; 20:294-307. [PMID: 31738152 DOI: 10.2174/1389557519666191029162150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/12/2019] [Accepted: 08/21/2019] [Indexed: 11/22/2022]
Abstract
The concept of nanoscale materials and their applications in industrial technologies, consumer goods, as well as in novel medical therapies has rapidly escalated in the last several years. Consequently, there is a critical need to understand the mechanisms that drive nanomaterials biocompatibility or toxicity to human cells and tissues. The ability of nanomaterials to initiate cellular pathways resulting in oxidative stress has emerged as a leading hypothesis in nanotoxicology. Nevertheless, there are a few examples revealing another face of nanomaterials - they can alleviate oxidative stress via decreasing the level of reactive oxygen species. The fundamental structural and physicochemical properties of carbonaceous nanomaterials that govern these anti-oxidative effects are discussed in this article. The signaling pathways influenced by these unique nanomaterials, as well as examples of their applications in the biomedical field, e.g. cell culture, cell-based therapies or drug delivery, are presented. We anticipate this emerging knowledge of intrinsic anti-oxidative properties of carbon nanomaterials to facilitate the use of tailored nanoparticles in vivo.
Collapse
Affiliation(s)
- Natalia Forbot
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paulina Bolibok
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
10
|
Gerashchenko BI, Nikolaev VG. Tackling the acute radiation syndrome: Hemoperfusion with activated carbon revisited. Med Hypotheses 2020; 146:110430. [PMID: 33279325 DOI: 10.1016/j.mehy.2020.110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022]
Abstract
Almost three decades ago Dr. Nikolaev and co-authors reported a remarkable finding that a single-course low-volume hemoperfusion through uncoated spherical activated carbon led to a significant increase in survival of dogs acutely irradiated with X-rays of the dose of 5.25 Gy (Artif. Organs. 1993; 17: 362-8). In those studies, the adsorptive detoxification, which is characteristic for carbon adsorbents, was less likely to play a predominant role in radioprotection, thus prompting the authors to assume that some other, unknown, mechanisms were involved. This article is aimed to interpret the radioprotective effect of activated carbon, based on the mounting evidence that it is capable of reducing the oxidative stress and promoting the recovery in various tissues and organs (including hematopoietic) with an active involvement of relatively radioresistant tissue-resident macrophages.
Collapse
Affiliation(s)
- Bogdan I Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Vasylkivska Str. 45, Kyiv 03022, Ukraine.
| | - Vladimir G Nikolaev
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Vasylkivska Str. 45, Kyiv 03022, Ukraine
| |
Collapse
|
11
|
Murru C, Badía-Laíño R, Díaz-García ME. Synthesis and Characterization of Green Carbon Dots for Scavenging Radical Oxygen Species in Aqueous and Oil Samples. Antioxidants (Basel) 2020; 9:antiox9111147. [PMID: 33228081 PMCID: PMC7699408 DOI: 10.3390/antiox9111147] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Carbon dots (CDs) due to their unique optical features, chemical stability and low environmental hazard are applied in different fields such as metal ion sensing, photo-catalysis, bio-imaging and tribology, among others. The aims of the present research were to obtain CDs from vegetable wastes (tea and grapes) as carbon sources and to explore their potential properties as radical scavengers. CDs from glutathione/citric acid (GCDs) were synthetized for comparison purposes. The CDs were investigated for their chemical structure, morphology, optical and electronical properties. The antioxidant activity has been explored by DPPH and Folin-Ciocelteau assays in aqueous media. Due to their solubility in oil, the CDs prepared from tea wastes and GCDs were assayed as antioxidants in a mineral oil lubricant by potentiometric determination of the peroxide value. CDs from tea wastes and GCDs exhibited good antioxidant properties both in aqueous and oil media. Possible mechanisms, such as C-addition to double bonds, H-abstraction and SOMO-CDs conduction band interaction, were proposed for the CDs radical scavenging activity. CDs from natural sources open new application pathways as antioxidant green additives.
Collapse
|
12
|
Tanner MR, Huq R, Sikkema WKA, Nilewski LG, Yosef N, Schmitt C, Flores-Suarez CP, Raugh A, Laragione T, Gulko PS, Tour JM, Beeton C. Antioxidant Carbon Nanoparticles Inhibit Fibroblast-Like Synoviocyte Invasiveness and Reduce Disease Severity in a Rat Model of Rheumatoid Arthritis. Antioxidants (Basel) 2020; 9:E1005. [PMID: 33081234 PMCID: PMC7602875 DOI: 10.3390/antiox9101005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species have been involved in the pathogenesis of rheumatoid arthritis (RA). Our goal was to determine the effects of selectively scavenging superoxide (O2•-) and hydroxyl radicals with antioxidant nanoparticles, called poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), on the pathogenic functions of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and on the progression of an animal model of RA. We used human FLS from patients with RA to determine PEG-HCC internalization and effects on FLS cytotoxicity, invasiveness, proliferation, and production of proteases. We used the pristane-induced arthritis (PIA) rat model of RA to assess the benefits of PEG-HCCs on reducing disease severity. PEG-HCCs were internalized by RA-FLS, reduced their intracellular O2•-, and reduced multiple measures of their pathogenicity in vitro, including proliferation and invasion. In PIA, PEG-HCCs caused a 65% reduction in disease severity, as measured by a standardized scoring system of paw inflammation and caused a significant reduction in bone and tissue damage, and circulating rheumatoid factor. PEG-HCCs did not induce lymphopenia during PIA. Our study demonstrated a role for O2•- and hydroxyl radicals in the pathogenesis of a rat model of RA and showed efficacy of PEG-HCCs in treating a rat model of RA.
Collapse
Affiliation(s)
- Mark R. Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William K. A. Sikkema
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
| | - Lizanne G. Nilewski
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
| | - Nejla Yosef
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cody Schmitt
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
| | - Carlos P. Flores-Suarez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arielle Raugh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Teresina Laragione
- Department of Medicine, Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY 11030, USA; (T.L.); (P.S.G.)
| | - Pércio S. Gulko
- Department of Medicine, Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY 11030, USA; (T.L.); (P.S.G.)
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
- The NanoCarbon Center, Rice University, Houston, TX 77005, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6571-6597. [PMID: 35019387 DOI: 10.1021/acsabm.0c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Dharmalingam P, Talakatta G, Mitra J, Wang H, Derry PJ, Nilewski LG, McHugh EA, Fabian RH, Mendoza K, Vasquez V, Hegde PM, Kakadiaris E, Roy T, Boldogh I, Hegde VL, Mitra S, Tour JM, Kent TA, Hegde ML. Pervasive Genomic Damage in Experimental Intracerebral Hemorrhage: Therapeutic Potential of a Mechanistic-Based Carbon Nanoparticle. ACS NANO 2020; 14:2827-2846. [PMID: 32049495 PMCID: PMC7850811 DOI: 10.1021/acsnano.9b05821] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Therapy for intracerebral hemorrhage (ICH) remains elusive, in part dependent on the severity of the hemorrhage itself as well as multiple deleterious effects of blood and its breakdown products such as hemin and free iron. While oxidative injury and genomic damage have been seen following ICH, the details of this injury and implications remain unclear. Here, we discovered that, while free iron produced mostly reactive oxygen species (ROS)-related single-strand DNA breaks, hemin unexpectedly induced rapid and persistent nuclear and mitochondrial double-strand breaks (DSBs) in neuronal and endothelial cell genomes and in mouse brains following experimental ICH comparable to that seen with γ radiation and DNA-complexing chemotherapies. Potentially as a result of persistent DSBs and the DNA damage response, hemin also resulted in senescence phenotype in cultured neurons and endothelial cells. Subsequent resistance to ferroptosis reported in other senescent cell types was also observed here in neurons. While antioxidant therapy prevented senescence, cells became sensitized to ferroptosis. To address both senescence and resistance to ferroptosis, we synthesized a modified, catalytic, and rapidly internalized carbon nanomaterial, poly(ethylene glycol)-conjugated hydrophilic carbon clusters (PEG-HCC) by covalently bonding the iron chelator, deferoxamine (DEF). This multifunctional nanoparticle, DEF-HCC-PEG, protected cells from both senescence and ferroptosis and restored nuclear and mitochondrial genome integrity in vitro and in vivo. We thus describe a potential molecular mechanism of hemin/iron-induced toxicity in ICH that involves a rapid induction of DSBs, senescence, and the consequent resistance to ferroptosis and provide a mechanistic-based combinatorial therapeutic strategy.
Collapse
Affiliation(s)
- Prakash Dharmalingam
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Girish Talakatta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Paul J Derry
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | | | - Emily A McHugh
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Roderic H Fabian
- Department of Neurology, Baylor College of Medicine, and Michael E. DeBakey VA Medical Center, Houston, Texas 77030, United States
| | - Kimberly Mendoza
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Eugenia Kakadiaris
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Trenton Roy
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Venkatesh L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Weill Medical College of Cornell University, New York, New York 10065, United States
| | - James M Tour
- Departments of Chemistry, Computer Science, Materials Science and NanoEngineering, Smalley-Curl Institute and the NanoCarbon Center, Rice University, Houston, Texas 77005, United States
| | - Thomas A Kent
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas 77030, United States
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Weill Medical College of Cornell University, New York, New York 10065, United States
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist, Houston, Texas 77030, United States
| |
Collapse
|
15
|
Arshad U, Sutton PA, Ashford MB, Treacher KE, Liptrott NJ, Rannard SP, Goldring CE, Owen A. Critical considerations for targeting colorectal liver metastases with nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1588. [PMID: 31566913 PMCID: PMC7027529 DOI: 10.1002/wnan.1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer remains a significant cause of morbidity and mortality worldwide. Half of all patients develop liver metastases, presenting unique challenges for their treatment. The shortcomings of conventional chemotherapy has encouraged the use of nanomedicines; the application of nanotechnology in the diagnosis and treatment of disease. In spite of technological improvements in nanotechnology, the complexity of biological systems hinders the prospect of nanomedicines being applied in cancer therapy at the present time. This review highlights current biological barriers and discusses aspects of tumor biology together with the physicochemical features of the nanocarrier, that need to be considered in order to develop effective nanotherapeutics for colorectal cancer patients with liver metastases. It becomes clear that incorporating an interdisciplinary approach when developing nanomedicines should assure appropriate disease-driven design and that this will form a critical step in improving their clinical translation. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Usman Arshad
- Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Paul A. Sutton
- Department of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| | - Marianne B. Ashford
- AstraZeneca, Advanced Drug Delivery, Pharmaceutical Sciences, R&DMacclesfieldUK
| | - Kevin E. Treacher
- AstraZeneca, Pharmaceutical Technology and DevelopmentMacclesfieldUK
| | - Neill J. Liptrott
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Steve P. Rannard
- Department of Chemistry, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Christopher E. Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
16
|
Griffin DM, Bitner BR, Criss Ii Z, Marcano D, Berlin JM, Kent TA, Tour JM, Samson SL, Pautler RG. Use of a bioengineered antioxidant in mouse models of metabolic syndrome. Expert Opin Investig Drugs 2020; 29:209-219. [PMID: 31937152 DOI: 10.1080/13543784.2020.1716216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Oxidative stress has been implicated in metabolic syndrome (MetS); however, antioxidants such as vitamin E have had limited success in the clinic. This prompts the question of what effects amore potent antioxidant might produce. A prime candidate is the recently developed bioengineered antioxidant, poly(ethylene glycol)-functionalizedhydrophilic carbon clusters (PEG-HCCs), which are capable of neutralizing the reactive oxygen species (ROS) superoxide anion and hydroxyl radical at106/molecule of PEG-HCC. In this project, we tested the potential of PEG-HCCs as a possible therapeutic for MetS.Results: PEG-HCC treatment lessened lipid peroxidation, aspartate aminotransferase levels, non-fastingblood glucose levels, and JNK phosphorylation inob/ob mice. PEG-HCC-treated WT mice had an increased response to insulin by insulin tolerance tests and adecrease in blood glucose by glucose tolerance tests. These effects were not observed in HFD-fed mice, regardless of treatment. PEG-HCCs were observed in the interstitial space of liver, spleen, skeletal muscle, and adipose tissue. No significant difference was shown in gluconeogenesis or inflammatory gene expression between treatment and dietary groups.Expert Opinion: PEG-HCCs improved some parameters of disease possibly due to a resulting increase in peripheral insulin sensitivity. However, additional studies are needed to elucidate how PEG-HCCsare producing these effects.
Collapse
Affiliation(s)
- Deric M Griffin
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Brittany R Bitner
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zachary Criss Ii
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Daniela Marcano
- Department of Chemistry, Rice University, Houston, TX, USA.,Smalley-Curl Institute for and Nanocarbon Center, Rice University, Houston, TX, USA
| | - Jacob M Berlin
- Department of Chemistry, Rice University, Houston, TX, USA.,Smalley-Curl Institute for and Nanocarbon Center, Rice University, Houston, TX, USA.,Molecular Medicine, City of Hope, Duarte, CA, USA
| | - Thomas A Kent
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA.,Smalley-Curl Institute for and Nanocarbon Center, Rice University, Houston, TX, USA
| | - Susan L Samson
- Department of Chemistry, Rice University, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robia G Pautler
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Liao R, Wood TR, Nance E. Nanotherapeutic modulation of excitotoxicity and oxidative stress in acute brain injury. Nanobiomedicine (Rij) 2020; 7:1849543520970819. [PMID: 35186151 PMCID: PMC8855450 DOI: 10.1177/1849543520970819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Excitotoxicity is a primary pathological process that occurs during stroke, traumatic brain injury (TBI), and global brain ischemia such as perinatal asphyxia. Excitotoxicity is triggered by an overabundance of excitatory neurotransmitters within the synapse, causing a detrimental cascade of excessive sodium and calcium influx, generation of reactive oxygen species, mitochondrial damage, and ultimately cell death. There are multiple potential points of intervention to combat excitotoxicity and downstream oxidative stress, yet there are currently no therapeutics clinically approved for this specific purpose. For a therapeutic to be effective against excitotoxicity, the therapeutic must accumulate at the disease site at the appropriate concentration at the right time. Nanotechnology can provide benefits for therapeutic delivery, including overcoming physiological obstacles such as the blood–brain barrier, protect cargo from degradation, and provide controlled release of a drug. This review evaluates the use of nano-based therapeutics to combat excitotoxicity in stroke, TBI, and hypoxia–ischemia with an emphasis on mitigating oxidative stress, and consideration of the path forward toward clinical translation.
Collapse
Affiliation(s)
- Rick Liao
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Thomas R Wood
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.,Department of Radiology, University of Washington, Seattle, WA, USA.,Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Derry PJ, Nilewski LG, Sikkema WKA, Mendoza K, Jalilov A, Berka V, McHugh EA, Tsai AL, Tour JM, Kent TA. Catalytic oxidation and reduction reactions of hydrophilic carbon clusters with NADH and cytochrome C: features of an electron transport nanozyme. NANOSCALE 2019; 11:10791-10807. [PMID: 31134256 PMCID: PMC10863654 DOI: 10.1039/c9nr00807a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Previously, our group reported on the promising efficacy of poly(ethylene glycol)-hydrophilic carbon clusters (PEG-HCCs) to work as broadly active and high capacity antioxidants in brain ischemia and injury models including stroke and traumatic brain injury coupled with hemorrhagic shock. PEG-HCCs are a carbon nanomaterial derived from harsh oxidation of single wall carbon nanotubes and covalently modified with poly(ethylene glycol). They retain no tubular remnants and are composed of a highly oxidized carbon core functionalized with epoxy, peroxyl, quinone, ketone, carboxylate, and hydroxyl groups. HCCs are the redox active carbon core of PEG-HCCs, which have a broad reduction potential range starting at +200 mV and extending to -2 V. Here we describe a new property of these materials: the ability to catalytically transfer electrons between key surrogates and proteins of the mitochondrial electron transport complex in a catalytic fashion consistent with the concept of a nanozyme. The estimated reduction potential of PEG-HCCs is similar to that of ubiquinone and they enabled the catalytic transfer of electrons from low reduction potential species to higher reduction electron transport complex constituents. PEG-HCCs accelerated the reduction of resazurin (a test indicator of mitochondrial viability) and cytochrome c by NADH and ascorbic acid in solution. Kinetic experiments suggested a transient tertiary complex. Electron paramagnetic resonance demonstrated NADH increased the magnitude of PEG-HCCs' intrinsic radical, which then reduced upon subsequent addition of cytochrome c or resazurin. Deconvolution microscopy identified PEG-HCCs in close proximity to mitochondria after brief incubation with cultured SHSY-5Y human neuroblastoma cells. Compared to methylene blue (MB), considered a prototypical small molecule electron transport shuttle, PEG-HCCs were more protective against toxic effects of hydrogen peroxide in vitro and did not demonstrate impaired cell viability as did MB. PEG-HCCs were protective in vitro when cells were exposed to sodium cyanide, a mitochondrial complex IV poison. Because mitochondria are a major source of free radicals in pathology, we suggest that this newly described nanozyme action helps explain their in vivo efficacy in a range of injury models. These findings may also extend their use to mitochondrial disorders.
Collapse
Affiliation(s)
- Paul J. Derry
- Texas A&M Health Science Center Institute of
Biosciences and Technology, Houston, Texas 77030, United States
- Neurology and Center for Translational Research in
Inflammatory Diseases, Michel E. DeBakey VA Medical Center, Houston, Texas 77030,
United States
| | - Lizanne G. Nilewski
- Department of Chemistry, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - William K. A. Sikkema
- Department of Chemistry, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Kimberly Mendoza
- Department of Chemistry, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Almaz Jalilov
- Department of Chemistry and Center for Integrative
Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, Saudi
Arabia, 31261
| | - Vladimir Berka
- Hematology, Internal Medicine, University of Texas
Houston Medical School, Houston, Texas 77030, United States
| | - Emily A. McHugh
- Department of Chemistry, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Ah-Lim Tsai
- Hematology, Internal Medicine, University of Texas
Houston Medical School, Houston, Texas 77030, United States
| | - James M. Tour
- Department of Chemistry, Rice University, 6100
Main Street, Houston, Texas 77005, United States
- The NanoCarbon Center, Rice University, 6100 Main
Street, Houston, Texas 77005, United States
- Department of Materials Science and
NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United
States
| | - Thomas A. Kent
- Department of Chemistry, Rice University, 6100
Main Street, Houston, Texas 77005, United States
- Stanley H. Appel Department of Neurology, Houston
Methodist Hospital and Institute of Academic Medicine, Houston, Texas 77030, United
States
| |
Collapse
|
19
|
Griffin JD, Christopher MA, Thati S, Salash JR, Pressnall MM, Weerasekara DB, Lunte SM, Berkland CJ. Tocopherol Emulsions as Functional Autoantigen Delivery Vehicles Evoke Therapeutic Efficacy in Experimental Autoimmune Encephalomyelitis. Mol Pharm 2019; 16:607-617. [PMID: 30615457 PMCID: PMC6557722 DOI: 10.1021/acs.molpharmaceut.8b00887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Contemporary approaches to treating autoimmune diseases like multiple sclerosis broadly modulate the immune system and leave patients susceptible to severe adverse effects. Antigen-specific immunotherapies (ASIT) offer a unique opportunity to selectively suppress autoreactive cell populations but have suffered from marginal efficacy even when employing traditional adjuvants to improve delivery. The development of immunologically active antigen delivery vehicles could potentially increase the clinical success of antigen-specific immunotherapies. An emulsion of the antioxidant tocopherol delivering an epitope of proteolipid protein autoantigen (PLP139-151) yielded significant efficacy in mice with experimental autoimmune encephalomyelitis (EAE). In vitro studies indicated tocopherol emulsions reduced oxidative stress in antigen-presenting cells. Ex vivo analysis revealed that tocopherol emulsions shifted cytokine responses in EAE splenocytes. In addition, IgG responses against PLP139-151 were increased in mice treated with tocopherol emulsions delivering the antigen, suggesting a possible skew in immunity. Overall, tocopherol emulsions provide a functional delivery vehicle for ASIT capable of ameliorating autoimmunity in a murine model.
Collapse
Affiliation(s)
| | - Matthew A Christopher
- Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , Kansas 66047 , United States
| | - Sharadvi Thati
- Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , Kansas 66047 , United States
| | - Jean R Salash
- Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , Kansas 66047 , United States
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , Kansas 66047 , United States
| | | | | | - Cory J Berkland
- Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , Kansas 66047 , United States
| |
Collapse
|
20
|
Tanner MR, Pennington MW, Chauhan SS, Laragione T, Gulko PS, Beeton C. KCa1.1 and Kv1.3 channels regulate the interactions between fibroblast-like synoviocytes and T lymphocytes during rheumatoid arthritis. Arthritis Res Ther 2019; 21:6. [PMID: 30612588 PMCID: PMC6322314 DOI: 10.1186/s13075-018-1783-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLS) and CCR7- effector memory T (TEM) cells are two of the major cell types implicated in the progression of rheumatoid arthritis (RA). In particular, FLS become highly invasive, whereas TEM cells proliferate and secrete proinflammatory cytokines, during RA. FLS and T cells may also interact and influence each other's phenotypes. Inhibition of the pathogenic phenotypes of both FLS and TEM cells can be accomplished by selectively blocking the predominant potassium channels that they upregulate during RA: KCa1.1 (BK, Slo1, MaxiK, KCNMA1) upregulated by FLS and Kv1.3 (KCNA3) upregulated by activated TEM cells. In this study, we investigated the roles of KCa1.1 and Kv1.3 in regulating the interactions between FLS and TEM cells and determined if combination therapies of KCa1.1- and Kv1.3-selective blockers are more efficacious than monotherapies in ameliorating disease in rat models of RA. METHODS We used in vitro functional assays to assess the effects of selective KCa1.1 and Kv1.3 channel inhibitors on the interactions of FLS isolated from rats with collagen-induced arthritis (CIA) with syngeneic TEM cells. We also used flow cytometric analyses to determine the effects of KCa1.1 blockers on the expression of proteins used for antigen presentation on CIA-FLS. Finally, we used the CIA and pristane-induced arthritis models to determine the efficacy of combinatorial therapies of KCa1.1 and Kv1.3 blockers in reducing disease severity compared with monotherapies. RESULTS We show that the interactions of FLS from rats with CIA and of rat TEM cells are regulated by KCa1.1 and Kv1.3. Inhibiting KCa1.1 on FLS reduces the ability of FLS to stimulate TEM cell proliferation and migration, and inhibiting Kv1.3 on TEM cells reduces TEM cells' ability to enhance FLS expression of KCa1.1 and major histocompatibility complex class II protein, as well as stimulates their invasion. Furthermore, we show that combination therapies of selective KCa1.1 and Kv1.3 blockers are more efficacious than monotherapies at reducing signs of disease in two rat models of RA. CONCLUSIONS Our results demonstrate the importance of KCa1.1 and Kv1.3 in regulating FLS and TEM cells during RA, as well as the value of combined therapies targeting both of these cell types to treat RA.
Collapse
Affiliation(s)
- Mark R. Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX USA
| | - Michael W. Pennington
- Peptides International, Inc., Louisville, KY USA
- Present address: Ambiopharm, Inc., North Augusta, SC USA
| | | | - Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Pércio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Biology of Inflammation Center, Center for Drug Discovery, Cardiovascular Research Institute, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
21
|
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. NANO RESEARCH 2018; 11:4955-4984. [PMID: 30450165 PMCID: PMC6233906 DOI: 10.1007/s12274-018-2092-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 05/03/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are essential for normal physiological processes and play important roles in cell signaling, immunity, and tissue homeostasis. However, excess radical species are implicated in the development and augmented pathogenesis of various diseases. Several antioxidants may restore the chemical balance, but their use is limited by disappointing results of clinical trials. Nanoparticles are an attractive therapeutic alternative because they can change the biodistribution profile of antioxidants, and possess intrinsic ability to scavenge RONS. Herein, we review the types of RONS, how they are implicated in several diseases, and the types of nanoparticles with inherent antioxidant capability, their mechanisms of action, and their biological applications.
Collapse
Affiliation(s)
- Carolina A. Ferreira
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dalong Ni
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
22
|
D'Elios MM, Aldinucci A, Amoriello R, Benagiano M, Bonechi E, Maggi P, Flori A, Ravagli C, Saer D, Cappiello L, Conti L, Valtancoli B, Bencini A, Menichetti L, Baldi G, Ballerini C. Myelin-specific T cells carry and release magnetite PGLA–PEG COOH nanoparticles in the mouse central nervous system. RSC Adv 2018; 8:904-913. [PMID: 35538965 PMCID: PMC9076978 DOI: 10.1039/c7ra11290d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022] Open
Abstract
Progress in nanotechnology has determined new strategies concerning drug delivery into the central nervous system for the treatment of degenerative and inflammatory diseases. To date, brain targeting through systemic drug administration, even in a nano-composition, is often unsuccessful. Therefore, we investigated the possibility of loading T lymphocytes with PGLA–PEG COOH magnetite nanoparticles (30 nm), which can be built up to easily bind drugs and monoclonal antibodies, and to exploit the ability of activated T cells to cross the blood–brain barrier and infiltrate the brain parenchyma. Iron oxide nanoparticles have been widely used in biomedical applications due to their theranostic properties and are therefore a well-established nanomaterial. The magnetite core is easily hybridized with polymeric compounds that may enhance the possibility of the nanoparticles entering cells with low phagocytic properties. Taking advantage of these material characteristics, after in vitro assessment of the viability and functionality of nano-loaded MOG35–55 specific T cells, we transferred cells containing the nano-cargo into naïve mice affected by experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. By means of histological and immunohistological methods, we were able to identify the nano-loaded T cells in the central nervous system. Our data demonstrated that T cells containing nanomaterials hold the possibility of carrying and releasing nanoparticles in the brain. Magnetite nanoparticles enter non-phagocytic myelin-specific T cells and reach the central nervous system after in vivo transfer.![]()
Collapse
Affiliation(s)
- M. M. D'Elios
- Department of Clinical and Experimental Medicine
- University of Florence
- Italy
| | - A. Aldinucci
- Department of Neuroscience, Psychology, Drug and Child Health
- University of Florence
- Italy
| | - R. Amoriello
- Department of Neuroscience, Psychology, Drug and Child Health
- University of Florence
- Italy
| | - M. Benagiano
- Department of Clinical and Experimental Medicine
- University of Florence
- Italy
| | - E. Bonechi
- Department of Neuroscience, Psychology, Drug and Child Health
- University of Florence
- Italy
| | - P. Maggi
- Department of Neurology
- Hôpital CHU Brugmann-Université libre de Bruxelles-Bruxelles-Be
- Belgium
| | - A. Flori
- Fondazione CNR Regione Toscana G. Monasterio
- Pisa
- Italy
| | - C. Ravagli
- Research Center Colorobbia
- Cericol, Colorobbia Consulting
- Florence
- Italy
| | - D. Saer
- Research Center Colorobbia
- Cericol, Colorobbia Consulting
- Florence
- Italy
| | - L. Cappiello
- Research Center Colorobbia
- Cericol, Colorobbia Consulting
- Florence
- Italy
| | - L. Conti
- Department of Chemistry Ugo Schiff
- University of Florence
- Italy
| | - B. Valtancoli
- Department of Chemistry Ugo Schiff
- University of Florence
- Italy
| | - A. Bencini
- Department of Chemistry Ugo Schiff
- University of Florence
- Italy
| | | | - G. Baldi
- Research Center Colorobbia
- Cericol, Colorobbia Consulting
- Florence
- Italy
| | - C. Ballerini
- Department of Neuroscience, Psychology, Drug and Child Health
- University of Florence
- Italy
| |
Collapse
|
23
|
Sims CM, Hanna SK, Heller DA, Horoszko CP, Johnson ME, Montoro Bustos AR, Reipa V, Riley KR, Nelson BC. Redox-active nanomaterials for nanomedicine applications. NANOSCALE 2017; 9:15226-15251. [PMID: 28991962 PMCID: PMC5648636 DOI: 10.1039/c7nr05429g] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials.
Collapse
Affiliation(s)
- Christopher M. Sims
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Shannon K. Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, United States
- Weill Cornell Medicine, Cornell University, 1300 York Avenue, New York, NY 10065, United States
| | - Christopher P. Horoszko
- Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, United States
- Weill Graduate School of Medical Sciences, Cornell University, 1300 York Avenue, New York, NY 10065, United States
| | - Monique E. Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Antonio R. Montoro Bustos
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Vytas Reipa
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| | - Kathryn R. Riley
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States
| | - Bryant C. Nelson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, United States
| |
Collapse
|
24
|
Tanner MR, Tajhya RB, Huq R, Gehrmann EJ, Rodarte KE, Atik MA, Norton RS, Pennington MW, Beeton C. Prolonged immunomodulation in inflammatory arthritis using the selective Kv1.3 channel blocker HsTX1[R14A] and its PEGylated analog. Clin Immunol 2017; 180:45-57. [PMID: 28389388 PMCID: PMC5484050 DOI: 10.1016/j.clim.2017.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/27/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022]
Abstract
Effector memory T lymphocytes (TEM cells) that lack expression of CCR7 are major drivers of inflammation in a number of autoimmune diseases, including multiple sclerosis and rheumatoid arthritis. The Kv1.3 potassium channel is a key regulator of CCR7- TEM cell activation. Blocking Kv1.3 inhibits TEM cell activation and attenuates inflammation in autoimmunity, and as such, Kv1.3 has emerged as a promising target for the treatment of TEM cell-mediated autoimmune diseases. The scorpion venom-derived peptide HsTX1 and its analog HsTX1[R14A] are potent Kv1.3 blockers and HsTX1[R14A] is selective for Kv1.3 over closely-related Kv1 channels. PEGylation of HsTX1[R14A] to create a Kv1.3 blocker with a long circulating half-life reduced its affinity but not its selectivity for Kv1.3, dramatically reduced its adsorption to inert surfaces, and enhanced its circulating half-life in rats. PEG-HsTX1[R14A] is equipotent to HsTX1[R14A] in preferential inhibition of human and rat CCR7- TEM cell proliferation, leaving CCR7+ naïve and central memory T cells able to proliferate. It reduced inflammation in an active delayed-type hypersensitivity model and in the pristane-induced arthritis (PIA) model of rheumatoid arthritis (RA). Importantly, a single subcutaneous dose of PEG-HsTX1[R14A] reduced inflammation in PIA for a longer period of time than the non-PEGylated HsTX1[R14A]. Together, these data indicate that HsTX1[R14A] and PEG-HsTX1[R14A] are effective in a model of RA and are therefore potential therapeutics for TEM cell-mediated autoimmune diseases. PEG-HsTX1[R14A] has the additional advantages of reduced non-specific adsorption to inert surfaces and enhanced circulating half-life.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rajeev B Tajhya
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elizabeth J Gehrmann
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathia E Rodarte
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mustafa A Atik
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Christine Beeton
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Biology of Inflammation Center and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Fortune RD, Grill RJ, Beeton C, Tanner M, Huq R, Loose DS. Changes in Gene Expression and Metabolism in the Testes of the Rat following Spinal Cord Injury. J Neurotrauma 2016; 34:1175-1186. [PMID: 27750479 DOI: 10.1089/neu.2016.4641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) results in devastating changes to almost all aspects of a patient's life. In addition to a permanent loss of sensory and motor function, males also will frequently exhibit a profound loss of fertility through poorly understood mechanisms. We demonstrate that SCI causes measureable pathology in the testis both acutely (24 h) and chronically up to 1.5 years post-injury, leading to loss in sperm motility and viability. SCI has been shown in humans and rats to induce leukocytospermia, with the presence of inflammatory cytokines, anti-sperm antibodies, and reactive oxygen species found within the ejaculate. Using messenger RNA and metabolomic assessments, we describe molecular and cellular changes that occur within the testis of adult rats over an acute to chronic time period. From 24 h, 72 h, 28 days, and 90 days post-SCI, the testis reveal a distinct time course of pathological events. The testis show an acute drop in normal sexual organ processes, including testosterone production, and establishment of a pro-inflammatory environment. This is followed by a subacute initiation of an innate immune response and loss of cell cycle regulation, possibly due to apoptosis within the seminiferous tubules. At 1.5 years post-SCI, there is a chronic low level immune response as evidenced by an elevation in T cells. These data suggest that SCI elicits a wide range of pathological processes within the testes, the actions of which are not restricted to the acute phase of injury but rather extend chronically, potentially through the lifetime of the subject. The multiplicity of these pathological events suggest a single therapeutic intervention is unlikely to be successful.
Collapse
Affiliation(s)
- Ryan D Fortune
- 1 Department of Integrative Biology and Pharmacology, UTHealth , Houston, Texas
| | - Raymond J Grill
- 1 Department of Integrative Biology and Pharmacology, UTHealth , Houston, Texas
| | - Christine Beeton
- 2 Department of Molecular Physiology and Biophysics, Baylor College of Medicine , Houston, Texas
| | - Mark Tanner
- 2 Department of Molecular Physiology and Biophysics, Baylor College of Medicine , Houston, Texas
| | - Redwan Huq
- 2 Department of Molecular Physiology and Biophysics, Baylor College of Medicine , Houston, Texas
| | - David S Loose
- 1 Department of Integrative Biology and Pharmacology, UTHealth , Houston, Texas
| |
Collapse
|
26
|
Tajhya RB, Hu X, Tanner MR, Huq R, Kongchan N, Neilson JR, Rodney GG, Horrigan FT, Timchenko LT, Beeton C. Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts. Cell Death Dis 2016; 7:e2426. [PMID: 27763639 PMCID: PMC5133989 DOI: 10.1038/cddis.2016.324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/14/2023]
Abstract
Myoblasts are mononucleated precursors of myofibers; they persist in mature skeletal muscles for growth and regeneration post injury. During myotonic dystrophy type 1 (DM1), a complex autosomal-dominant neuromuscular disease, the differentiation of skeletal myoblasts into functional myotubes is impaired, resulting in muscle wasting and weakness. The mechanisms leading to this altered differentiation are not fully understood. Here, we demonstrate that the calcium- and voltage-dependent potassium channel, KCa1.1 (BK, Slo1, KCNMA1), regulates myoblast proliferation, migration, and fusion. We also show a loss of plasma membrane expression of the pore-forming α subunit of KCa1.1 in DM1 myoblasts. Inhibiting the function of KCa1.1 in healthy myoblasts induced an increase in cytosolic calcium levels and altered nuclear factor kappa B (NFκB) levels without affecting cell survival. In these normal cells, KCa1.1 block resulted in enhanced proliferation and decreased matrix metalloproteinase secretion, migration, and myotube fusion, phenotypes all observed in DM1 myoblasts and associated with disease pathogenesis. In contrast, introducing functional KCa1.1 α-subunits into DM1 myoblasts normalized their proliferation and rescued expression of the late myogenic marker Mef2. Our results identify KCa1.1 channels as crucial regulators of skeletal myogenesis and suggest these channels as novel therapeutic targets in DM1.
Collapse
Affiliation(s)
- Rajeev B Tajhya
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xueyou Hu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natee Kongchan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank T Horrigan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lubov T Timchenko
- Department of Pediatrics Neurology, Cincinnati Children's Hospital, Cincinnati, OH 45219, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA.,Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|