1
|
Huang F, Graham NJD, Su Z, Xu L, Yu W. Capabilities of Microbial Consortia from Disparate Environment Matrices in the Decomposition of Nature Organic Matter by Biofiltration. WATER RESEARCH 2024; 262:122047. [PMID: 39003956 DOI: 10.1016/j.watres.2024.122047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Dissolved organic matter (DOM) plays a pivotal role in drinking water treatment, influencing the performance of unit processes and final water quality (e.g. disinfection byproduct risk). Biofiltration is an effective method of reducing DOM, but currently lacks a comprehensive appreciation of the association between microbial profiles and biofiltration performance. In this study, bench-scale biofiltration units inoculated with microbial consortia from river and soil matrices were operated successively for comparing their efficacy in terms of DOM removal. The results showed that biofiltration units receiving soil microbes were significantly superior (p < 0.05) to those receiving river inoculated microbes in terms of decomposing DOM recalcitrant fractions and reducing DBP formation potential, resulting in DOC and DBP precursor removals of up to 58.4 % and 87.9 %, respectively. Characterization of the taxonomic composition revealed that differences in the microbial assembly of the two biofilter groups were subject to deterministic rather than stochastic factors. Furthermore, more complicated interspecific relationships and niche structures in soil inoculated biofilters were deciphered by co-occurrence network, providing a plausible profile on a taxonomic division of labor in DOM stepwise degradation. Accordingly, the contribution of microbial compositions was found to be of greater importance than the GAC mass and biomass attached to the media. Thus, this study has advanced the understanding of microbial-mediated DOM decomposition in biofiltration, and also provided a promising strategy for enhancing the process for water use via developing appropriate engineered consortia of bacteria.
Collapse
Affiliation(s)
- Fan Huang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
2
|
Chen H, Shan X, Qiu X, Ding L, Liang X, Guo X. High-Resolution Mass Spectrometry Combined with Reactive Oxygen Species Reveals Differences in Photoreactivity of Dissolved Organic Matter from Microplastic Sources in Aqueous Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10334-10346. [PMID: 38805726 DOI: 10.1021/acs.est.4c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Microplastics (MPs)-derived dissolved organic matter (MPs-DOM) is becoming a non-negligible source of DOM pools in aquatic systems, but there is limited understanding about the photoreactivity of different MPs-DOM. Herein, MPs-DOM from polystyrene (PS), polyethylene terephthalate (PET), poly(butylene adipate-co-terephthalate) (PBAT), PE, and polypropylene (PP), representing aromatic, biodegradable, and aliphatic plastics, were prepared to examine their photoreactivity. Spectral and high-resolution mass spectrometry analyses revealed that PS/PET/PBAT-DOM contained more unsaturated aromatic components, whereas PE/PP-DOM was richer in saturated aliphatic components. Photodegradation experiments observed that unsaturated aromatic molecules were prone to be degraded compared to saturated aliphatic molecules, leading to a higher degradation of PS/PET/PBAT-DOM than PE/PP-DOM. PS/PET/PBAT-DOM was mainly degraded by hydroxyl (•OH) via attacking unsaturated aromatic structures, whereas PE/PP-DOM by singlet oxygen (1O2) through oxidizing aliphatic side chains. The [•OH]ss was 1.21-1.60 × 10-4 M in PS/PET/PBAT-DOM and 0.97-1.14 × 10-4 M in PE/PP-DOM, while the [1O2]ss was 0.90-1.35 × 10-12 and 0.33-0.44 × 10-12 M, respectively. This contributes to the stronger photoreactivity of PS/PET/PBAT-DOM with a higher unsaturated aromatic degree than PE/PP-DOM. The photodegradation of MPs-DOM reflected a decreasing tendency from aromatic-unsaturated molecules to aliphatic-saturated molecules. Special attention should be paid to the photoreactivity and environmental impacts associated with MPs-DOM containing highly unsaturated aromatic compounds.
Collapse
Affiliation(s)
- Hao Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoling Shan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Liu Y, Li M, Ren D, Li Y. Spatial distribution of sediment dissolved organic matter in oligotrophic lakes and its binding characteristics with Pb(II) and Cu(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43369-43380. [PMID: 38902445 DOI: 10.1007/s11356-024-34043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Dissolved organic matter (DOM), the most active component in interstitial waters, determines the stability of heavy metals and secondary release in sediments. However, little is known about the composition and metal-binding patterns of DOM in interstitial water from oligotrophic lakes affected by different anthropogenic perturbations. Here, 18 interstitial water samples were prepared from sediments in agricultural, residential, tourist, and forest regions in an oligotrophic lake (Shengzhong Lake in Sichuan Province, China) watershed. Interstitial water quality and DOM composition, properties, and Cu(II)- and Pb(II)-binding characteristics were measured via physicochemical analysis, UV-vis spectroscopic, fluorescence excitation-emission matrix-parallel factor analysis (EEM-PARAFAC), and fluorescence titration methods. The DOM, which was produced mainly by microbial activities, had low molecular weights, humification degrees, and aromaticity. Based on EEM-PARAFAC results, the DOM was generally composed of tryptophan- (57.7%), terrestrial humic- (18.7%), microbial humic- (15.6%), and tyrosine-like (8.0%) substances. The DOM in the metal complexes was primarily composed of tryptophan-like substances, which accounted for ~42.6% of the DOM-Cu(II) complexes and ~72.0% of the DOM-Pb(II) complexes; however, microbial humic-like substances primarily contributed to the stability of DOM-Cu(II) (logKCu = 3.7-4.6) and DOM-Pb(II) (logKPb = 4.3-4.8). Water quality parameters did not significantly affect the stability of DOM-metal complexes. We demonstrated that the metal-binding patterns of DOM in interstitial water from oligotrophic lakes are highly dependent on microbial DOM composition and are affected by anthropogenic perturbations to a lesser extent.
Collapse
Affiliation(s)
- Yanmei Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Mengyuan Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
- Nanchong Key Laboratory of Eco-Environmental Protection and Pollution Prevention in Jialing River Basin, Nanchong, 637000, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
4
|
Huang H, Zan S, Shao K, Chen H, Fan J. Spatial distribution characteristics and interaction effects of DOM and microbial communities in kelp cultivation areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170511. [PMID: 38309352 DOI: 10.1016/j.scitotenv.2024.170511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The influence of macroalgae cultivation on aquaculture carbon sinks is significant, with microbial carbon (C) pumps contributing to a stable inert dissolved carbon pool in this context. Concurrently, dissolved organic matter (DOM) exchange at the marine sediment-water interface profoundly affects global ecosystem element cycling. However, the interactions between DOM and bacterial communities at the sediment-water interface in kelp cultivation areas, especially regarding microbial function prediction, have not been fully explored. This study analyzed the DOM characteristics, environmental factors, and bacterial community structure in the Tahewan kelp--Saccharina japonica cultivated area and compared them with those in non-cultivated areas. The results indicated significantly higher dissolved organic carbon (DOC) concentrations in the kelp culture area, particularly in surface seawater and overlying water. The dominant bacterial phyla in both regions included Pseudomonadota, Actinomycetota, and Bacteroidota in both regions, while Desulfobacterota was more prevalent in the sediment environment of the cultivated region. Parallel factor analysis (EEM-PARAFAC) was used to identify DOM components, among which component C2 (a microbial humic-like substance DOM) was highly resistant to microbial degradation. We infer that C2 has similar properties to recalcitrant dissolved organic matter (RDOM). Analysis of the predicted functional genes based on 16S rRNA gene data showed that methanol oxidation, methylotrophy, and methanotrophy were significant in the bottom seawater of the cultivation area. The carbon (C), nitrogen (N), and sulfur (S) cycle functional genes in the sediment environment of the kelp cultivation area were more active than those in other areas, especially in which sulfate reduction and denitrification were the two main processes. Furthermore, a DOM priming effect was identified in the cultivated sediment environment, where kelp-released labile dissolved organic matter (LDOM) stimulates rapid degradation of the original RDOM, potentially enhancing C sequestration.
Collapse
Affiliation(s)
- Huiling Huang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China
| | - Shuaijun Zan
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Kuishuang Shao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China
| | - Hanjun Chen
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Jingfeng Fan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, China.
| |
Collapse
|
5
|
Ni Z, Wu Y, Ma Y, Li Y, Li D, Lin W, Wang S, Zhou C. Spatial gradients and molecular transformations of DOM, DON and DOS in human-impacted estuarine sediments. ENVIRONMENT INTERNATIONAL 2024; 185:108518. [PMID: 38430584 DOI: 10.1016/j.envint.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/11/2024] [Accepted: 02/18/2024] [Indexed: 03/04/2024]
Abstract
Dissolved organic matter (DOM) constitutes the most active fraction in global carbon pools, with estuarine sediments serving as significant repositories, where DOM is susceptible to dynamic transformations. Anthropogenic nitrogen (N) and sulfur (S) inputs further complicate DOM by creating N-bearing DOM (DON) and S-bearing DOM (DOS). This study delves into the spatial gradients and transformation mechanisms of DOM, DON, and DOS in Pearl River Estuary (PRE) sediments, China, using combined techniques of UV-visible spectroscopy, Excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and microbial high-throughput sequencing. Results uncovered a distinct spatial gradient in DOM concentration, aromaticity (SUVA254), hydrophobicity (SUVA260), the content of substituent groups including carboxyl, carbonyl, hydroxyl and ester groups (A253/A203) of chromophoric DOM (CDOM), and the abundances of tyrosine/tryptophan-like protein and humic-like substances in fluorophoric DOM (FDOM). These all decreased from upper to lower PRE, accompanied by a decrease in O3S and O5S components, indicating seaward reduction in the contribution of terrestrial OM, especially anthropogenic inputs. Additionally, sediments exhibited a reduction in molecular diversity (number of formulas) of DOM, DON, and DOS from upper to lower PRE, with molecules tending towards a lower nominal oxidation state of carbon (NOSC) and higher bio-reactivity (MLBL), molecular weight (m/z) and saturation (H/C). While molecular composition of DOM remained similar in PRE sediments, the relative abundance of lignin-like substances decreased, with a concurrent increase in protein-like and lipid-like substances in DON and DOS from upper to lower PRE. Mechanistic analysis identified the joint influence of terrestrial OM, anthropogenic N/S inputs, and microbial processes in shaping the spatial gradients of DOM, DON, and DOS in PRE estuarine sediments. This study contributes valuable insights into the intricate spatial gradients and transformations of DOM, DON, and DOS within human-impacted estuarine sediments.
Collapse
Affiliation(s)
- Zhaokui Ni
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034, China
| | - Yue Wu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Ma
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yu Li
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Dan Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chunyang Zhou
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
6
|
Luo M, Wang S, Zhang S, Zhou T, Lu J, Guo S. Ecological role of reed belts in lakeside zone: Impacts on nutrient retention and bacterial community assembly during Hydrilla verticillata decomposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120489. [PMID: 38402786 DOI: 10.1016/j.jenvman.2024.120489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Reed belts acting as basic nutrient filters are important parts of lake buffer riparian zones. However, little is known about their impacts on nutrient release and bacterial community during plant litter decomposition. In this study, a field experiment was conducted in west-lake Taihu to monitor the changes in nutrients, bacterial enzymatic activities, and bacterial community in plant debris during Hydrilla verticillata (H. verticillata) decomposition in open water (HvC) and reed belts (HvL) area for 126 days. We found that there was lower temperature but higher nutrient concentrations in overlying water in HvL than HvC. Partial least squares path modeling revealed that environmental parameters in overlying water had important impacts on bacterial activities and nutrient release (such as alkaline phosphatase, cellulase, and soluble sugar) and therefore affected dissolved organic matter components in plant debris. According to Illumina sequencing, 46,003 OTUs from 10 dominant phyla were obtained and Shannon index was higher in HvL than HvC at the same sampling time. Neutral community model explained 49% of bacterial community variance and immigration rate by the estimate of dispersal in HvC (Nm: 27,154) and HvL (Nm: 25,765), respectively. Null model showed stochastic factors governed the bacterial community assembly in HvC (66.67%) and HvL (87.28%). TP and pH were key factors affecting the bacterial community structure at the phylum level. More hubs and complex interactions among bacteria were observed in HvL than HvC. Function analysis showed bacterial community had important role in carbon, organic phosphorus, and nitrogen removal but phosphorus-starvation was detected in debris of H. verticillata. This study provides useful information for understanding the changes in nutrients and bacterial community in litter during H. verticillata decomposition and highlights the role of reed belts on retained plant litter to protect lake from pollution.
Collapse
Affiliation(s)
- Min Luo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shuncai Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Tiantian Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianhui Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shaozhuang Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
7
|
Yuan Y, Li Q, Deng J, Ma X, Liao X, Zou J, Li G, Chen G, Dai H. Rainwater extracting characteristics and its potential impact on DBPs generation: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167282. [PMID: 37769737 DOI: 10.1016/j.scitotenv.2023.167282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Frequent extreme precipitation events due to global warming can lead to large amounts of pollutants entering source water bodies via surface runoff and wet deposition, thus posing a threat to water supply security. In order to better understand the source characteristics and leaching mechanisms of rainwater dissolved organic matter (DOM), as well as its disinfection by-products formation potential (DBPsFP) during disinfection processes, rainwater samples were collected and extracting experiments were conducted. Three components were identified in rainwater through Parallel factor (PARAFAC) analysis, which were microbial humic-like component C1 (63.1 %), protein (tryptophan-like) component C2 (28.9 %), marine or terrestrial humic-like component C3 (8.1 %). The average molecular weight of rainwater fractions was ordered: hydrophobic neutral (HON) < hydrophobic bases (HOB) < hydrophobic acidic (HOA) < hydrophilic (HIS). The HOA and HON fractions of rainwater were the dominant precursors of trihalomethanes (THMs), while the rainwater HON fraction and hydrophilic fraction were the main precursor of haloacetic acids (HAAs) and trihloroacetonitrile (TCAN), respectively. Subsoil extracts had a higher concentration of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) than topsoil extracts. Partial least squares path modeling (PLS-PM) demonstrated that the extraction temperature was the dominant factor affecting the abundance of DOM in the topsoil extracts (R2 = 0.28), while the extraction time accounted more for the abundance of fluorescence substance and physicochemical indices in the subsoil extracts (R2 = 0.23 and 0.32, respectively). These results provide key information for controlling the impacts of global warming, in particular the risk of water sources being heavily contaminated by request rainfalls.
Collapse
Affiliation(s)
- Yujin Yuan
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China; Key Laboratory of Water Resources Utilization and Protection, Xiamen City, Xiamen 361005, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China; Key Laboratory of Water Resources Utilization and Protection, Xiamen City, Xiamen 361005, China.
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Ma
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaobin Liao
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jing Zou
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| | - Guoxin Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China.
| | - Guoyuan Chen
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China.
| | - Huilin Dai
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China
| |
Collapse
|
8
|
Zeeshan M, Ali O, Tabraiz S, Ruhl AS. Seasonal variations in dissolved organic matter concentration and composition in an outdoor system for bank filtration simulation. J Environ Sci (China) 2024; 135:252-261. [PMID: 37778800 DOI: 10.1016/j.jes.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 10/03/2023]
Abstract
Dissolved organic matter (DOM) in surface waters can vary markedly in character depending on seasonal variations such as rainfall intensity, UV radiations and temperature. Changes in DOM as well as temperature and rainfall intensity over the year can affect the biochemical processes occurring in bank filtration (BF). Identification and characterization of DOM in the surface water could help to optimize the water treatment and provide stable and safe drinking water. This study investigated year-long variations of DOM concentrations and compositions in a surface water of a circulated outdoor pond (research facility) connected to a BF passage. DOM was dominated by humic substances and a changing pattern of DOM in surface water was observed throughout the year. A significant increase of DOM (∼ 38%) in surface water was noted in August compared to November. The fluorescent DOM showed that DOM in summer was enriched with the degradable fraction whilst non-degradable fraction was dominated in winter. A constant (1.7 ± 0.1 mg/L) effluent DOM was recirculated in the system throughout the year. DOM removal through BF varied between 4% to 39% and was achieved within a few meters after infiltration and significantly correlated with influent DOM concentration (R2 = 0.82, p < 0.05). However, no significant (p > 0.05) change in the removal of DOM was observed in two subsurface layers (upper and lower). This study highlights the presence of a constant non-degradable DOM in the bank filtrate, which was not affected by temperature, redox conditions and UV radiations.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany; Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany.
| | - Omamah Ali
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany; Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| | - Shamas Tabraiz
- Natural and Applied Sciences Section, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Aki Sebastian Ruhl
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany; Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
9
|
Dai T, Wang L, Li T, Qiu P, Wang J, Song H. Potential linkage between WWTPs-river-integrated area pollution risk assessment and dissolved organic matter spectral index. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6693-6711. [PMID: 37355494 DOI: 10.1007/s10653-023-01637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
The direct discharge of wastewater can cause severe damage to the water environment of the surface water. However, the influence of dissolved organic matter (DOM) present in wastewater on the allocation of DOM, nitrogen (N), and phosphorus (P) in rivers remains largely unexplored. Addressing the urgent need to monitor areas affected by direct wastewater discharge in a long-term and systematic manner is crucial. In this paper, the DOM of overlying water and sediment in the WWTPs-river-integrated area was characterized by ultraviolet-visible absorption spectroscopy (UV-vis), three-dimensional excitation-emission matrix combined with parallel factor (PARAFAC) method. The effects of WWTPs on receiving waters were investigated, and the potential link between DOM and N, P pollution was explored. The pollution risk was fitted and predicted using a spectral index. The results indicate that the improved water quality index (IWQI) is more suitable for the WWTPs-river integration zone. The DOM fraction in this region is dominated by humic-like matter, which is mainly influenced by WWTPs drainage as well as microbial activities. The DOM fractions in sediment and overlying water were extremely similar, but fluorescence intensity possessed more significant spatial differences. The increase in humic-like matter facilitates the production and preservation of P and also inhibits nitrification, thus affecting the N cycle. There is a significant correlation between DOM fraction, fluorescence index, and N, P. Fluorescence index (FI) fitting of overlying water DOM predicted IWQI and trophic level index, and a(254) fitting of sediment DOM predicted nitrogen and phosphorus pollution risk (FF) with good results. These results contribute to a better understanding of the impact of WWTPs on receiving waters and the potential link between DOM and N and P pollution and provide new ideas for monitoring the water environment in highly polluted areas.
Collapse
Affiliation(s)
- Taoyan Dai
- School of Water Resources and Electricity, Heilongjiang University, Harbin, 150080, China
| | - Liquan Wang
- School of Water Resources and Electricity, Heilongjiang University, Harbin, 150080, China.
| | - Tienan Li
- Heilongjiang Province Hydraulic Research Institute, Harbin, 150080, China
| | - Pengpeng Qiu
- Heilongjiang Province Hydraulic Research Institute, Harbin, 150080, China
| | - Jun Wang
- Heilongjiang Province Hydraulic Research Institute, Harbin, 150080, China
| | - Haotian Song
- School of Water Resources and Electricity, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
10
|
Zeeshan M, Schumann P, Pabst S, Ruhl AS. Transformation of potentially persistent and mobile organic micropollutants in column experiments. Heliyon 2023; 9:e15822. [PMID: 37159681 PMCID: PMC10163653 DOI: 10.1016/j.heliyon.2023.e15822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
The occurrence of potentially persistent and mobile (PM) organic micropollutants (OMP) in the aquatic environment is recognized as a severe threat to water resources and drinking water suppliers. The current study investigated long-term fate (persistency and bio-transformation) of several emerging contaminants in a simulated bank filtration (BF) for the first time. In parallel, four sand column systems were operated with groundwater and continuously spiked with an average concentration of 1 μg/L for 24 OMP. Each column system consisted of two sand columns connected in series. Presumably, biological activities in the first column were higher than in the second column, as dissolved oxygen utilization, dissolved organic matter (DOM) and UV absorbance at 254 nm (UV254) reduction rates were high in the first column. This study revealed that 9 out of 24 OMP were persistent and mobile throughout the study under oxic conditions and within a hydraulic retention time (HRT) of 12 days. However, 2 (out of 9) OMP were persistent but showed sorption behavior. 15 (out of 24) OMP displayed bio-transformation, 4 were eliminated entirely within 4.5 days of HRT. Others showed constant or improved degradation with the adaptation (or operation) time. Improved degradation with adaption was high in the bioactive sand columns. However, 8 OMP showed improved elimination at high HRT, even in low biologically active columns. In addition, no significant effect of the DOM on the eliminations of OMP was found except for 4-hydroxy-1-(2-hydroxyethyl)-2,2,6,6,-tetramethylpiperidine (HHTMP), 2-methyl-2-propene-1-sulfonic acid (MPSA) and sulfamethoxazole (SMX). The eliminations of HHTMP (Pearson's r > 0.80, p < 0.05), MPSA (Pearson's r > 0.70) and SMX (Pearson's r > 0.80) correlated with the removals of humic substances in the sand columns. Overall, adaptation time and HRT play a crucial role in the elimination of emerging OMP through BF, yet at the same time several OMP exhibit persistent behavior.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany
- Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| | - Pia Schumann
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany
- Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| | - Silke Pabst
- German Environment Agency, Section II 3.1, Schichauweg 58, 12307, Berlin, Germany
| | - Aki Sebastian Ruhl
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany
- Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
11
|
Hu T, Luo M, Qi Y, He D, Chen L, Xu Y, Chen D. Molecular evidence for the production of labile, sulfur-bearing dissolved organic matter in the seep sediments of the South China Sea. WATER RESEARCH 2023; 233:119732. [PMID: 36801578 DOI: 10.1016/j.watres.2023.119732] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Cold seeps with methane-rich fluids leaking out of the seafloor usually support massive biomass of chemosynthetic organisms and associated fauna. A substantial amount of methane is converted to dissolved inorganic carbon by microbial metabolism, and this process also releases dissolved organic matter (DOM) into pore water. Here, pore water samples from "Haima cold seeps" sediments and the non-seep reference sediments in the northern South China Sea were analyzed for optical properties and molecular compositions of pore water DOM. Our results showed that the relative abundance of protein-like DOM, H/Cwa and molecular lability boundary percentage (MLBL%) in the seep sediments were significantly higher than those in the reference sediments, indicating that more labile DOM related to unsaturated aliphatic compounds is produced in the seep sediments. Spearman's correlation of the fluoresce and molecular data suggested that the humic-like components (C1 and C2) mainly constituted the refractory compounds (CRAM, highly unsaturated and aromatics compounds). In contrast, the protein-like component (C3) had high H/C ratios featuring high degree of DOM lability. The amount of S-containing formulas (CHOS and CHONS) was greatly elevated in the seep sediments, likely caused by abiotic and biotic sulfurization of DOM in the sulfidic environment. Although the abiotic sulfurization was proposed to have a stabilizing effect on organic matter, our results implied that the biotic sulfurization in the cold seep sediments would increase DOM lability. Overall, the labile DOM accumulated in the seep sediments is closely linked to methane oxidation, which not only support heterotrophic communities and but also likely have an impact on carbon and sulfur cycling in the sediments and the ocean.
Collapse
Affiliation(s)
- Tingcang Hu
- College of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Min Luo
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
| | - Yulin Qi
- Institute of Surface-Earth System Science, College of Earth System Science, Tianjin University, Tianjin, China
| | - Ding He
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Linying Chen
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yunping Xu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Duofu Chen
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
12
|
Ifon BE, Adyari B, Hou L, Zhang L, Liao X, Peter PO, Rashid A, Yu CP, Hu A. Insight into variation and controlling factors of dissolved organic matter between urban rivers undergoing different anthropogenic influences. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116737. [PMID: 36403459 DOI: 10.1016/j.jenvman.2022.116737] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM), known as a key to the aquatic carbon cycle, is influenced by abiotic and biotic factors. However, the compositional variation and these factors' effects on fluorescence DOM (FDOM) in urban rivers undergoing different anthropogenic pressure are poorly investigated. Herein, using fluorescence excitation-emission matrix and parallel factor analysis (EEM-PARAFAC), four FDOM components (C1, C2, C3, and C4) were identified in a less urbanized north river (NR) and a more urbanized west river (WR) of Jiulong River Watershed in Fujian province, China. C1, C2, and C4 were related to humic-like substances (HLS) and C3 to protein-like substances (PLS). HLS (63.9% in WR and 36.4% in NR) and PLS (62.7% in WR and 37.3% in NR) exhibited higher fluorescence in the more urbanized river. We also found higher PLS in winter, but higher HLS in summer for both rivers. Although the coefficient of variation indicated a difference in FDOM components stability to some extent between the two rivers, the typhoon event that occurred in summer had a stronger disruptive impact on the CDOM and FDOM of a more urbanized river than that of a less urbanized river. We explore abiotic and biotic factors' effects on FDOM using the partial least squares path model (PLS-PM). PLS-PM results revealed higher significant influences of biotic factors on FDOM in the more urbanized river. This study enhances our understanding of FDOM dynamics of rivers with different anthropogenic pressure together with the abiotic and biotic factors driving them.
Collapse
Affiliation(s)
- Binessi Edouard Ifon
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Laboratory of Physical Chemistry, University of Abomey-Calavi, Republic of Benin, 01 BP 4521 Cotonou, Benin
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta, 12220, Indonesia
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Utah, UT, 84322, USA
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Philomina Onyedikachi Peter
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Azhar Rashid
- Department of Environmental Sciences, The University of Haripur, Haripur, 22620, Pakistan
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
13
|
Zhao Z. The microbial origin of marine autochthonous fluorescent dissolved organic matter. Front Microbiol 2023; 14:1152795. [PMID: 37125160 PMCID: PMC10130435 DOI: 10.3389/fmicb.2023.1152795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Zhao Zhao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- *Correspondence: Zhao Zhao
| |
Collapse
|
14
|
Grevesse T, Guéguen C, Onana VE, Walsh DA. Degradation pathways for organic matter of terrestrial origin are widespread and expressed in Arctic Ocean microbiomes. MICROBIOME 2022; 10:237. [PMID: 36566218 PMCID: PMC9789639 DOI: 10.1186/s40168-022-01417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The Arctic Ocean receives massive freshwater input and a correspondingly large amount of humic-rich organic matter of terrestrial origin. Global warming, permafrost melt, and a changing hydrological cycle will contribute to an intensification of terrestrial organic matter release to the Arctic Ocean. Although considered recalcitrant to degradation due to complex aromatic structures, humic substances can serve as substrate for microbial growth in terrestrial environments. However, the capacity of marine microbiomes to process aromatic-rich humic substances, and how this processing may contribute to carbon and nutrient cycling in a changing Arctic Ocean, is relatively unexplored. Here, we used a combination of metagenomics and metatranscriptomics to assess the prevalence and diversity of metabolic pathways and bacterial taxa involved in aromatic compound degradation in the salinity-stratified summer waters of the Canada Basin in the western Arctic Ocean. RESULTS Community-scale meta-omics profiling revealed that 22 complete pathways for processing aromatic compounds were present and expressed in the Canada Basin, including those for aromatic ring fission and upstream funneling pathways to access diverse aromatic compounds of terrestrial origin. A phylogenetically diverse set of functional marker genes and transcripts were associated with fluorescent dissolved organic matter, a component of which is of terrestrial origin. Pathways were common throughout global ocean microbiomes but were more abundant in the Canada Basin. Genome-resolved analyses identified 12 clades of Alphaproteobacteria, including Rhodospirillales, as central contributors to aromatic compound processing. These genomes were mostly restricted in their biogeographical distribution to the Arctic Ocean and were enriched in aromatic compound processing genes compared to their closest relatives from other oceans. CONCLUSION Overall, the detection of a phylogenetically diverse set of genes and transcripts implicated in aromatic compound processing supports the view that Arctic Ocean microbiomes have the capacity to metabolize humic substances of terrestrial origin. In addition, the demonstration that bacterial genomes replete with aromatic compound degradation genes exhibit a limited distribution outside of the Arctic Ocean suggests that processing humic substances is an adaptive trait of the Arctic Ocean microbiome. Future increases in terrestrial organic matter input to the Arctic Ocean may increase the prominence of aromatic compound processing bacteria and their contribution to Arctic carbon and nutrient cycles. Video Abstract.
Collapse
Affiliation(s)
- Thomas Grevesse
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Céline Guéguen
- Department of Chemistry, Sherbrooke University, 2500 Blvd de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Vera E Onana
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - David A Walsh
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada.
| |
Collapse
|
15
|
Kim JH, Ryu JS, Hong WL, Jang K, Joo YJ, Lemarchand D, Hur J, Park MH, Chen M, Kang MH, Park S, Nam SI, Lee YK. Assessing the impact of freshwater discharge on the fluid chemistry in the Svalbard fjords. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155516. [PMID: 35490812 DOI: 10.1016/j.scitotenv.2022.155516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Changes in the cryosphere extent (e.g., glacier, ice sheet, permafrost, and snow) have been speculated to impact (bio)geochemical interactions and element budgets of seawater and pore fluids in Arctic regions. However, this process has rarely been documented in Arctic fjords, which leads to a poor systematic understanding of land-ocean interactions in such a warming-susceptible region. Here, we present the chemical and isotopic (δ18O, δD, δ11B, and 87Sr/86Sr) compositions of seawater and pore fluids from five fjords in the Svalbard archipelago. Compared to bottom seawater, the low Cl- concentrations and depleted water isotopic signatures (δ18O and δD) of surface seawater and pore fluids delineate freshwater discharge originating from precipitation and/or meltwater of the cryosphere (i.e., glacier, snow, and permafrost). In contrast, the high Cl- concentrations with light water isotopic values in pore fluids from Dicksonfjorden indicate a brine probably resulted from submarine permafrost formation during the late Holocene, a timing supported by the numerical simulation of dissolved Cl- concentration. The freshwater is influenced by the local diagenetic processes such as ion exchanges indicated by δ11B signatures as well as interactions with bedrock during fluid migration inferred from pore fluid 87Sr/86Sr ratios. The interactions with bedrock significantly alter the hydrogeochemical properties of pore fluids in each fjord, yielding spatiotemporal variations. Consequently, land-ocean interactions in combination with the hydrosphere-cryosphere-lithosphere are critical factors for understanding and predicting the hydrology and elemental cycling during global climate change periods in the past, present, and future of the Svalbard archipelago.
Collapse
Affiliation(s)
- Ji-Hoon Kim
- Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, South Korea.
| | - Jong-Sik Ryu
- Department of Earth and Environmental Sciences, Pukyong National University, Busan 48513, South Korea
| | - Wei-Li Hong
- Department of Geological Sciences, Stockholm University, Svante Arrhenius Väg 8, SE106-91 Stockholm, Sweden
| | - Kwangchul Jang
- Division of Glacier Environment Research, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Young Ji Joo
- Department of Earth and Environmental Sciences, Pukyong National University, Busan 48513, South Korea
| | - Damien Lemarchand
- Université de Strasbourg/EOST, CNRS, Institut Terre et Environnement Strasbourg, 5 rue René Descartes, Strasbourg Cedex F-67084, France
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Myong-Ho Park
- CCS Research Center, Kongju National University, 56 Gongjudaehak-ro, Gongju 32588, South Korea
| | - Meilian Chen
- Environmental Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China
| | - Moo-Hee Kang
- Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, South Korea
| | - Sanghee Park
- Divisionof Earth and Environment Sciences, Korea Basic Science Institute, Chungbuk 28119, South Korea
| | - Seung-Il Nam
- Division of Glacier Environment Research, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Yun Kyung Lee
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| |
Collapse
|
16
|
D’Andrilli J, Silverman V, Buckley S, Rosario-Ortiz FL. Inferring Ecosystem Function from Dissolved Organic Matter Optical Properties: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11146-11161. [PMID: 35917372 PMCID: PMC9387109 DOI: 10.1021/acs.est.2c04240] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Over the last 30 years, the optical property community has shifted from conducting dissolved organic matter (DOM) measurements on new complex mixtures in natural and engineered systems to furthering ecosystem understanding in the context of past, present, and future carbon (C) cycling regimes. However, the appropriate use of optical properties to understand DOM behavior in complex biogeochemical systems is of recent debate. This critical review provides an extensive survey of DOM optical property literature across atmospheric, marine, and terrestrial biospheres using a categorical approach that probes each biosphere and its subdivisions. Using this approach, a rubric of ecosystem variables, such as productive nature, C cycling rate, C inputs, and water quality, sets the foundation for interpreting commonly used optical property DOM metrics such as fluorescence index (FI), humification index (HIX), and specific ultraviolet absorbance at 254 nm (SUVA254). Case studies and a meta-analysis of each biosphere and subdivision found substantial overlap and characteristic distributions corresponding to ecosystem context for FI, HIX, and SUVA254, signifying chromophores and fluorophores from different ecosystems may be more similar than originally thought. This review challenges researchers to consider ecosystem connectivity when applying optical property results rather than making traditional "if this, then that" results-style conclusions.
Collapse
Affiliation(s)
- Juliana D’Andrilli
- Louisiana
Universities Marine Consortium, 8124 Highway 56, Chauvin, Louisiana 70344, United States
- . Phone: (985) 851-2876. Fax: (985) 851-2874
| | - Victoria Silverman
- Louisiana
Universities Marine Consortium, 8124 Highway 56, Chauvin, Louisiana 70344, United States
- University
of San Francisco, 2130 Fulton Street, San Francisco, California 94117, United States
| | - Shelby Buckley
- Department
of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental
Engineering Program, University of Colorado
Boulder, Boulder, Colorado 80309, United
States
| | - Fernando L. Rosario-Ortiz
- Department
of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental
Engineering Program, University of Colorado
Boulder, Boulder, Colorado 80309, United
States
| |
Collapse
|
17
|
Liao Z, Chu J, Zhou S, Chen H. Evaluation of the pollutant interactions between different overlying water and sediment in simulated urban sewer system by excitation-emission matrix fluorescence spectroscopy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46188-46199. [PMID: 35156163 DOI: 10.1007/s11356-022-19164-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The water quality in the sewer systems can be significantly influenced by the interaction between sediment and overlying water, which are still many doubts about the impact of pollutants transformation, degradation sequence, and reaction time. In this study, the exchanging processes between sewer sediment and four different overlying waters were evaluated in simulated urban sewer systems (dark and anaerobic environments). Dissolved organic matter (DOM) was used as an indicator to reflect the mitigation and exchange processes of pollutants. Excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) as an effective method for deciphering DOM properties was applied. There are three findings: (1) Three main processes (biological degradation, desorption, and adsorption) happened in the simulated sewer systems, in which the predominant pathway in the interaction process is biological degradation though consuming amino acid components. (2) The characteristics of overlying water could induce significant changes in sediment signatures; the amino acid-like components are more susceptible to degradation, and the humic-like compositions are more readily absorbed by sediments. (3) The reaction time is another significant factor (14 days was the turning point of the processes). This study unravels the transformation processes in sediment and different overlying waters, which provides the theoretical foundation for urban sewer efficient management and operation.
Collapse
Affiliation(s)
- Zhenliang Liao
- College of Civil Engineering and Architecture, Xinjiang University, Urumqi, 830046, China.
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Cities' Mitigation and Adaptation to Climate Change in Shanghai, China Meteorological Administration (CMACC), Tongji University, Shanghai, 200092, China.
- UNEP-Tongji Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Jiangyong Chu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
- Key Laboratory of Cities' Mitigation and Adaptation to Climate Change in Shanghai, China Meteorological Administration (CMACC), Tongji University, Shanghai, 200092, China
- UNEP-Tongji Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuangyu Zhou
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Hao Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
| |
Collapse
|
18
|
Zhou Y, Zhao C, He C, Li P, Wang Y, Pang Y, Shi Q, He D. Characterization of dissolved organic matter processing between surface sediment porewater and overlying bottom water in the Yangtze River Estuary. WATER RESEARCH 2022; 215:118260. [PMID: 35294911 DOI: 10.1016/j.watres.2022.118260] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) exchange in the sediment-water interface of estuaries is essential for the global elemental cycle. To clarify the interface DOM processing, this study applies optical techniques and ultrahigh-resolution mass spectrometry to assess DOM composition of surface sediment porewater and bottom (overlying) water across the Yangtze River Estuary (YRE). Results suggested that DOM exchange in the sediment-water interface mainly followed from sediment porewater to bottom water driven by a significant dissolved organic carbon concentration gradient and hydrodynamic force. We also characterized two porewater DOM sources, including microbial production and byproducts of processed sediments. High microbial activities resulted in the enrichment of protein-like fluorescent components and N-bearing compounds in porewater, potentially decreasing the oxygen concentration of bottom water due to the high lability. And the deamination of N-bearing compounds in the sediment-water interface could likely serve as a N-bearing nutrient source to bottom water. Moreover, due to sediment-specific features in different areas driven by hydrologic sorting and local phytoplankton supply, porewater DOM of muddy areas accumulated more aromatic substances from the degradation of terrestrial organic matter. The release and oxic transformation of oxygen-deficient aromatic compounds could contribute to the refractory carbon pool of estuarine water (carboxyl-rich alicyclic molecules, CRAM), modulating the quality of organic carbon mobilized from the land to the coastal ocean. Considering strong hydrodynamic force in numerous estuaries worldwide, DOM exchange and processing at the sediment-water interface has a meaningful influence on the biogeochemistry of estuarine water columns, which warrants further studies.
Collapse
Affiliation(s)
- Yuping Zhou
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China; Organic Geochemistry Unit, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen Zhao
- Organic Geochemistry Unit, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Penghui Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yu Pang
- Organic Geochemistry Unit, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Ding He
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong SAR, China; Organic Geochemistry Unit, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| |
Collapse
|
19
|
Spatial Distribution of Colored Dissolved Organic Matter in the Western Arctic Ocean. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Optical properties of colored dissolved organic matter (CDOM) were investigated along a latitudinal transect (67°–77° N) in upper water (<80 m depth) of the western Arctic Ocean. The absorption coefficient at 280 nm was 0.48–1.25 m−1, with the average for the oligotrophic basin area (1.04 ± 0.08 m−1) being slightly higher than that of the productive shelf area (0.95 ± 0.16 m−1), implying a decoupling effect between CDOM concentration and biological productivity in the western Arctic Ocean. The spectral slope coefficient S270–350 was negatively correlated with salinity, indicating that DOM molecular weight increases with salinity, and may be affected by melt-water input. Four fluorescent components were identified by excitation emission matrices elaborated by parallel factor analysis, including three humic-like (C1, C3, and C4) components and one protein-like (C2) component. Significant increases in concentrations of terrestrially derived humic-like C3 and C4 components with salinity were observed in the basin, mainly controlled by the physical mixing of surface fresh water and subsurface inflowing Pacific Ocean water. Terrestrial material carried by Pacific inflow is thus an important factor affecting the distribution of CDOM fluorescence components. The C3 and C4 fluorescence components may be useful as tracers of Pacific water in the western Arctic Ocean.
Collapse
|
20
|
Jin B, Lin Z, Liu W, Xiao Y, Meng Y, Yao X, Zhang T. Spatiotemporal variations of dissolved organic matter in a typical multi-source watershed in northern China: a fluorescent evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20517-20529. [PMID: 34739669 DOI: 10.1007/s11356-021-17282-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The amount of dissolved organic matter (DOM) in a multi-source watershed is important for complete management and assessing the river basin's long-term safety. Based on this, we study the composition, spatiotemporal changes, and primary sources of DOM using the excitation-emission matrix (EEM) and parallel factor analysis (PARAFAC). The relationship between DOM composition and water quality was also discussed. It was found that the DOM in the North Canal River watershed was composed of two similar humic acid-like components (230, 335/400 nm and 260, 360/450 nm) and a tryptophan-like component (280/290-350 nm). The intensity of DOM shows obvious seasonal spatiotemporal variations. In terms of time, the relative concentration of DOM in winter is significantly higher than that in other seasons due to the influence of water volume, temperature, and photochemical degradation factors. As for the aspect of space, under the combined effect of land use and multiple sources of pollution, the relative concentration of tryptophan-like in the mainstream was significantly higher than tributaries, while the relative concentration of humic-like components in the tributaries was higher than that in the mainstream. The chief sources of DOM in the North Canal River watershed include human-derived point sources and agricultural non-point sources in the main channel, as well as terrestrial and microbiological sources in the tributaries. Moreover, the composition of DOM is significantly related to water quality indicators, especially nitrogen and phosphorus, which shows that DOM can have an indicative impact on the trophic status in the North Canal River. The findings of this study could have a predictive effect and provide a scientific foundation for water quality monitoring and pollution control in the North Canal River watershed.
Collapse
Affiliation(s)
- Baichuan Jin
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zuhong Lin
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Weiyi Liu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yong Xiao
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Yuan Meng
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaolong Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
21
|
The Distribution of pCO2W and Air-Sea CO2 Fluxes Using FFNN at the Continental Shelf Areas of the Arctic Ocean. REMOTE SENSING 2022. [DOI: 10.3390/rs14020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A feed-forward neural network (FFNN) was used to estimate the monthly climatology of partial pressure of CO2 (pCO2W) at a spatial resolution of 1° latitude by 1° longitude in the continental shelf of the European Arctic Sector (EAS) of the Arctic Ocean (the Greenland, Norwegian, and Barents seas). The predictors of the network were sea surface temperature (SST), sea surface salinity (SSS), the upper ocean mixed-layer depth (MLD), and chlorophyll-a concentration (Chl-a), and as a target, we used 2 853 pCO2W data points from the Surface Ocean CO2 Atlas. We built an FFNN based on three major datasets that differed in the Chl-a concentration data used to choose the best model to reproduce the spatial distribution and temporal variability of pCO2W. Using all physical–biological components improved estimates of the pCO2W and decreased the biases, even though Chl-a values in many grid cells were interpolated values. General features of pCO2W distribution were reproduced with very good accuracy, but the network underestimated pCO2W in the winter and overestimated pCO2W values in the summer. The results show that the model that contains interpolating Chl-a concentration, SST, SSS, and MLD as a target to predict the spatiotemporal distribution of pCO2W in the sea surface gives the best results and best-fitting network to the observational data. The calculation of monthly drivers of the estimated pCO2W change within continental shelf areas of the EAS confirms the major impact of not only the biological effects to the pCO2W distribution and Air-Sea CO2 flux in the EAS, but also the strong impact of the upper ocean mixing. A strong seasonal correlation between predictor and pCO2W seen earlier in the North Atlantic is clearly a yearly correlation in the EAS. The five-year monthly mean CO2 flux distribution shows that all continental shelf areas of the Arctic Ocean were net CO2 sinks. Strong monthly CO2 influx to the Arctic Ocean through the Greenland and Barents Seas (>12 gC m−2 day−1) occurred in the fall and winter, when the pCO2W level at the sea surface was high (>360 µatm) and the strongest wind speed (>12 ms−1) was present.
Collapse
|
22
|
Choi W, Lee J, Kim YG, Kim H, Rhee TS, Jin YK, Kim JH, Seo Y. The impact of the abnormal salinity enrichment in pore water on the thermodynamic stability of marine natural gas hydrates in the Arctic region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149357. [PMID: 34364280 DOI: 10.1016/j.scitotenv.2021.149357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
In this study, the thermodynamic and structural characteristics of natural gas hydrates (NGHs) retrieved from gas hydrate mounds (ARAON Mound 03 (AM03) and ARAON Mound 06 (AM06)) in the Chukchi Sea in the Arctic region were investigated. The gas compositions, crystalline structure, and cage occupancy of the NGHs at AM03 and AM06 were experimentally measured using gas chromatography (GC), 13C nuclear magnetic resonance (NMR), Raman spectroscopy, and powder X-ray diffraction (PXRD). In the NGHs from AM03 and AM06, a significantly large fraction of CH4 (> 99%) and a very small amount of H2S were enclathrated in small (512) and large (51262) cages of sI hydrate. The NGHs from AM03 and AM06 were almost identical in composition, guest distributions, and existing environment to each other. The salinity of the residual pore water in the hydrate-bearing sediment (AM06) was measured to be 50.32‰, which was much higher than that of seawater (34.88‰). This abnormal salinity enrichment in the pore water of the low-permeability sediment might induce the dissociation of NGHs at a lower temperature than expected. The saturation changes in the NGHs that corresponded with an increase in the seawater temperature were also predicted on the basis of the salinity changes in the pore water. The experimental and predicted results of this study would be helpful for understanding the thermodynamic stability of NGHs and potential CH4-releasing phenomena in the Arctic region.
Collapse
Affiliation(s)
- Wonjung Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Joonseop Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Young-Gyun Kim
- Research Institute of Earth Resources, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Hanwoong Kim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Tae Siek Rhee
- Division of Polar Ocean Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Young Keun Jin
- Division of Polar Earth-system Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Ji-Hoon Kim
- Division of Petroleum and Marine Resources Research, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34312, Republic of Korea
| | - Yongwon Seo
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
23
|
Aromokeye DA, Willis-Poratti G, Wunder LC, Yin X, Wendt J, Richter-Heitmann T, Henkel S, Vázquez S, Elvert M, Mac Cormack W, Friedrich MW. Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments. ENVIRONMENT INTERNATIONAL 2021; 156:106602. [PMID: 34051435 DOI: 10.1016/j.envint.2021.106602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Colonization of newly ice-free areas by marine benthic organisms intensifies burial of macroalgae detritus in Potter Cove coastal surface sediments (Western Antarctic Peninsula). Thus, fresh and labile macroalgal detritus serves as primary organic matter (OM) source for microbial degradation. Here, we investigated the effects on post-depositional microbial iron reduction in Potter Cove using sediment incubations amended with pulverized macroalgal detritus as OM source, acetate as primary product of OM degradation and lepidocrocite as reactive iron oxide to mimic in situ conditions. Humic substances analogue anthraquinone-2,6-disulfonic acid (AQDS) was also added to some treatments to simulate potential for electron shuttling. Microbial iron reduction was promoted by macroalgae and further enhanced by up to 30-folds with AQDS. Notably, while acetate amendment alone did not stimulate iron reduction, adding macroalgae alone did. Acetate, formate, lactate, butyrate and propionate were detected as fermentation products from macroalgae degradation. By combining 16S rRNA gene sequencing and RNA stable isotope probing, we reconstructed the potential microbial food chain from macroalgae degraders to iron reducers. Psychromonas, Marinifilum, Moritella, and Colwellia were detected as potential fermenters of macroalgae and fermentation products such as lactate. Members of class deltaproteobacteria including Sva1033, Desulfuromonas, and Desulfuromusa together with Arcobacter (former phylum Epsilonbacteraeota, now Campylobacterota) acted as dissimilatory iron reducers. Our findings demonstrate that increasing burial of macroalgal detritus in an Antarctic fjord affected by glacier retreat intensifies early diagenetic processes such as iron reduction. Under scenarios of global warming, the active microbial populations identified above will expand their environmental function, facilitate OM remineralisation, and contribute to an increased release of iron and CO2 from sediments. Such indirect consequences of glacial retreat are often overlooked but might, on a regional scale, be relevant for the assessment of future nutrient and carbon fluxes.
Collapse
Affiliation(s)
- David A Aromokeye
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Graciana Willis-Poratti
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany; Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Lea C Wunder
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany; Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Xiuran Yin
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Jenny Wendt
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Susann Henkel
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
| | - Susana Vázquez
- CONICET - Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina.
| | - Marcus Elvert
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany; Faculty of Geosciences, University of Bremen, Bremen, Germany.
| | - Walter Mac Cormack
- Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina.
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
24
|
Sedimentary supply of humic-like fluorescent dissolved organic matter and its implication for chemoautotrophic microbial activity in the Izu-Ogasawara Trench. Sci Rep 2021; 11:19006. [PMID: 34561465 PMCID: PMC8463680 DOI: 10.1038/s41598-021-97774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022] Open
Abstract
Microbial community structure in the hadal water is reported to be different from that in the upper abyssal water. However, the mechanism governing the difference has not been fully understood. In this study, we investigate the vertical distributions of humic-like fluorescent dissolved organic matter (FDOMH), chemoautotrophic production, apparent oxygen utilization (AOU), and N* in the Izu-Ogasawara Trench. In the upper abyssal waters (< 6000 m), FDOMH has a significantly positive correlation with AOU; FDOMH deviates from the relationship and increases with depth without involving the increment of AOU in the hadal waters. This suggests that FDOMH is transferred from the sediments to the hadal waters through pore water, while the FDOMH is produced in situ in the upper abyssal waters. Chemoautotrophic production and N* increases and decreases with depth in the hadal waters, respectively. This corroborates the effluxes of dissolved substances, including dissolved organic matter and electron donors from sediments, which fuels the heterotrophic/chemoautotrophic microbial communities in the hadal waters. A simple box model analysis reveals that the funnel-like trench topography facilitates the increase in dissolved substances with depth in the hadal waters, which might contribute to the unique microbiological community structure in these waters.
Collapse
|
25
|
Chen M, Kim JH, Lee YK, Lee DH, Jin YK, Hur J. Subsea permafrost as a potential major source of dissolved organic matter to the East Siberian Arctic Shelf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146100. [PMID: 33684745 DOI: 10.1016/j.scitotenv.2021.146100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Arctic subsea permafrost contains more organic carbon than the terrestrial counterpart (~1400 Pg C vs. ~1000 Pg C) and is undergoing fast degradation (at rates of ~10 to 30 cm yr-1 over the past 3 decades) in response to climate warming. Yet the flux of organic carbon sequestered in the sediments of subsea permafrost to overlying water column, which can trigger enormous positive carbon-climate feedbacks, remain unclear. In this study, we examined the dissolved organic matter (DOM) diffusion to bottom seawaters from East Siberian Sea (ESS) sediments, which was estimated at about 943-2240 g C m-2 yr-1 and 10-55 g C m-2 yr-1 at the continuous-discontinuous transition zone of subsea permafrost and the remainder shelf and slope sites, respectively. The released DOM is characterized by prevailing dominance (≥ 98%) of low molecular weight (Mn < 350 Da) fractions. A red-shifted (emission wavelength >500 nm) fluorescence fingerprint, a typical feature of sediment/soil DOM, accounts for 4-6% and 7-8% in the fluorescence distributions of seawaters and pore waters, respectively, on ESS shelf. Statistical analysis revealed that seawaters and pore waters possessed similar DOM composition. The estimated total benthic efflux of dissolved organic carbon (DOC) was ~0.7-1.0 Pg C yr-1 when the estimate was scaled up to the entire Arctic shelf underlain with subsea permafrost assuming the width of continuous-discontinuous transition zone is 1 to 10 m. This estimation is consistent with the established ~10-30 cm yr-1 degradation rates of subsea permafrost by estimating its thaw-out time. Compiled observation data suggested that subsea permafrost might be a major DOM source to the Arctic Ocean, which could release tremendous carbon upon remineralization via its degradation to CO2 and CH4 in the water column.
Collapse
Affiliation(s)
- Meilian Chen
- Environmental Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China.
| | - Ji-Hoon Kim
- Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| | - Yun Kyung Lee
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Dong-Hun Lee
- Hanyang University ERICA Campus, 15588 Ansan, South Korea; Marine Environment Research Division, National Institute of Fisheries Science, 216, Gijanghaean-ro, Gijang-eup, Busan 46083, South Korea
| | - Young Keun Jin
- Korea Polar Research Institute (KOPRI), Incheon 21990, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
26
|
Spectral Characterization of Dissolved Organic Matter in Seawater and Sediment Pore Water from the Arctic Fjords (West Svalbard) in Summer. WATER 2021. [DOI: 10.3390/w13020202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fjords in the high Arctic, as aquatic critical zones at the interface of land-ocean continuum, are undergoing rapid changes due to glacier retreat and climate warming. Yet, little is known about the biogeochemical processes in the Arctic fjords. We measured the nutrients and the optical properties of dissolved organic matter (DOM) in both seawater and sediment pore water, along with the remote sensing data of the ocean surface, from three West Svalbard fjords. A cross-fjord comparison of fluorescence fingerprints together with downcore trends of salinity, Cl−, and PO43− revealed higher impact of terrestrial inputs (fluorescence index: ~1.2–1.5 in seawaters) and glaciofluvial runoffs (salinity: ~31.4 ± 2.4 psu in pore waters) to the southern fjord of Hornsund as compared to the northern fjords of Isfjorden and Van Mijenfjorden, tallying with heavier annual runoff to the southern fjord of Hornsund. Extremely high levels of protein-like fluorescence (up to ~4.5 RU) were observed at the partially sea ice-covered fjords in summer, in line with near-ubiquity ice-edge blooms observed in the Arctic. The results reflect an ongoing or post-phytoplankton bloom, which is also supported by the higher levels of chlorophyll a fluorescence at the ocean surface, the very high apparent oxygen utilization through the water column, and the nutrient drawdown at the ocean surface. Meanwhile, a characteristic elongated fluorescence fingerprint was observed in the fjords, presumably produced by ice-edge blooms in the Arctic ecosystems. Furthermore, alkalinity and the humic-like peaks showed a general downcore accumulation trend, which implies the production of humic-like DOM via a biological pathway also in the glaciomarine sediments from the Arctic fjords.
Collapse
|
27
|
Contrasting the Optical Characterization of Dissolved Organic Matter in Water and Sediment from a Nascent River-Type Lake (Chongqing, China). WATER 2020. [DOI: 10.3390/w13010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carbon cycling in rivers is altered by the creation of impoundments through dam construction. This paper seeks to identify the source and composition of dissolved organic matter (DOM) in both water and sediment in Lake Longjing by contrasting the optical characterization of DOM. By comparing the dissolved organic carbon (DOC) concentrations, we show that the sediment (53.7 ± 16.6 mg/L) acts as a DOC source to the overlying water (23.1 ± 1.4 mg/L). The estimated DOC flux in the original reservoir region (88.3 mg m−2 d−1) is higher than that in the newly submerged region (26 mg m−2 d−1), whereas the latter has larger contribution to the DOC annual load because of its larger sediment area. Spectroscopic analysis suggested that pore waters had higher aromaticity and lower proportion of fresh DOM than those in surface waters and benthic overlying waters. Through Parallel Factor Analysis, four fluorescent components were identified, i.e., two terrestrial humic-like components, one protein-like, and one microbial humic-like. Spearman correlation and Non-Metric-Multidimensional Scaling (NMDS) analysis manifested that fluorescent DOM in surface sediments is mainly contributed by autochthonous source, the others by allochthonous source. Due to the high sensitivity of the fluorescent intensity of the protein-like component, it is a useful indicator to reveal the changes of source of DOM.
Collapse
|
28
|
Lu Q, He D, Pang Y, Zhang Y, He C, Wang Y, Zhang H, Shi Q, Sun Y. Processing of dissolved organic matter from surface waters to sediment pore waters in a temperate coastal wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140491. [PMID: 32623166 DOI: 10.1016/j.scitotenv.2020.140491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Coastal wetlands are active transitional ecotones between land and ocean, and are considered as hot spots of organic matter processing within the global carbon cycle, which dissolved organic matter (DOM) plays a critical role. In this study, combined use of ultrahigh-resolution mass spectrometry (FT-ICR MS) and complementary optical techniques was conducted to assess the detailed molecular composition of DOM in the temperate Liaohe coastal wetland (LCW), NE China in respect to the differences in DOM composition from surface water to sediment pore water. Significant positive correlations between salinity and dissolved organic carbon (DOC) concentrations were observed in both surface waters and pore waters. Pore water DOM is generally characterized by lower protein-like fluorescence and biological index, but higher humification and humic-like fluorescent components than those in surface water DOM. Corresponding to the optical properties, FT-ICR MS measurements show that pore water DOM has higher proportions of heteroatoms, aromaticity index, O/C ratios, unsaturated aliphatics, and peptides, but lower average H/C ratios compared to surface water DOM across locations with different marsh plant species (rice (Oryza sativa), reed (Phragmites australis), Seablite (Suaeda Salsa)) and salinity (0.5 to 51.5 psu). The results suggest that selective preservation for polyphenols, lignin degradation intermediates (highly unsaturated compounds), and microbial resynthesis of heteroatomic compounds are involved in the processing of DOM from surface water to pore water, leading to the formation of higher molecular weight and sulfur-containing molecules. The abundant CHOS compounds could be related to the early diagenetic sulfurization of DOM in sediments. Our unique data set should provide new clues for a comprehensive understanding of the molecular dynamics of DOM in coastal wetlands.
Collapse
Affiliation(s)
- Qingyuan Lu
- Organic Geochemistry Unit, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Ding He
- Organic Geochemistry Unit, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Yu Pang
- Organic Geochemistry Unit, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yanzhen Zhang
- Organic Geochemistry Unit, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Haibo Zhang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Quan Shi
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yongge Sun
- Organic Geochemistry Unit, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
29
|
Michas A, Harir M, Lucio M, Vestergaard G, Himmelberg A, Schmitt-Kopplin P, Lueders T, Hatzinikolaou DG, Schöler A, Rabus R, Schloter M. Sulfate Alters the Competition Among Microbiome Members of Sediments Chronically Exposed to Asphalt. Front Microbiol 2020; 11:556793. [PMID: 33133031 PMCID: PMC7550536 DOI: 10.3389/fmicb.2020.556793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023] Open
Abstract
Sulfate-reducing microorganisms (SRMs) often compete with methanogens for common substrates. Due to thermodynamic reasons, SRMs should outcompete methanogens in the presence of sulfate. However, many studies have documented coexistence of these microbial groups in natural environments, suggesting that thermodynamics alone cannot explain the interactions among them. In this study, we investigated how SRMs compete with the established methanogenic communities in sediment from a long-term, electron acceptor-depleted, asphalt-exposed ecosystem and how they affect the composition of the organic material. We hypothesized that, upon addition of sulfate, SRMs (i) outcompete the methanogenic communities and (ii) markedly contribute to transformations of the organic material. We sampled sediments from the test and proximate control sites under anoxic conditions and incubated them in seawater medium with or without sulfate. Abundance and activity pattern of SRMs and methanogens, as well as the total prokaryotic community, were followed for 6 weeks by using qPCR targeting selected marker genes. Some of these genes were also subjected to amplicon sequencing to assess potential shifts in diversity patterns. Alterations of the organic material in the microcosms were determined by mass spectrometry. Our results indicate that the competition of SRMs with methanogens upon sulfate addition strongly depends on the environment studied and the starting microbiome composition. In the asphalt-free sediments (control), the availability of easily degradable organic material (mainly plant-derived) allows SRMs to use a larger variety of substrates, reducing interspecies competition with methanogens. In contrast, the abundant presence of recalcitrant compounds in the asphalt-exposed sediment was associated with a strong competition between SRMs and methanogens, ultimately detrimental for the latter. Our data underpin the importance of the quality of bioavailable organic materials in anoxic environments as a driver for microbial community structure and function.
Collapse
Affiliation(s)
- Antonios Michas
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Soil Science, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Analytical Food Chemistry, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany
| | - Gisle Vestergaard
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Anne Himmelberg
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Analytical Food Chemistry, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Tillmann Lueders
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Dimitris G Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Attica, Greece
| | - Anne Schöler
- Institute for Neuropathology, Charité University Hospital Berlin, Berlin, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Soil Science, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
30
|
Li M, Xie W, Li P, Yin K, Zhang C. Establishing a terrestrial proxy based on fluorescent dissolved organic matter from sediment pore waters in the East China Sea. WATER RESEARCH 2020; 182:116005. [PMID: 32645457 DOI: 10.1016/j.watres.2020.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Terrestrial organic matter occupies an important position in the oceanic organic carbon pool. Some terrestrial proxies, like the Branched and Isoprenoid Tetraether (BIT) index, have been applied successfully to indicate the relative abundance of terrestrial organic matter in marine sediments. A new terrestrial proxy derived from sediment pore water fluorescent dissolved matter (fluorescent dissolved organic matter (FDOM)) was developed in this study. Surface sediment samples were collected from forty-two sites in the coastal region of the East China Sea (ECS) to examine the distributional patterns of FDOM. Three protein-like components (C1, C4 and C5) and two humic-like components (C2 and C3) of FDOM were identified using fluorescence excitation-emission matrices parallel factor analysis (EEMs-PARAFAC). Spatially, the intensity of these five components generally increased from the coast to the ocean with protein-like components showing a more obvious trend, which suggested that all five components had autochthonous contribution. However, the C2 and C3 proportions, especially C2 that mainly corresponds to the proportion of peak A in fluorescence excitation-emission matrices, significantly decreased from the coast to the ocean and significantly correlated with the BIT index from corresponding solid fractions. We posit that part of the humic-like components from terrestrial organic matter in sediments are released into the C2 and C3 pools in pore waters, which may be constrained by specific environmental conditions. Thus, the FDOM from pore waters can be integrated with BIT index to validate the nature of FDOM and use it as a biomarker to reflect the terrestrial input of organic matter mediated by different biogeochemical processes in coastal oceans. The proportion of peak A responsible for the fluorescence of C2 was suggest as a new terrestrial derived from FDOM.
Collapse
Affiliation(s)
- Minchun Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| | - Penghui Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China; Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kedong Yin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China.
| |
Collapse
|
31
|
The Response of Dissolved Organic Matter during Monsoon and Post-Monsoon Periods in the Regulated River for Sustainable Water Supply. SUSTAINABILITY 2020. [DOI: 10.3390/su12135310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dissolved organic matter (DOM) in rivers are an important factor in pollution management due to the abundance of stored carbon. Using fluorescent spectroscopy, we investigated the temporal and spatial dynamics of DOM compositions, as well as their properties, for two of the major four regulated rivers—Han River (HR) and Geum River (GR) in South Korea. We collected eight sampling sites, four from each of the two rivers (from close to the weirs) in order to observe the integrated effects of different land use (terrestrial input) during the monsoon (July) and post-monsoon periods (September). High integral values of DOM compositions (July: 30.81 ± 9.71 × 103 vs. September: 1.78 ± 0.66 × 103) were present in all eight sites after heavy rainfall during the monsoon period, which indicated that Asian monsoon climates occupy a potent role in the DOM compositions of the rivers. Regarding DOM compositions, tryptophan-like and fulvic acid-like components were predominant in HR and GR, especially in GR with high integral values of protein-like and humus components. However, the properties of terrestrial DOM between HR and GR are markedly different. These results considered due to the different land use, where the terrestrial DOM shows a low degree of humification due to a high percentage of agriculture and urban land use in GR. Furthermore, these two rivers are typical regulated rivers, due to their weir constructions. High values of DOM components were present in the downstream of the weirs; however, increasingly high patterns appeared in the HR because of heavy rainfall (511.01 mm in HR; 376.33 mm in GR). In addition, a lower increasing trend of humic-like component was present in the GR due to a low percentage of forest land use/cover. These results suggest that the effect of the weir on rivers can be highlighted by the different percentages of land use/cover under the conditions of the monsoon period. Hence, DOM fluorescence can serve as an effective indicator for providing an early signal for the complex impacts of the different land use and rainfall in the regulated river systems.
Collapse
|
32
|
Yamashita Y, Nishioka J, Obata H, Ogawa H. Shelf humic substances as carriers for basin-scale iron transport in the North Pacific. Sci Rep 2020; 10:4505. [PMID: 32161324 PMCID: PMC7066155 DOI: 10.1038/s41598-020-61375-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/21/2020] [Indexed: 11/09/2022] Open
Abstract
Iron is one of the key elements controlling phytoplankton growth in large areas of the global ocean. Aeolian dust has traditionally been considered the major external source of iron in the North Pacific. Recent studies have indicated that sedimentary iron from the shelf region of the Sea of Okhotsk has a strong impact on the iron distribution in the North Pacific, while the mechanism supporting its long-distance transport remains poorly understood. Here, we report that refractory shelf humic substances, which complex and carry dissolved iron, are transported conservatively at least 4000 km from the shallow sediments of the Sea of Okhotsk to the subtropical North Pacific with the circulation of intermediate water. This result indicates that shelf humic substances are probably one of the key factors shaping the distribution of dissolved iron in the ocean interior.
Collapse
Affiliation(s)
- Youhei Yamashita
- Faculty of Environmental and Earth Science, Hokkaido University, Sapporo, Japan.
| | - Jun Nishioka
- Pan-Okhotsk Research Center, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
| | - Hajime Obata
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Hiroshi Ogawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
33
|
Wang W, Tao J, Liu H, Li P, Chen S, Wang P, Zhang C. Contrasting bacterial and archaeal distributions reflecting different geochemical processes in a sediment core from the Pearl River Estuary. AMB Express 2020; 10:16. [PMID: 31970539 PMCID: PMC6975606 DOI: 10.1186/s13568-020-0950-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 01/27/2023] Open
Abstract
Microbial community structure and metabolic activities have profound impacts on biogeochemical processes in marine sediments. Functional bacteria such as nitrate- and sulfate-reducing bacteria respond to redox gradients by coupling specific reactions amenable to relevant energy metabolisms. However, similar functional patterns have not been observed for sedimentary archaea (except for anaerobic methanotrophs and methanogens). We coupled taxonomic composition with comprehensive geochemical species to investigate the participation of distinct bacteria and archaea in sedimentary geochemical cycles in a sediment core (300 cm) from Pearl River Estuary (PRE). Geochemical properties (NO3−, dissolved Mn and Fe, SO42+, NH4+; dissolved inorganic carbon (DIC), δ13CDIC, dissolved organic carbon (DOC), total organic carbon (TOC), δ13CTOC, and fluorescent dissolved organic matter (FDOM)) exhibited strong depth variability of different trends. Bacterial 16S rRNA- and dsrB gene abundance decreased sharply with depth while archaeal and bathyarchaeotal 16S rRNA gene copies were relatively constant. This resulted in an increase in relative abundance of archaea from surface (11.6%) to bottom (42.8%). Network analysis showed that bacterial groups of Desulfobacterales, Syntrophobacterales and Gammaproteobacteria were significantly (P < 0.0001) associated with SO42− and dissolved Mn while archaeal groups of Bathyarchaeota, Group C3 and Marine Benthic Group D (MBGD) showed close positive correlations (P < 0.0001) with NH4+, δ13CTOC values and humic-like FDOM. Our study suggested that these bacterial groups dominated in redox processes relevant to sulfate or metal oxides, while the archaeal groups are more like to degrade recalcitrant organic compounds in anaerobic sediments.
Collapse
|
34
|
Wang H, Wang Y, Zhuang WE, Chen W, Shi W, Zhu Z, Yang L. Effects of fish culture on particulate organic matter in a reservoir-type river as revealed by absorption spectroscopy and fluorescence EEM-PARAFAC. CHEMOSPHERE 2020; 239:124734. [PMID: 31494317 DOI: 10.1016/j.chemosphere.2019.124734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/24/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Dam construction and fish culture can change the biogeochemical processes in river, yet their impact on the spectral properties of particulate organic matter (POM) remains to be studied. This was investigated in a reservoir-type river (Minjiang river, SE China) using absorption spectroscopy and fluorescence excitation-emission matrices-parallel factor analysis (EEMs-PARAFAC). Five fluorescent components were identified from POM with PARAFAC. Four components C1-C4 were affected by the seasonal variations of rainfall and runoff, indicating the influences of hydrological condition and terrestrial inputs. The Chlorophyll a concentration (Chl a) correlated significantly with the humic-like C3 (p < 0.05) and the protein-like C4 (p < 0.01), indicating phytoplankton was an important source of C3 and C4. The Chl a and fluorescence intensities of C3-C4 were higher in the fish culture zones than in other areas, and the absorption coefficient a300 and C1-C4 were lower downstream the dam. These results indicated that fish farming in the reservoir probably promoted the production of POM. The a300 and C1 per unit mass of suspended particulate matter (a300/TSM and C1/TSM) correlated significantly with the median particle size (p < 0.01), which might be related to the contribution of micro-phytoplankton. The absorption spectra of POM showed a shoulder peak at ∼280 nm, and its intensity correlated significantly and positively with Chl a (p < 0.01). These results indicated that the peak was probably derived from phytoplankton production. Our results have implications for better understanding the influences of human activities on the dynamics of river POM.
Collapse
Affiliation(s)
- Hui Wang
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, PR China
| | - Yonghao Wang
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, PR China
| | - Wan-E Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Wei Chen
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, PR China
| | - Weixin Shi
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, PR China
| | - Zhuoyi Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241, Shanghai, PR China
| | - Liyang Yang
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, PR China.
| |
Collapse
|
35
|
El-Naggar A, Lee MH, Hur J, Lee YH, Igalavithana AD, Shaheen SM, Ryu C, Rinklebe J, Tsang DCW, Ok YS. Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134112. [PMID: 31783442 DOI: 10.1016/j.scitotenv.2019.134112] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 05/10/2023]
Abstract
The nature of biochar-derived dissolved organic matter (DOM) has a crucial role in the interactions between biochar and metal immobilization, carbon dynamics, and microbial communities in soil. This study utilized excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) modeling to provide mechanistic evidence of biochar-induced influences on main soil biogeochemical processes. Three biochars produced from rice straw, wood, and grass residues were added to sandy and sandy loam soils and incubated for 473 d. Microbial and terrestrial humic-like fluorescent components were identified in the soils after incubation. The sandy loam soil exhibited a higher DOM with microbial sources than did the sandy soil. All biochars reduced Pb bioavailability, whereas the rice straw biochar enhanced the As bioavailability in the sandy loam soil. The biochar-derived aliphatic-DOM positively correlated with As bioavailability (r = 0.82) in the sandy loam soil and enhanced the cumulative CO2-C (r = 0.59) in the sandy soil. The promoted cumulative CO2-C in the sandy soil with all biochars correlated with the enhanced microbial communities, in particular, gram-positive (r = 0.59) and gram-negative (r = 0.59) bacteria. Our results suggest that the integration of EEM-PARAFAC with spectroscopic indices could be useful for a comprehensive interpretation of the soil quality changes in response to the application of biochar.
Collapse
Affiliation(s)
- Ali El-Naggar
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Mi-Hee Lee
- Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hur
- Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Young Han Lee
- Division of Plant Environmental Research, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52773, Republic of Korea
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Changkook Ryu
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
36
|
Yang X, Tsibart A, Nam H, Hur J, El-Naggar A, Tack FMG, Wang CH, Lee YH, Tsang DCW, Ok YS. Effect of gasification biochar application on soil quality: Trace metal behavior, microbial community, and soil dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:684-694. [PMID: 30472454 DOI: 10.1016/j.jhazmat.2018.11.042] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 05/20/2023]
Abstract
Compared to pyrolysis biochar (PBC), gasification biochar (GBC) differs in both composition and surface functionalities due to the use of an oxidizing purging gas. This work compares the effect of using PBC and GBC as soil amendments on the soil properties, trace metal bioavailability, soil microbial activity, and soil dissolved organic matter (DOM). Biochar-driven reduction of bioavailable metals does not necessarily result in a positive impact on the soil microbial growth. The DOM in the soil was strongly related to the soil microbial activity, as revealed by the strong correlation between the soil dehydrogenase activity (DHA) and soil dissolved organic carbon (r = 0.957, p < 0.01). Three identified fluorescent components (C1, C2, C3) in the soil DOM were closely associated with the soil microbial activity, for instance, with a clear positive correlation between the soil DHA and C1 (r = 0.718, p < 0.05) and a significant negative correlation between the total bacterial fatty acid methyl ester content and C3 (r = -0.768, p < 0.05). The bioavailability of Cd and Zn is not only related to the pH and surface functionalities of the biochar, but also to its aromatic carbon and inorganic mineral composition. This study further demonstrates that a fluorescence excitation-emission matrix coupled with parallel factor analysis is a useful tool to monitor changes in the soil quality after application of biochar, which is greatly relevant to the soil biota.
Collapse
Affiliation(s)
- Xiao Yang
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Biological Environment, Kangwon National University, Chuncheon, Republic of Korea
| | - Ana Tsibart
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Hyungseok Nam
- Greenhouse Gas Laboratory, Korea Institute of Energy Research (KIER), Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Ali El-Naggar
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Biological Environment, Kangwon National University, Chuncheon, Republic of Korea
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Young Han Lee
- Gyeongsangnam-do Agricultural Research & Extension Service, Jinju 52773, South Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
37
|
Kim H, Lee K, Lim DI, Nam SI, Han SH, Kim J, Lee E, Han IS, Jin YK, Zhang Y. Increase in anthropogenic mercury in marginal sea sediments of the Northwest Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:801-810. [PMID: 30448670 DOI: 10.1016/j.scitotenv.2018.11.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Over the past century, the addition of anthropogenic mercury (HgANTH) to vast areas of North Pacific marginal seas adjacent to the northeast Asian continent has tripled. Analysis of sediment cores showed that the rate of HgANTH addition (HgANTH flux) was greatest in the East China and Yellow Seas (9.1 μg m-2 yr-1) in the vicinity of China (the source continent), but was small in the Bering and western Arctic Ocean (Chukchi Sea) (0.9 μg m-2 yr-1; the regions furthest from China). Our results show that HgANTH has reached open ocean sedimentary environments over extended areas of the northwestern Pacific Ocean, via the formation of organic-mercury complexes and deposition. The implication of these findings is that the addition of HgANTH (via atmospheric deposition and riverine input) to the ocean environment is responsible for elevated Hg flux into sedimentary environments in the northwest Pacific Ocean.
Collapse
Affiliation(s)
- Haryun Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kitack Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Dhong-Il Lim
- South Sea Research Institute, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Seung-Il Nam
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Seung Hee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jihun Kim
- South Sea Research Institute, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eunil Lee
- Ocean Research Division, Korea Hydrographic and Oceanographic Agency, Busan 49111, Republic of Korea
| | - In-Seong Han
- Ocean Climate and Ecology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young Keun Jin
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Yanxu Zhang
- School of Atmospheric Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Chen M, Park M, Kim JH, Shinn YJ, Lee YK, Hur J. Exploring pore water biogeochemical characteristics as environmental monitoring proxies for a CO 2 storage project in Pohang Basin, South Korea. MARINE POLLUTION BULLETIN 2018; 137:331-338. [PMID: 30503441 DOI: 10.1016/j.marpolbul.2018.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
Biogeochemical parameters of pore waters, including dissolved organic matter, nutrients, sulfate, alkalinity, and chloride are explored as convenient and sensitive proxies to monitor the CO2 geological storage sites. Five sites for a CO2 storage project in the Pohang Basin of the East Sea in South Korea were investigated for the pre-injection biogeochemical conditions of these sites. Higher dissolved organic carbon (~36 mg L-1), chromophoric and fluorescent dissolved organic matter, nutrients, and alkalinity were observed in a fluvially affected acoustic blanking site with geological faults. A general increasing downcore trend of measured DOM parameters, nutrients, and alkalinity with depth was found at the acoustic blanking site affected by riverine runoff with significant correlations among the parameters (R2: ~0.4-0.8), highlighting the impact of geological features and external inputs on the downcore biogeochemical properties. The results presented in this study suggest that DOM could be utilized as a robust and complementary biogeochemical parameter.
Collapse
Affiliation(s)
- Meilian Chen
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea; Environmental Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China
| | - Myongho Park
- Department of Earth System Sciences, Yonsei University, Seoul 03722, South Korea
| | - Ji-Hoon Kim
- Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| | - Young Jae Shinn
- Climate Change Mitigation and Sustainability Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| | - Yun Kyung Lee
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
39
|
Mineral Phase-Element Associations Based on Sequential Leaching of Ferromanganese Crusts, Amerasia Basin Arctic Ocean. MINERALS 2018. [DOI: 10.3390/min8100460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ferromanganese (FeMn) crusts from Mendeleev Ridge, Chukchi Borderland, and Alpha Ridge, in the Amerasia Basin, Arctic Ocean, are similar based on morphology and chemical composition. The crusts are characterized by a two- to four-layered stratigraphy. The chemical composition of the Arctic crusts differs significantly from hydrogenetic crusts from elsewhere of global ocean by high mean Fe/Mn ratios, high As, Li, V, Sc, and Th concentrations, and high detrital contents. Here, we present element distributions through crust stratigraphic sections and element phase association using several complementary techniques such as SEM-EDS, LA-ICP-MS, and sequential leaching, a widely employed method of element phase association that dissolves mineral phases of different stability step-by-step: Exchangeable cations and Ca carbonates, Mn-oxides, Fe-hydroxides, and residual fraction. Sequential leaching shows that the Arctic crusts have higher contents of most elements characteristic of the aluminosilicate phase than do Pacific crusts. Elements have similar distributions between the hydrogenetic Mn and Fe phases in all the Arctic and Pacific crusts. The main host phases for the elements enriched in the Arctic crusts over Pacific crusts (Li, As, Th, and V) are the Mn-phase for Li and Fe-phase for As, Th, and V; those elements also have higher contents in the residual aluminosilicate phase. Thus, higher concentrations of Li, As, Th, and V likely occur in the dissolved and particulate phases in bottom waters where the Arctic crusts grow, which has been shown to be true for Sc, also highly enriched in the crusts. The phase distributions of elements within the crust layers is mostly consistent among the Arctic crusts, being somewhat different in element concentrations in the residual phase.
Collapse
|
40
|
Chen M, Jung J, Lee YK, Hur J. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:624-632. [PMID: 29803036 DOI: 10.1016/j.scitotenv.2018.05.205] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Polar regions play unique roles in global overturning circulation, carbon cycling, and climate change. In this study, seawater dissolved organic matter (DOM) was characterized for the Chukchi Sea in the Arctic Ocean in the summer season. The seawater generally contains high concentrations of dissolved organic carbon (DOC, up to 92 μM C) and tyrosine-like fluorescence (up to 0.21 RU), and it was enriched with heteroatomic molecular formula with nitrogen-containing and sulfur-containing formulas counting 2246 (~41% of total identified molecular formula) and 1838 (~34%), respectively. Significant correlations were observed between salinity and the absorption coefficient at 254 nm, between chlorophyll-a and DOC as well as the tyrosine-like component, C270/302 (Cex/em maxima), and between biological index and two protein-like components, C275/338 and C305/344. A comparison between surface waters and close-to-seafloor deep waters suggested a trend of the accumulation of low molecular weight (LMW) fraction (~54-74%, nominal average molecular weight Mn < ~350 Da) in the surface waters. Another interesting finding from spatial data was an obvious horizontal off-shelf spreading of nutrients and humic-like fluorescence. This study sheds novel insights of DOM characteristics and dynamics in the highly productive polar sea.
Collapse
Affiliation(s)
- Meilian Chen
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea; Environmental Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China
| | - Jinyoung Jung
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Yun Kyung Lee
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
41
|
Chen M, Nam SI, Kim JH, Kwon YJ, Hong S, Jung J, Shin KH, Hur J. High abundance of protein-like fluorescence in the Amerasian Basin of Arctic Ocean: Potential implication of a fall phytoplankton bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:355-363. [PMID: 28478365 DOI: 10.1016/j.scitotenv.2017.04.233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
The seawater samples from the Chukchi and East Siberian Seas were collected along a shelf-slope-basin gradient and analyzed for chromophoric and fluorescent DOM (i.e., CDOM and FDOM, respectively). Unexpected high protein-like FDOM (0.35±0.40 and 0.24±0.34 RU for peaks B and T, respectively) levels were identified, which corresponded to 1-2 orders of magnitude higher than those documented by previous reports. This unique phenomenon could be attributed to a fall phytoplankton bloom. The seawater chl-a data, estimated from in situ fluorescence measurements and satellite remote sensing data, showed the subsurface chl-a maximum of up to 1.52mgm-3 at ~25-70m depths and the surface monthly average values (August 2015) up to 0.55 to 0.71mgm-3, which fall in the range of ~0.5-2.0mgm-3 during fall phytoplankton blooms in this area. Meanwhile, the depth profile of DOM parameters revealed subsurface maxima of protein-like fluorescence peaks along the shelf-slope gradient. The positive correlations between the protein-like peaks and biological index implied the lateral transport of DOM and nutrients from the shelf to the slope and basin. Despite still being a largely ice-covered environment, potential shifts in the ecosystem appear to make progress in response to changing climate in the Arctic Ocean.
Collapse
Affiliation(s)
- Meilian Chen
- Department of Environment & Energy, Sejong University, Seoul 143-747, South Korea
| | - Seung-Il Nam
- Division of Polar Paleoenvironment, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Ji-Hoon Kim
- Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon 34132, South Korea
| | - Young-Joo Kwon
- Department of Environment & Energy, Sejong University, Seoul 143-747, South Korea
| | - Sungwook Hong
- Department of Environment & Energy, Sejong University, Seoul 143-747, South Korea
| | - Jinyoung Jung
- Arctic Research Centre, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 143-747, South Korea.
| |
Collapse
|
42
|
Chen M, Kim SH, Jung HJ, Hyun JH, Choi JH, Lee HJ, Huh IA, Hur J. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications. WATER RESEARCH 2017; 121:150-161. [PMID: 28527389 DOI: 10.1016/j.watres.2017.05.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
In order to understand the characteristics and dynamics of dissolved organic matter (DOM) in the sediment of rivers affected by impoundments, we examined the vertical profiles and the benthic fluxes of DOM in four different core sediments located at upstream sites of weirs in major rivers of South Korea. In three out of four sites, exponential accumulation of dissolved organic carbon (DOC) with depth was observed with the signature of seasonal variability. Except for the site displaying a below-detection limit of Fe(II), the general accumulation trends of DOC with depth was concurrent with the increases of Fe(II) and NH4+ and the decrease of PO43-, signifying a close linkage of the DOM dynamics with anaerobic respiration via iron reduction, an important early diagenesis pathway. The estimated benthic fluxes from the cores revealed that the sediments likely serve as DOC, chromophoric DOM (CDOM), and fluorescent DOM (FDOM) sources to the overlying water. The benthic effluxes based on DOC were comparable to the ranges previously reported in lake and coastal areas, and those of CDOM and FDOM showed even higher levels. These findings imply that impoundment-affected river systems would change the DOM composition of the overlying water, ultimately influencing the subsequent water treatment processes such as disinfection byproducts production and membrane fouling. A simple mass balance model indicated that the impoundment-affected river sediments may operate as a net carbon sink in the environments due to a greater extent of sedimentation compared to the estimated benthic efflux and sediment biological respiration.
Collapse
Affiliation(s)
- Meilian Chen
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Sung-Han Kim
- Department of Environmental Marine Sciences, Hanyang University, 1271 Sa 1 dong, Ansan, Gyeonggi do, 15588, South Korea
| | - Heon-Jae Jung
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Jung-Ho Hyun
- Department of Environmental Marine Sciences, Hanyang University, 1271 Sa 1 dong, Ansan, Gyeonggi do, 15588, South Korea
| | - Jung Hyun Choi
- Department of Environmental Science & Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Hyo-Jin Lee
- Geosystem Research Corporation, Gunpo-si, Gyeonggi-do, 15807, South Korea
| | - In-Ae Huh
- National Institute of Environmental Research, Incheon, 22689, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
43
|
Sulfate Reduction in Sediments Produces High Levels of Chromophoric Dissolved Organic Matter. Sci Rep 2017; 7:8829. [PMID: 28821807 PMCID: PMC5562794 DOI: 10.1038/s41598-017-09223-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/24/2017] [Indexed: 11/10/2022] Open
Abstract
Sulfate reduction plays an important role in altering dissolved organic matter (DOM) in estuarine and coastal sediments, although its role in the production of optically active chromophoric DOM (CDOM) and a subset of fluorescent DOM (FDOM) has not been previously investigated in detail. Freshwater sediment slurries were incubated anaerobically with added sulfate and acetate to promote sulfate-reducing bacteria. Ultraviolet visible (UV-Vis) absorbance and 3-dimensional excitation emission matrix (EEM) fluorescence spectra were measured over a five weeks anaerobic dark incubation period. Parallel Factor Analysis (PARAFAC) of FDOM determined components that increased significantly during dark and anaerobic incubation matching three components previously considered of terrestrially-derived or humic-like origin published in the OpenFluor database. The observed FDOM increase was strongly correlated (R2 = 0.96) with the reduction of sulfate. These results show a direct experimental link between sulfate reduction and FDOM production, which impacts our understanding of coastal FDOM sources and early sediment diagenesis. As 3D fluorescence techniques are commonly applied to diverse systems, these results provide increasing support that FDOM can have many diverse sources not consistently captured by common classifications such as “humic-like” fluorescence.
Collapse
|
44
|
Biological early diagenesis and insolation-paced paleoproductivity signified in deep core sediment organic matter. Sci Rep 2017; 7:1581. [PMID: 28484263 PMCID: PMC5431472 DOI: 10.1038/s41598-017-01759-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/30/2017] [Indexed: 11/22/2022] Open
Abstract
The dynamics of a large stock of organic matter contained in deep sediments of marginal seas plays pivotal role in global carbon cycle, yet it is poorly constrained. Here, dissolved organic matter (DOM) in sediments was investigated for core sediment up to ~240 meters deep in the East/Japan Sea. The upper downcore profile (≤118 mbsf, or meters below seafloor) at a non-chimney site (U1) featured the exponential production of dissolved organic carbon (DOC) and optically active DOM with time in the pore water above sulfate-methane-transition-zone (SMTZ), concurrent with the increases of nutrients and alkalinity, and the reduction of sulfate. Such depth profiles signify a biological pathway of the DOM production during the early diagenesis of particulate organic matter presumably dominated by sulfate reduction. Below the SMTZ, an insolation-paced oscillation of DOM in a ~405-Kyr cycle of orbital eccentricity was observed at site U1, implying astronomically paced paleoproductivity stimulated by light availability. Furthermore, DOM dynamics of the deep sediments were likely governed by intensive humification as revealed by the less pronounced protein-like fluorescence and the lower H/C and O/C ratios below SMTZ among 15,281 formulas identified. Our findings here provide novel insights into organic matter dynamics in deep sediments.
Collapse
|