1
|
Fixman B, Díaz-Gay M, Qiu C, Margaryan T, Lee B, Chen XS. Validation of the APOBEC3A-mediated RNA Single Base Substitution Signature and Proposal of Novel APOBEC1, APOBEC3B, and APOBEC3G RNA Signatures. J Mol Biol 2024:168854. [PMID: 39510348 DOI: 10.1016/j.jmb.2024.168854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Mutational signature analysis gained significant attention for providing critical insights into the underlying mutational processes for various DNA single base substitution (SBS) signatures and their associations with different cancer types. Recently, RNA single base substitution (RNA-SBS) signatures were defined and described by decomposing RNA variants found in non-small cell lung cancer. Through statistical association, they attributed Apolipoprotein B mRNA Editing Enzyme, Catalytic Polypeptide 3A (APOBEC3A) mutagenesis to the RNA-SBS2 signature. Here, we provide the first validation of an RNA-SBS mutational signature by decomposing novel exogenous and endogenous APOBEC3A RNA editing signatures into COSMICv3.4 RNA-SBS reference signatures. Additionally, we have identified novel RNA-SBS signatures for APOBEC1, APOBEC3B, and APOBEC3G.
Collapse
Affiliation(s)
- Benjamin Fixman
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Connor Qiu
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tamara Margaryan
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Brian Lee
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine; Norris Comprehensive Cancer Center; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
2
|
Yang H, Pacheco J, Kim K, Bokani A, Ito F, Ebrahimi D, Chen XS. Molecular mechanism for regulating APOBEC3G DNA editing function by the non-catalytic domain. Nat Commun 2024; 15:8773. [PMID: 39389938 PMCID: PMC11467180 DOI: 10.1038/s41467-024-52671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
APOBEC3G, part of the AID/APOBEC cytidine deaminase family, is crucial for antiviral immunity. It has two zinc-coordinated cytidine-deaminase domains. The non-catalytic N-terminal domain strongly binds to nucleic acids, whereas the C-terminal domain catalyzes C-to-U editing in single-stranded DNA. The interplay between the two domains is not fully understood. Here, we show that DNA editing function of rhesus macaque APOBEC3G on linear and hairpin loop DNA is enhanced by AA or GA dinucleotide motifs present downstream in the 3'-direction of the target-C editing sites. The effective distance between AA/GA and the target-C sites is contingent on the local DNA secondary structure. We present two co-crystal structures of rhesus macaque APOBEC3G bound to ssDNA containing AA and GA, revealing the contribution of the non-catalytic domain in capturing AA/GA DNA. Our findings elucidate the molecular mechanism of APOBEC3G's cooperative function, which is critical for its antiviral role and its contribution to mutations in cancer genomes.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ayub Bokani
- School of Engineering and Technology, CQUniversity, Sydney, NSW, 2000, Australia
| | - Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
3
|
Begum MSTM, Bokani A, Rajib SA, Soleimanpour M, Maeda Y, Yoshimura K, Satou Y, Ebrahimi D, Ikeda T. Potential Role of APOBEC3 Family Proteins in SARS-CoV-2 Replication. Viruses 2024; 16:1141. [PMID: 39066304 PMCID: PMC11281575 DOI: 10.3390/v16071141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired multiple mutations since its emergence. Analyses of the SARS-CoV-2 genomes from infected patients exhibit a bias toward C-to-U mutations, which are suggested to be caused by the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) cytosine deaminase proteins. However, the role of A3 enzymes in SARS-CoV-2 replication remains unclear. To address this question, we investigated the effect of A3 family proteins on SARS-CoV-2 replication in the myeloid leukemia cell line THP-1 lacking A3A to A3G genes. The Wuhan, BA.1, and BA.5 variants had comparable viral replication in parent and A3A-to-A3G-null THP-1 cells stably expressing angiotensin-converting enzyme 2 (ACE2) protein. On the other hand, the replication and infectivity of these variants were abolished in A3A-to-A3G-null THP-1-ACE2 cells in a series of passage experiments over 20 days. In contrast to previous reports, we observed no evidence of A3-induced SARS-CoV-2 mutagenesis in the passage experiments. Furthermore, our analysis of a large number of publicly available SARS-CoV-2 genomes did not reveal conclusive evidence for A3-induced mutagenesis. Our studies suggest that A3 family proteins can positively contribute to SARS-CoV-2 replication; however, this effect is deaminase-independent.
Collapse
Affiliation(s)
- MST Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ayub Bokani
- School of Engineering and Technology, CQ University, Sydney, NSW 2000, Australia
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | | | - Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nursing, Kibi International University, Takahashi 716-8508, Japan
| | | | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
4
|
McCool MA, Bryant CJ, Abriola L, Surovtseva YV, Baserga SJ. The cytidine deaminase APOBEC3A regulates nucleolar function to promote cell growth and ribosome biogenesis. PLoS Biol 2024; 22:e3002718. [PMID: 38976757 PMCID: PMC11257408 DOI: 10.1371/journal.pbio.3002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer initiates as a consequence of genomic mutations and its subsequent progression relies in part on increased production of ribosomes to maintain high levels of protein synthesis for unchecked cell growth. Recently, cytidine deaminases have been uncovered as sources of mutagenesis in cancer. In an attempt to form a connection between these 2 cancer driving processes, we interrogated the cytidine deaminase family of proteins for potential roles in human ribosome biogenesis. We identified and validated APOBEC3A and APOBEC4 as novel ribosome biogenesis factors through our laboratory's established screening platform for the discovery of regulators of nucleolar function in MCF10A cells. Through siRNA depletion experiments, we highlight APOBEC3A's requirement in making ribosomes and specific role within the processing and maturation steps that form the large subunit 5.8S and 28S ribosomal (r)RNAs. We demonstrate that a subset of APOBEC3A resides within the nucleolus and associates with critical ribosome biogenesis factors. Mechanistic insight was revealed by transient overexpression of both wild-type and a catalytically dead mutated APOBEC3A, which both increase cell growth and protein synthesis. Through an innovative nuclear RNA sequencing methodology, we identify only modest predicted APOBEC3A C-to-U target sites on the pre-rRNA and pre-mRNAs. Our work reveals a potential direct role for APOBEC3A in ribosome biogenesis likely independent of its editing function. More broadly, we found an additional function of APOBEC3A in cancer pathology through its function in ribosome biogenesis, expanding its relevance as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Mason A. McCool
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Carson J. Bryant
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Yulia V. Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
5
|
Huang E, Frydman C, Xiao X. Navigating the landscape of epitranscriptomics and host immunity. Genome Res 2024; 34:515-529. [PMID: 38702197 PMCID: PMC11146601 DOI: 10.1101/gr.278412.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
RNA modifications, also termed epitranscriptomic marks, encompass chemical alterations to individual nucleotides, including processes such as methylation and editing. These marks contribute to a wide range of biological processes, many of which are related to host immune system defense. The functions of immune-related RNA modifications can be categorized into three main groups: regulation of immunogenic RNAs, control of genes involved in innate immune response, and facilitation of adaptive immunity. Here, we provide an overview of recent research findings that elucidate the contributions of RNA modifications to each of these processes. We also discuss relevant methods for genome-wide identification of RNA modifications and their immunogenic substrates. Finally, we highlight recent advances in cancer immunotherapies that aim to reduce cancer cell viability by targeting the enzymes responsible for RNA modifications. Our presentation of these dynamic research avenues sets the stage for future investigations in this field.
Collapse
Affiliation(s)
- Elaine Huang
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA
| | - Clara Frydman
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA;
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Kvach MV, Harjes S, Kurup HM, Jameson GB, Harjes E, Filichev VV. Synthesis of 1,4-azaphosphinine nucleosides and evaluation as inhibitors of human cytidine deaminase and APOBEC3A. Beilstein J Org Chem 2024; 20:1088-1098. [PMID: 38774272 PMCID: PMC11106675 DOI: 10.3762/bjoc.20.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024] Open
Abstract
Nucleoside and polynucleotide cytidine deaminases (CDAs), such as CDA and APOBEC3, share a similar mechanism of cytosine to uracil conversion. In 1984, phosphapyrimidine riboside was characterised as the most potent inhibitor of human CDA, but the quick degradation in water limited the applicability as a potential therapeutic. To improve stability in water, we synthesised derivatives of phosphapyrimidine nucleoside having a CH2 group instead of the N3 atom in the nucleobase. A charge-neutral phosphinamide and a negatively charged phosphinic acid derivative had excellent stability in water at pH 7.4, but only the charge-neutral compound inhibited human CDA, similar to previously described 2'-deoxyzebularine (Ki = 8.0 ± 1.9 and 10.7 ± 0.5 µM, respectively). However, under basic conditions, the charge-neutral phosphinamide was unstable, which prevented the incorporation into DNA using conventional DNA chemistry. In contrast, the negatively charged phosphinic acid derivative was incorporated into DNA instead of the target 2'-deoxycytidine using an automated DNA synthesiser, but no inhibition of APOBEC3A was observed for modified DNAs. Although this shows that the negative charge is poorly accommodated in the active site of CDA and APOBEC3, the synthetic route reported here provides opportunities for the synthesis of other derivatives of phosphapyrimidine riboside for potential development of more potent CDA and APOBEC3 inhibitors.
Collapse
Affiliation(s)
- Maksim V Kvach
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Stefan Harjes
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Harikrishnan M Kurup
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Geoffrey B Jameson
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Vyacheslav V Filichev
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Yang H, Pacheco J, Kim K, Ebrahimi D, Ito F, Chen XS. Molecular mechanism for regulating APOBEC3G DNA editing function by the non-catalytic domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584510. [PMID: 38559028 PMCID: PMC10980023 DOI: 10.1101/2024.03.11.584510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
APOBEC3G (A3G) belongs to the AID/APOBEC cytidine deaminase family and is essential for antiviral immunity. It contains two zinc-coordinated cytidine-deaminase (CD) domains. The N-terminal CD1 domain is non-catalytic but has a strong affinity for nucleic acids, whereas the C-terminal CD2 domain catalyzes C-to-U editing in single-stranded DNA. The interplay between the two domains in DNA binding and editing is not fully understood. Here, our studies on rhesus macaque A3G (rA3G) show that the DNA editing function in linear and hairpin loop DNA is greatly enhanced by AA or GA dinucleotide motifs present downstream (in the 3'-direction) but not upstream (in the 5'-direction) of the target-C editing sites. The effective distance between AA/GA and the target-C sites depends on the local DNA secondary structure. We present two co-crystal structures of rA3G bound to ssDNA containing AA and GA, revealing the contribution of the non-catalytic CD1 domain in capturing AA/GA DNA and explaining our biochemical observations. Our structural and biochemical findings elucidate the molecular mechanism underlying the cooperative function between the non-catalytic and the catalytic domains of A3G, which is critical for its antiviral role and its contribution to genome mutations in cancer.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Li J, Fan G, Sakari M, Tsukahara T. Improvement of C-to-U RNA editing using an artificial MS2-APOBEC system. Biotechnol J 2024; 19:e2300321. [PMID: 38010373 DOI: 10.1002/biot.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
RNA cytidine deamination (C-to-U editing) has been achieved using the MS2-apolipoprotein B-editing catalytic polypeptide-like (APOBEC)1 editing system. Here, we fused the cytidine deaminase (CDA) enzymes APOBEC3A and APOBEC3G with the MS2 system and examined their RNA editing efficiencies in transfected HEK 293T cells. Given the single-stranded RNA preferences of APOBEC3A and APOBEC3G, we designed unconventional guide RNAs that induced a loop at the target sequence, allowing the target to form a single-stranded structure. Because APOBEC3A and APOBEC3G have different base preferences (5'-TC and 5'-CC, respectively), we introduced the D317W mutation into APOBEC3G to convert its base preference to that of APOBEC3A. Upon co-transfection with a guide RNA that induced the formation of a 14 nt loop on the target sequence, MS2-fused APOBEC3A and APOBEC3G showed high editing efficiency. While the D317W mutation of APOBEC3G led to a slight improvement in editing efficiency, the difference was not statistically significant. These findings indicate that APOBEC3A and APOBEC3G can induce C-to-U RNA editing when transfected with a loop guide RNA. Moreover, the editing efficiency of APOBEC3G can be enhanced by site-specific mutation to alter the base preference. Overall, our results demonstrate that the MS2 system can fuse and catalyze reactions with different enzymes, suggesting that it holds an even greater potential for RNA editing than is utilized currently.
Collapse
Affiliation(s)
- Jiarui Li
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Guangyao Fan
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Matomo Sakari
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Toshifumi Tsukahara
- Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
- GeCoRT Co. Ltd., Nishi-ku, Yokohama, Japan
| |
Collapse
|
9
|
Kim K, Shi AB, Kelley K, Chen XS. Unraveling the Enzyme-Substrate Properties for APOBEC3A-Mediated RNA Editing. J Mol Biol 2023; 435:168198. [PMID: 37442413 PMCID: PMC10528890 DOI: 10.1016/j.jmb.2023.168198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
The APOBEC3 family of human cytidine deaminases is involved in various cellular processes, including the innate and acquired immune system, mostly through inducing C-to-U in single-stranded DNA and/or RNA mutations. Although recent studies have examined RNA editing by APOBEC3A (A3A), its intracellular target specificity are not fully characterized. To address this gap, we performed in-depth analysis of cellular RNA editing using our recently developed sensitive cell-based fluorescence assay. Our findings demonstrate that A3A and an A3A-loop1-containing APOBEC3B (A3B) chimera are capable of RNA editing. We observed that A3A prefers to edit specific RNA substrates which are not efficiently deaminated by other APOBEC members. The editing efficiency of A3A is influenced by the RNA sequence contexts and distinct stem-loop secondary structures. Based on the identified RNA specificity features, we predicted potential A3A-editing targets in the encoding region of cellular mRNAs and discovered novel RNA transcripts that are extensively edited by A3A. Furthermore, we found a trend of increased synonymous mutations at the sites for more efficient A3A-editing, indicating evolutionary adaptation to the higher editing rate by A3A. Our results shed light on the intracellular RNA editing properties of A3A and provide insights into new RNA targets and potential impact of A3A-mediated RNA editing.
Collapse
Affiliation(s)
- Kyumin Kim
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA. https://twitter.com/KYUMINK1324
| | - Alan B Shi
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kori Kelley
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Piazzi M, Bavelloni A, Salucci S, Faenza I, Blalock WL. Alternative Splicing, RNA Editing, and the Current Limits of Next Generation Sequencing. Genes (Basel) 2023; 14:1386. [PMID: 37510291 PMCID: PMC10379330 DOI: 10.3390/genes14071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The advent of next generation sequencing (NGS) has fostered a shift in basic analytic strategies of a gene expression analysis in diverse pathologies for the purposes of research, pharmacology, and personalized medicine. What was once highly focused research on individual signaling pathways or pathway members has, from the time of gene expression arrays, become a global analysis of gene expression that has aided in identifying novel pathway interactions, the discovery of new therapeutic targets, and the establishment of disease-associated profiles for assessing progression, stratification, or a therapeutic response. But there are significant caveats to this analysis that do not allow for the construction of the full picture. The lack of timely updates to publicly available databases and the "hit and miss" deposition of scientific data to these databases relegate a large amount of potentially important data to "garbage", begging the question, "how much are we really missing?" This brief perspective aims to highlight some of the limitations that RNA binding/modifying proteins and RNA processing impose on our current usage of NGS technologies as relating to cancer and how not fully appreciating the limitations of current NGS technology may negatively affect therapeutic strategies in the long run.
Collapse
Affiliation(s)
- Manuela Piazzi
- "Luigi Luca Cavalli-Sforza" Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - William L Blalock
- "Luigi Luca Cavalli-Sforza" Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
11
|
Martínez-Ruiz C, Black JRM, Puttick C, Hill MS, Demeulemeester J, Larose Cadieux E, Thol K, Jones TP, Veeriah S, Naceur-Lombardelli C, Toncheva A, Prymas P, Rowan A, Ward S, Cubitt L, Athanasopoulou F, Pich O, Karasaki T, Moore DA, Salgado R, Colliver E, Castignani C, Dietzen M, Huebner A, Al Bakir M, Tanić M, Watkins TBK, Lim EL, Al-Rashed AM, Lang D, Clements J, Cook DE, Rosenthal R, Wilson GA, Frankell AM, de Carné Trécesson S, East P, Kanu N, Litchfield K, Birkbak NJ, Hackshaw A, Beck S, Van Loo P, Jamal-Hanjani M, Swanton C, McGranahan N. Genomic-transcriptomic evolution in lung cancer and metastasis. Nature 2023; 616:543-552. [PMID: 37046093 PMCID: PMC10115639 DOI: 10.1038/s41586-023-05706-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/04/2023] [Indexed: 04/14/2023]
Abstract
Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic-transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary-metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis.
Collapse
Affiliation(s)
- Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Clare Puttick
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Jonas Demeulemeester
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Integrative Cancer Genomics Laboratory, Department of Oncology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Elizabeth Larose Cadieux
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Medical Genomics, University College London Cancer Institute, London, UK
| | - Kerstin Thol
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Thomas P Jones
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Antonia Toncheva
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Paulina Prymas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Laura Cubitt
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Foteini Athanasopoulou
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Takahiro Karasaki
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Emma Colliver
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Carla Castignani
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Medical Genomics, University College London Cancer Institute, London, UK
| | - Michelle Dietzen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Ariana Huebner
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Maise Al Bakir
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Miljana Tanić
- Medical Genomics, University College London Cancer Institute, London, UK
- Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Emilia L Lim
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Ali M Al-Rashed
- Centre for Nephrology, Division of Medicine, University College London, London, UK
| | - Danny Lang
- Scientific Computing STP, Francis Crick Institute, London, UK
| | - James Clements
- Scientific Computing STP, Francis Crick Institute, London, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Gareth A Wilson
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Alexander M Frankell
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | | | - Philip East
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Nicolai J Birkbak
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Allan Hackshaw
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | - Stephan Beck
- Medical Genomics, University College London Cancer Institute, London, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK.
- Department of Medical Oncology, University College London Hospitals, London, UK.
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
12
|
Lactobacillus for ribosome peptide editing cancer. Clin Transl Oncol 2023; 25:1522-1544. [PMID: 36694080 PMCID: PMC9873400 DOI: 10.1007/s12094-022-03066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/24/2022] [Indexed: 01/25/2023]
Abstract
This study reviews newly discovered insect peptide point mutations as new possible cancer research targets. To interpret newly discovered peptide point mutations in insects as new possible cancer research targets, we focused on the numerous peptide changes found in the 'CSP' family on the sex pheromone gland of the female silkworm moth Bombyx mori. We predict that the Bombyx peptide modifications will have a significant effect on cancer CUP (cancers of unknown primary) therapy and that bacterial peptide editing techniques, specifically Lactobacillus combined to CRISPR, will be used to regulate ribosomes and treat cancer in humans.
Collapse
|
13
|
Nakata Y, Ode H, Kubota M, Kasahara T, Matsuoka K, Sugimoto A, Imahashi M, Yokomaku Y, Iwatani Y. Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome. Nucleic Acids Res 2023; 51:783-795. [PMID: 36610792 PMCID: PMC9881129 DOI: 10.1093/nar/gkac1238] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The number of genetic variations in the SARS-CoV-2 genome has been increasing primarily due to continuous viral mutations. Here, we report that the human APOBEC3A (A3A) cytidine deaminase plays a critical role in the induction of C-to-U substitutions in the SARS-CoV-2 genome. Bioinformatic analysis of the chronological genetic changes in a sequence database indicated that the largest UC-to-UU mutation signature, consistent with APOBEC-recognized nucleotide motifs, was predominant in single-stranded RNA regions of the viral genome. In SARS-CoV-2-infected cells, exogenous expression of A3A but not expression of other APOBEC proteins induced UC-to-UU mutations in viral RNA (vRNA). Additionally, the mutated C bases were often located at the tips in bulge or loop regions in the vRNA secondary structure. Interestingly, A3A mRNA expression was drastically increased by interferons (IFNs) and tumour necrosis factor-α (TNF-α) in epithelial cells derived from the respiratory system, a site of efficient SARS-CoV-2 replication. Moreover, the UC-to-UU mutation rate was increased in SARS-CoV-2 produced from lung epithelial cells treated with IFN-ß and TNF-α, but not from CRISPR/Cas9-based A3A knockout cells. Collectively, these findings demonstrate that A3A is a primary host factor that drives mutations in the SARS-CoV-2 RNA genome via RNA editing.
Collapse
Affiliation(s)
- Yoshihiro Nakata
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan,Department of AIDS Research, Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Mai Kubota
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Takaaki Kasahara
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan,Department of Respiratory Medicine, Division of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kazuhiro Matsuoka
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Atsuko Sugimoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Mayumi Imahashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yasumasa Iwatani
- To whom correspondence should be addressed. Tel: +81 52 951 1111; Fax: +81 52 963 3970;
| |
Collapse
|
14
|
Sianga-Mete R, Hartnady P, Mandikumba WC, Rutherford K, Currin CB, Phelanyane F, Stefan S, Kosakovsky Pond SL, Martin DP. Viral genome sequence datasets display pervasive evidence of strand-specific substitution biases that are best described using non-reversible nucleotide substitution models. RESEARCH SQUARE 2022:rs.3.rs-2407778. [PMID: 36597548 PMCID: PMC9810213 DOI: 10.21203/rs.3.rs-2407778/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background The vast majority of phylogenetic trees are inferred from molecular sequence data (nucleotides or amino acids) using time-reversible evolutionary models which assume that, for any pair of nucleotide or amino acid characters, the relative rate of X to Y substitution is the same as the relative rate of Y to X substitution. However, this reversibility assumption is unlikely to accurately reflect the actual underlying biochemical and/or evolutionary processes that lead to the fixation of substitutions. Here, we use empirical viral genome sequence data to reveal that evolutionary non-reversibility is pervasive among most groups of viruses. Specifically, we consider two non-reversible nucleotide substitution models: (1) a 6-rate non-reversible model (NREV6) in which Watson-Crick complementary substitutions occur at identical relative rates and which might therefor be most applicable to analyzing the evolution of genomes where both complementary strands are subject to the same mutational processes (such as might be expected for double-stranded (ds) RNA or dsDNA genomes); and (2) a 12-rate non-reversible model (NREV12) in which all relative substitution types are free to occur at different rates and which might therefore be applicable to analyzing the evolution of genomes where the complementary genome strands are subject to different mutational processes (such as might be expected for viruses with single-stranded (ss) RNA or ssDNA genomes). Results Using likelihood ratio and Akaike Information Criterion-based model tests, we show that, surprisingly, NREV12 provided a significantly better fit to 21/31 dsRNA and 20/30 dsDNA datasets than did the general time reversible (GTR) and NREV6 models with NREV6 providing a better fit than NREV12 and GTR in only 5/30 dsDNA and 2/31 dsRNA datasets. As expected, NREV12 provided a significantly better fit to 24/33 ssDNA and 40/47 ssRNA datasets. Next, we used simulations to show that increasing degrees of strand-specific substitution bias decrease the accuracy of phylogenetic inference irrespective of whether GTR or NREV12 is used to describe mutational processes. However, in cases where strand-specific substitution biases are extreme (such as in SARS-CoV-2 and Torque teno sus virus datasets) NREV12 tends to yield more accurate phylogenetic trees than those obtained using GTR. Conclusion We show that NREV12 should, be seriously considered during the model selection phase of phylogenetic analyses involving viral genomic sequences.
Collapse
|
15
|
Yang H, Kim K, Li S, Pacheco J, Chen XS. Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G. Nat Commun 2022; 13:7498. [PMID: 36470880 PMCID: PMC9722718 DOI: 10.1038/s41467-022-35201-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
An essential step in restricting HIV infectivity by the antiviral factor APOBEC3G is its incorporation into progeny virions via binding to HIV RNA. However, the mechanism of APOBEC3G capturing viral RNA is unknown. Here, we report crystal structures of a primate APOBEC3G bound to different types of RNAs, revealing that APOBEC3G specifically recognizes unpaired 5'-AA-3' dinucleotides, and to a lesser extent, 5'-GA-3' dinucleotides. APOBEC3G binds to the common 3'A in the AA/GA motifs using an aromatic/hydrophobic pocket in the non-catalytic domain. It binds to the 5'A or 5'G in the AA/GA motifs using an aromatic/hydrophobic groove conformed between the non-catalytic and catalytic domains. APOBEC3G RNA binding property is distinct from that of the HIV nucleocapsid protein recognizing unpaired guanosines. Our findings suggest that the sequence-specific RNA recognition is critical for APOBEC3G virion packaging and restricting HIV infectivity.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Shuxing Li
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089 USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
16
|
Wong L, Sami A, Chelico L. Competition for DNA binding between the genome protector replication protein A and the genome modifying APOBEC3 single-stranded DNA deaminases. Nucleic Acids Res 2022; 50:12039-12057. [PMID: 36444883 PMCID: PMC9757055 DOI: 10.1093/nar/gkac1121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
The human APOBEC family of eleven cytosine deaminases use RNA and single-stranded DNA (ssDNA) as substrates to deaminate cytosine to uracil. This deamination event has roles in lipid metabolism by altering mRNA coding, adaptive immunity by causing evolution of antibody genes, and innate immunity through inactivation of viral genomes. These benefits come at a cost where some family members, primarily from the APOBEC3 subfamily (APOBEC3A-H, excluding E), can cause off-target deaminations of cytosine to form uracil on transiently single-stranded genomic DNA, which induces mutations that are associated with cancer evolution. Since uracil is only promutagenic, the mutations observed in cancer genomes originate only when uracil is not removed by uracil DNA glycosylase (UNG) or when the UNG-induced abasic site is erroneously repaired. However, when ssDNA is present, replication protein A (RPA) binds and protects the DNA from nucleases or recruits DNA repair proteins, such as UNG. Thus, APOBEC enzymes must compete with RPA to access their substrate. Certain APOBEC enzymes can displace RPA, bind and scan ssDNA efficiently to search for cytosines, and can become highly overexpressed in tumor cells. Depending on the DNA replication conditions and DNA structure, RPA can either be in excess or deficient. Here we discuss the interplay between these factors and how despite RPA, multiple cancer genomes have a mutation bias at cytosines indicative of APOBEC activity.
Collapse
Affiliation(s)
- Lai Wong
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Alina Sami
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Linda Chelico
- To whom correspondence should be addressed. Tel: +1 306 966 4318; Fax: +1 306 966 4298;
| |
Collapse
|
17
|
Kurup HM, Kvach MV, Harjes S, Barzak FM, Jameson GB, Harjes E, Filichev VV. Design, Synthesis, and Evaluation of a Cross-Linked Oligonucleotide as the First Nanomolar Inhibitor of APOBEC3A. Biochemistry 2022; 61:2568-2578. [DOI: 10.1021/acs.biochem.2c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Harikrishnan M. Kurup
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Maksim V. Kvach
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Stefan Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Fareeda M. Barzak
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Geoffrey B. Jameson
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Vyacheslav V. Filichev
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Kim K, Calabrese P, Wang S, Qin C, Rao Y, Feng P, Chen XS. The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness. Sci Rep 2022; 12:14972. [PMID: 36100631 PMCID: PMC9470679 DOI: 10.1038/s41598-022-19067-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
During COVID-19 pandemic, mutations of SARS-CoV-2 produce new strains that can be more infectious or evade vaccines. Viral RNA mutations can arise from misincorporation by RNA-polymerases and modification by host factors. Analysis of SARS-CoV-2 sequence from patients showed a strong bias toward C-to-U mutation, suggesting a potential mutational role by host APOBEC cytosine deaminases that possess broad anti-viral activity. We report the first experimental evidence demonstrating that APOBEC3A, APOBEC1, and APOBEC3G can edit on specific sites of SARS-CoV-2 RNA to produce C-to-U mutations. However, SARS-CoV-2 replication and viral progeny production in Caco-2 cells are not inhibited by the expression of these APOBECs. Instead, expression of wild-type APOBEC3 greatly promotes viral replication/propagation, suggesting that SARS-CoV-2 utilizes the APOBEC-mediated mutations for fitness and evolution. Unlike the random mutations, this study suggests the predictability of all possible viral genome mutations by these APOBECs based on the UC/AC motifs and the viral genomic RNA structure.
Collapse
Affiliation(s)
- Kyumin Kim
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter Calabrese
- Quantitative and Computational Biology Department, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shanshan Wang
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA.
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
19
|
C-to-U RNA Editing: A Site Directed RNA Editing Tool for Restoration of Genetic Code. Genes (Basel) 2022; 13:genes13091636. [PMID: 36140804 PMCID: PMC9498875 DOI: 10.3390/genes13091636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The restoration of genetic code by editing mutated genes is a potential method for the treatment of genetic diseases/disorders. Genetic disorders are caused by the point mutations of thymine (T) to cytidine (C) or guanosine (G) to adenine (A), for which gene editing (editing of mutated genes) is a promising therapeutic technique. In C-to-Uridine (U) RNA editing, it converts the base C-to-U in RNA molecules and leads to nonsynonymous changes when occurring in coding regions; however, for G-to-A mutations, A-to-I editing occurs. Editing of C-to-U is not as physiologically common as that of A-to-I editing. Although hundreds to thousands of coding sites have been found to be C-to-U edited or editable in humans, the biological significance of this phenomenon remains elusive. In this review, we have tried to provide detailed information on physiological and artificial approaches for C-to-U RNA editing.
Collapse
|
20
|
Gaunt ER, Digard P. Compositional biases in RNA viruses: Causes, consequences and applications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1679. [PMID: 34155814 PMCID: PMC8420353 DOI: 10.1002/wrna.1679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023]
Abstract
If each of the four nucleotides were represented equally in the genomes of viruses and the hosts they infect, each base would occur at a frequency of 25%. However, this is not observed in nature. Similarly, the order of nucleotides is not random (e.g., in the human genome, guanine follows cytosine at a frequency of ~0.0125, or a quarter the number of times predicted by random representation). Codon usage and codon order are also nonrandom. Furthermore, nucleotide and codon biases vary between species. Such biases have various drivers, including cellular proteins that recognize specific patterns in nucleic acids, that once triggered, induce mutations or invoke intrinsic or innate immune responses. In this review we examine the types of compositional biases identified in viral genomes and current understanding of the evolutionary mechanisms underpinning these trends. Finally, we consider the potential for large scale synonymous recoding strategies to engineer RNA virus vaccines, including those with pandemic potential, such as influenza A virus and Severe Acute Respiratory Syndrome Coronavirus Virus 2. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Eleanor R. Gaunt
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| | - Paul Digard
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| |
Collapse
|
21
|
Rajib SA, Ogi Y, Hossain MB, Ikeda T, Tanaka E, Kawaguchi T, Satou Y. A SARS-CoV-2 Delta vVariant cContaining mMutation in the pProbe bBinding rRegion uUsed for RT-qPCR tTest in Japan eExhibited aAtypical PCR aAmplification and mMight iInduce fFalse nNegative rResult. J Infect Chemother 2022; 28:669-677. [PMID: 35144878 PMCID: PMC8817104 DOI: 10.1016/j.jiac.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/09/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Introduction A recent pandemic of SARS-CoV-2 infection has caused severe health problems and substantially restricted social and economic activities. RT-qPCR plays a vital role in the diagnosis of SARS-CoV-2 infection. The N protein-coding region is widely analyzed in RT-qPCR to diagnose SARS-CoV-2 infection in Japan. We recently encountered two cases of SARS-CoV-2-positive specimens showing atypical amplification curves in the RT-qPCR. Methods We performed whole-genome sequencing of 63 samples (2 showing aberrant RT-qPCR curve and 61 samples infected with SARS-CoV-2 simultaneously in the same area) followed by Phylogenetic tree analysis. Results We found that the viruses showing abnormal RT-qPCR curves were Delta-type variants of SARS-CoV-2 with a single nucleotide mutation in the probe-binding site. There were no other cases with the same mutation, indicating that the variant had not spread in the area. After searching the database, hundreds of variants were reported globally, and one in Japan contained the same mutation. Phylogenetic analysis showed that the variant was very close to other Delta variants endemic in Japan but quite far from the variants containing the same mutation reported from outside Japan, suggesting sporadic generation of mutant in some domestic areas. Conclusions These findings propose two key points: i) mutations in the region used for SARS-CoV-2 RT-qPCR can cause abnormal amplification curves, and ii) various mutations can be generated sporadically and unpredictably; therefore, efficient and robust screening systems are needed to promptly monitor the emergence of de novo variants.
Collapse
|
22
|
Kim K, Calabrese P, Wang S, Qin C, Rao Y, Feng P, Chen XS. The Roles of APOBEC-mediated RNA Editing in SARS-CoV-2 Mutations, Replication and Fitness.. [PMID: 34981048 PMCID: PMC8722585 DOI: 10.1101/2021.12.18.473309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During COVID-19 pandemic, mutations of SARS-CoV-2 produce new strains that can be more infectious or evade vaccines. Viral RNA mutations can arise from misincorporation by RNA-polymerases and modification by host factors. Analysis of SARS-CoV-2 sequence from patients showed a strong bias toward C-to-U mutation, suggesting a potential mutational role by host APOBEC cytosine deaminases that possess broad anti-viral activity. We report the first experimental evidence demonstrating that APOBEC3A, APOBEC1, and APOBEC3G can edit on specific sites of SARS-CoV-2 RNA to produce C-to-U mutations. However, SARS-CoV-2 replication and viral progeny production in Caco-2 cells are not inhibited by the expression of these APOBECs. Instead, expression of wild-type APOBEC3 greatly promotes viral replication/propagation, suggesting that SARS-CoV-2 utilizes the APOBEC-mediated mutations for fitness and evolution. Unlike the random mutations, this study suggests the predictability of all possible viral genome mutations by these APOBECs based on the UC/AC motifs and the viral genomic RNA structure. Efficient Editing of SARS-CoV-2 genomic RNA by Host APOBEC deaminases and Its Potential Impacts on the Viral Replication and Emergence of New Strains in COVID-19 Pandemic
Collapse
|
23
|
The optimal pH of AID is skewed from that of its catalytic pocket by DNA-binding residues and surface charge. Biochem J 2021; 479:39-55. [PMID: 34870314 DOI: 10.1042/bcj20210529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a member of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases. AID mutates immunoglobulin loci to initiate secondary antibody diversification. The APOBEC3 (A3) sub-branch mutates viral pathogens in the cytosol and acidic endosomal compartments. Accordingly, AID functions optimally near neutral pH, while most A3s are acid-adapted (optimal pH 5.5-6.5). To gain a structural understanding for this pH disparity, we constructed high-resolution maps of AID catalytic activity vs pH. We found AID's optimal pH was 7.3 but it retained most (>70%) of the activity at pH 8. Probing of ssDNA-binding residues near the catalytic pocket, key for bending ssDNA into the pocket (e.g R25) yielded mutants with altered pH preference, corroborating previous findings that the equivalent residue in APOBEC3G (H216) underlies its acidic pH preference. AID from bony fish exhibited more basic optimal pH (pH 7.5-8.1) and several R25-equivalent mutants altered pH preference. Comparison of pH optima across the AID/APOBEC3 family revealed an inverse correlation between positive surface charge and overall catalysis. The paralogue with the most robust catalytic activity (APOBEC3A) has the lowest surface charge, most acidic pH preference, while the paralogue with the most lethargic catalytic rate (AID) has the most positive surface charge and highest optimal pH. We suggest one possible mechanism is through surface charge dictating an overall optimal pH that is different from the optimal pH of the catalytic pocket microenvironment. These findings illuminate an additional structural mechanism that regulates AID/APOBEC3 mutagenesis.
Collapse
|
24
|
Constantin D, Dubuis G, Conde-Rubio MDC, Widmann C. APOBEC3C, a nucleolar protein induced by genotoxins, is excluded from DNA damage sites. FEBS J 2021; 289:808-831. [PMID: 34528388 PMCID: PMC9292673 DOI: 10.1111/febs.16202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 08/22/2021] [Accepted: 09/14/2021] [Indexed: 01/23/2023]
Abstract
The human genome contains 11 APOBEC (apolipoprotein B mRNA editing catalytic polypeptide‐like) cytidine deaminases classified into four families. These proteins function mainly in innate antiviral immunity and can also restrict endogenous retrotransposable element multiplication. The present study focuses on APOBEC3C (A3C), a member of the APOBEC3 subfamily. Some APOBEC3 proteins use their enzymatic activity on genomic DNA, inducing mutations and DNA damage, while other members facilitate DNA repair. Our results show that A3C is highly expressed in cells treated with DNA‐damaging agents. Its expression is regulated by p53. Depletion of A3C slightly decreases proliferation and does not affect DNA repair via homologous recombination or nonhomologous end joining. The A3C interactomes obtained from control cells and cells exposed to the genotoxin etoposide indicated that A3C is a nucleolar protein. This was confirmed by the detection of either endogenous or ectopic A3C in nucleoli. Interestingly, we show that A3C is excluded from areas of DNA breaks in live cells. Our data also indicate that the C‐terminal part of A3C is responsible for its nucleolar localization and exclusion from DNA damage sites.
Collapse
Affiliation(s)
- Daniel Constantin
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Gilles Dubuis
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | | | - Christian Widmann
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| |
Collapse
|
25
|
Kumar N, Kaushik R, Tennakoon C, Uversky VN, Mishra A, Sood R, Srivastava P, Tripathi M, Zhang KYJ, Bhatia S. Evolutionary Signatures Governing the Codon Usage Bias in Coronaviruses and Their Implications for Viruses Infecting Various Bat Species. Viruses 2021; 13:1847. [PMID: 34578428 PMCID: PMC8473330 DOI: 10.3390/v13091847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Many viruses that cause serious diseases in humans and animals, including the betacoronaviruses (beta-CoVs), such as SARS-CoV, MERS-CoV, and the recently identified SARS-CoV-2, have natural reservoirs in bats. Because these viruses rely entirely on the host cellular machinery for survival, their evolution is likely to be guided by the link between the codon usage of the virus and that of its host. As a result, specific cellular microenvironments of the diverse hosts and/or host tissues imprint peculiar molecular signatures in virus genomes. Our study is aimed at deciphering some of these signatures. Using a variety of genetic methods we demonstrated that trends in codon usage across chiroptera-hosted CoVs are collaboratively driven by geographically different host-species and temporal-spatial distribution. We not only found that chiroptera-hosted CoVs are the ancestors of SARS-CoV-2, but we also revealed that SARS-CoV-2 has the codon usage characteristics similar to those seen in CoVs infecting the Rhinolophus sp. Surprisingly, the envelope gene of beta-CoVs infecting Rhinolophus sp., including SARS-CoV-2, had extremely high CpG levels, which appears to be an evolutionarily conserved trait. The dissection of the furin cleavage site of various CoVs infecting hosts revealed host-specific preferences for arginine codons; however, arginine is encoded by a wider variety of synonymous codons in the murine CoV (MHV-A59) furin cleavage site. Our findings also highlight the latent diversity of CoVs in mammals that has yet to be fully explored.
Collapse
Affiliation(s)
- Naveen Kumar
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan; (R.K.); (K.Y.J.Z.)
| | - Chandana Tennakoon
- Bioinformatics, Sequencing & Proteomics Group, The Pirbright Institute, Woking GU24 0NF, UK;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, Moscow Region, 142290 Pushchino, Russia
| | - Anamika Mishra
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| | - Richa Sood
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| | - Pratiksha Srivastava
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| | - Meghna Tripathi
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| | - Kam Y. J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan; (R.K.); (K.Y.J.Z.)
| | - Sandeep Bhatia
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| |
Collapse
|
26
|
APOBECs orchestrate genomic and epigenomic editing across health and disease. Trends Genet 2021; 37:1028-1043. [PMID: 34353635 DOI: 10.1016/j.tig.2021.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
APOBEC proteins can deaminate cytosine residues in DNA and RNA. This can lead to somatic mutations, DNA breaks, RNA modifications, or DNA demethylation in a selective manner. APOBECs function in various cellular compartments and recognize different nucleic acid motifs and structures. They orchestrate a wide array of genomic and epigenomic modifications, thereby affecting various cellular functions positively or negatively, including immune editing, viral and retroelement restriction, DNA damage responses, DNA demethylation, gene expression, and tissue homeostasis. Furthermore, the cumulative increase in genomic and epigenomic editing with aging could also, at least in part, be attributed to APOBEC function. We synthesize our cumulative understanding of APOBEC activity in a unifying overview and discuss their genomic and epigenomic impact in physiological, pathological, and technological contexts.
Collapse
|
27
|
Bader SB, Ma TS, Simpson CJ, Liang J, Maezono S, Olcina M, Buffa F, Hammond E. Replication catastrophe induced by cyclic hypoxia leads to increased APOBEC3B activity. Nucleic Acids Res 2021; 49:7492-7506. [PMID: 34197599 PMCID: PMC8287932 DOI: 10.1093/nar/gkab551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure to levels of hypoxia that cause replication stress could increase APOBEC activity and the accumulation of APOBEC-mediated mutations. APOBEC-dependent mutational signatures have been well-characterized, although the physiological conditions which underpin them have not been described. We demonstrate that fluctuating/cyclic hypoxic conditions which lead to replication catastrophe induce the expression and activity of APOBEC3B. In contrast, stable/chronic hypoxic conditions which induce replication stress in the absence of DNA damage are not sufficient to induce APOBEC3B. Most importantly, the number of APOBEC-mediated mutations in patient tumors correlated with a hypoxia signature. Together, our data support the conclusion that hypoxia-induced replication catastrophe drives genomic instability in tumors, specifically through increasing the activity of APOBEC3B.
Collapse
Affiliation(s)
- Samuel B Bader
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Tiffany S Ma
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Charlotte J Simpson
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Jiachen Liang
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Sakura Eri B Maezono
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Monica M Olcina
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Francesca M Buffa
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
28
|
Destefanis E, Avşar G, Groza P, Romitelli A, Torrini S, Pir P, Conticello SG, Aguilo F, Dassi E. A mark of disease: how mRNA modifications shape genetic and acquired pathologies. RNA (NEW YORK, N.Y.) 2021; 27:367-389. [PMID: 33376192 PMCID: PMC7962492 DOI: 10.1261/rna.077271.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA modifications have recently emerged as a widespread and complex facet of gene expression regulation. Counting more than 170 distinct chemical modifications with far-reaching implications for RNA fate, they are collectively referred to as the epitranscriptome. These modifications can occur in all RNA species, including messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). In mRNAs the deposition, removal, and recognition of chemical marks by writers, erasers and readers influence their structure, localization, stability, and translation. In turn, this modulates key molecular and cellular processes such as RNA metabolism, cell cycle, apoptosis, and others. Unsurprisingly, given their relevance for cellular and organismal functions, alterations of epitranscriptomic marks have been observed in a broad range of human diseases, including cancer, neurological and metabolic disorders. Here, we will review the major types of mRNA modifications and editing processes in conjunction with the enzymes involved in their metabolism and describe their impact on human diseases. We present the current knowledge in an updated catalog. We will also discuss the emerging evidence on the crosstalk of epitranscriptomic marks and what this interplay could imply for the dynamics of mRNA modifications. Understanding how this complex regulatory layer can affect the course of human pathologies will ultimately lead to its exploitation toward novel epitranscriptomic therapeutic strategies.
Collapse
Affiliation(s)
- Eliana Destefanis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- The EPITRAN COST Action Consortium, COST Action CA16120
| | - Gülben Avşar
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Paula Groza
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Antonia Romitelli
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Department of Medical Biotechnologies, Università di Siena, 53100 Siena, Italy
| | - Serena Torrini
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Department of Medical Biotechnologies, Università di Siena, 53100 Siena, Italy
| | - Pınar Pir
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Silvestro G Conticello
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Francesca Aguilo
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- The EPITRAN COST Action Consortium, COST Action CA16120
| |
Collapse
|
29
|
Kurkowiak M, Arcimowicz Ł, Chruściel E, Urban-Wójciuk Z, Papak I, Keegan L, O'Connell M, Kowalski J, Hupp T, Marek-Trzonkowska N. The effects of RNA editing in cancer tissue at different stages in carcinogenesis. RNA Biol 2021; 18:1524-1539. [PMID: 33593231 PMCID: PMC8582992 DOI: 10.1080/15476286.2021.1877024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA editing is one of the most prevalent and abundant forms of post-transcriptional RNA modification observed in normal physiological processes and often aberrant in diseases including cancer. RNA editing changes the sequences of mRNAs, making them different from the source DNA sequence. Edited mRNAs can produce editing-recoded protein isoforms that are functionally different from the corresponding genome-encoded protein isoforms. The major type of RNA editing in mammals occurs by enzymatic deamination of adenosine to inosine (A-to-I) within double-stranded RNAs (dsRNAs) or hairpins in pre-mRNA transcripts. Enzymes that catalyse these processes belong to the adenosine deaminase acting on RNA (ADAR) family. The vast majority of knowledge on the RNA editing landscape relevant to human disease has been acquired using in vitro cancer cell culture models. The limitation of such in vitro models, however, is that the physiological or disease relevance of results obtained is not necessarily obvious. In this review we focus on discussing in vivo occurring RNA editing events that have been identified in human cancer tissue using samples surgically resected or clinically retrieved from patients. We discuss how RNA editing events occurring in tumours in vivo can identify pathological signalling mechanisms relevant to human cancer physiology which is linked to the different stages of cancer progression including initiation, promotion, survival, proliferation, immune escape and metastasis.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Elżbieta Chruściel
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Ines Papak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Liam Keegan
- CEITEC Masaryk University, Brno, CZ, Czech Republic
| | | | - Jacek Kowalski
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland.,Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ted Hupp
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland.,University of Edinburgh, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland.,Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
30
|
Alqassim EY, Sharma S, Khan ANMNH, Emmons TR, Cortes Gomez E, Alahmari A, Singel KL, Mark J, Davidson BA, Robert McGray AJ, Liu Q, Lichty BD, Moysich KB, Wang J, Odunsi K, Segal BH, Baysal BE. RNA editing enzyme APOBEC3A promotes pro-inflammatory M1 macrophage polarization. Commun Biol 2021; 4:102. [PMID: 33483601 PMCID: PMC7822933 DOI: 10.1038/s42003-020-01620-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory M1 macrophage polarization is associated with microbicidal and antitumor responses. We recently described APOBEC3A-mediated cytosine-to-uracil (C > U) RNA editing during M1 polarization. However, the functional significance of this editing is unknown. Here we find that APOBEC3A-mediated cellular RNA editing can also be induced by influenza or Maraba virus infections in normal human macrophages, and by interferons in tumor-associated macrophages. Gene knockdown and RNA_Seq analyses show that APOBEC3A mediates C>U RNA editing of 209 exonic/UTR sites in 203 genes during M1 polarization. The highest level of nonsynonymous RNA editing alters a highly-conserved amino acid in THOC5, which encodes a nuclear mRNA export protein implicated in M-CSF-driven macrophage differentiation. Knockdown of APOBEC3A reduces IL6, IL23A and IL12B gene expression, CD86 surface protein expression, and TNF-α, IL-1β and IL-6 cytokine secretion, and increases glycolysis. These results show a key role of APOBEC3A cytidine deaminase in transcriptomic and functional polarization of M1 macrophages.
Collapse
Affiliation(s)
- Emad Y Alqassim
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, 45142, Saudi Arabia
| | - Shraddha Sharma
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
- Translate Bio, Lexington, MA, 02421, USA
| | - A N M Nazmul H Khan
- Department of Internal Medicine,, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Tiffany R Emmons
- Department of Immunology,, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics/Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Abdulrahman Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
- Department of Medical Laboratory Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16278, Saudi Arabia
| | - Kelly L Singel
- Department of Immunology,, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
- Office of Evaluation, Performance, and Reporting, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jaron Mark
- Department of Gynecologic Oncology,, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
- The Start Center for Cancer Care, 4383 Medical Drive, San Antonio, TX, 78229, USA
| | - Bruce A Davidson
- Departments of Anesthesiology, Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - A J Robert McGray
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Qian Liu
- Department of Biostatistics/Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, 1200 Main St W, Hamilton, ON, L8N 3Z5, Canada
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Jianmin Wang
- Department of Biostatistics/Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Kunle Odunsi
- Department of Immunology,, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
- Department of Gynecologic Oncology,, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Brahm H Segal
- Department of Internal Medicine,, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
- Department of Immunology,, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
- Departments of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA.
| | - Bora E Baysal
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
31
|
Potential APOBEC-mediated RNA editing of the genomes of SARS-CoV-2 and other coronaviruses and its impact on their longer term evolution. Virology 2021; 556:62-72. [PMID: 33545556 PMCID: PMC7831814 DOI: 10.1016/j.virol.2020.12.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Members of the APOBEC family of cytidine deaminases show antiviral activities in mammalian cells through lethal editing in the genomes of small DNA viruses, herpesviruses and retroviruses, and potentially those of RNA viruses such as coronaviruses. Consistent with the latter, APOBEC-like directional C→U transitions of genomic plus-strand RNA are greatly overrepresented in SARS-CoV-2 genome sequences of variants emerging during the COVID-19 pandemic. A C→U mutational process may leave evolutionary imprints on coronavirus genomes, including extensive homoplasy from editing and reversion at targeted sites and the occurrence of driven amino acid sequence changes in viral proteins. If sustained over longer periods, this process may account for the previously reported marked global depletion of C and excess of U bases in human seasonal coronavirus genomes. This review synthesizes the current knowledge on APOBEC evolution and function and the evidence of their role in APOBEC-mediated genome editing of SARS-CoV-2 and other coronaviruses. SARS-CoV-2 sequence variants contain an overabundance of C- > U transitions C- > U transitions are the hallmark of the activity of APOBEC cytosine deaminases Further work is needed to determine APOBEC's role in coronavirus evolution
Collapse
|
32
|
Wei Y, Silke JR, Aris P, Xia X. Coronavirus genomes carry the signatures of their habitats. PLoS One 2020; 15:e0244025. [PMID: 33351847 PMCID: PMC7755226 DOI: 10.1371/journal.pone.0244025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses such as SARS-CoV-2 regularly infect host tissues that express antiviral proteins (AVPs) in abundance. Understanding how they evolve to adapt or evade host immune responses is important in the effort to control the spread of infection. Two AVPs that may shape viral genomes are the zinc finger antiviral protein (ZAP) and the apolipoprotein B mRNA editing enzyme-catalytic polypeptide-like 3 (APOBEC3). The former binds to CpG dinucleotides to facilitate the degradation of viral transcripts while the latter frequently deaminates C into U residues which could generate notable viral sequence variations. We tested the hypothesis that both APOBEC3 and ZAP impose selective pressures that shape the genome of an infecting coronavirus. Our investigation considered a comprehensive number of publicly available genomes for seven coronaviruses (SARS-CoV-2, SARS-CoV, and MERS infecting Homo sapiens, Bovine CoV infecting Bos taurus, MHV infecting Mus musculus, HEV infecting Sus scrofa, and CRCoV infecting Canis lupus familiaris). We show that coronaviruses that regularly infect tissues with abundant AVPs have CpG-deficient and U-rich genomes; whereas those that do not infect tissues with abundant AVPs do not share these sequence hallmarks. Among the coronaviruses surveyed herein, CpG is most deficient in SARS-CoV-2 and a temporal analysis showed a marked increase in C to U mutations over four months of SARS-CoV-2 genome evolution. Furthermore, the preferred motifs in which these C to U mutations occur are the same as those subjected to APOBEC3 editing in HIV-1. These results suggest that both ZAP and APOBEC3 shape the SARS-CoV-2 genome: ZAP imposes a strong CpG avoidance, and APOBEC3 constantly edits C to U. Evolutionary pressures exerted by host immune systems onto viral genomes may motivate novel strategies for SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jordan R. Silke
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Parisa Aris
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Granadillo Rodríguez M, Flath B, Chelico L. The interesting relationship between APOBEC3 deoxycytidine deaminases and cancer: a long road ahead. Open Biol 2020; 10:200188. [PMID: 33292100 PMCID: PMC7776566 DOI: 10.1098/rsob.200188] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered a group of diseases characterized by uncontrolled growth and spread of abnormal cells and is propelled by somatic mutations. Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of enzymes are endogenous sources of somatic mutations found in multiple human cancers. While these enzymes normally act as an intrinsic immune defence against viruses, they can also catalyse 'off-target' cytidine deamination in genomic single-stranded DNA intermediates. The deamination of cytosine forms uracil, which is promutagenic in DNA. Key factors to trigger the APOBEC 'off-target' activity are overexpression in a non-normal cell type, nuclear localization and replication stress. The resulting uracil-induced mutations contribute to genomic variation, which may result in neutral, beneficial or harmful consequences for the cancer. This review summarizes the functional and biochemical basis of the APOBEC3 enzyme activity and highlights their relationship with the most well-studied cancers in this particular context such as breast, lung, bladder, and human papillomavirus-associated cancers. We focus on APOBEC3A, APOBEC3B and APOBEC3H haplotype I because they are the leading candidates as sources of somatic mutations in these and other cancers. Also, we discuss the prognostic value of the APOBEC3 expression in drug resistance and response to therapies.
Collapse
Affiliation(s)
| | | | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
34
|
Huang X, Lv J, Li Y, Mao S, Li Z, Jing Z, Sun Y, Zhang X, Shen S, Wang X, Di M, Ge J, Huang X, Zuo E, Chi T. Programmable C-to-U RNA editing using the human APOBEC3A deaminase. EMBO J 2020; 39:e104741. [PMID: 33058229 PMCID: PMC7667879 DOI: 10.15252/embj.2020104741] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Programmable RNA cytidine deamination has recently been achieved using a bifunctional editor (RESCUE-S) capable of deaminating both adenine and cysteine. Here, we report the development of "CURE", the first cytidine-specific C-to-U RNA Editor. CURE comprises the cytidine deaminase enzyme APOBEC3A fused to dCas13 and acts in conjunction with unconventional guide RNAs (gRNAs) designed to induce loops at the target sites. Importantly, CURE does not deaminate adenosine, enabling the high-specificity versions of CURE to create fewer missense mutations than RESCUE-S at the off-targets transcriptome-wide. The two editing approaches exhibit overlapping editing motif preferences, with CURE and RESCUE-S being uniquely able to edit UCC and AC motifs, respectively, while they outperform each other at different subsets of the UC targets. Finally, a nuclear-localized version of CURE, but not that of RESCUE-S, can efficiently edit nuclear RNAs. Thus, CURE and RESCUE are distinct in design and complementary in utility.
Collapse
Affiliation(s)
- Xinxin Huang
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junjun Lv
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yongqin Li
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shaoshuai Mao
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Li
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Zhengyu Jing
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yidi Sun
- Institute of NeuroscienceState Key Laboratory of NeuroscienceKey Laboratory of Primate NeurobiologyCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai Research Center for Brain Science and Brain‐Inspired IntelligenceShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Xiaoming Zhang
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shengxi Shen
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinxin Wang
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
| | - Minghui Di
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jianyang Ge
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xingxu Huang
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
| | - Erwei Zuo
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Tian Chi
- School of Life Sciences and TechnologyShanghaiTech UniversityShanghaiChina
- Department of ImmunobiologyYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
35
|
Point mutation bias in SARS-CoV-2 variants results in increased ability to stimulate inflammatory responses. Sci Rep 2020; 10:17766. [PMID: 33082451 PMCID: PMC7575582 DOI: 10.1038/s41598-020-74843-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces severe pneumonia and is the cause of a worldwide pandemic. Coronaviruses, including SARS-CoV-2, have RNA proofreading enzymes in their genomes, resulting in fewer gene mutations than other RNA viruses. Nevertheless, variants of SARS-CoV-2 exist and may induce different symptoms; however, the factors and the impacts of these mutations are not well understood. We found that there is a bias to the mutations occurring in SARS-CoV-2 variants, with disproportionate mutation to uracil (U). These point mutations to U are mainly derived from cytosine (C), which is consistent with the substrate specificity of host RNA editing enzymes, APOBECs. We also found the point mutations which are consistent with other RNA editing enzymes, ADARs. For the C-to-U mutations, the context of the upstream uracil and downstream guanine from mutated position was found to be most prevalent. Further, the degree of increase of U in SARS-CoV-2 variants correlates with enhanced production of cytokines, such as TNF-α and IL-6, in cell lines when compared with stimulation by the ssRNA sequence of the isolated virus in Wuhan. Therefore, RNA editing is a factor for mutation bias in SARS-CoV-2 variants, which affects host inflammatory cytokines production.
Collapse
|
36
|
Wolfe AD, Li S, Goedderz C, Chen XS. The structure of APOBEC1 and insights into its RNA and DNA substrate selectivity. NAR Cancer 2020; 2:zcaa027. [PMID: 33094286 PMCID: PMC7556403 DOI: 10.1093/narcan/zcaa027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
APOBEC1 (APO1), a member of AID/APOBEC nucleic acid cytosine deaminase family, can edit apolipoprotein B mRNA to regulate cholesterol metabolism. This APO1 RNA editing activity requires a cellular cofactor to achieve tight regulation. However, no cofactors are required for deamination on DNA by APO1 and other AID/APOBEC members, and aberrant deamination on genomic DNA by AID/APOBEC deaminases has been linked to cancer. Here, we present the crystal structure of APO1, which reveals a typical APOBEC deaminase core structure, plus a unique well-folded C-terminal domain that is highly hydrophobic. This APO1 C-terminal hydrophobic domain (A1HD) interacts to form a stable dimer mainly through hydrophobic interactions within the dimer interface to create a four-stranded β-sheet positively charged surface. Structure-guided mutagenesis within this and other regions of APO1 clarified the importance of the A1HD in directing RNA and cofactor interactions, providing insights into the structural basis of selectivity on DNA or RNA substrates.
Collapse
Affiliation(s)
- Aaron D Wolfe
- Genetics, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shuxing Li
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Cody Goedderz
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Genetics, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
37
|
Pollock DD, Castoe TA, Perry BW, Lytras S, Wade KJ, Robertson DL, Holmes EC, Boni MF, Kosakovsky Pond SL, Parry R, Carlton EJ, Wood JLN, Pennings PS, Goldstein RA. Viral CpG Deficiency Provides No Evidence That Dogs Were Intermediate Hosts for SARS-CoV-2. Mol Biol Evol 2020; 37:2706-2710. [PMID: 32658964 PMCID: PMC7454803 DOI: 10.1093/molbev/msaa178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Due to the scope and impact of the COVID-19 pandemic there exists a strong desire to understand where the SARS-CoV-2 virus came from and how it jumped species boundaries to humans. Molecular evolutionary analyses can trace viral origins by establishing relatedness and divergence times of viruses and identifying past selective pressures. However, we must uphold rigorous standards of inference and interpretation on this topic because of the ramifications of being wrong. Here, we dispute the conclusions of Xia (2020. Extreme genomic CpG deficiency in SARS-CoV-2 and evasion of host antiviral defense. Mol Biol Evol. doi:10.1093/molbev/masa095) that dogs are a likely intermediate host of a SARS-CoV-2 ancestor. We highlight major flaws in Xia's inference process and his analysis of CpG deficiencies, and conclude that there is no direct evidence for the role of dogs as intermediate hosts. Bats and pangolins currently have the greatest support as ancestral hosts of SARS-CoV-2, with the strong caveat that sampling of wildlife species for coronaviruses has been limited.
Collapse
Affiliation(s)
- David D Pollock
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO
| | - Todd A Castoe
- Department of Biology, University of Texas Arlington, Arlington, TX
| | - Blair W Perry
- Department of Biology, University of Texas Arlington, Arlington, TX
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Kristen J Wade
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases & Biosecurity, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Maciej F Boni
- 5Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA
| | | | - Rhys Parry
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO
| | - James L N Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Pleuni S Pennings
- Department of Biology, San Francisco State University, San Francisco, CA
| | - Richard A Goldstein
- Division of Infection & Immunity, University College London, London, United Kingdom
| |
Collapse
|
38
|
Abstract
Wild mammalian species, including bats, constitute the natural reservoir of betacoronavirus (including SARS, MERS, and the deadly SARS-CoV-2). Different hosts or host tissues provide different cellular environments, especially different antiviral and RNA modification activities that can alter RNA modification signatures observed in the viral RNA genome. The zinc finger antiviral protein (ZAP) binds specifically to CpG dinucleotides and recruits other proteins to degrade a variety of viral RNA genomes. Many mammalian RNA viruses have evolved CpG deficiency. Increasing CpG dinucleotides in these low-CpG viral genomes in the presence of ZAP consistently leads to decreased viral replication and virulence. Because ZAP exhibits tissue-specific expression, viruses infecting different tissues are expected to have different CpG signatures, suggesting a means to identify viral tissue-switching events. The author shows that SARS-CoV-2 has the most extreme CpG deficiency in all known betacoronavirus genomes. This suggests that SARS-CoV-2 may have evolved in a new host (or new host tissue) with high ZAP expression. A survey of CpG deficiency in viral genomes identified a virulent canine coronavirus (alphacoronavirus) as possessing the most extreme CpG deficiency, comparable with that observed in SARS-CoV-2. This suggests that the canine tissue infected by the canine coronavirus may provide a cellular environment strongly selecting against CpG. Thus, viral surveys focused on decreasing CpG in viral RNA genomes may provide important clues about the selective environments and viral defenses in the original hosts.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
39
|
Lee S, Ding N, Sun Y, Yuan T, Li J, Yuan Q, Liu L, Yang J, Wang Q, Kolomeisky AB, Hilton IB, Zuo E, Gao X. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. SCIENCE ADVANCES 2020; 6:eaba1773. [PMID: 32832622 PMCID: PMC7439359 DOI: 10.1126/sciadv.aba1773] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/02/2020] [Indexed: 05/17/2023]
Abstract
Cytosine base editors (CBEs) enable efficient cytidine-to-thymidine (C-to-T) substitutions at targeted loci without double-stranded breaks. However, current CBEs edit all Cs within their activity windows, generating undesired bystander mutations. In the most challenging circumstance, when a bystander C is adjacent to the targeted C, existing base editors fail to discriminate them and edit both Cs. To improve the precision of CBE, we identified and engineered the human APOBEC3G (A3G) deaminase; when fused to the Cas9 nickase, the resulting A3G-BEs exhibit selective editing of the second C in the 5'-CC-3' motif in human cells. Our A3G-BEs could install a single disease-associated C-to-T substitution with high precision. The percentage of perfectly modified alleles is more than 6000-fold for disease correction and more than 600-fold for disease modeling compared with BE4max. On the basis of the two-cell embryo injection method and RNA sequencing analysis, our A3G-BEs showed minimum genome- and transcriptome-wide off-target effects, achieving high targeting fidelity.
Collapse
Affiliation(s)
- Sangsin Lee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ning Ding
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Yidi Sun
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tanglong Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jing Li
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Qichen Yuan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Lizhong Liu
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Jie Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Qian Wang
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Anatoly B. Kolomeisky
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Isaac B. Hilton
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xue Gao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
40
|
Simmonds P. Rampant C→U Hypermutation in the Genomes of SARS-CoV-2 and Other Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary Trajectories. mSphere 2020; 5:e00408-20. [PMID: 32581081 PMCID: PMC7316492 DOI: 10.1128/msphere.00408-20] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has motivated an intensive analysis of its molecular epidemiology following its worldwide spread. To understand the early evolutionary events following its emergence, a data set of 985 complete SARS-CoV-2 sequences was assembled. Variants showed a mean of 5.5 to 9.5 nucleotide differences from each other, consistent with a midrange coronavirus substitution rate of 3 × 10-4 substitutions/site/year. Almost one-half of sequence changes were C→U transitions, with an 8-fold base frequency normalized directional asymmetry between C→U and U→C substitutions. Elevated ratios were observed in other recently emerged coronaviruses (SARS-CoV, Middle East respiratory syndrome [MERS]-CoV), and decreasing ratios were observed in other human coronaviruses (HCoV-NL63, -OC43, -229E, and -HKU1) proportionate to their increasing divergence. C→U transitions underpinned almost one-half of the amino acid differences between SARS-CoV-2 variants and occurred preferentially in both 5' U/A and 3' U/A flanking sequence contexts comparable to favored motifs of human APOBEC3 proteins. Marked base asymmetries observed in nonpandemic human coronaviruses (U ≫ A > G ≫ C) and low G+C contents may represent long-term effects of prolonged C→U hypermutation in their hosts. The evidence that much of sequence change in SARS-CoV-2 and other coronaviruses may be driven by a host APOBEC-like editing process has profound implications for understanding their short- and long-term evolution. Repeated cycles of mutation and reversion in favored mutational hot spots and the widespread occurrence of amino acid changes with no adaptive value for the virus represent a quite different paradigm of virus sequence change from neutral and Darwinian evolutionary frameworks and are not incorporated by standard models used in molecular epidemiology investigations.IMPORTANCE The wealth of accurately curated sequence data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its long genome, and its low substitution rate provides a relatively blank canvas with which to investigate effects of mutational and editing processes imposed by the host cell. The finding that a large proportion of sequence change in SARS-CoV-2 in the initial months of the pandemic comprised C→U mutations in a host APOBEC-like context provides evidence for a potent host-driven antiviral editing mechanism against coronaviruses more often associated with antiretroviral defense. In evolutionary terms, the contribution of biased, convergent, and context-dependent mutations to sequence change in SARS-CoV-2 is substantial, and these processes are not incorporated by standard models used in molecular epidemiology investigations.
Collapse
Affiliation(s)
- P Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Begik O, Lucas MC, Liu H, Ramirez JM, Mattick JS, Novoa EM. Integrative analyses of the RNA modification machinery reveal tissue- and cancer-specific signatures. Genome Biol 2020; 21:97. [PMID: 32375858 PMCID: PMC7204298 DOI: 10.1186/s13059-020-02009-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND RNA modifications play central roles in cellular fate and differentiation. However, the machinery responsible for placing, removing, and recognizing more than 170 RNA modifications remains largely uncharacterized and poorly annotated, and we currently lack integrative studies that identify which RNA modification-related proteins (RMPs) may be dysregulated in each cancer type. RESULTS Here, we perform a comprehensive annotation and evolutionary analysis of human RMPs, as well as an integrative analysis of their expression patterns across 32 tissues, 10 species, and 13,358 paired tumor-normal human samples. Our analysis reveals an unanticipated heterogeneity of RMP expression patterns across mammalian tissues, with a vast proportion of duplicated enzymes displaying testis-specific expression, suggesting a key role for RNA modifications in sperm formation and possibly intergenerational inheritance. We uncover many RMPs that are dysregulated in various types of cancer, and whose expression levels are predictive of cancer progression. Surprisingly, we find that several commonly studied RNA modification enzymes such as METTL3 or FTO are not significantly upregulated in most cancer types, whereas several less-characterized RMPs, such as LAGE3 and HENMT1, are dysregulated in many cancers. CONCLUSIONS Our analyses reveal an unanticipated heterogeneity in the expression patterns of RMPs across mammalian tissues and uncover a large proportion of dysregulated RMPs in multiple cancer types. We provide novel targets for future cancer research studies targeting the human epitranscriptome, as well as foundations to understand cell type-specific behaviors that are orchestrated by RNA modifications.
Collapse
Affiliation(s)
- Oguzhan Begik
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- UNSW, Sydney, Sydney, NSW, 2052, Australia
| | - Morghan C Lucas
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Huanle Liu
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Jose Miguel Ramirez
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - John S Mattick
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- UNSW, Sydney, Sydney, NSW, 2052, Australia
| | - Eva Maria Novoa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
- UNSW, Sydney, Sydney, NSW, 2052, Australia.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
42
|
Gassner FJ, Zaborsky N, Feldbacher D, Greil R, Geisberger R. RNA Editing Alters miRNA Function in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12051159. [PMID: 32380696 PMCID: PMC7280959 DOI: 10.3390/cancers12051159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a high incidence B cell leukemia with a highly variable clinical course, leading to survival times ranging from months to several decades. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression levels of genes by binding to the untranslated regions of transcripts. Although miRNAs have been previously shown to play a crucial role in CLL development, progression and treatment resistance, their further processing and diversification by RNA editing (specifically adenosine to inosine or cytosine to uracil deamination) has not been addressed so far. In this study, we analyzed next generation sequencing data to provide a detailed map of adenosine to inosine and cytosine to uracil changes in miRNAs from CLL and normal B cells. Our results reveal that in addition to a CLL-specific expression pattern, there is also specific RNA editing of many miRNAs, particularly miR-3157 and miR-6503, in CLL. Our data draw further light on how miRNAs and miRNA editing might be implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Franz J. Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Daniel Feldbacher
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
- Department of Biosciences, University of Salzburg, Hellbrunner Strasse, 34, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (F.J.G.); (N.Z.); (D.F.); (R.G.)
- Correspondence: ; Tel.: +43-57255-25847; Fax: +43-57255-25998
| |
Collapse
|
43
|
Azimi FC, Lee JE. Structural perspectives on HIV-1 Vif and APOBEC3 restriction factor interactions. Protein Sci 2020; 29:391-406. [PMID: 31518043 PMCID: PMC6954718 DOI: 10.1002/pro.3729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 11/06/2022]
Abstract
Human immunodeficiency virus (HIV) is a retroviral pathogen that targets human immune cells such as CD4+ T cells, macrophages, and dendritic cells. The human apolipoprotein B mRNA- editing catalytic polypeptide 3 (APOBEC3 or A3) cytidine deaminases are a key class of intrinsic restriction factors that inhibit replication of HIV. When HIV-1 enters the cell, the immune system responds by inducing the activation of the A3 family proteins, which convert cytosines to uracils in single-stranded DNA replication intermediates, neutralizing the virus. HIV counteracts this intrinsic immune response by encoding a protein termed viral infectivity factor (Vif). Vif targets A3 to an E3 ubiquitin ligase complex for poly-ubiquitination and proteasomal degradation. Vif is unique in that it can recognize and counteract multiple A3 restriction factor substrates. Structural biology studies have provided significant insights into the overall architectures and functions of Vif and A3 proteins; however, a structure of the Vif-A3 complex has remained elusive. In this review, we summarize and reanalyze experimental data from recent structural, biochemical, and functional studies to provide key perspectives on the residues involved in Vif-A3 protein-protein interactions.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
44
|
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci 2019; 20:E6249. [PMID: 31835747 PMCID: PMC6941098 DOI: 10.3390/ijms20246249] [Citation(s) in RCA: 530] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the capability of modulating gene expression at the post-transcriptional level either by inhibiting messenger RNA (mRNA) translation or by promoting mRNA degradation. The outcome of a myriad of physiological processes and pathologies, including cancer, cardiovascular and metabolic diseases, relies highly on miRNAs. However, deciphering the precise roles of specific miRNAs in these pathophysiological contexts is challenging due to the high levels of complexity of their actions. Indeed, regulation of mRNA expression by miRNAs is frequently cell/organ specific; highly dependent on the stress and metabolic status of the organism; and often poorly correlated with miRNA expression levels. Such biological features of miRNAs suggest that various regulatory mechanisms control not only their expression, but also their activity and/or bioavailability. Several mechanisms have been described to modulate miRNA action, including genetic polymorphisms, methylation of miRNA promoters, asymmetric miRNA strand selection, interactions with RNA-binding proteins (RBPs) or other coding/non-coding RNAs. Moreover, nucleotide modifications (A-to-I or C-to-U) within the miRNA sequences at different stages of their maturation are also critical for their functionality. This regulatory mechanism called "RNA editing" involves specific enzymes of the adenosine/cytidine deaminase family, which trigger single nucleotide changes in primary miRNAs. These nucleotide modifications greatly influence a miRNA's stability, maturation and activity by changing its specificity towards target mRNAs. Understanding how editing events impact miRNA's ability to regulate stress responses in cells and organs, or the development of specific pathologies, e.g., metabolic diseases or cancer, should not only deepen our knowledge of molecular mechanisms underlying complex diseases, but can also facilitate the design of new therapeutic approaches based on miRNA targeting. Herein, we will discuss the current knowledge on miRNA editing and how this mechanism regulates miRNA biogenesis and activity.
Collapse
Affiliation(s)
| | | | | | | | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (M.C.d.S.); (M.G.); (D.D.); (C.S.)
| |
Collapse
|
45
|
Asaoka M, Ishikawa T, Takabe K, Patnaik SK. APOBEC3-Mediated RNA Editing in Breast Cancer is Associated with Heightened Immune Activity and Improved Survival. Int J Mol Sci 2019; 20:E5621. [PMID: 31717692 PMCID: PMC6888598 DOI: 10.3390/ijms20225621] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
APOBEC3 enzymes contribute significantly to DNA mutagenesis in cancer. These enzymes are also capable of converting C bases at specific positions of RNAs to U. However, the prevalence and significance of this C-to-U RNA editing in any cancer is currently unknown. We developed a bioinformatics workflow to determine RNA editing levels at known APOBEC3-mediated RNA editing sites using exome and mRNA sequencing data of 1040 breast cancer tumors. Although reliable editing determinations were limited due to sequencing depth, editing was observed in both tumor and adjacent normal tissues. For 440 sites (411 genes), editing was determinable for ≥5 tumors, with editing occurring in 0.6%-100% of tumors (mean 20%, SD 14%) at an average level of 0.6%-20% (mean 7%, SD 4%). Compared to tumors with low RNA editing, editing-high tumors had enriched expression of immune-related gene sets, and higher T cell and M1 macrophage infiltration, B and T cell receptor diversity, and immune cytolytic activity. Concordant with this, patients with increased RNA editing in tumors had better disease- and progression-free survivals (hazard ratio = 1.67-1.75, p < 0.05). Our study identifies that APOBEC3-mediated RNA editing occurs in breast cancer tumors and is positively associated with elevated immune activity and improved survival.
Collapse
Affiliation(s)
- Mariko Asaoka
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Kazuaki Takabe
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Japan
| | - Santosh K. Patnaik
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
46
|
Perelygina L, Chen MH, Suppiah S, Adebayo A, Abernathy E, Dorsey M, Bercovitch L, Paris K, White KP, Krol A, Dhossche J, Torshin IY, Saini N, Klimczak LJ, Gordenin DA, Zharkikh A, Plotkin S, Sullivan KE, Icenogle J. Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies. PLoS Pathog 2019; 15:e1008080. [PMID: 31658304 PMCID: PMC6837625 DOI: 10.1371/journal.ppat.1008080] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/07/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] Open
Abstract
Rubella viruses (RV) have been found in an association with granulomas in children with primary immune deficiencies (PID). Here, we report the recovery and characterization of infectious immunodeficiency-related vaccine-derived rubella viruses (iVDRV) from diagnostic skin biopsies of four patients. Sequence evolution within PID hosts was studied by comparison of the complete genomic sequences of the iVDRVs with the genome of the vaccine virus RA27/3. The degree of divergence of each iVDRV correlated with the duration of persistence indicating continuous intrahost evolution. The evolution rates for synonymous and nonsynonymous substitutions were estimated to be 5.7 x 10-3 subs/site/year and 8.9 x 10-4 subs/site/year, respectively. Mutational spectra and signatures indicated a major role for APOBEC cytidine deaminases and a secondary role for ADAR adenosine deaminases in generating diversity of iVDRVs. The distributions of mutations across the genes and 3D hotspots for amino acid substitutions in the E1 glycoprotein identified regions that may be under positive selective pressure. Quasispecies diversity was higher in granulomas than in recovered infectious iVDRVs. Growth properties of iVDRVs were assessed in WI-38 fibroblast cultures. None of the iVDRV isolates showed complete reversion to wild type phenotype but the replicative and persistence characteristics of iVDRVs were different from those of the RA27/3 vaccine strain, making predictions of iVDRV transmissibility and teratogenicity difficult. However, detection of iVDRV RNA in nasopharyngeal specimen and poor neutralization of some iVDRV strains by sera from vaccinated persons suggests possible public health risks associated with iVDRV carriers. Detection of IgM antibody to RV in sera of two out of three patients may be a marker of virus persistence, potentially useful for identifying patients with iVDRV before development of lesions. Studies of the evolutionary dynamics of iVDRV during persistence will contribute to development of infection control strategies and antiviral therapies.
Collapse
Affiliation(s)
- Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Min-hsin Chen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suganthi Suppiah
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Adebola Adebayo
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Emily Abernathy
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Morna Dorsey
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
| | - Lionel Bercovitch
- Department of Dermatology, Hasbro Children's Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Kenneth Paris
- Division of Allergy and Immunology, Children's Hospital New Orleans, New Orleans, Louisiana, United States of America
| | - Kevin P. White
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Alfons Krol
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Julie Dhossche
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ivan Y. Torshin
- Institute of Pharmacoinformatics, Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Dorodnicyn Computing Center, Moscow, Russian Federation
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Andrey Zharkikh
- Myriad Genetics, Inc., Salt Lake City, Utah, United States of America
| | - Stanley Plotkin
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kathleen E. Sullivan
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Joseph Icenogle
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
47
|
Michalski D, Ontiveros JG, Russo J, Charley PA, Anderson JR, Heck AM, Geiss BJ, Wilusz J. Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J Biol Chem 2019; 294:16282-16296. [PMID: 31519749 DOI: 10.1074/jbc.ra119.009129] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Insect-borne flaviviruses produce a 300-500-base long noncoding RNA, termed subgenomic flavivirus RNA (sfRNA), by stalling the cellular 5'-3'-exoribonuclease 1 (XRN1) via structures located in their 3' UTRs. In this study, we demonstrate that sfRNA production by Zika virus represses XRN1 analogous to what we have previously shown for other flaviviruses. Using protein-RNA reconstitution and a stringent RNA pulldown assay with human choriocarcinoma (JAR) cells, we demonstrate that the sfRNAs from both dengue type 2 and Zika viruses interact with a common set of 21 RNA-binding proteins that contribute to the regulation of post-transcriptional processes in the cell, including splicing, RNA stability, and translation. We found that four of these sfRNA-interacting host proteins, DEAD-box helicase 6 (DDX6) and enhancer of mRNA decapping 3 (EDC3) (two RNA decay factors), phosphorylated adaptor for RNA export (a regulator of the biogenesis of the splicing machinery), and apolipoprotein B mRNA-editing enzyme catalytic subunit 3C (APOBEC3C, a nucleic acid-editing deaminase), inherently restrict Zika virus infection. Furthermore, we demonstrate that the regulations of cellular mRNA decay and RNA splicing are compromised by Zika virus infection as well as by sfRNA alone. Collectively, these results reveal the large extent to which Zika virus-derived sfRNAs interact with cellular RNA-binding proteins and highlight the potential for widespread dysregulation of post-transcriptional control that likely limits the effective response of these cells to viral infection.
Collapse
Affiliation(s)
- Daniel Michalski
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - J Gustavo Ontiveros
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Joseph Russo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Phillida A Charley
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Adam M Heck
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523 .,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
48
|
Abstract
C-to-U RNA editing enzymatically converts the base C to U in RNA molecules and could lead to nonsynonymous changes when occurring in coding regions. Hundreds to thousands of coding sites were recently found to be C-to-U edited or editable in humans, but the biological significance of this phenomenon is elusive. Here, we test the prevailing hypothesis that nonsynonymous editing is beneficial because it provides a means for tissue- or time-specific regulation of protein function that may be hard to accomplish by mutations due to pleiotropy. The adaptive hypothesis predicts that the fraction of sites edited and the median proportion of RNA molecules edited (i.e., editing level) are both higher for nonsynonymous than synonymous editing. However, our empirical observations are opposite to these predictions. Furthermore, the frequency of nonsynonymous editing, relative to that of synonymous editing, declines as genes become functionally more important or evolutionarily more constrained, and the nonsynonymous editing level at a site is negatively correlated with the evolutionary conservation of the site. Together, these findings refute the adaptive hypothesis; they instead indicate that the reported C-to-U coding RNA editing is mostly slightly deleterious or neutral, probably resulting from off-target activities of editing enzymes. Along with similar conclusions on the more prevalent A-to-I editing and m6A modification of coding RNAs, our study suggests that, at least in humans, most events of each type of posttranscriptional coding RNA modification likely manifest cellular errors rather than adaptations, demanding a paradigm shift in the research of posttranscriptional modification.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
49
|
Sharma S, Wang J, Alqassim E, Portwood S, Cortes Gomez E, Maguire O, Basse PH, Wang ES, Segal BH, Baysal BE. Mitochondrial hypoxic stress induces widespread RNA editing by APOBEC3G in natural killer cells. Genome Biol 2019; 20:37. [PMID: 30791937 PMCID: PMC6383285 DOI: 10.1186/s13059-019-1651-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Background Protein recoding by RNA editing is required for normal health and evolutionary adaptation. However, de novo induction of RNA editing in response to environmental factors is an uncommon phenomenon. While APOBEC3A edits many mRNAs in monocytes and macrophages in response to hypoxia and interferons, the physiological significance of such editing is unclear. Results Here, we show that the related cytidine deaminase, APOBEC3G, induces site-specific C-to-U RNA editing in natural killer cells, lymphoma cell lines, and, to a lesser extent, CD8-positive T cells upon cellular crowding and hypoxia. In contrast to expectations from its anti-HIV-1 function, the highest expression of APOBEC3G is shown to be in cytotoxic lymphocytes. RNA-seq analysis of natural killer cells subjected to cellular crowding and hypoxia reveals widespread C-to-U mRNA editing that is enriched for genes involved in mRNA translation and ribosome function. APOBEC3G promotes Warburg-like metabolic remodeling in HuT78 T cells under similar conditions. Hypoxia-induced RNA editing by APOBEC3G can be mimicked by the inhibition of mitochondrial respiration and occurs independently of HIF-1α. Conclusions APOBEC3G is an endogenous RNA editing enzyme in primary natural killer cells and lymphoma cell lines. This RNA editing is induced by cellular crowding and mitochondrial respiratory inhibition to promote adaptation to hypoxic stress. Electronic supplementary material The online version of this article (10.1186/s13059-019-1651-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shraddha Sharma
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.,Present Address: Translate Bio, Lexington, MA, 02421, USA
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Emad Alqassim
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Scott Portwood
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Eduardo Cortes Gomez
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Orla Maguire
- Department of Flow and Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Per H Basse
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Eunice S Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Bora E Baysal
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
50
|
Lerner T, Papavasiliou FN, Pecori R. RNA Editors, Cofactors, and mRNA Targets: An Overview of the C-to-U RNA Editing Machinery and Its Implication in Human Disease. Genes (Basel) 2018; 10:E13. [PMID: 30591678 PMCID: PMC6356216 DOI: 10.3390/genes10010013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
One of the most prevalent epitranscriptomic modifications is RNA editing. In higher eukaryotes, RNA editing is catalyzed by one of two classes of deaminases: ADAR family enzymes that catalyze A-to-I (read as G) editing, and AID/APOBEC family enzymes that catalyze C-to-U. ADAR-catalyzed deamination has been studied extensively. Here we focus on AID/APOBEC-catalyzed editing, and review the emergent knowledge regarding C-to-U editing consequences in the context of human disease.
Collapse
Affiliation(s)
- Taga Lerner
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
- Division of Biosciences, Uni Heidelberg, 69120 Heidelberg, Germany.
| | - F Nina Papavasiliou
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
| | - Riccardo Pecori
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
| |
Collapse
|