1
|
Losada PX, Serrato L, Daza AM, Vanegas-García A, Muñoz CH, Rodriguez D, Diaz JC, Pineda R, Rojas Lopez M, Vásquez G. Circulating extracellular vesicles in Systemic Lupus Erythematosus: physicochemical properties and phenotype. Lupus Sci Med 2024; 11:e001243. [PMID: 39153822 PMCID: PMC11331945 DOI: 10.1136/lupus-2024-001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/27/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE This study aimed to identify the physicochemical and phenotypic characteristics of circulating Extracellular Vesicles (EVs) in the plasma of patients with SLE, with or without Lupus Nephritis (LN), and their potential utility as disease biomarkers. METHODS Plasma-circulating EVs were concentrated using differential centrifugation from adult female patients (n=38) who met the 'American College of Rheumatology/European Alliance of Associations for Rheumatology 2019' criteria for SLE diagnosis with (LN) or without LN (nLN), confirmed by renal biopsy. Controls (n=18) were healthy volunteers matched by gender and similar age. The structure, size and Energy Dispersion Spectrum (EDS) of EVs were observed by electron microscopy. The surface charge and size distribution were evaluated using dynamic light scattering. The counts and phenotype of EVs from patients (SLE-EVs) and controls (Ctrl-EVs) were obtained using flow cytometry. Non-parametric statistical tests and exploratory analysis of multiple variables were performed. The discriminatory power of some variables as potential biomarkers of the disease was also evaluated. RESULTS Circulating EVs were heterogeneous in morphology and size, but SLE-EVs reached larger diameters than Ctrl-EVs (p<0.0001). Small SLE-EVs and large SLE-EVs were increased compared with Ctrl-EV (p<0.0001 and p<0.05, respectively). Likewise, patients with SLE (LN or nLN) had higher concentrations of large EVs compared with controls (p<0.001 and p<0.0001, respectively). SLE-EVs showed a different EDS (p<0.001) and were less electronegative (p<0.0001) than Ctrl-EVs. EV-CD45+, EV-CD14+ and EV-IgM+ were more frequent in patients with SLE compared with controls (p<0.001, p<0.05 and p<0.001, respectively). The concentrations of large EVs and EV-IgM+ allowed better discrimination of patients from controls. CONCLUSIONS Plasma-circulating EVs from patients with SLE with and without nephritis are increased in peripheral blood and have different physicochemical properties than controls. Characteristics of EVs such as larger size and the presence of IgM on the surface could help discriminate patients from controls.
Collapse
Affiliation(s)
- Paula X Losada
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| | - Lina Serrato
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| | - Ana María Daza
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| | - Adriana Vanegas-García
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Hospital San Vicente de Paúl, Medellin, Colombia
| | - Carlos H Muñoz
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Sección Reumatología, Hospital San Vicente de Paúl, Medellin, Colombia
| | | | | | | | - Mauricio Rojas Lopez
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
- Unidad de Citometría de Flujo, Universidad de Antioquia, Medellin, Colombia
| | - Gloria Vásquez
- Universidad de Antioquia Grupo de Inmunología Celular e Inmunogenética, Medellin, Colombia
| |
Collapse
|
2
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
3
|
Wong C, Stoilova I, Gazeau F, Herbeuval JP, Fourniols T. Mesenchymal stromal cell derived extracellular vesicles as a therapeutic tool: immune regulation, MSC priming, and applications to SLE. Front Immunol 2024; 15:1355845. [PMID: 38390327 PMCID: PMC10881725 DOI: 10.3389/fimmu.2024.1355845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a dysfunction of the immune system. Mesenchymal stromal cell (MSCs) derived extracellular vesicles (EVs) are nanometer-sized particles carrying a diverse range of bioactive molecules, such as proteins, miRNAs, and lipids. Despite the methodological disparities, recent works on MSC-EVs have highlighted their broad immunosuppressive effect, thus driving forwards the potential of MSC-EVs in the treatment of chronic diseases. Nonetheless, their mechanism of action is still unclear, and better understanding is needed for clinical application. Therefore, we describe in this review the diverse range of bioactive molecules mediating their immunomodulatory effect, the techniques and possibilities for enhancing their immune activity, and finally the potential application to SLE.
Collapse
Affiliation(s)
- Christophe Wong
- EVerZom, Paris, France
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Ivana Stoilova
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Florence Gazeau
- Matière et Systèmes Complexes (MSC) UMR CNRS 7057, Université Paris Cité, Paris, France
| | - Jean-Philippe Herbeuval
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | | |
Collapse
|
4
|
Robert M, Scherlinger M. Platelets are a major player and represent a therapeutic opportunity in systemic lupus erythematosus. Joint Bone Spine 2024; 91:105622. [PMID: 37495075 DOI: 10.1016/j.jbspin.2023.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by immune dysregulation and organ injury with a premature mortality due to cardiovascular diseases. Platelets, that are primarily known for their role in hemostasis, have been shown to play an active role in the pathogenesis and in the progression of immune-mediated inflammatory diseases. Here we summarize the evidence of their roles in SLE pathogenesis which supports the development of targeted treatments. Platelets and their precursors, the megakaryocytes, are intrinsically different in SLE patients compared with healthy controls. Different triggers related to innate and adaptive immunity activate platelets which release extracellular vesicles, soluble factors and interact with immune cells, thereby perpetuating inflammation. Platelets are involved in organ damage in SLE, especially in lupus nephritis and participate in the heightened cardiovascular mortality. They also play a clear role in antiphospholipid syndrome which can be associated with both thrombocytopenia and thrombosis. To tackle platelet activation and their interactions with immune cells now constitute promising therapeutic strategies in SLE.
Collapse
Affiliation(s)
- Marie Robert
- Service de médecine interne et immunologie clinique, centre hospitalier universitaire Édouard-Herriot, hospices civils de Lyon, Lyon, France
| | - Marc Scherlinger
- Service de rhumatologie, centre hospitalier universitaire de Strasbourg, 1, avenue Molière, 67098 Strasbourg, France; Laboratoire d'immuno-rhumatologie moléculaire, Institut national de la santé et de la recherche médicale (Inserm) UMR S 1109, Strasbourg, France; Centre national de référence des maladies auto-immunes et systémiques rares, Est/Sud-Ouest (RESO), France.
| |
Collapse
|
5
|
Vilella-Figuerola A, Cordero A, Mirabet S, Muñoz-García N, Suades R, Padró T, Badimon L. Platelet-Released Extracellular Vesicle Characteristics Differ in Chronic and in Acute Heart Disease. Thromb Haemost 2023; 123:892-903. [PMID: 37075787 DOI: 10.1055/s-0043-57017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs), shed in response to cell activation, stress, or injury, are increased in the blood of patients with cardiovascular disease. EVs are characterized by expressing parental-cell antigens, allowing the determination of their cellular origin. Platelet-derived EVs (pEVs) are the most abundant in blood. Although not universally given, EVs generally express phosphatidylserine (PS) in their membrane. OBJECTIVES To investigate pEVs in chronic and acute conditions, such as chronic heart failure (CHF) and first-onset acute coronary syndrome (ACS), in patients treated as per guidelines. METHODS EVs in CHF patients (n = 119), ACS patients (n = 58), their respective controls (non-CHF [n = 21] and non-ACS [n = 24], respectively), and a reference control group (n = 31) were characterized and quantified by flow cytometry, using monoclonal antibodies against platelet antigens, and annexin V (AV) to determine PS exposure. RESULTS CHF patients had higher EVs-PS- numbers, while ACS had predominantly EVs-PS+. In contrast to ACS, CHF patients had significantly reduced numbers of pEVs carrying PECAM and αIIb-integrin epitopes (CD31+/AV+, CD41a+/AV+, and CD31+/CD41a+/AV+), while no differences were observed in P-selectin-rich pEVs (CD62P+/AV+) compared with controls. Additionally, background etiology of CHF (ischemic vs. nonischemic) or ACS type (ST-elevation myocardial infarction [STEMI] vs. non-STEMI [NSTEMI]) did not affect pEV levels. CONCLUSION PS exposure in EV and pEV-release differ between CHF and ACS patients, with tentatively different functional capacities beyond coagulation to inflammation and cross-talk with other cell types.
Collapse
Affiliation(s)
- Alba Vilella-Figuerola
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Alberto Cordero
- Cardiology Department, Hospital Universitario de San Juan, Alicante, Spain
- Unidad de Investigación en Cardiología, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Sònia Mirabet
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Heart Failure Group, Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Natàlia Muñoz-García
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- UAB-Chair Cardiovascular Research, Barcelona, Spain
| |
Collapse
|
6
|
Couto-Rodriguez A, Villaseñor A, Pablo-Torres C, Obeso D, Rey-Stolle MF, Peinado H, Bueno JL, Reaño-Martos M, Iglesias Cadarso A, Gomez-Casado C, Barbas C, Barber D, Escribese MM, Izquierdo E. Platelet-Derived Extracellular Vesicles as Lipid Carriers in Severe Allergic Inflammation. Int J Mol Sci 2023; 24:12714. [PMID: 37628895 PMCID: PMC10454366 DOI: 10.3390/ijms241612714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The resolution of inflammation is a complex process that is critical for removing inflammatory cells and restoring tissue function. The dysregulation of these mechanisms leads to chronic inflammatory disorders. Platelets, essential cells for preserving homeostasis, are thought to play a role in inflammation as they are a source of immunomodulatory factors. Our aim was to identify key metabolites carried by platelet-derived extracellular vesicles (PL-EVs) in a model of allergic inflammation. PL-EVs were isolated by serial ultracentrifugation using platelet-rich plasma samples obtained from platelet apheresis from severely (n = 6) and mildly (n = 6) allergic patients and non-allergic individuals used as controls (n = 8). PL-EVs were analysed by a multiplatform approach using liquid and gas chromatography coupled to mass spectrometry (LC-MS and GC-MS, respectively). PL-EVs obtained from severely and mildly allergic patients and control individuals presented comparable particle concentrations and sizes with similar protein concentrations. Strikingly, PL-EVs differed in their lipid and metabolic content according to the severity of inflammation. L-carnitine, ceramide (Cer (d18:0/24:0)), and several triglycerides, all of which seem to be involved in apoptosis and regulatory T functions, were higher in PL-EVs from patients with mild allergic inflammation than in those with severe inflammation. In contrast, PL-EVs obtained from patients with severe allergic inflammation showed an alteration in the arachidonic acid pathway. This study demonstrates that PL-EVs carry specific lipids and metabolites according to the degree of inflammation in allergic patients and propose novel perspectives for characterising the progression of allergic inflammation.
Collapse
Affiliation(s)
- Alba Couto-Rodriguez
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| | - Alma Villaseñor
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Carmela Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| | - David Obeso
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - María Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Héctor Peinado
- Spanish National Cancer Research Center (CNIO), Molecular Oncology Programme, Microenvironment and Metastasis Laboratory, 28029 Madrid, Spain
| | - José Luis Bueno
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | - Mar Reaño-Martos
- Department of Allergy and Immunology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | - Alfredo Iglesias Cadarso
- Department of Allergy and Immunology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | - Cristina Gomez-Casado
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| | - María M. Escribese
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| | - Elena Izquierdo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| |
Collapse
|
7
|
Suades R, Vilella-Figuerola A, Padró T, Mirabet S, Badimon L. Red Blood Cells and Endothelium Derived Circulating Extracellular Vesicles in Health and Chronic Heart Failure: A Focus on Phosphatidylserine Dynamics in Vesiculation. Int J Mol Sci 2023; 24:11824. [PMID: 37511585 PMCID: PMC10380787 DOI: 10.3390/ijms241411824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Circulating extracellular microvesicles (cEVs) are characterised by presenting surface antigens of parental cells. Since their biogenesis involves the translocation of phosphatidylserine (PS) from the inner to the outer leaflet of the plasma membrane, exposed PS has been considered as a recognition hallmark of cEVs. However, not all cEVs externalise PS. In this study, we have phenotypically and quantitatively characterised cEVs by flow cytometry, paying special attention to the proportions of PS in chronic heart failure patients (cHF; n = 119) and a reference non-HF group (n = 21). PS--cEVs were predominantly found in both groups. Parental markers showed differential pattern depending on the PS exposure. Endothelium-derived and connexin 43-rich cEVs were mainly PS--cEVs and significantly increased in cHF. On the contrary, platelet-derived cEVs were mostly PS+ and were increased in the non-HF group. We observed similar levels of PS+- and PS--cEVs in non-HF subjects when analysing immune cell-derived Evs, but there was a subset-specific difference in cHF patients. Indeed, those cEVs carrying CD45+, CD29+, CD11b+, and CD15+ were mainly PS+-cEVs, while those carrying CD14+, CD3+, and CD56+ were mainly PS--cEVs. In conclusion, endothelial and red blood cells are stressed in cHF patients, as detected by a high shedding of cEVs. Despite PS+-cEVs and PS--cEVs representing two distinct cEV populations, their release and potential function as both biomarkers and shuttles for cell communication seem unrelated to their PS content.
Collapse
Affiliation(s)
- Rosa Suades
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Alba Vilella-Figuerola
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sonia Mirabet
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Cardiology Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| |
Collapse
|
8
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Singh J, Boettcher M, Dölling M, Heuer A, Hohberger B, Leppkes M, Naschberger E, Schapher M, Schauer C, Schoen J, Stürzl M, Vitkov L, Wang H, Zlatar L, Schett GA, Pisetsky DS, Liu ML, Herrmann M, Knopf J. Moonlighting chromatin: when DNA escapes nuclear control. Cell Death Differ 2023; 30:861-875. [PMID: 36755071 PMCID: PMC9907214 DOI: 10.1038/s41418-023-01124-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/10/2023] Open
Abstract
Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders. Here, we discuss (I) the cellular events involved in the extracellular release of chromatin and NET formation, (II) the devastating consequence of a dysregulated NET formation, and (III) the imbalance between NET formation and clearance. We include the role of NET formation in the occlusion of vessels and ducts, in lung disease, in autoimmune diseases, in chronic oral disorders, in cancer, in the formation of adhesions, and in traumatic spinal cord injury. To develop effective therapies, it is of utmost importance to target pathways that cause decondensation of chromatin during exaggerated NET formation and aggregation. Alternatively, therapies that support the clearance of extracellular chromatin are conceivable.
Collapse
Affiliation(s)
- Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Dölling
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Annika Heuer
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Mildred-Scheel Cancer Career Center Hamburg HaTriCS4, University Cancer Center Hamburg, Hamburg, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Gastroenterology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mirco Schapher
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus University, Nürnberg, Germany
| | - Christine Schauer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, 5020, Austria
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg A Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David S Pisetsky
- Department of Medicine and Immunology and Medical Research Service, Duke University Medical Center and Veterans Administration Medical Center, Durham, NC, USA
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
10
|
Wang H, Stehr AM, Singh J, Zlatar L, Hartmann A, Evert K, Naschberger E, von Stillfried S, Boor P, Muñoz LE, Knopf J, Stürzl M, Herrmann M. Anti-DNA-IgM Favors the Detection of NET-Associated Extracellular DNA. Int J Mol Sci 2023; 24:ijms24044101. [PMID: 36835515 PMCID: PMC9958910 DOI: 10.3390/ijms24044101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
During inflammatory responses, neutrophils enter the sites of attack where they execute various defense mechanisms. They (I) phagocytose microorganisms, (II) degranulate to release cytokines, (III) recruit various immune cells by cell-type specific chemokines, (IV) secrete anti-microbials including lactoferrin, lysozyme, defensins and reactive oxygen species, and (V) release DNA as neutrophil extracellular traps (NETs). The latter originates from mitochondria as well as from decondensed nuclei. This is easily detected in cultured cells by staining of DNA with specific dyes. However, in tissues sections the very high fluorescence signals emitted from the condensed nuclear DNA hamper the detection of the widespread, extranuclear DNA of the NETs. In contrast, when we employ anti-DNA-IgM antibodies, they are unable to penetrate deep into the tightly packed DNA of the nucleus, and we observe a robust signal for the extended DNA patches of the NETs. To validate anti-DNA-IgM, we additionally stained the sections for the NET-markers histone H2B, myeloperoxidase, citrullinated histone H3, and neutrophil elastase. Altogether, we have described a fast one-step procedure for the detection of NETs in tissue sections, which provides new perspectives to characterize neutrophil-associated immune reactions in disease.
Collapse
Affiliation(s)
- Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Antonia Margarethe Stehr
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Katja Evert
- Institut für Pathologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | - Peter Boor
- Institute of Pathology, University Clinic of the RWTH Aachen, 52074 Aachen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
11
|
Harper MT. Platelet-Derived Extracellular Vesicles in Arterial Thrombosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:259-275. [PMID: 37603285 DOI: 10.1007/978-981-99-1443-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Blood platelets are necessary for normal haemostasis but also form life-threatening arterial thrombi when atherosclerotic plaques rupture. Activated platelets release many extracellular vesicles during thrombosis. Phosphatidylserine-exposing microparticles promote coagulation. Small exosomes released during granule secretion deliver cargoes including microRNAs to cells throughout the cardiovascular system. Here, we discuss the mechanisms by which platelets release these extracellular vesicles, together with the possibility of inhibiting this release as an antithrombotic strategy.
Collapse
Affiliation(s)
- Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Becker YLC, Duvvuri B, Fortin PR, Lood C, Boilard E. The role of mitochondria in rheumatic diseases. Nat Rev Rheumatol 2022; 18:621-640. [PMID: 36175664 DOI: 10.1038/s41584-022-00834-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
The mitochondrion is an intracellular organelle thought to originate from endosymbiosis between an ancestral eukaryotic cell and an α-proteobacterium. Mitochondria are the powerhouses of the cell, and can control several important processes within the cell, such as cell death. Conversely, dysregulation of mitochondria possibly contributes to the pathophysiology of several autoimmune diseases. Defects in mitochondria can be caused by mutations in the mitochondrial genome or by chronic exposure to pro-inflammatory cytokines, including type I interferons. Following the release of intact mitochondria or mitochondrial components into the cytosol or the extracellular space, the bacteria-like molecular motifs of mitochondria can elicit pro-inflammatory responses by the innate immune system. Moreover, antibodies can target mitochondria in autoimmune diseases, suggesting an interplay between the adaptive immune system and mitochondria. In this Review, we discuss the roles of mitochondria in rheumatic diseases such as systemic lupus erythematosus, antiphospholipid syndrome and rheumatoid arthritis. An understanding of the different contributions of mitochondria to distinct rheumatic diseases or manifestations could permit the development of novel therapeutic strategies and the use of mitochondria-derived biomarkers to inform pathogenesis.
Collapse
Affiliation(s)
- Yann L C Becker
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada
| | - Bhargavi Duvvuri
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Paul R Fortin
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| | - Eric Boilard
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada.
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada.
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
13
|
Richter P, Cardoneanu A, Rezus C, Burlui AM, Rezus E. Non-Traditional Pro-Inflammatory and Pro-Atherosclerotic Risk Factors Related to Systemic Lupus Erythematosus. Int J Mol Sci 2022; 23:ijms232012604. [PMID: 36293458 PMCID: PMC9604037 DOI: 10.3390/ijms232012604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of high mortality in patients with systemic lupus erythematosus (SLE). The Framingham risk score and other traditional risk factors do not fully reflect the CVD risk in SLE patients. Therefore, in order to stratify these high-risk patients, additional biomarkers for subclinical CVD are needed. The mechanisms of atherogenesis in SLE are still being investigated. During the past decades, many reports recognized that inflammation plays a crucial role in the development of atherosclerosis. The aim of this report is to present novel proinflammatory and pro-atherosclerotic risk factors that are closely related to SLE inflammation and which determine an increased risk for the occurrence of early cardiovascular events.
Collapse
Affiliation(s)
- Patricia Richter
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Anca Cardoneanu
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence: (A.C.); (C.R.); Tel.: +40232301615 (A.C. & C.R.)
| | - Ciprian Rezus
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- “Sfantul Spiridon” Emergency Hospital, 700111 Iasi, Romania
- Correspondence: (A.C.); (C.R.); Tel.: +40232301615 (A.C. & C.R.)
| | - Alexandra Maria Burlui
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
14
|
Bratseth V, Nordeng J, Helseth R, Solheim S, Åkra S, Arnesen H, Chiva-Blanch G, Seljeflot I. Circulating Microvesicles in Association with the NLRP3 Inflammasome in Coronary Thrombi from STEMI Patients. Biomedicines 2022; 10:biomedicines10092196. [PMID: 36140297 PMCID: PMC9496021 DOI: 10.3390/biomedicines10092196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Microvesicles (MVs) are actively secreted by cells. The NLRP3-inflammasome and the interleukin 6 (IL-6)-pathways are central in cardiovascular disease. Knowledge of how the inflammasome influences the MVs is limited. In a cross-sectional study, we assessed whether MVs in plasma associate with genes encoding inflammasome signalling in coronary thrombi. Moreover, any relationships between inflammasome activation and phosphatidylserine (PS) externalization, determined through Annexin V (AV+) labelling, and myocardial injury, assessed by cardiac troponin T (cTnT), were analysed. Intracoronary thrombi and blood samples from STEMI patients (n = 33) were investigated. mRNA of NLRP3, caspase-1, interleukin-1β (IL-1β), interleukin-18 (IL-18), IL-6, soluble IL-6-receptor (sIL-6R), and glycoprotein-130 (gp130) were isolated from the thrombi and relatively quantified by RT-PCR. MVs were analysed by flow cytometry. Total AV+ MVs, mainly reflecting hypercoagulability, correlated positively to NLRP3 gene expression (r = 0.545, p = 0.009). A similar pattern was seen for platelet, endothelial and leukocyte derived MVs, separately. The majority of the MVs were AV− (96%). Total and AV− MVs correlated inversely with IL-1β (r = −0.399 and −0.438, respectively, p < 0.05, both) and gp130 (r = −0.457 and −0.502, respectively, p < 0.05, both). No correlations between MVs and cTnT were observed. Our findings indicate an association between NLRP3-inflammasome in coronary thrombi and procoagulant AV+ MVs in STEMI patients. The inverse relationships between AV− MVs and the gene expression of inflammasome activation may indicate an immuno-dampening role of this subpopulation.
Collapse
Affiliation(s)
- Vibeke Bratseth
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0424 Oslo, Norway
- Correspondence:
| | - Jostein Nordeng
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Ragnhild Helseth
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0424 Oslo, Norway
| | - Svein Solheim
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0424 Oslo, Norway
| | - Sissel Åkra
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0424 Oslo, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Gemma Chiva-Blanch
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute-IDIBAPS, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Spanish Biomedical Research Network in Pathophysiology of Obesity and Nutrition (CIBEROBN), Institute of Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
15
|
Eustes AS, Dayal S. The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. Int J Mol Sci 2022; 23:7837. [PMID: 35887184 PMCID: PMC9320310 DOI: 10.3390/ijms23147837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs) play important roles in hemostasis and thrombosis. There are three major types of PEVs described based on their size and characteristics, but newer types may continue to emerge owing to the ongoing improvement in the methodologies and terms used to define various types of EVs. As the literature on EVs is growing, there are continuing attempts to standardize protocols for EV isolation and reach consensus in the field. This review provides information on mechanisms of PEV production, characteristics, cellular interaction, and their pathological role, especially in autoimmune and infectious diseases. We also highlight the mechanisms through which PEVs can activate parent cells in a feedback loop.
Collapse
Affiliation(s)
- Alicia S. Eustes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
16
|
Andersson U, Yang H. HMGB1 is a critical molecule in the pathogenesis of Gram-negative sepsis. JOURNAL OF INTENSIVE MEDICINE 2022; 2:156-166. [PMID: 36789020 PMCID: PMC9924014 DOI: 10.1016/j.jointm.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 04/12/2023]
Abstract
Gram-negative sepsis is a severe clinical syndrome associated with significant morbidity and mortality. Lipopolysaccharide (LPS), expressed on Gram-negative bacteria, is a potent pro-inflammatory toxin that induces inflammation and coagulation via two separate receptor systems. One is Toll-like receptor 4 (TLR4), expressed on cell surfaces and in endosomes, and the other is the cytosolic receptor caspase-11 (caspases-4 and -5 in humans). Extracellular LPS binds to high mobility group box 1 (HMGB1) protein, a cytokine-like molecule. The HMGB1-LPS complex is transported via receptor for advanced glycated end products (RAGE)-endocytosis to the endolysosomal system to reach the cytosolic LPS receptor caspase-11 to induce HMGB1 release, inflammation, and coagulation that may cause multi-organ failure. The insight that LPS needs HMGB1 assistance to generate severe inflammation has led to successful therapeutic results in preclinical Gram-negative sepsis studies targeting HMGB1. However, to date, no clinical studies have been performed based on this strategy. HMGB1 is also actively released by peripheral sensory nerves and this mechanism is fundamental for the initiation and propagation of inflammation during tissue injury. Homeostasis is achieved when other neurons actively restrict the inflammatory response via monitoring by the central nervous system and the vagus nerve through the cholinergic anti-inflammatory pathway. The neuronal control in Gram-negative sepsis needs further studies since a deeper understanding of the interplay between HMGB1 and acetylcholine may have beneficial therapeutic implications. Herein, we review the synergistic overlapping mechanisms of LPS and HMGB1 and discuss future treatment opportunities in Gram-negative sepsis.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, Stockholm 17176, Sweden
- Corresponding author: Ulf Andersson, Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, Stockholm 17176, Sweden.
| | - Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America
| |
Collapse
|
17
|
Stone AP, Nikols E, Freire D, Machlus KR. The pathobiology of platelet and megakaryocyte extracellular vesicles: A (c)lot has changed. J Thromb Haemost 2022; 20:1550-1558. [PMID: 35506218 DOI: 10.1111/jth.15750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Platelet-derived extracellular vesicles (PEVs) were originally studied for their potential as regulators of coagulation, a function redundant with that of their parent cells. However, as the understanding of the diverse roles of platelets in hemostasis and disease has developed, so has the understanding of PEVs. In addition, the more recent revelation of constitutively released megakaryocyte-derived extracellular vesicles (MKEVs) in circulation provides an interesting counterpoint and avenue for investigation. In this review, we highlight the historical link of PEVs to thrombosis and hemostasis and provide critical updates. We also expand our discussion to encompass the roles that distinguish PEVs and MKEVs from their parent cells. Furthermore, the role of extracellular vesicles in disease pathology, both as biomarkers and as exacerbators, has been of great interest in recent years. We highlight some of the key roles that PEVs and MKEVs play in autoimmune blood cell disorders, liver pathology, and cardiovascular disease. We then look at the future of PEVs and MKEVs as candidates for novel therapeutics.
Collapse
Affiliation(s)
- Andrew P Stone
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Emma Nikols
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Daniela Freire
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kellie R Machlus
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Bahmani L, Ullah M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022; 11:cells11131989. [PMID: 35805074 PMCID: PMC9265969 DOI: 10.3390/cells11131989] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.
Collapse
Affiliation(s)
- Leila Bahmani
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence:
| |
Collapse
|
19
|
Rother N, Yanginlar C, Pieterse E, Hilbrands L, van der Vlag J. Microparticles in Autoimmunity: Cause or Consequence of Disease? Front Immunol 2022; 13:822995. [PMID: 35514984 PMCID: PMC9065258 DOI: 10.3389/fimmu.2022.822995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
Microparticles (MPs) are small (100 nm - 1 um) extracellular vesicles derived from the plasma membrane of dying or activated cells. MPs are important mediators of intercellular communication, transporting proteins, nucleic acids and lipids from the parent cell to other cells. MPs resemble the state of their parent cells and are easily accessible when released into the blood or urine. MPs also play a role in the pathogenesis of different diseases and are considered as potential biomarkers. MP isolation and characterization is technically challenging and results in different studies are contradictory. Therefore, uniform guidelines to isolate and characterize MPs should be developed. Our understanding of MP biology and how MPs play a role in different pathological mechanisms has greatly advanced in recent years. MPs, especially if derived from apoptotic cells, possess strong immunogenic properties due to the presence of modified proteins and nucleic acids. MPs are often found in patients with autoimmune diseases where MPs for example play a role in the break of immunological tolerance and/or induction of inflammatory conditions. In this review, we describe the main techniques to isolate and characterize MPs, define the characteristics of MPs generated during cell death, illustrate different mechanism of intercellular communication via MPs and summarize the role of MPs in pathological mechanisms with a particular focus on autoimmune diseases.
Collapse
Affiliation(s)
- Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elmar Pieterse
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luuk Hilbrands
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
Zaid Y, Merhi Y. Implication of Platelets in Immuno-Thrombosis and Thrombo-Inflammation. Front Cardiovasc Med 2022; 9:863846. [PMID: 35402556 PMCID: PMC8990903 DOI: 10.3389/fcvm.2022.863846] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
In addition to their well-described hemostatic function, platelets are active participants in innate and adaptive immunity. Inflammation and immunity are closely related to changes in platelet reactions and enhanced platelet function in thrombo-inflammation, as well as in microbial and virus infections. A platelet’s immune function is incompletely understood, but an important balance exists between its protective and pathogenic responses and its thrombotic and inflammatory functions. As the mediator of vascular homeostasis, platelets interact with neutrophils, bacteria and virus by expressing specific receptors and releasing granules, transferring RNA, and secreting mitochondria, which controls hemostasis and thrombosis, infection, and innate and adaptive immunity. This review focuses on the involvement of platelets during immuno-thrombosis and thrombo-inflammation.
Collapse
Affiliation(s)
- Younes Zaid
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.,Immunology and Biodiversity Laboratory, Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Center, The Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
21
|
Mak A, Chan JKY. Endothelial function and endothelial progenitor cells in systemic lupus erythematosus. Nat Rev Rheumatol 2022; 18:286-300. [PMID: 35393604 DOI: 10.1038/s41584-022-00770-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
The observations that traditional cardiovascular disease (CVD) risk factors fail to fully account for the excessive cardiovascular mortality in patients with systemic lupus erythematosus (SLE) compared with the general population have prompted in-depth investigations of non-traditional, SLE-related risk factors that contribute to cardiovascular complications in patients with SLE. Of the various perturbations of vascular physiology, endothelial dysfunction, which is believed to occur in the earliest step of atherosclerosis, has been extensively investigated for its contribution to CVD risk in SLE. Endothelial progenitor cells (EPCs), which play a crucial part in vascular repair, neovascularization and maintenance of endothelial function, are quantitatively and functionally reduced in patients with SLE. Yet, the lack of a unified definition of EPCs, standardization of the quantity and functional assessment of EPCs as well as endothelial function measurement pose challenges to the translation of endothelial function measurements and EPC levels into prognostic markers for CVD in patients with SLE. This Review discusses factors that contribute to CVD in SLE, with particular focus on how endothelial function and EPCs are evaluated currently, and how EPCs are quantitatively and functionally altered in patients with SLE. Potential strategies for the use of endothelial function measurements and EPC quantification as prognostic markers of CVD in patients with SLE, and the limitations of their prognostication potential, are also discussed.
Collapse
Affiliation(s)
- Anselm Mak
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore, Singapore.
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Academic Clinical Programme in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Makhijani P, McGaha TL. Myeloid Responses to Extracellular Vesicles in Health and Disease. Front Immunol 2022; 13:818538. [PMID: 35320943 PMCID: PMC8934876 DOI: 10.3389/fimmu.2022.818538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Extracellular vesicles are mediators of cell-cell communication playing a key role in both steady-state and disease conditions. Extracellular vesicles carry diverse donor-derived cargos, including DNA, RNA, proteins, and lipids that induce a complex network of signals in recipient cells. Due to their ability to capture particulate matter and/or capacity to polarize and orchestrate tissue responses, myeloid immune cells (e.g., dendritic cells, macrophages, etc.) rapidly respond to extracellular vesicles, driving local and systemic effects. In cancer, myeloid-extracellular vesicle communication contributes to chronic inflammation, self-tolerance, and therapeutic resistance while in autoimmune disease, extracellular vesicles support inflammation and tissue destruction. Here, we review cellular mechanisms by which extracellular vesicles modulate myeloid immunity in cancer and autoimmune disease, highlighting some contradictory results and outstanding questions. We will also summarize how understanding of extracellular vesicle biology is being utilized for novel therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Priya Makhijani
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumor Immunotherapy Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Tracy L. McGaha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumor Immunotherapy Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- *Correspondence: Tracy L. McGaha,
| |
Collapse
|
23
|
Andersson U, Tracey KJ, Yang H. Post-Translational Modification of HMGB1 Disulfide Bonds in Stimulating and Inhibiting Inflammation. Cells 2021; 10:cells10123323. [PMID: 34943830 PMCID: PMC8699546 DOI: 10.3390/cells10123323] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding protein, is a “damage-associated molecular pattern” molecule (DAMP) implicated in both stimulating and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive DAMP bearing three cysteines, and the post-translational modification of these residues establishes its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for incorporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1 released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting HMGB1 for inflammation, pain, and cancer.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
- Correspondence: ; Tel.: +46-(70)-7401740
| | - Kevin J. Tracey
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| | - Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| |
Collapse
|
24
|
Rivera Rivas JJ, Czuprynski CJ. Histophilus somni stimulates bovine monocyte-derived macrophages to release microparticles that increase fibrin clot formation in vitro. Vet Microbiol 2021; 264:109280. [PMID: 34808430 DOI: 10.1016/j.vetmic.2021.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Histophilus somni is a Gram-negative coccobacillus that causes diffuse vasculitis and intravascular thrombosis that can lead to multiple organ failure in cattle. Macrophages are important cellular mediators of fibrin deposition and removal at sites of inflammation. It has become evident that macrophages and other cells release microparticles (MPs) that have an array of biological activities, including pro-coagulant activity. We sought to determine whether monocyte-derived macrophages exposed to H. somni in vitro release MPs that activate the clotting cascade in a manner that could lead to thrombus formation. Bovine monocyte-derived macrophages were incubated with H. somni (at a 10:1 ratio) in RPMI with 10% heat inactivated fetal bovine serum for 6 h at 37 °C with 5 % CO2. Membrane-shed MPs were isolated from the conditioned media, washed twice with Ca2+ and Mg2+ free HBSS, and pro-coagulant activity assessed by a one-step plasma clotting assay. We observed greater pro-coagulant activity for MPs from H. somni stimulated macrophages than from unstimulated controls. Microparticle pro-coagulant activity was inhibited by addition of an anti-tissue factor antibody. We also observed co-localization of fluorescein-labeled H. somni cells and annexin V staining as evaluated by confocal microscopy. These results demonstrate that exposure to H. somni cells causes bovine monocyte-derived macrophages to release MPs that contain tissue factor, the first such report for bovine macrophages. We infer that if similar events occur in vivo they could amplify thrombus formation in bovine histophilosis.
Collapse
Affiliation(s)
- José J Rivera Rivas
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| | - Charles J Czuprynski
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
25
|
Lalic-Cosic S, Dopsaj V, Kovac M, Mandic-Markovic V, Mikovic Z, Mobarrez F, Antovic A. Phosphatidylserine Exposing Extracellular Vesicles in Pre-eclamptic Patients. Front Med (Lausanne) 2021; 8:761453. [PMID: 34805227 PMCID: PMC8595119 DOI: 10.3389/fmed.2021.761453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Pre-eclampsia (P-EC) is associated with systemic inflammation, endothelial dysfunction and hypercoagulability. The role of extracellular vesicles (EVs) in coagulation disturbances affecting the development and severity of P-EC remains elusive. We aimed to evaluate the concentration of EVs expressing phosphatidylserine (PS) and specific markers in relation to the thrombin and fibrin formation as well as fibrin clot properties, in pregnant women with P-EC in comparison to healthy pregnant women of similar gestational age. Methods: Blood samples of 30 pregnant women diagnosed with P-EC were collected on the morning following admission to hospital and after delivery (mean duration 5 days). The concentration of the PS-exposing EVs (PS+ EVs) from platelets (CD42a+, endothelial cells (CD62E+), and PS+ EVs expressing tissue factor (TF) and vascular cell adhesion molecule 1 (VCAM-1) were measured by flow cytometry. Further phenotyping of EVs also included expression of PlGF. Markers of maternal haemostasis were correlated with EVs concentration in plasma. Results: Preeclamptic pregnancy was associated with significantly higher plasma levels of PS+ CD42a+ EVs and PS+ VCAM-1+ EVs in comparison with normotensive pregnancy. P-EC patients after delivery had markedly elevated concentration of PS+ CD42a+ EVs, CD62E+ EVs, TF+ EVs, and VCAM-1+ EVs compared to those before delivery. Inverse correlation was observed between EVs concentrations (PS+, PS+ TF+, and PlGF+) and parameters of overall haemostatic potential (OHP) and fibrin formation, while PS+ VCAM-1+ EVs directly correlated with FVIII activity in plasma. Conclusion: Increased levels of PS+ EVs subpopulations in P-EC and their association with global haemostatic parameters, as well as with fibrin clot properties may suggest EVs involvement in intravascular fibrin deposition leading to subsequent microcirculation disorders.
Collapse
Affiliation(s)
- Sanja Lalic-Cosic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Violeta Dopsaj
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Mirjana Kovac
- Haemostasis Department, Blood Transfusion Institute of Serbia and Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Mandic-Markovic
- Gynaecology and Obstetrics Clinic "Narodni Front", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zeljko Mikovic
- Gynaecology and Obstetrics Clinic "Narodni Front", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Aleksandra Antovic
- Department of Medicine, Division of Rheumatology, Karolinska Institutet and Rheumatology, Karolinska University Hospital Stockholm, Stockholm, Sweden
| |
Collapse
|
26
|
Puhm F, Flamand L, Boilard E. Platelet extracellular vesicles in COVID-19: Potential markers and makers. J Leukoc Biol 2021; 111:63-74. [PMID: 34730839 PMCID: PMC8667644 DOI: 10.1002/jlb.3mir0221-100r] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Platelets and platelet extracellular vesicles (pEV) are at the crossroads of coagulation and immunity. Extracellular vesicles are messengers that not only transmit signals between cells, but also provide information about the status of their cell of origin. Thus, pEVs have potential as both biomarkers of platelet activation and contributors to pathology. Coronavirus Disease‐19 (COVID‐19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), is a complex disease affecting multiple organs and is characterized by a high degree of inflammation and risk of thrombosis in some patients. In this review, we introduce pEVs as valuable biomarkers in disease with a special focus on their potential as predictors of and contributors to COVID‐19.
Collapse
Affiliation(s)
- Florian Puhm
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| | - Louis Flamand
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| |
Collapse
|
27
|
Willis ML, Mahung C, Wallet SM, Barnett A, Cairns BA, Coleman LG, Maile R. Plasma extracellular vesicles released after severe burn injury modulate macrophage phenotype and function. J Leukoc Biol 2021; 111:33-49. [PMID: 34342045 DOI: 10.1002/jlb.3mia0321-150rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as key regulators of immune function across multiple diseases. Severe burn injury is a devastating trauma with significant immune dysfunction that results in an ∼12% mortality rate due to sepsis-induced organ failure, pneumonia, and other infections. Severe burn causes a biphasic immune response: an early (0-72 h) hyper-inflammatory state, with release of damage-associated molecular pattern molecules, such as high-mobility group protein 1 (HMGB1), and proinflammatory cytokines (e.g., IL-1β), followed by an immunosuppressive state (1-2+ wk post injury), associated with increased susceptibility to life-threatening infections. We have reported that early after severe burn injury HMGB1 and IL-1β are enriched in plasma EVs. Here we tested the impact of EVs isolated after burn injury on phenotypic and functional consequences in vivo and in vitro using adoptive transfers of EV. EVs isolated early from mice that underwent a 20% total body surface area burn injury (burn EVs) caused similar hallmark cytokine responses in naïve mice to those seen in burned mice. Burn EVs transferred to RAW264.7 macrophages caused similar functional (i.e., cytokine secretion) and immune gene expression changes seen with their associated phase of post-burn immune dysfunction. Burn EVs isolated early (24 h) induced MCP-1, IL-12p70, and IFNγ, whereas EVs isolated later blunted RAW proinflammatory responses to bacterial endotoxin (LPS). We also describe significantly increased HMGB1 cargo in burn EVs purified days 1 to 7 after injury. Thus, burn EVs cause immune outcomes in naïve mice and macrophages similar to findings after severe burn injury, suggesting EVs promote post-burn immune dysfunction.
Collapse
Affiliation(s)
- Micah L Willis
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cressida Mahung
- North Carolina Jaycee Burn Center Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shannon M Wallet
- Adams School of Dentistry, Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandra Barnett
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bruce A Cairns
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,North Carolina Jaycee Burn Center Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leon G Coleman
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Maile
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,North Carolina Jaycee Burn Center Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
28
|
Potential Diagnostic Approaches for Prediction of Therapeutic Responses in Immune Thrombocytopenia. J Clin Med 2021; 10:jcm10153403. [PMID: 34362187 PMCID: PMC8347743 DOI: 10.3390/jcm10153403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder in which, via unresolved mechanisms, platelets and megakaryocytes (MKs) are targeted by autoantibodies and/or T cells resulting in increased platelet destruction and impairment of MK function. Over the years, several therapeutic modalities have become available for ITP, however, therapeutic management has proven to be very challenging in several cases. Patients refractory to treatment can develop a clinically worsening disease course, treatment-induced toxicities and are predisposed to development of potentially life-endangering bleedings. It is therefore of critical importance to timely identify potential refractory patients, for which novel diagnostic approaches are urgently needed in order to monitor and predict specific therapeutic responses. In this paper, we propose promising diagnostic investigations into immune functions and characteristics in ITP, which may potentially be exploited to help predict platelet count responses and thereby distinguish therapeutic responders from non-responders. This importantly includes analysis of T cell homeostasis, which generally appears to be disturbed in ITP due to decreased and/or dysfunctional T regulatory cells (Tregs) leading to loss of immune tolerance and initiation/perpetuation of ITP, and this may be normalized by several therapeutic modalities. Additional avenues to explore in possible prediction of therapeutic responses include examination of platelet surface sialic acids, platelet apoptosis, monocyte surface markers, B regulatory cells and platelet microparticles. Initial studies have started evaluating these markers in relation to response to various treatments including glucocorticosteroids (GCs), intravenous immunoglobulins (IVIg) and/or thrombopoietin receptor agonists (TPO-RA), however, further studies are highly warranted. The systematic molecular analysis of a broad panel of immune functions may ultimately help guide and improve personalized therapeutic management in ITP.
Collapse
|
29
|
Scherlinger M, Guillotin V, Douchet I, Vacher P, Boizard-Moracchini A, Guegan JP, Garreau A, Merillon N, Vermorel A, Ribeiro E, Machelart I, Lazaro E, Couzi L, Duffau P, Barnetche T, Pellegrin JL, Viallard JF, Saleh M, Schaeverbeke T, Legembre P, Truchetet ME, Dumortier H, Contin-Bordes C, Sisirak V, Richez C, Blanco P. Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis. Sci Transl Med 2021; 13:13/600/eabi4994. [PMID: 34193612 DOI: 10.1126/scitranslmed.abi4994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance toward self-nucleic acids, autoantibody production, interferon expression and signaling, and a defect in the regulatory T (Treg) cell compartment. In this work, we identified that platelets from patients with active SLE preferentially interacted with Treg cells via the P-selectin/P-selectin glycoprotein ligand-1 (PSGL-1) axis. Selectin interaction with PSGL-1 blocked the regulatory and suppressive properties of Treg cells and particularly follicular Treg cells by triggering Syk phosphorylation and an increase in intracytosolic calcium. Mechanistically, P-selectin engagement on Treg cells induced a down-regulation of the transforming growth factor-β axis, altering the phenotype of Treg cells and limiting their immunosuppressive responses. In patients with SLE, we found an up-regulation of P- and E-selectin both on microparticles and in their soluble forms that correlated with disease activity. Last, blocking P-selectin in a mouse model of SLE improved cardinal features of the disease, such as anti-dsDNA antibody concentrations and kidney pathology. Overall, our results identify a P-selectin-dependent pathway that is active in patients with SLE and validate it as a potential therapeutic avenue.
Collapse
Affiliation(s)
- Marc Scherlinger
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Vivien Guillotin
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France.,Department of Internal Medicine, Saint André, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Isabelle Douchet
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | | | | | | | - Anne Garreau
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Nathalie Merillon
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Agathe Vermorel
- Nephrology Department, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Emmanuel Ribeiro
- Department of Internal Medicine, Saint André, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Irène Machelart
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Estibaliz Lazaro
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Lionel Couzi
- Nephrology Department, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Pierre Duffau
- Department of Internal Medicine, Saint André, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Thomas Barnetche
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France
| | - Jean-Luc Pellegrin
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Jean-François Viallard
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Maya Saleh
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Thierry Schaeverbeke
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France
| | - Patrick Legembre
- Contrôle de la Réponse Immune B et lymphoproliférations, CRIBL, UMR CNRS 7276, INSERM 1262, Limoges, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | | | - Cécile Contin-Bordes
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France.,Department of Immunology and Immunogenetics, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Vanja Sisirak
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Christophe Richez
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France. .,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Patrick Blanco
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France. .,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France.,Department of Immunology and Immunogenetics, Bordeaux University Hospital, 33076 Bordeaux, France
| |
Collapse
|
30
|
Kim H, Lee JW, Han G, Kim K, Yang Y, Kim SH. Extracellular Vesicles as Potential Theranostic Platforms for Skin Diseases and Aging. Pharmaceutics 2021; 13:pharmaceutics13050760. [PMID: 34065468 PMCID: PMC8161370 DOI: 10.3390/pharmaceutics13050760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), naturally secreted by cells, act as mediators for communication between cells. They are transported to the recipient cells along with cargoes such as nucleic acids, proteins, and lipids that reflect the changes occurring within the parent cells. Thus, EVs have been recognized as potential theranostic agents for diagnosis, treatment, and prognosis. In particular, the evidence accumulated to date suggests an important role of EVs in the initiation and progression of skin aging and various skin diseases, including psoriasis, systemic lupus erythematosus, vitiligo, and chronic wounds. This review highlights recent research that investigates the role of EVs and their potential as biomarkers and therapeutic agents for skin diseases and aging.
Collapse
Affiliation(s)
- Hyosuk Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jong Won Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Geonhee Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
31
|
Platelet-derived extracellular vesicles infiltrate and modify the bone marrow during inflammation. Blood Adv 2021; 4:3011-3023. [PMID: 32614966 DOI: 10.1182/bloodadvances.2020001758] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
During inflammation, steady-state hematopoiesis switches to emergency hematopoiesis to repopulate myeloid cells, with a bias toward the megakaryocytic lineage. Soluble inflammatory cues are thought to be largely responsible for these alterations. However, how these plasma factors rapidly alter the bone marrow (BM) is not understood. Inflammation also drives platelet activation, causing the release of platelet-derived extracellular vesicles (PEVs), which package diverse cargo and reprogram target cells. We hypothesized that PEVs infiltrate the BM, providing a direct mode of communication between the plasma and BM environments. We transfused fluorescent, wild-type (MPL+) platelets into recipient cMpl-/-mice before triggering systemic inflammation. Twenty hours postinfusion, we observed significant infiltration of donor platelet-derived particles in the BM, which we tracked immunophenotypically (MPL+ immunohistochemistry staining) and quantified by flow cytometry. To determine if this phenomenon relates to humans, we extensively characterized both megakaryocyte-derived and PEVs generated in vitro and in vivo, and found enrichment of extracellular vesicles in bone marrow compared with autologous peripheral blood. Last, BM from cMpl-/- mice was cultured in the presence or absence of wild-type (MPL+) PEVs. After 72 hours, flow cytometry revealed increased megakaryocytes only in cultures with added PEVs. The majority of CD41+ cells were bound to PEVs, suggesting a PEV-mediated rescue of megakaryopoiesis. In conclusion, we report for the first time that plasma-residing PEVs infiltrate the BM. Further, PEVs interact with BM cells in vivo and in vitro, causing functional reprogramming that may represent a novel model of inflammation-induced hematopoiesis.
Collapse
|
32
|
Mazzariol M, Camussi G, Brizzi MF. Extracellular Vesicles Tune the Immune System in Renal Disease: A Focus on Systemic Lupus Erythematosus, Antiphospholipid Syndrome, Thrombotic Microangiopathy and ANCA-Vasculitis. Int J Mol Sci 2021; 22:ijms22084194. [PMID: 33919576 PMCID: PMC8073859 DOI: 10.3390/ijms22084194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023] Open
Abstract
Extracellular vesicles (EV) are microparticles released in biological fluids by different cell types, both in physiological and pathological conditions. Owing to their ability to carry and transfer biomolecules, EV are mediators of cell-to-cell communication and are involved in the pathogenesis of several diseases. The ability of EV to modulate the immune system, the coagulation cascade, the angiogenetic process, and to drive endothelial dysfunction plays a crucial role in the pathophysiology of both autoimmune and renal diseases. Recent studies have demonstrated the involvement of EV in the control of renal homeostasis by acting as intercellular signaling molecules, mediators of inflammation and tissue regeneration. Moreover, circulating EV and urinary EV secreted by renal cells have been investigated as potential early biomarkers of renal injury. In the present review, we discuss the recent findings on the involvement of EV in autoimmunity and in renal intercellular communication. We focused on EV-mediated interaction between the immune system and the kidney in autoimmune diseases displaying common renal damage, such as antiphospholipid syndrome, systemic lupus erythematosus, thrombotic microangiopathy, and vasculitis. Although further studies are needed to extend our knowledge on EV in renal pathology, a deeper investigation of the impact of EV in kidney autoimmune diseases may also provide insight into renal biological processes. Furthermore, EV may represent promising biomarkers of renal diseases with potential future applications as diagnostic and therapeutic tools.
Collapse
|
33
|
Cross-Talk among Polymorphonuclear Neutrophils, Immune, and Non-Immune Cells via Released Cytokines, Granule Proteins, Microvesicles, and Neutrophil Extracellular Trap Formation: A Novel Concept of Biology and Pathobiology for Neutrophils. Int J Mol Sci 2021; 22:ijms22063119. [PMID: 33803773 PMCID: PMC8003289 DOI: 10.3390/ijms22063119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are traditionally regarded as professional phagocytic and acute inflammatory cells that engulf the microbial pathogens. However, accumulating data have suggested that PMNs are multi-potential cells exhibiting many important biological functions in addition to phagocytosis. These newly found novel activities of PMN include production of different kinds of cytokines/chemokines/growth factors, release of neutrophil extracellular traps (NET)/ectosomes/exosomes and trogocytosis (membrane exchange) with neighboring cells for modulating innate, and adaptive immune responses. Besides, PMNs exhibit potential heterogeneity and plasticity in involving antibody-dependent cellular cytotoxicity (ADCC), cancer immunity, autoimmunity, inflammatory rheumatic diseases, and cardiovascular diseases. Interestingly, PMNs may also play a role in ameliorating inflammatory reaction and wound healing by a subset of PMN myeloid-derived suppressor cells (PMN-MDSC). Furthermore, PMNs can interact with other non-immune cells including platelets, epithelial and endothelial cells to link hemostasis, mucosal inflammation, and atherogenesis. The release of low-density granulocytes (LDG) from bone marrow initiates systemic autoimmune reaction in systemic lupus erythematosus (SLE). In clinical application, identification of certain PMN phenotypes may become prognostic factors for severe traumatic patients. In the present review, we will discuss these newly discovered biological and pathobiological functions of the PMNs.
Collapse
|
34
|
The Autoantigen Repertoire and the Microbial RNP World. Trends Mol Med 2021; 27:422-435. [PMID: 33722441 DOI: 10.1016/j.molmed.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 02/08/2023]
Abstract
Although autoimmunity and autoimmune disease (AID) are relatively common, the repertoire of autoantigens is paradoxically very limited. Highly enriched in this autoantigen repertoire are nucleic acids and their binding proteins, which together form large macromolecular structures. Most of these complexes are of ancient evolutionary origin, with homologs throughout multiple kingdoms of life. Why and if these nucleic acid-protein particles drive the development of autoimmunity remains unresolved. Recent advances in our understanding of the microbiome may provide clues about the origins of autoimmunity - and the particular puzzle of why the autoantigen repertoire is so particularly enriched in ribonucleoprotein particles (RNPs). We discuss the possibility that autoimmunity to some RNPs may arise from molecular mimicry to microbial orthologs.
Collapse
|
35
|
Abstract
Extracellular vesicles (EVs) are a means of cell-to-cell communication and can facilitate the exchange of a broad array of molecules between adjacent or distant cells. Platelets are anucleate cells derived from megakaryocytes and are primarily known for their role in maintaining hemostasis and vascular integrity. Upon activation by a variety of agonists, platelets readily generate EVs, which were initially identified as procoagulant particles. However, as both platelets and their EVs are abundant in blood, the role of platelet EVs in hemostasis may be redundant. Moreover, findings have challenged the significance of platelet-derived EVs in coagulation. Looking beyond hemostasis, platelet EV cargo is incredibly diverse and can include lipids, proteins, nucleic acids, and organelles involved in numerous other biological processes. Furthermore, while platelets cannot cross tissue barriers, their EVs can enter lymph, bone marrow, and synovial fluid. This allows for the transfer of platelet-derived content to cellular recipients and organs inaccessible to platelets. This review highlights the importance of platelet-derived EVs in physiological and pathological conditions beyond hemostasis.
Collapse
Affiliation(s)
- Florian Puhm
- Centre de recherche du CHU de Québec, Department of infectious diseases and immunity, Québec, QC, Canada
- Université Laval and Centre de recherche ARThrite, Québec, QC, Canada
| | - Eric Boilard
- Centre de recherche du CHU de Québec, Department of infectious diseases and immunity, Québec, QC, Canada
- Université Laval and Centre de recherche ARThrite, Québec, QC, Canada
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Álvarez K, Villar-Vesga J, Ortiz-Reyes B, Vanegas-García A, Castaño D, Rojas M, Vásquez G. Induction of NF-κB inflammatory pathway in monocytes by microparticles from patients with systemic lupus erythematosus. Heliyon 2020; 6:e05815. [PMID: 33409392 PMCID: PMC7773880 DOI: 10.1016/j.heliyon.2020.e05815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Background Elevated levels of circulating microparticles (MPs) and molecules of the complement system have been reported in patients with systemic lupus erythematosus (SLE). Moreover, microparticles isolated from patients with SLE (SLE-MPs) contain higher levels of damage-associated molecular patterns (DAMPs) than MPs from healthy controls (CMPs). We hypothesize that the uptake of MPs by monocytes could contribute to the chronic inflammatory processes observed in patients with SLE. Therefore, the aim of this study was to evaluate the expression of activation markers, production of proinflammatory mediators, and activation of the NF-κB signaling pathway in monocytes treated with CMPs and SLE-MPs. Methodology Monocytes isolated from healthy individuals were pretreated or not with pyrrolidine dithiocarbamate (PDTC) and cultured with CMPs and SLE-MPs. The cell surface expression of CD69 and HLA-DR were evaluated by flow cytometry; cytokine and eicosanoid levels were quantified in culture supernatants by Cytokine Bead Array and ELISA, respectively; and the NF-κB activation was evaluated by Western blot and epifluorescence microscopy. Results The cell surface expression of HLA-DR and CD69, and the supernatant levels of IL-6, IL-1β, PGE2, and LTB4 were higher in cultures of monocytes treated with SLE-MPs than CMPs. These responses were blocked in the presence of PDTC, a pharmacological inhibitor of the NF-κB pathway, with concomitant reduction of IκBα and cytoplasmic p65, and increased nuclear translocation of p65. Conclusions The present findings indicate that significant uptake of SLE-MPs by monocytes results in activation, production of inflammatory mediators, and triggering of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Juan Villar-Vesga
- Grupo de Neurociencias de Antioquia, Área de Neurobiología Celular y Molecular, Facultad de Medicina. Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Calle 70 No.52-21, Medellín, Colombia
| | - Blanca Ortiz-Reyes
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Adriana Vanegas-García
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Sección de Reumatología, Hospital Universitario San Vicente Fundación, Calle 64 No.51D-154, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| |
Collapse
|
37
|
Ortega A, Martinez-Arroyo O, Forner MJ, Cortes R. Exosomes as Drug Delivery Systems: Endogenous Nanovehicles for Treatment of Systemic Lupus Erythematosus. Pharmaceutics 2020; 13:pharmaceutics13010003. [PMID: 33374908 PMCID: PMC7821934 DOI: 10.3390/pharmaceutics13010003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes, nanometer-sized lipid-bilayer-enclosed extracellular vesicles (EVs), have attracted increasing attention due to their inherent ability to shuttle proteins, lipids and genes between cells and their natural affinity to target cells. Their intrinsic features such as stability, biocompatibility, low immunogenicity and ability to overcome biological barriers, have prompted interest in using exosomes as drug delivery vehicles, especially for gene therapy. Evidence indicates that exosomes play roles in both immune stimulation and tolerance, regulating immune signaling and inflammation. To date, exosome-based nanocarriers delivering small molecule drugs have been developed to treat many prevalent autoimmune diseases. This review highlights the key features of exosomes as drug delivery vehicles, such as therapeutic cargo, use of targeting peptide, loading method and administration route with a broad focus. In addition, we outline the current state of evidence in the field of exosome-based drug delivery systems in systemic lupus erythematosus (SLE), evaluating exosomes derived from various cell types and engineered exosomes.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
| | - Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
| | - Maria J. Forner
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
- Correspondence: ; Tel.: +34-96398-3916; Fax: +34-96398-7860
| |
Collapse
|
38
|
Xu K, Liu Q, Wu K, Liu L, Zhao M, Yang H, Wang X, Wang W. Extracellular vesicles as potential biomarkers and therapeutic approaches in autoimmune diseases. J Transl Med 2020; 18:432. [PMID: 33183315 PMCID: PMC7664085 DOI: 10.1186/s12967-020-02609-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles are heterogeneous populations of naturally occurring secreted small vesicles. EVs function as signaling platforms to facilitate intracellular communication, which indicates the physiological or pathophysiological conditions of cells or tissues. Considering that EVs can be isolated from most body fluids and that molecular constituents could be reprogrammed according to the physiological status of the secreting cells, EVs are regarded as novel diagnostic and prognostic biomarkers for many diseases. The ability to protect encapsulated molecules from degradation in body fluids suggests the potential of EVs as biological medicines or drug delivery systems. This article focuses on the EV-associated biomarkers and therapeutic approaches in autoimmune diseases.
Collapse
Affiliation(s)
- Kaiyuan Xu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Qin Liu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Kaihui Wu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Liu Liu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Maomao Zhao
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Hui Yang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
39
|
Svenungsson E, Gustafsson JT, Grosso G, Rossides M, Gunnarsson I, Jensen-Urstad K, Larsson A, Ekdahl KN, Nilsson B, Bengtsson AA, Lood C. Complement deposition, C4d, on platelets is associated with vascular events in systemic lupus erythematosus. Rheumatology (Oxford) 2020; 59:3264-3274. [PMID: 32259250 PMCID: PMC7590416 DOI: 10.1093/rheumatology/keaa092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Complement components, including C4d, can be found on activated platelets, a process associated with vascular disease in SLE. We investigated whether platelet C4d (PC4d) adds additional value to traditional and known lupus-associated risk factors when identifying SLE patients with vascular disease. METHODS This cross-sectional study included 308 well-characterized SLE patients and 308 matched general population controls. PC4d deposition was analysed using flow cytometry. Values >95% of controls were considered as PC4d positive (+). aPL were determined by Luminex, and the LA test was performed by DRVVT. History of vascular disease (composite and as separate outcomes) was defined at inclusion. RESULTS SLE patients had increased PC4d deposition as compared with population controls (50 vs 5%, P < 0.0001). PC4d+ positively associated with any vascular events, and separately with venous and cerebrovascular events, and also with all investigated aPL profiles. The association for any vascular event remained statistically significant after adjustment for traditional and SLE-associated risk factors (odds ratio: 2.3, 95% CI: 1.3, 4.3, P = 0.008). Compared with patients negative for both PC4d and LA, patients with double positivity were more likely to have vascular disease (odds ratio: 12.3, 95% CI: 5.4, 29.3; attributable proportion due to interaction 0.8, 95% CI: 0.4, 1.1). CONCLUSION PC4d+ is associated with vascular events in SLE, independently of traditional and SLE-associated risk factors. Concurrent presence of PC4d and LA seem to interact to further increase the odds for vascular events. Prospective studies should examine whether the aPL/PC4d combination can improve prediction of vascular events in SLE and/or APS.
Collapse
Affiliation(s)
- Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm
| | - Johanna T Gustafsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm
| | - Giorgia Grosso
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm
| | - Marios Rossides
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm
| | | | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Anders A Bengtsson
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University, Lund, Sweden
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| |
Collapse
|
40
|
Leleu D, Levionnois E, Laurent P, Lazaro E, Richez C, Duffau P, Blanco P, Sisirak V, Contin-Bordes C, Truchetet ME. Elevated Circulatory Levels of Microparticles Are Associated to Lung Fibrosis and Vasculopathy During Systemic Sclerosis. Front Immunol 2020; 11:532177. [PMID: 33193304 PMCID: PMC7645042 DOI: 10.3389/fimmu.2020.532177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
Background Microparticles (MPs) are vesicular structures that derive from multiple cellular sources. MPs play important roles in intercellular communication, regulation of cell signaling or initiation of enzymatic processes. While MPs were characterized in Systemic Sclerosis (SSc) patients, their contribution to SSc pathogenesis remains unknown. Our aim was to investigate the potential role of MPs in SSc pathophysiology and their impact on tissue fibrosis. Methods Ninety-six SSc patients and 37 sex-matched healthy donors (HD) were enrolled in this study in order to quantify and phenotype their plasmatic MPs by flow cytometry. The ability of MPs purified from SSc patients and HD controls to modulate fibroblast's extra-cellular matrix genes expression was evaluated in vitro by reverse transcriptase quantitative polymerase chain reaction. Results SSc patients exhibited a higher concentration of circulatory MPs compared to HD. This difference was exacerbated when we only considered patients that were not treated with methotrexate or targeted disease-modifying antirheumatic drugs. Total circulatory MPs were associated to interstitial lung disease, lung fibrosis and diminished lung functional capacity, but also to vascular involvement such as active digital ulcers. Finally, contrary to HD MPs, MPs from SSc patients stimulated the production of extracellular matrix by fibroblast, demonstrating their profibrotic potential. Conclusions In this study, we provide evidence for a direct profibrotic role of MPs from SSc patients, underpinned by strong clinical associations in a large cohort of patients.
Collapse
Affiliation(s)
- Damien Leleu
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | | | - Paoline Laurent
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Estibaliz Lazaro
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- Internal Medicine Department, Bordeaux University Hospital, Bordeaux, France
- Centre national de reference des maladies auto-immunes systémiques rares de l’Est et du Sud-Ouest (RESO), Bordeaux, France
| | - Christophe Richez
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- Centre national de reference des maladies auto-immunes systémiques rares de l’Est et du Sud-Ouest (RESO), Bordeaux, France
- Rheumatology Department, Bordeaux University Hospital, Bordeaux, France
| | - Pierre Duffau
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- Internal Medicine Department, Bordeaux University Hospital, Bordeaux, France
| | - Patrick Blanco
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Vanja Sisirak
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Cecile Contin-Bordes
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Marie-Elise Truchetet
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- Centre national de reference des maladies auto-immunes systémiques rares de l’Est et du Sud-Ouest (RESO), Bordeaux, France
- Rheumatology Department, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
41
|
Monzón Manzano E, Fernández-Bello I, Justo Sanz R, Robles Marhuenda Á, López-Longo FJ, Acuña P, Álvarez Román MT, Jiménez Yuste V, Butta NV. Insights into the Procoagulant Profile of Patients with Systemic Lupus Erythematosus without Antiphospholipid Antibodies. J Clin Med 2020; 9:jcm9103297. [PMID: 33066506 PMCID: PMC7602183 DOI: 10.3390/jcm9103297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
We aimed to identify the key players in the prothrombotic profile of patients with systemic lupus erythematosus (SLE) not mediated by antiphospholipid antibodies, as well as the potential utility of global coagulation tests to characterize hemostasis in these patients. Patients with SLE without antiphospholipid antibodies and without signs of thrombosis were included. The kinetics of clot formation were determined by ROTEM®. Platelet activation markers were determined by flow cytometry. Thrombin generation associated with Neutrophil Extracellular Traps (NETs) and microparticles (MPs) was measured by calibrated automated thrombogram (CAT). The plasma levels of PAI-1 were also determined. ROTEM® showed a procoagulant profile in SLE patients. SLE patients had activated platelets and more leukocyte/platelet aggregates at basal conditions. The plasma PAI-1 and platelet aggregates correlated with several ROTEM® parameters. The thrombin generation associated withthe tissue factor (TF) content of MPs and with NETs was increased. Our results suggest the utility of global tests for studying hemostasis in SLE patients because they detect their procoagulant profile, despite having had neither antiphospholipid antibodies nor any previous thrombotic event. A global appraisal of hemostasis should, if possible, be incorporated into clinical practice to detect the risk of a thrombotic event in patients with SLE and to consequently act to prevent its occurrence.
Collapse
Affiliation(s)
- Elena Monzón Manzano
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
| | - Ihosvany Fernández-Bello
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
| | - Raúl Justo Sanz
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
| | | | | | - Paula Acuña
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
| | - María Teresa Álvarez Román
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
| | - Víctor Jiménez Yuste
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Nora V. Butta
- Hematology Unit, University Hospital La Paz-Idipaz, Paseo de la Castellana 231, 28046 Madrid, Spain; (E.M.M.); (I.F.-B.); (R.J.S.); (P.A.); (M.T.Á.R.); (V.J.Y.)
- Correspondence: ; Tel.: +34-91-727-0000 (ext. 42258)
| |
Collapse
|
42
|
Complement Activation on Endothelial Cell-Derived Microparticles-A Key Determinant for Cardiovascular Risk in Patients with Systemic Lupus Erythematosus? ACTA ACUST UNITED AC 2020; 56:medicina56100533. [PMID: 33065972 PMCID: PMC7601222 DOI: 10.3390/medicina56100533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022]
Abstract
Systemic lupus erythematosus is a classical systemic autoimmune disease that overactivates complement and can affect all organs. Early diagnosis and effective management are important in this immune-complex-mediated chronic inflammatory disease, which has a strong component of vasculitis and carries an increased risk of thrombosis, even in the absence of antiphospholipid antibodies. Development of lupus nephritis can be life limiting but is managed with dialysis and renal transplantation. Therefore, data have become available that cardiovascular risk poses a serious feature of systemic lupus erythematosus that requires monitoring and prospective treatment. Cell-derived microparticles circulate in plasma and thereby intersect the humoral and cellular component of inflammation. They are involved in disease pathophysiology, particularly thrombosis, and represent a known cardiovascular risk. This viewpoint argues that a focus on characteristics of circulating microparticles measured in patients with systemic lupus erythematosus may help to classify certain ethnic groups who are especially at additional risk of experiencing cardiovascular complications.
Collapse
|
43
|
Griffith DM, Jayaram DT, Spencer DM, Pisetsky DS, Payne CK. DNA-nanoparticle interactions: Formation of a DNA corona and its effects on a protein corona. Biointerphases 2020; 15:051006. [PMID: 33003950 PMCID: PMC7863680 DOI: 10.1116/6.0000439] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/29/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
There has been much recent interest in the protein "corona," the nonspecific adsorption of proteins on the surface of nanoparticles used in biological applications. This research investigates an analogous DNA corona. We find that particles (200 nm and 1 μm) incubated with DNA form a DNA corona, with a higher concentration of DNA adsorbed on the surface of cationic nanoparticles. With protein present, a combined DNA and protein corona is formed although DNA in solution displaces protein from the nanoparticle surface. Displacement of protein from the nanoparticle surface is dependent on the concentration of DNA in solution and was also observed for planar surfaces. Overall, we expect this investigation of the DNA corona to be important for nanomedicine applications, as well as disease states, especially systemic lupus erythematosus, in which biological particles with bound DNA are important mediators of inflammation and thrombosis.
Collapse
Affiliation(s)
- Darbi M Griffith
- Department of Mechanical Engineering and Materials Science, Duke University, Hudson Hall, Durham, North Carolina 27708
| | - Dhanya T Jayaram
- Department of Mechanical Engineering and Materials Science, Duke University, Hudson Hall, Durham, North Carolina 27708
| | - Diane M Spencer
- Division of Rheumatology and Immunology, Duke University Medical Center, 508 Fulton St, Durham, North Carolina 27707
| | - David S Pisetsky
- Division of Rheumatology and Immunology, Duke University Medical Center, and Medical Research Service, Durham VA Medical Center, 508 Fulton St, Durham, North Carolina 27707
| | - Christine K Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Hudson Hall, Durham, North Carolina 27708
| |
Collapse
|
44
|
Shao S, Fang H, Li Q, Wang G. Extracellular vesicles in Inflammatory Skin Disorders: from Pathophysiology to Treatment. Am J Cancer Res 2020; 10:9937-9955. [PMID: 32929326 PMCID: PMC7481415 DOI: 10.7150/thno.45488] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs), naturally secreted by almost all known cell types into extracellular space, can transfer their bioactive cargos of nucleic acids and proteins to recipient cells, mediating cell-cell communication. Thus, they participate in many pathogenic processes including immune regulation, cell proliferation and differentiation, cell death, angiogenesis, among others. Cumulative evidence has shown the important regulatory effects of EVs on the initiation and progression of inflammation, autoimmunity, and cancer. In dermatology, recent studies indicate that EVs play key immunomodulatory roles in inflammatory skin disorders, including psoriasis, atopic dermatitis, lichen planus, bullous pemphigoid, systemic lupus erythematosus, and wound healing. Importantly, EVs can be used as biomarkers of pathophysiological states and/or therapeutic agents, both as carriers of drugs or even as a drug by themselves. In this review, we will summarize current research advances of EVs from different cells and their implications in inflammatory skin disorders, and further discuss their future applications, updated techniques, and challenges in clinical translational medicine.
Collapse
|
45
|
Pisetsky DS. Evolving story of autoantibodies in systemic lupus erythematosus. J Autoimmun 2020; 110:102356. [PMID: 31810857 PMCID: PMC8284812 DOI: 10.1016/j.jaut.2019.102356] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by antinuclear antibody (ANA) production. ANAs bind to DNA, RNA and complexes of proteins and nucleic acids and are important markers for diagnosis and activity. According to current models, ANAs originate from antigen-driven processes; nevertheless, antibody responses to both DNA and RNA binding proteins display features unexpected in terms of current paradigms for antigenicity. These differences may reflect disturbances in both B and T cells critical for autoreactivity. Clinically, ANA testing has new uses for determining classification as well as assessing eligibility for clinical trials. Studies of patients with established disease show frequent seronegativity. In this setting, seronegativity may indicate a stage of disease called post-autoimmunity in which the natural history of disease or effects of immunosuppressive therapies modifies responses. The new uses of ANA testing highlight the importance of understanding autoantigenicity and developing sensitive and informative assays for clinical assessments.
Collapse
Affiliation(s)
- David S Pisetsky
- Division of Rheumatology and Immunology, Duke University Medical Center and Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA.
| |
Collapse
|
46
|
Lam KCK, Lam MKN, Chim CS, Chan GCF, Li JCB. The functional role of surface molecules on extracellular vesicles in cancer, autoimmune diseases, and coagulopathy. J Leukoc Biol 2020; 108:1565-1573. [PMID: 32480430 DOI: 10.1002/jlb.3mr0420-067r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles that have emerged as mediators for intercellular communication in physiologic and pathologic conditions. EVs carry signaling information on their bilipid membrane as well as cargo within, allowing them to perform a wide range of biologic processes and contribute to pathophysiologic roles in a wide range of diseases, including cancer, autoimmune diseases and coagulopathy. This review will specifically address the function of surface molecules on EVs under normal and diseased conditions, as well as their potential to emerge as therapeutic targets in clinical settings, and the importance of further research on the surface topography of EVs.
Collapse
Affiliation(s)
- Katy C K Lam
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Moses K N Lam
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C S Chim
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Godfrey C F Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - James C B Li
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
47
|
Čolić J, Matucci Cerinic M, Guiducci S, Damjanov N. Microparticles in systemic sclerosis, targets or tools to control fibrosis: This is the question! JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:6-20. [PMID: 35382401 PMCID: PMC8922594 DOI: 10.1177/2397198319857356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 07/25/2023]
Abstract
Systemic sclerosis is the main systemic fibrotic disease with unknown etiology characterized by peripheral microvascular injury, activation of immune system, and wide-spread progressive fibrosis. Microparticles can be derived from any cell type during normal cellular differentiation, senescence, and apoptosis, and also upon cellular activation. Carrying along a broad range of surface cytoplasmic and nuclear molecules of originating cells, microparticles are closely implicated in inflammation, thrombosis, angiogenesis, and immunopathogenesis. Recently, microparticles have been proposed as biomarkers of endothelial injury, which is the primary event in the genesis of tissue fibrosis. Microparticles may have a role in fostering endothelial to mesenchymal transition, thus giving a significant contribution to the development of myofibroblasts, the most important final effectors responsible for tissue fibrosis and fibroproliferative vasculopathy. Thanks to potent profibrotic mediators, such as transforming growth factor beta, platelet-derived growth factor, high mobility group box 1 protein, nicotinamide adenine dinucleotide phosphate oxidase 4, and antifibrotic agents, such as matrix metalloproteinases, microparticles may play an opposite role in fibrosis.
Collapse
Affiliation(s)
- Jelena Čolić
- Department of Rheumatology, Institute of
Rheumatology, Belgrade, Serbia
| | - Marco Matucci Cerinic
- Division of Rheumatology, Department of
Experimental and Clinical Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC)
and Denothe Centre, University of Florence, Florence, Italy
| | - Serena Guiducci
- Division of Rheumatology, Department of
Experimental and Clinical Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC)
and Denothe Centre, University of Florence, Florence, Italy
| | - Nemanja Damjanov
- Department of Rheumatology, Institute of
Rheumatology, Belgrade, Serbia
- School of Medicine, University of
Belgrade, Belgrade, Serbia
| |
Collapse
|
48
|
Ramirez GA, Manfredi AA, Maugeri N. Misunderstandings Between Platelets and Neutrophils Build in Chronic Inflammation. Front Immunol 2019; 10:2491. [PMID: 31695699 PMCID: PMC6817594 DOI: 10.3389/fimmu.2019.02491] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
Regulated hemostasis, inflammation and innate immunity entail extensive interactions between platelets and neutrophils. Under physiological conditions, vascular inflammation offers a template for the establishment of effective intravascular immunity, with platelets providing neutrophils with an array of signals that increase their activation threshold, thus limiting collateral damage to tissues and promoting termination of the inflammatory response. By contrast, persistent systemic inflammation as observed in immune-mediated diseases, such as systemic vasculitides, systemic sclerosis, systemic lupus erythematosus or rheumatoid arthritis is characterized by platelet and neutrophil reciprocal activation, which ultimately culminates in the generation of thrombo-inflammatory lesions, fostering vascular injury and organ damage. Here, we discuss recent evidence regarding the multifaceted aspects of platelet-neutrophil interactions from bone marrow precursors to shed microparticles. Moreover, we analyse shared and disease-specific events due to an aberrant deployment of these interactions in human diseases. To restore communications between the pillars of the immune-hemostatic continuum constitutes a fascinating challenge for the near future.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angelo A Manfredi
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Norma Maugeri
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
49
|
Burbano C, Villar-Vesga J, Vásquez G, Muñoz-Vahos C, Rojas M, Castaño D. Proinflammatory Differentiation of Macrophages Through Microparticles That Form Immune Complexes Leads to T- and B-Cell Activation in Systemic Autoimmune Diseases. Front Immunol 2019; 10:2058. [PMID: 31555283 PMCID: PMC6724570 DOI: 10.3389/fimmu.2019.02058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) demonstrate increased circulating microparticles (MP). These vesicles, primarily those that form immune complexes (MP-IC), may activate monocytes. We evaluated the effect of MP and MP-IC in the differentiation of monocytes to macrophages (monocyte-derived macrophages; MDM) and for consequences in autologous lymphocyte activation. Monocytes from healthy controls (HC) and patients with RA and SLE that differentiated into MDM in the presence of MP-IC showed a proinflammatory (M1-like) profile, which was more evident using MP-IC from patients with RA than those from patients with SLE. Notably, MDM from HC and patients with RA that differentiated with MP-IC were more prone to M1-like profile than those from patients with SLE. In HC and patients with RA, monocyte differentiation using MP-IC decreased the frequency of MDM that bound/internalized latex beads. The M1-like profile did not completely revert following IL-4 treatment. The effect of M1-like MDM on T lymphocytes stimulated with phytohemagglutinin was further evaluated. MDM differentiated with MP enhanced the proliferation of T cells obtained from patients with RA compared with those differentiated with MP-IC or without vesicles. Neither MP nor MP-IC induced interferon (IFN)-γ+ and tumor necrosis factor (TNF)-α+ T cells in patients with RA. Conversely, unlike MDM differentiated with or without MP, MP-IC enhanced the proliferation and increased the frequencies of IFN-γ+CD4+ T, TNF-α+CD4+ T, and IFN-γ+CD8+ T cells in patients with SLE. The co-culture of B cells with MDM obtained from patients with RA and SLE and differentiated with MP-IC increased the expression of B-cell activation markers and prevented B lymphocyte death. Strikingly, only for patients with SLE, these responses seemed to be associated with a significant increase in B-cell activating factor levels, high plasmablast frequency and immunoglobulin production. These results showed that MP-IC from patients with systemic autoimmune diseases favored the polarization of MDM into a proinflammatory profile that promotes T-cell activation, and additionally induced B-cell activation and survival. Therefore, the effect of MP-IC in mononuclear phagocytes may be an important factor for modulating adaptive responses in systemic autoimmune diseases.
Collapse
Affiliation(s)
- Catalina Burbano
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellin, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Juan Villar-Vesga
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Carlos Muñoz-Vahos
- Sección de Reumatología, Hospital Universitario San Vicente Fundación, Medellin, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellin, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellin, Colombia
| |
Collapse
|
50
|
Antovic A, Mobarrez F, Manojlovic M, Soutari N, De Porta Baggemar V, Nordin A, Bruchfeld A, Vojinovic J, Gunnarsson I. Microparticles Expressing Myeloperoxidase and Complement C3a and C5a as Markers of Renal Involvement in Antineutrophil Cytoplasmic Antibody-associated Vasculitis. J Rheumatol 2019; 47:714-721. [PMID: 31371653 DOI: 10.3899/jrheum.181347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate expression of terminal complement components C3a and C5a on circulating myeloperoxidase (MPO)-positive microparticles (MPO+MP) in relation to disease activity and renal involvement in patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). METHODS Forty-six clinically well-characterized patients with AAV and 23 age- and sex-matched healthy controls were included. The concentration of MPO+MP expressing C3a and C5a was analyzed from citrate plasma by flow cytometry. Serum levels of C3a and C5a were determined using commercial ELISA. The assessment of vasculitis disease activity was performed using the Birmingham Vasculitis Activity Score (BVAS). Among patients, 23 had active disease with BVAS ≥ 2 and 14 patients had active renal flares. RESULTS AAV patients had significantly increased expression of C3a and C5a on MPO+MP compared to controls (both p < 0.0001). When the group of patients with active AAV was divided according to the presence of renal activity, the concentration of MPO+MP expressing C3a and C5a was significantly higher in patients with renal involvement compared to patients with nonrenal disease and controls (p < 0.05 and p < 0.01, respectively). The serum levels of C3a were significantly decreased (p < 0.01) in the renal subgroup, while there were no changes in serum levels of C5a comparing the renal and nonrenal groups. There was significant correlation between the disease activity measured by BVAS and the levels of C3a and C5a expressed on MPO+MP. CONCLUSION Determination of C3a and C5a on MPO+MP might be considered as a novel biomarker of renal involvement in patients with AAV and may be of importance in the pathogenetic process.
Collapse
Affiliation(s)
- Aleksandra Antovic
- From the Division of Rheumatology, Department of Medicine, Department of Molecular Medicine and Surgery, Clinical Chemistry, and Renal Medicine, Karolinska Institutet; Rheumatology, Karolinska University Hospital; CLINTEC Karolinska University Hospital, Renal Medicine, Karolinska Institutet, Stockholm; Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Department of Pediatrics, Medical Faculty, University of Niš, Niš, Serbia. .,A. Antovic, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; F. Mobarrez, PhD, Department of Medical Sciences, Uppsala University; M. Manojlovic, MD, Department of Pediatrics, Medical Faculty, University of Niš; N. Soutari, BMS, MS, Department of Molecular Medicine and Surgery, Clinical Chemistry, Karolinska Institutet; V. De Porta Baggemar, MD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Nordin, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Bruchfeld, MD, PhD, Renal Medicine, CLINTEC Karolinska University Hospital and Karolinska Institutet; J. Vojinovic, MD, PhD, Department of Pediatrics, Medical Faculty, University of Niš; I. Gunnarsson, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital.
| | - Fariborz Mobarrez
- From the Division of Rheumatology, Department of Medicine, Department of Molecular Medicine and Surgery, Clinical Chemistry, and Renal Medicine, Karolinska Institutet; Rheumatology, Karolinska University Hospital; CLINTEC Karolinska University Hospital, Renal Medicine, Karolinska Institutet, Stockholm; Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Department of Pediatrics, Medical Faculty, University of Niš, Niš, Serbia.,A. Antovic, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; F. Mobarrez, PhD, Department of Medical Sciences, Uppsala University; M. Manojlovic, MD, Department of Pediatrics, Medical Faculty, University of Niš; N. Soutari, BMS, MS, Department of Molecular Medicine and Surgery, Clinical Chemistry, Karolinska Institutet; V. De Porta Baggemar, MD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Nordin, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Bruchfeld, MD, PhD, Renal Medicine, CLINTEC Karolinska University Hospital and Karolinska Institutet; J. Vojinovic, MD, PhD, Department of Pediatrics, Medical Faculty, University of Niš; I. Gunnarsson, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital
| | - Milena Manojlovic
- From the Division of Rheumatology, Department of Medicine, Department of Molecular Medicine and Surgery, Clinical Chemistry, and Renal Medicine, Karolinska Institutet; Rheumatology, Karolinska University Hospital; CLINTEC Karolinska University Hospital, Renal Medicine, Karolinska Institutet, Stockholm; Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Department of Pediatrics, Medical Faculty, University of Niš, Niš, Serbia.,A. Antovic, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; F. Mobarrez, PhD, Department of Medical Sciences, Uppsala University; M. Manojlovic, MD, Department of Pediatrics, Medical Faculty, University of Niš; N. Soutari, BMS, MS, Department of Molecular Medicine and Surgery, Clinical Chemistry, Karolinska Institutet; V. De Porta Baggemar, MD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Nordin, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Bruchfeld, MD, PhD, Renal Medicine, CLINTEC Karolinska University Hospital and Karolinska Institutet; J. Vojinovic, MD, PhD, Department of Pediatrics, Medical Faculty, University of Niš; I. Gunnarsson, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital
| | - Nida Soutari
- From the Division of Rheumatology, Department of Medicine, Department of Molecular Medicine and Surgery, Clinical Chemistry, and Renal Medicine, Karolinska Institutet; Rheumatology, Karolinska University Hospital; CLINTEC Karolinska University Hospital, Renal Medicine, Karolinska Institutet, Stockholm; Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Department of Pediatrics, Medical Faculty, University of Niš, Niš, Serbia.,A. Antovic, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; F. Mobarrez, PhD, Department of Medical Sciences, Uppsala University; M. Manojlovic, MD, Department of Pediatrics, Medical Faculty, University of Niš; N. Soutari, BMS, MS, Department of Molecular Medicine and Surgery, Clinical Chemistry, Karolinska Institutet; V. De Porta Baggemar, MD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Nordin, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Bruchfeld, MD, PhD, Renal Medicine, CLINTEC Karolinska University Hospital and Karolinska Institutet; J. Vojinovic, MD, PhD, Department of Pediatrics, Medical Faculty, University of Niš; I. Gunnarsson, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital
| | - Victoria De Porta Baggemar
- From the Division of Rheumatology, Department of Medicine, Department of Molecular Medicine and Surgery, Clinical Chemistry, and Renal Medicine, Karolinska Institutet; Rheumatology, Karolinska University Hospital; CLINTEC Karolinska University Hospital, Renal Medicine, Karolinska Institutet, Stockholm; Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Department of Pediatrics, Medical Faculty, University of Niš, Niš, Serbia.,A. Antovic, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; F. Mobarrez, PhD, Department of Medical Sciences, Uppsala University; M. Manojlovic, MD, Department of Pediatrics, Medical Faculty, University of Niš; N. Soutari, BMS, MS, Department of Molecular Medicine and Surgery, Clinical Chemistry, Karolinska Institutet; V. De Porta Baggemar, MD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Nordin, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Bruchfeld, MD, PhD, Renal Medicine, CLINTEC Karolinska University Hospital and Karolinska Institutet; J. Vojinovic, MD, PhD, Department of Pediatrics, Medical Faculty, University of Niš; I. Gunnarsson, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital
| | - Annica Nordin
- From the Division of Rheumatology, Department of Medicine, Department of Molecular Medicine and Surgery, Clinical Chemistry, and Renal Medicine, Karolinska Institutet; Rheumatology, Karolinska University Hospital; CLINTEC Karolinska University Hospital, Renal Medicine, Karolinska Institutet, Stockholm; Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Department of Pediatrics, Medical Faculty, University of Niš, Niš, Serbia.,A. Antovic, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; F. Mobarrez, PhD, Department of Medical Sciences, Uppsala University; M. Manojlovic, MD, Department of Pediatrics, Medical Faculty, University of Niš; N. Soutari, BMS, MS, Department of Molecular Medicine and Surgery, Clinical Chemistry, Karolinska Institutet; V. De Porta Baggemar, MD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Nordin, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Bruchfeld, MD, PhD, Renal Medicine, CLINTEC Karolinska University Hospital and Karolinska Institutet; J. Vojinovic, MD, PhD, Department of Pediatrics, Medical Faculty, University of Niš; I. Gunnarsson, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital
| | - Annette Bruchfeld
- From the Division of Rheumatology, Department of Medicine, Department of Molecular Medicine and Surgery, Clinical Chemistry, and Renal Medicine, Karolinska Institutet; Rheumatology, Karolinska University Hospital; CLINTEC Karolinska University Hospital, Renal Medicine, Karolinska Institutet, Stockholm; Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Department of Pediatrics, Medical Faculty, University of Niš, Niš, Serbia.,A. Antovic, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; F. Mobarrez, PhD, Department of Medical Sciences, Uppsala University; M. Manojlovic, MD, Department of Pediatrics, Medical Faculty, University of Niš; N. Soutari, BMS, MS, Department of Molecular Medicine and Surgery, Clinical Chemistry, Karolinska Institutet; V. De Porta Baggemar, MD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Nordin, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Bruchfeld, MD, PhD, Renal Medicine, CLINTEC Karolinska University Hospital and Karolinska Institutet; J. Vojinovic, MD, PhD, Department of Pediatrics, Medical Faculty, University of Niš; I. Gunnarsson, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital
| | - Jelena Vojinovic
- From the Division of Rheumatology, Department of Medicine, Department of Molecular Medicine and Surgery, Clinical Chemistry, and Renal Medicine, Karolinska Institutet; Rheumatology, Karolinska University Hospital; CLINTEC Karolinska University Hospital, Renal Medicine, Karolinska Institutet, Stockholm; Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Department of Pediatrics, Medical Faculty, University of Niš, Niš, Serbia.,A. Antovic, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; F. Mobarrez, PhD, Department of Medical Sciences, Uppsala University; M. Manojlovic, MD, Department of Pediatrics, Medical Faculty, University of Niš; N. Soutari, BMS, MS, Department of Molecular Medicine and Surgery, Clinical Chemistry, Karolinska Institutet; V. De Porta Baggemar, MD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Nordin, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Bruchfeld, MD, PhD, Renal Medicine, CLINTEC Karolinska University Hospital and Karolinska Institutet; J. Vojinovic, MD, PhD, Department of Pediatrics, Medical Faculty, University of Niš; I. Gunnarsson, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital
| | - Iva Gunnarsson
- From the Division of Rheumatology, Department of Medicine, Department of Molecular Medicine and Surgery, Clinical Chemistry, and Renal Medicine, Karolinska Institutet; Rheumatology, Karolinska University Hospital; CLINTEC Karolinska University Hospital, Renal Medicine, Karolinska Institutet, Stockholm; Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Department of Pediatrics, Medical Faculty, University of Niš, Niš, Serbia.,A. Antovic, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; F. Mobarrez, PhD, Department of Medical Sciences, Uppsala University; M. Manojlovic, MD, Department of Pediatrics, Medical Faculty, University of Niš; N. Soutari, BMS, MS, Department of Molecular Medicine and Surgery, Clinical Chemistry, Karolinska Institutet; V. De Porta Baggemar, MD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Nordin, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital; A. Bruchfeld, MD, PhD, Renal Medicine, CLINTEC Karolinska University Hospital and Karolinska Institutet; J. Vojinovic, MD, PhD, Department of Pediatrics, Medical Faculty, University of Niš; I. Gunnarsson, MD, PhD, Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Rheumatology, Karolinska University Hospital
| |
Collapse
|