1
|
Day NJ, Santucci P, Gutierrez MG. Host cell environments and antibiotic efficacy in tuberculosis. Trends Microbiol 2024; 32:270-279. [PMID: 37709598 DOI: 10.1016/j.tim.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The aetiologic agent of tuberculosis (TB), Mycobacterium tuberculosis (Mtb), can survive, persist, and proliferate in a variety of heterogeneous subcellular compartments. Therefore, TB chemotherapy requires antibiotics crossing multiple biological membranes to reach distinct subcellular compartments and target these bacterial populations. These compartments are also dynamic, and our understanding of intracellular pharmacokinetics (PK) often represents a challenge for antitubercular drug development. In recent years, the development of high-resolution imaging approaches in the context of host-pathogen interactions has revealed the intracellular distribution of antibiotics at a new level, yielding discoveries with important clinical implications. In this review, we describe the current knowledge regarding cellular PK of antibiotics and the complexity of drug distribution within the context of TB. We also discuss the recent advances in quantitative imaging and highlight their applications for drug development in the context of how intracellular environments and microbial localisation affect TB treatment efficacy.
Collapse
Affiliation(s)
- Nathan J Day
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
2
|
Banerjee S, Hatimuria M, Sarkar K, Das J, Pabbathi A, Sil PC. Recent Contributions of Mass Spectrometry-Based "Omics" in the Studies of Breast Cancer. Chem Res Toxicol 2024; 37:137-180. [PMID: 38011513 DOI: 10.1021/acs.chemrestox.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Physiology, Surendranath College, University of Calcutta, Kolkata 700009, India
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Madushmita Hatimuria
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Kasturi Sarkar
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Parames C Sil
- Department of Molecular Medicine Bose Institute, Kolkata 700054, India
| |
Collapse
|
3
|
Tisza A, Klikovits T, Benej M, Torok S, Szeitz B, Valko Z, Hoda MA, Hegedus B, Bonta M, Nischkauer W, Hoetzenecker K, Limbeck A, Schelch K, Laszlo V, Megyesfalvi Z, Dome B. Laser ablation-inductively coupled plasma-mass spectrometry analysis reveals differences in chemotherapeutic drug distribution in surgically resected pleural mesothelioma. Br J Clin Pharmacol 2023; 89:3364-3374. [PMID: 37272312 PMCID: PMC10952999 DOI: 10.1111/bcp.15813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
AIMS Pleural mesothelioma (PM) is a highly aggressive thoracic tumour with poor prognosis. Although reduced tissue drug accumulation is one of the key features of platinum (Pt) resistance, little is known about Pt distribution in human PM. METHODS We assessed Pt levels of blood samples and surgically resected specimens from 25 PM patients who had received neoadjuvant Pt-based chemotherapy (CHT). Pt levels and tissue distributions were measured by laser ablation-inductively coupled plasma-mass spectrometry and correlated with clinicopathological features. RESULTS In surgically resected PM specimens, mean Pt levels of nontumourous (fibrotic) areas were significantly higher (vs tumourous regions, P = 0.0031). No major heterogeneity of Pt distribution was seen within the tumourous areas. Pt levels correlated neither with the microvessel area nor with apoptosis rate in the tumourous or nontumourous regions. A significant positive correlation was found between serum and both full tissue section and tumourous area mean Pt levels (r = 0.532, P = 0.006, 95% confidence interval [95% CI] 0.161-0.771 and r = 0.415, P = 0.039, 95% CI 0.011-0.702, respectively). Furthermore, a significant negative correlation was detected between serum Pt concentrations and elapsed time from the last cycle of CHT (r = -0.474, P = 0.017, 95% CI -0.738--0.084). Serum Pt levels correlated negatively with overall survival (OS) (P = 0.029). CONCLUSIONS There are major differences in drug distribution between tumourous and nontumourous areas of PM specimens. Serum Pt levels significantly correlate with full section and tumourous area average Pt levels, elapsed time from the last CHT cycle, and OS. Further studies investigating clinicopathological factors that modulate tissue Pt concentration and distribution are warranted.
Collapse
Affiliation(s)
- Anna Tisza
- Department of Tumor BiologyNational Korányi Institute of PulmonologyBudapestHungary
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Thomas Klikovits
- Department of Thoracic Surgery, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Karl‐Landsteiner‐Institute for Clinical and Translational Thoracic Surgery Research, Clinic FloridsdorfViennaAustria
| | - Michal Benej
- Karl‐Landsteiner‐Institute for Clinical and Translational Thoracic Surgery Research, Clinic FloridsdorfViennaAustria
| | - Szilvia Torok
- Department of Tumor BiologyNational Korányi Institute of PulmonologyBudapestHungary
| | - Beata Szeitz
- Division of Oncology, Department of Internal Medicine and OncologySemmelweis UniversityBudapestHungary
| | - Zsuzsanna Valko
- Department of Thoracic Surgery, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Balazs Hegedus
- Department of Thoracic Surgery, University Medicine Essen – RuhrlandklinikUniversity Duisburg‐EssenEssenGermany
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
| | - Maximilian Bonta
- Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical ChemistryTU WienViennaAustria
| | - Winfried Nischkauer
- Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical ChemistryTU WienViennaAustria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical ChemistryTU WienViennaAustria
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Viktoria Laszlo
- Department of Tumor BiologyNational Korányi Institute of PulmonologyBudapestHungary
- Department of Thoracic Surgery, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Zsolt Megyesfalvi
- Department of Tumor BiologyNational Korányi Institute of PulmonologyBudapestHungary
- Department of Thoracic Surgery, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of Thoracic SurgeryNational Institute of Oncology‐Semmelweis UniversityBudapestHungary
| | - Balazs Dome
- Department of Tumor BiologyNational Korányi Institute of PulmonologyBudapestHungary
- Department of Thoracic Surgery, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of Thoracic SurgeryNational Institute of Oncology‐Semmelweis UniversityBudapestHungary
- Department of Translational MedicineLund UniversityLundSweden
| |
Collapse
|
4
|
Cournut A, Hosu IS, Braud F, Moustiez P, Coffinier Y, Enjalbal C, Bich C. Development of nanomaterial enabling highly sensitive surface-assisted laser desorption/ionization mass spectrometry peptide analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9476. [PMID: 36656736 DOI: 10.1002/rcm.9476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is an approach derived from matrix-assisted laser desorption/ionization (MALDI)-MS which overcomes the drawbacks associated with the use of organic matrices required to co-crystallize with the analytes. Indeed, nanomaterials commonly used in SALDI-MS as inert surfaces to promote desorption/ionization (D/I) ensure straightforward direct deposition of samples while providing mass spectra with ions only related to the compound of interest. The objective of this study was to develop a novel SALDI-MS approach based on steel plates that are surfaces very rapidly and easily tuned to perform the most efficient peptide detection as possible. To compare the SALDI efficacy of such metal substrates, D/I efficiency and deposit homogeneity were evaluated according to steel plate fabrication processes. METHODS The studied surfaces were nanostructured steel plates that were chemically modified by perfluorosilane and textured according to different frequencies and laser writing powers. The capacity of each tested 100 surfaces was demonstrated by comparative analyses of a mixture of standard peptides (m/z 600-3000) performed with a MALDI-TOF instrument enabling MALDI, SALDI and imaging experiments. RESULTS A peptide mix was used to screen the different surfaces depending on their D/I efficiency and their ability to ensure homogeneous deposit of the samples. For that purpose, deposition homogeneity was visualized owing to reconstructed ionic images from all protonated or sodiated ions of the 10 peptides constituting the standard mix. CONCLUSIONS Seven surfaces were then selected satisfying the required D/I efficiency and deposit homogeneity criteria. Results obtained with these optimal surfaces were then compared with those recorded by MALDI-MS analyses used as references.
Collapse
Affiliation(s)
- Aline Cournut
- Univ. Montpellier, CNRS, ENSCM, IBMM, UMR 5247, Montpellier, France
| | - Ioana Silvia Hosu
- Bioresources Department, National Institute for Research and Development in Chemistry and Petrochemistry, Bucharest, Romania
| | - Flavie Braud
- Univ. Lille, CNRS, UMR 8520 - IEMN, Lille, France
| | | | | | | | - Claudia Bich
- Univ. Montpellier, CNRS, ENSCM, IBMM, UMR 5247, Montpellier, France
| |
Collapse
|
5
|
Shibata K, Hayasaka T, Sakamoto S, Hashimoto S, Kawamura N, Fujiyoshi M, Kimura T, Shimamura T, Fukai M, Taketomi A. Warm Ischemia Induces Spatiotemporal Changes in Lysophosphatidylinositol That Affect Post-Reperfusion Injury in Normal and Steatotic Rat Livers. J Clin Med 2023; 12:jcm12093163. [PMID: 37176603 PMCID: PMC10179083 DOI: 10.3390/jcm12093163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Warm ischemia-reperfusion injury is a prognostic factor for hepatectomy and liver transplantation. However, its underlying molecular mechanisms are unknown. This study aimed to elucidate these mechanisms and identify the predictive markers of post-reperfusion injury. Rats with normal livers were subjected to 70% hepatic warm ischemia for 15, 30, or 90 min, while those with steatotic livers were subjected to 70% hepatic warm ischemia for only 30 min. The liver and blood were sampled at the end of ischemia and 1, 6, and 24 h after reperfusion. The serum alanine aminotransferase (ALT) activity, Suzuki injury scores, and lipid peroxidation (LPO) products were evaluated. The ALT activity and Suzuki scores increased with ischemic duration and peaked at 1 and 6 h after reperfusion, respectively. Steatotic livers subjected to 30 min ischemia and normal livers subjected to 90 min ischemia showed comparable injury. A similar trend was observed for LPO products. Imaging mass spectrometry of normal livers revealed an increase in lysophosphatidylinositol (LPI (18:0)) and a concomitant decrease in phosphatidylinositol (PI (18:0/20:4)) in Zone 1 (central venous region) with increasing ischemic duration; they returned to their basal values after reperfusion. Similar changes were observed in steatotic livers. Hepatic warm ischemia time-dependent acceleration of PI (18:0/20:4) to LPI (18:0) conversion occurs initially in Zone 1 and is more pronounced in fatty livers. Thus, the LPI (18:0)/PI (18:0/20:4) ratio is a potential predictor of post-reperfusion injury.
Collapse
Affiliation(s)
- Kengo Shibata
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Takahiro Hayasaka
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Sodai Sakamoto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Satsuki Hashimoto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masato Fujiyoshi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Taichi Kimura
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Department of Transplant Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
6
|
Chin DH, Osman I, Porch J, Kim H, Buck KK, Rodriguez J, Carapia B, Yan D, Moura SB, Sperry J, Nakashima J, Altman K, Altman D, Gryder BE. BET Bromodomain Degradation Disrupts Function but Not 3D Formation of RNA Pol2 Clusters. Pharmaceuticals (Basel) 2023; 16:199. [PMID: 37259348 PMCID: PMC9966215 DOI: 10.3390/ph16020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/26/2023] [Indexed: 12/20/2023] Open
Abstract
Fusion-positive rhabdomyosarcoma (FP-RMS) is driven by a translocation that creates the chimeric transcription factor PAX3-FOXO1 (P3F), which assembles de novo super enhancers to drive high levels of transcription of other core regulatory transcription factors (CRTFs). P3F recruits co-regulatory factors to super enhancers such as BRD4, which recognizes acetylated lysines via BET bromodomains. In this study, we demonstrate that inhibition or degradation of BRD4 leads to global decreases in transcription, and selective downregulation of CRTFs. We also show that the BRD4 degrader ARV-771 halts transcription while preserving RNA Polymerase II (Pol2) loops between super enhancers and their target genes, and causes the removal of Pol2 only past the transcriptional end site of CRTF genes, suggesting a novel effect of BRD4 on Pol2 looping. We finally test the most potent molecule, inhibitor BMS-986158, in an orthotopic PDX mouse model of FP-RMS with additional high-risk mutations, and find that it is well tolerated in vivo and leads to an average decrease in tumor size. This effort represents a partnership with an FP-RMS patient and family advocates to make preclinical data rapidly accessible to the family, and to generate data to inform future patients who develop this disease.
Collapse
Affiliation(s)
- Diana H. Chin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Issra Osman
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jadon Porch
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hyunmin Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | - Deborah Yan
- Certis Oncology Solutions, San Diego, CA 92121, USA
| | | | | | | | - Kasey Altman
- Kasey Altman Research Fund, Rein in Sarcoma, Fridley, MN 55432, USA
| | - Delsee Altman
- Kasey Altman Research Fund, Rein in Sarcoma, Fridley, MN 55432, USA
| | - Berkley E. Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Prasad M, Postma G, Franceschi P, Buydens LMC, Jansen JJ. Evaluation and comparison of unsupervised methods for the extraction of spatial patterns from mass spectrometry imaging data (MSI). Sci Rep 2022; 12:15687. [PMID: 36127378 PMCID: PMC9489880 DOI: 10.1038/s41598-022-19365-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
For the extraction of spatially important regions from mass spectrometry imaging (MSI) data, different clustering methods have been proposed. These clustering methods are based on certain assumptions and use different criteria to assign pixels into different classes. For high-dimensional MSI data, the curse of dimensionality also limits the performance of clustering methods which are usually overcome by pre-processing the data using dimension reduction techniques. In summary, the extraction of spatial patterns from MSI data can be done using different unsupervised methods, but the robust evaluation of clustering results is what is still missing. In this study, we have performed multiple simulations on synthetic and real MSI data to validate the performance of unsupervised methods. The synthetic data were simulated mimicking important spatial and statistical properties of real MSI data. Our simulation results confirmed that K-means clustering with correlation distance and Gaussian Mixture Modeling clustering methods give optimal performance in most of the scenarios. The clustering methods give efficient results together with dimension reduction techniques. From all the dimension techniques considered here, the best results were obtained with the minimum noise fraction (MNF) transform. The results were confirmed on both synthetic and real MSI data. However, for successful implementation of MNF transform the MSI data requires to be of limited dimensions.
Collapse
Affiliation(s)
- Mridula Prasad
- IMM/Analytical Chemistry, Radboud University, Heyendaalseweg, 6525 AJ, Nijmegen, The Netherlands.,Unit of Computational Biology, Research and Innovation Center, Fondazione Edmund Mach, 38010, San Michele all' Adige, Italy
| | - Geert Postma
- IMM/Analytical Chemistry, Radboud University, Heyendaalseweg, 6525 AJ, Nijmegen, The Netherlands.
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Center, Fondazione Edmund Mach, 38010, San Michele all' Adige, Italy
| | - Lutgarde M C Buydens
- IMM/Analytical Chemistry, Radboud University, Heyendaalseweg, 6525 AJ, Nijmegen, The Netherlands
| | - Jeroen J Jansen
- IMM/Analytical Chemistry, Radboud University, Heyendaalseweg, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Menetrey A, Legouffe R, Haouala A, Bonnel D, Rouits E, Bosq J, Stauber J. Tumor Distribution by Quantitative Mass Spectrometry Imaging of the Inhibitor of Apoptosis Protein Antagonist Xevinapant in Patients with Resectable Squamous Cell Carcinoma of the Head and Neck (EudraCT Number: 2014-004655-31). Anal Chem 2022; 94:12333-12341. [PMID: 36040476 DOI: 10.1021/acs.analchem.2c00943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As tumors are very heterogeneous, investigating the penetration and concentration of an anticancer drug in different histological regions of a tumor is key to evaluate the efficacy, to improve the pharmacokinetics/pharmacodynamics (PK/PD) relationship evaluation, and to confirm the adequacy of the dose regimen. Quantitative mass spectrometry imaging (QMSI) allows for the determination of the tissue distribution of drugs, metabolites, and biomarkers to support quick and precise evaluation of drug efficacy and safety in a single experiment. QMSI was applied in a preoperative window-of-opportunity (WoO) study of the inhibitor of apoptosis protein antagonist xevinapant (Debio 1143) in patients with resectable squamous cell carcinoma of the head and neck (SCCHN). Tumors were isolated, immediately snap-frozen, and sectioned, and then, the molecular distribution of the drug was generated by matrix-assisted laser desorption ionization (MALDI) imaging. Additionally, the different histological regions (tumor, epithelium, salivary glands, muscle, nerve, and blood vessels) were identified on stained sections adjacent to the ones used for QMSI, leading to a specific quantification integrating the biological characterization of the tumor heterogeneity. This innovative approach allowed one to highlight the high affinity of xevinapant for the tumor tissues.
Collapse
Affiliation(s)
- Annick Menetrey
- Debiopharm International SA, Chemin Messidor 5-7, 1002 Lausanne, Switzerland
| | - Raphael Legouffe
- ImaBiotech, Parc Eurasanté, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Amina Haouala
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215 Meyrin, Switzerland
| | - David Bonnel
- ImaBiotech, Parc Eurasanté, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Elisabeth Rouits
- Debiopharm International SA, Chemin Messidor 5-7, 1002 Lausanne, Switzerland
| | - Jacques Bosq
- Sciempath Labo, 7, rue de la Gratiole, 37270 Larcay, France
| | - Jonathan Stauber
- ImaBiotech, Parc Eurasanté, 152 rue du Docteur Yersin, 59120 Loos, France
| |
Collapse
|
9
|
Analytical Performance Evaluation of New DESI Enhancements for Targeted Drug Quantification in Tissue Sections. Pharmaceuticals (Basel) 2022; 15:ph15060694. [PMID: 35745613 PMCID: PMC9228120 DOI: 10.3390/ph15060694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
Desorption/ionization (DI)-mass spectrometric (MS) methods offer considerable advantages of rapidity and low-sample input for the analysis of solid biological matrices such as tissue sections. The concept of desorption electrospray ionization (DESI) offers the possibility to ionize compounds from solid surfaces at atmospheric pressure, without the addition of organic compounds to initiate desorption. However, severe drawbacks from former DESI hardware stability made the development of assays for drug quantification difficult. In the present study, the potential of new prototype source setups (High Performance DESI Sprayer and Heated Transfer Line) for the development of drug quantification assays in tissue sections was evaluated. It was demonstrated that following dedicated optimization, new DESI XS enhancements present promising options regarding targeted quantitative analyses. As a model compound for these developments, ulixertinib, an inhibitor of extracellular signal-regulated kinase (ERK) 1 and 2 was used.
Collapse
|
10
|
Badve SS, Gökmen-Polar Y. Protein Profiling of Breast Cancer for Treatment Decision-Making. Am Soc Clin Oncol Educ Book 2022; 42:1-9. [PMID: 35580295 DOI: 10.1200/edbk_351207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The increasing use of neoadjuvant therapy has resulted in therapeutic decisions being made on the basis of diagnostic needle core biopsy. For many patients, this method might yield the only fragment of tumor available for biomarker analysis, necessitating judicious use. Many multiplex protein analytic methods have been developed that employ fluorescence or other tags to overcome the limitations of immunohistochemistry while still retaining the spatial annotation. Interpretation of the data can be difficult because of the limitations of the human eye. Computational deconvolution of the signals may be necessary for some of these methods to enable identification of cell-specific localization and coexpression of biomarkers. Herein, we present the different methods that are coming of age and their application in cancer research, with a focus on breast cancer. We also discuss the limitations, which include high costs and long turnaround times. The methods are also based on the premise that preanalytical factors will have identical impact on all proteins analyzed. There is a need to establish standards to normalize the data and enable cross-sample comparisons. In spite of these limitations, the multiplex technologies are extremely valuable discovery tools and can provide novel insights into the biology of cancer and mechanisms of drug resistance.
Collapse
Affiliation(s)
- Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| |
Collapse
|
11
|
Versatile Mass Spectrometry-Based Intraoperative Diagnosis of Liver Tumor in a Multiethnic Cohort. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Currently used techniques for intraoperative assessment of tumor resection margins are time-consuming and laborious and, more importantly, lack specificity. Moreover, pathological diagnosis during surgery does not often give a clear outcome. Recent advances in mass spectrometry (MS) and instrumentation have made it possible to obtain detailed molecular information from tissue specimens in real-time, with minimal sample pre-treatment. Probe Electro Spray Ionization MS (PESI-MS), combined with artificial intelligence (AI), has demonstrated its effectiveness in distinguishing liver cancer tissues from healthy tissues in a large Italian population group. As the MS profile can reflect the patient’s ethnicity, dietary habits, or particular operating room procedures, the AI algorithm must be well trained to distinguish different groups. We used a large dataset composed of liver tumor and healthy specimens, from the Italian and Japanese populations, to develop a versatile algorithm free from ethnic bias. The system can classify tissues with discrepancies <5% from the pathologist’s diagnosis. These results demonstrate the potential of the PESI-MS system to distinguish tumor from surrounding non-tumor tissues in patients, with minimal bias from race/ethnicity or etiological characteristics or operating room procedures.
Collapse
|
12
|
Davoli E, Zucchetti M, Giavazzi R, Garattini S, Frapolli R. Pseudo-resistance to anticancer drugs. Ther Adv Med Oncol 2022; 14:17588359221136776. [PMID: 36407785 PMCID: PMC9666839 DOI: 10.1177/17588359221136776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Enrico Davoli
- Mass Spectrometry Research Center for Health and Environment and Laboratory of Mass Spectrometry, Environmental Health Sciences Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano 20156, Italy
| | - Massimo Zucchetti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Raffaella Giavazzi
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvio Garattini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Roberta Frapolli
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
13
|
Serain AF, Morosi L, Ceruti T, Matteo C, Meroni M, Minatel E, Zucchetti M, Salvador MJ. Betulinic acid and its spray dried microparticle formulation: In vitro PDT effect against ovarian carcinoma cell line and in vivo plasma and tumor disposition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 224:112328. [PMID: 34628206 DOI: 10.1016/j.jphotobiol.2021.112328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
The race against ovarian cancer continue to motivate the research worldwide. It is known that many antitumor drugs have limited penetration into solid tumor tissues due to its microenvironment, thus contributing to their low efficacy. Therapeutic modalities have been exploited to elicit antitumor effects based on microenvironment of tumor, including Photodynamic therapy (PDT). Prospection of natural small molecules and nanotechnology are important tools in the development of new ways of obtaining photoactive compounds that are biocompatible. The Betulinic acid (BA) has shown potential biological effect as bioactive drug, but it has low water solubility. Thus, in the present study, owing to the poor solubility of the BA, its free form (BAF) was compared to a spray dried microparticle betulinic acid/HP-β-CD formulation (BAC) aiming to assess the BAF and BAC efficacy as a photosensitizer in PDT for application in ovarian cancer. BAF and BAC were submitted to assays in the presence of LED (λ = 420 nm) under different conditions (2.75 J/cm2, 5.5 J/cm2, and 11 J/cm2) and in absence of irradiation, after 5 min or 4 h of contact with ovarian carcinoma cells (A2780) or fibroblast murine cells (3T3). Furthermore, HPLC-MS/MS and MALDI-MSI methods were developed and validated in plasma and tumor of mice proving suitable for in vivo studies. The results found a greater photoinduced cytotoxic effect for the BAC at low concentration for A2780 when irradiated with LED with similar results for fluorescence microscopy. The results motivate us to continue the studies with the BA as a potential antitumor bioactive compound.
Collapse
Affiliation(s)
- Alessandra F Serain
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Vegetal, PPG BTPB, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| | - Lavinia Morosi
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Tommaso Ceruti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Cristina Matteo
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Marina Meroni
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Elaine Minatel
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Massimo Zucchetti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Marcos J Salvador
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Vegetal, PPG BTPB, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| |
Collapse
|
14
|
Matsumoto T, Takiyama M, Sakamoto T, Kaifuchi N, Watanabe J, Takahashi Y, Setou M. Pharmacokinetic study of Ninjin'yoeito: Absorption and brain distribution of Ninjin'yoeito ingredients in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114332. [PMID: 34129897 DOI: 10.1016/j.jep.2021.114332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ninjin'yoeito (NYT), a Japanese traditional Kampo medicine, has been reported to exert various clinical benefits such as relief from fatigue, malaise, anorexia, frailty, sarcopenia, and cognitive dysfunction. Recently, some review articles described the pharmacological effects of NYT and additionally indicated the possibility that multiple ingredients in NYT contribute to these effects. However, pharmacokinetic data on the ingredients are essential in addition to data on their pharmacological activities to accurately determine the active ingredients in NYT. AIM OF THE STUDY This study assessed the in vivo pharmacokinetics of NYT using mice. MATERIALS AND METHODS Target liquid chromatography-mass spectrometry (LC-MS) and wide target LC-MS or LC-tandem MS of NYT ingredients in plasma and the brain after oral administration of NYT were performed. Imaging MS was performed to investigate the detailed brain distributions of NYT ingredients. RESULTS The concentrations of 13 ingredients in plasma and schizandrin in the brain were quantified via target LC-MS, and the wide target analysis illustrated that several ingredients are absorbed into blood and transported into the brain. Imaging MS revealed that schizandrin was homogenously dispersed in the NYT-treated mouse brain. CONCLUSION These results should be useful for clarifying the active ingredients of NYT and their mechanisms of actions.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Mikina Takiyama
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Noriko Kaifuchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Junko Watanabe
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Preppers Co. Ltd., Medical and Industrial Collaboration Center Building, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Preppers Co. Ltd., Medical and Industrial Collaboration Center Building, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan; International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
15
|
Pinessi D, Resovi A, Sangalli F, Morosi L, Zentilin L, Borsotti P, Carlessi E, Passoni A, Davoli E, Belotti D, Giavazzi R, Giacca M, Valbusa G, Berndt A, Zucchetti M, Taraboletti G. Tumor vascular remodeling by thrombospondin-1 enhances drug delivery and antineoplastic activity. Matrix Biol 2021; 103-104:22-36. [PMID: 34653669 DOI: 10.1016/j.matbio.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
The disorganized and inefficient tumor vasculature is a major obstacle to the delivery and efficacy of antineoplastic treatments. Antiangiogenic agents can normalize the tumor vessels, improving vessel function and boosting the distribution and activity of chemotherapy. The type III repeats (T3R) domain of thrombospondin-1 contains different potential antiangiogenic sequences. We therefore hypothesized that it might affect the tumor vasculature. Ectopic expression of the T3R domain by the tumor cells or by the host, or administration of recombinant T3R, delayed the in vivo growth of experimental tumors. Tumors presented marked reorganization of the vasculature, with abundant but smaller vessels, associated with substantially less necrosis. Mechanistically, the use of truncated forms of the domain, containing different active sequences, pointed to the FGF2/FGFR/ERK axis as a target for T3R activity. Along with reduced necrosis, the expression of T3R promoted tumor distribution of chemotherapy (paclitaxel), with a higher drug concentration and more homogeneous distribution, as assessed by HPLC and MALDI imaging mass spectrometry. T3R-expressing tumors were more responsive to paclitaxel and cisplatin. This study shows that together with its known role as a canonical inhibitor of angiogenesis, thrombospondin-1 can also remodel tumor blood vessels, affecting the morphological and functional properties of the tumor vasculature. The ability of T3R to reduce tumor growth and improve the response to chemotherapy opens new perspectives for therapeutic strategies based on T3R to be used in combination therapies.
Collapse
Affiliation(s)
- Denise Pinessi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Andrea Resovi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Fabio Sangalli
- Laboratory of Renal Biophysics, Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Lavinia Morosi
- Cancer Clinical Pharmacology Unit, Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Patrizia Borsotti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elena Carlessi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Alice Passoni
- Center of Mass Spectrometry Research for Health and Environment and Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Enrico Davoli
- Center of Mass Spectrometry Research for Health and Environment and Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Dorina Belotti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Raffaella Giavazzi
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Mauro Giacca
- School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK
| | | | - Alexander Berndt
- Section Pathology, Institute of Legal Medicine, Jena University Hospital, D-07747 Jena, Germany
| | - Massimo Zucchetti
- Cancer Clinical Pharmacology Unit, Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy.
| |
Collapse
|
16
|
Lee PY, Yeoh Y, Omar N, Pung YF, Lim LC, Low TY. Molecular tissue profiling by MALDI imaging: recent progress and applications in cancer research. Crit Rev Clin Lab Sci 2021; 58:513-529. [PMID: 34615421 DOI: 10.1080/10408363.2021.1942781] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) imaging is an emergent technology that has been increasingly adopted in cancer research. MALDI imaging is capable of providing global molecular mapping of the abundance and spatial information of biomolecules directly in the tissues without labeling. It enables the characterization of a wide spectrum of analytes, including proteins, peptides, glycans, lipids, drugs, and metabolites and is well suited for both discovery and targeted analysis. An advantage of MALDI imaging is that it maintains tissue integrity, which allows correlation with histological features. It has proven to be a valuable tool for probing tumor heterogeneity and has been increasingly applied to interrogate molecular events associated with cancer. It provides unique insights into both the molecular content and spatial details that are not accessible by other techniques, and it has allowed considerable progress in the field of cancer research. In this review, we first provide an overview of the MALDI imaging workflow and approach. We then highlight some useful applications in various niches of cancer research, followed by a discussion of the challenges, recent developments and future prospect of this technique in the field.
Collapse
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, University of Nottingham Malaysia, Selangor, Malaysia
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Morosi L, Meroni M, Ubezio P, Fuso Nerini I, Minoli L, Porcu L, Panini N, Colombo M, Blouw B, Kang DW, Davoli E, Zucchetti M, D'Incalci M, Frapolli R. PEGylated recombinant human hyaluronidase (PEGPH20) pre-treatment improves intra-tumour distribution and efficacy of paclitaxel in preclinical models. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:286. [PMID: 34507591 PMCID: PMC8434701 DOI: 10.1186/s13046-021-02070-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Scarce drug penetration in solid tumours is one of the possible causes of the limited efficacy of chemotherapy and is related to the altered tumour microenvironment. The abnormal tumour extracellular matrix (ECM) together with abnormal blood and lymphatic vessels, reactive stroma and inflammation all affect the uptake, distribution and efficacy of anticancer drugs. METHODS We investigated the effect of PEGylated recombinant human hyaluronidase PH20 (PEGPH20) pre-treatment in degrading hyaluronan (hyaluronic acid; HA), one of the main components of the ECM, to improve the delivery of antitumor drugs and increase their therapeutic efficacy. The antitumor activity of paclitaxel (PTX) in HA synthase 3-overexpressing and wild-type SKOV3 ovarian cancer model and in the BxPC3 pancreas xenograft tumour model, was evaluated by monitoring tumour growth with or without PEGPH20 pre-treatment. Pharmacokinetics and tumour penetration of PTX were assessed by HPLC and mass spectrometry imaging analysis in the same tumour models. Tumour tissue architecture and HA deposition were analysed by histochemistry. RESULTS Pre-treatment with PEGPH20 modified tumour tissue architecture and improved the antitumor activity of paclitaxel in the SKOV3/HAS3 tumour model, favouring its accumulation and more homogeneous intra-tumour distribution, as assessed by quantitative and qualitative analysis. PEGPH20 also reduced HA content influencing, though less markedly, PTX distribution and antitumor activity in the BxPC3 tumour model. CONCLUSION Remodelling the stroma of HA-rich tumours by depletion of HA with PEGPH20 pre-treatment, is a potentially successful strategy to improve the intra-tumour distribution of anticancer drugs, increasing their therapeutic efficacy, without increasing toxicity.
Collapse
Affiliation(s)
- Lavinia Morosi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.,Present address: IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marina Meroni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Paolo Ubezio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Ilaria Fuso Nerini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.,Present address: IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Lucia Minoli
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, Milan, Italy
| | - Luca Porcu
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Nicolò Panini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Marika Colombo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | | | - David W Kang
- Halozyme Therapeutics, San Diego, California, USA
| | - Enrico Davoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Mass Spectrometry, Milan, Italy
| | - Massimo Zucchetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Maurizio D'Incalci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.,Present address: IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy.,Present address: Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Roberta Frapolli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.
| |
Collapse
|
18
|
Guo R, Zhou L, Chen X. Desorption electrospray ionization (DESI) source coupling ion mobility mass spectrometry for imaging fluoropezil (DC20) distribution in rat brain. Anal Bioanal Chem 2021; 413:5835-5847. [PMID: 34405263 DOI: 10.1007/s00216-021-03563-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Fluoropezil (DC20) is a new selective acetylcholinesterase inhibitor, and it was developed for the treatment of Alzheimer's disease patients. In this study, a desorption electrospray ionization source coupling ion mobility mass spectrometry imaging (DESI/IMS-MSI) method was developed to explore the distribution of DC20 in brain tissue following oral administration. Rat brain coronal slices obtained 1 h and 3 h following drug dosing were used in the study. D6-DC20 was used as internal standard and sprayed by matrix sprayer on the brain slices to calibrate the matrix effect. Ion mobility separation was used to reduce the interference from background noise and the biological matrix. By optimizing DESI-MSI parameters for improved sensitivity, the limit of quantitation of the method was 1.45 pg/mm2 with a linear range from 1.45 to 72.7 pg/mm2. DESI-MSI data showed that DC20 could quickly enter and diffuse across whole brain and tended to be much more enriched in striatum than cerebral cortex and hippocampus, which was consistent with quantitative analysis using high-performance liquid chromatography-electrospray tandem mass spectrometry to measure DC20 concentration in each homogenized brain sub-region. The workflow of tissue imaging method optimization and strategy were established, and for the first time, the DESI-MSI technique and optimized method were used to explore the distribution characteristics of DC20 in rat brain, which could help elucidate pharmacological effect mechanisms and improve clinical outcomes.
Collapse
Affiliation(s)
- Runcong Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Lei Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai, 201203, People's Republic of China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai, 201203, People's Republic of China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, People's Republic of China.
| |
Collapse
|
19
|
Kushida H, Matsumoto T, Ikarashi Y. Properties, Pharmacology, and Pharmacokinetics of Active Indole and Oxindole Alkaloids in Uncaria Hook. Front Pharmacol 2021; 12:688670. [PMID: 34335255 PMCID: PMC8317223 DOI: 10.3389/fphar.2021.688670] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Uncaria Hook (UH) is a dry stem with hook of Ucaria plant and is contained in Traditional Japanese and Chinese medicine such as yokukansan, yokukansankachimpihange, chotosan, Gouteng-Baitouweng, and Tianma-Gouteng Yin. UH contains active indole and oxindole alkaloids and has the therapeutic effects on ailments of the cardiovascular and central nervous systems. The recent advances of analytical technology led to reports of detailed pharmacokinetics of UH alkaloids. These observations of pharmacokinetics are extremely important for understanding the treatment’s pharmacological activity, efficacy, and safety. This review describes properties, pharmacology, and the recently accumulated pharmacokinetic findings of UH alkaloids, and discusses challenges and future prospects. UH contains major indole and oxindole alkaloids such as corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsuteine, hirsutine, and geissoschizine methyl ether (GM). These alkaloids exert neuroprotective effects against Alzheimer’s disease, Parkinson’s disease, and depression, and the mechanisms of these effects include anti-oxidant, anti-inflammatory, and neuromodulatory activities. Among the UH alkaloids, GM exhibits comparatively potent pharmacological activity (e.g., agonist activity at 5-HT1A receptors). UH alkaloids are absorbed into the blood circulation and rapidly eliminated when orally administered. UH alkaloids are predominantly metabolized by Cytochrome P450 (CYP) and converted into various metabolites, including oxidized and demethylated forms. Regarding GM metabolism by CYPs, a gender-dependent difference is observed in rats but not in humans. Several alkaloids are detected in the brain after passing through the blood–brain barrier in rats upon orally administered. GM is uniformly distributed in the brain and binds to various channels and receptors such as the 5-HT receptor. By reviewing the pharmacokinetics of UH alkaloids, challenges were found, such as differences in pharmacokinetics between pure drug and crude drug products administration, food-influenced absorption, metabolite excretion profile, and intestinal tissue metabolism of UH alkaloids. This review will provide readers with a better understanding of the pharmacokinetics of UH alkaloids and their future challenges, and will be helpful for further research on UH alkaloids and crude drug products containing UH.
Collapse
Affiliation(s)
- Hirotaka Kushida
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Yasushi Ikarashi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| |
Collapse
|
20
|
Discovery of Spatial Peptide Signatures for Neuroblastoma Risk Assessment by MALDI Mass Spectrometry Imaging. Cancers (Basel) 2021; 13:cancers13133184. [PMID: 34202325 PMCID: PMC8269054 DOI: 10.3390/cancers13133184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The childhood tumor, neuroblastoma, has a broad clinical presentation. Risk assessment at diagnosis is particularly difficult in molecularly heterogeneous high-risk cases. Here we investigate the potential of imaging mass spectrometry to directly detect intratumor heterogeneity on the protein level in tissue sections. We show that this approach can produce discriminatory peptide signatures separating high- from low- and intermediate-risk tumors, identify 8 proteins aassociated with these signatures and validate two marker proteins using tissue immunostaining that have promise for further basic and translational research in neuroblastoma. We provide proof-of-concept that mass spectrometry-based technology could assist early risk assessment in neuroblastoma and provide insights into peptide signature-based detection of intratumor heterogeneity. Abstract Risk classification plays a crucial role in clinical management and therapy decisions in children with neuroblastoma. Risk assessment is currently based on patient criteria and molecular factors in single tumor biopsies at diagnosis. Growing evidence of extensive neuroblastoma intratumor heterogeneity drives the need for novel diagnostics to assess molecular profiles more comprehensively in spatial resolution to better predict risk for tumor progression and therapy resistance. We present a pilot study investigating the feasibility and potential of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to identify spatial peptide heterogeneity in neuroblastoma tissues of divergent current risk classification: high versus low/intermediate risk. Univariate (receiver operating characteristic analysis) and multivariate (segmentation, principal component analysis) statistical strategies identified spatially discriminative risk-associated MALDI-based peptide signatures. The AHNAK nucleoprotein and collapsin response mediator protein 1 (CRMP1) were identified as proteins associated with these peptide signatures, and their differential expression in the neuroblastomas of divergent risk was immunohistochemically validated. This proof-of-concept study demonstrates that MALDI-MSI combined with univariate and multivariate analysis strategies can identify spatially discriminative risk-associated peptide signatures in neuroblastoma tissues. These results suggest a promising new analytical strategy improving risk classification and providing new biological insights into neuroblastoma intratumor heterogeneity.
Collapse
|
21
|
Davoli E, Zucchetti M, Matteo C, Ubezio P, D'Incalci M, Morosi L. THE SPACE DIMENSION AT THE MICRO LEVEL: MASS SPECTROMETRY IMAGING OF DRUGS IN TISSUES. MASS SPECTROMETRY REVIEWS 2021; 40:201-214. [PMID: 32501572 DOI: 10.1002/mas.21633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Mass spectrometry imaging (MSI) has seen remarkable development in recent years. The possibility of getting quantitative or semiquantitative data, while maintaining the spatial component in the tissues has opened up unique study possibilities. Now with a spatial window of few tens of microns, we can characterize the events occurring in tissue subcompartments in physiological and pathological conditions. For example, in oncology-especially in preclinical models-we can quantitatively measure drug distribution within tumors, correlating it with pharmacological treatments intended to modify it. We can also study the local effects of the drug in the tissue, and their effects in relation to histology. This review focuses on the main results in the field of drug MSI in clinical pharmacology, looking at the literature on the distribution of drugs in human tissues, and also the first preclinical evidence of drug intratissue effects. The main instrumental techniques are discussed, looking at the different instrumentation, sample preparation protocols, and raw data management employed to obtain the sensitivity required for these studies. Finally, we review the applications that describe in situ metabolic events and pathways induced by the drug, in animal models, showing that MSI makes it possible to study effects that go beyond the simple concentration of the drug, maintaining the space dimension. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Enrico Davoli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Massimo Zucchetti
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Matteo
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Ubezio
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maurizio D'Incalci
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lavinia Morosi
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
22
|
Wang N, Dartois V, Carter CL. An optimized method for the detection and spatial distribution of aminoglycoside and vancomycin antibiotics in tissue sections by mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4708. [PMID: 33586279 PMCID: PMC8032321 DOI: 10.1002/jms.4708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 05/08/2023]
Abstract
Suboptimal antibiotic dosing has been identified as one of the key drivers in the development of multidrug-resistant (MDR) bacteria that have become a global health concern. Aminoglycosides and vancomycin are broad-spectrum antibiotics used to treat critically ill patients infected by a variety of MDR bacterial species. Resistance to these antibiotics is becoming more prevalent. In order to design proper antibiotic regimens that maximize efficacy and minimize the development of resistance, it is pivotal to obtain the in situ pharmacokinetic-pharmacodynamic profiles at the sites of infection. Mass spectrometry imaging (MSI) is the ideal technique to achieve this. Aminoglycosides, due to their structure, suffer from poor ionization efficiency. Additionally, ion suppression effects by endogenous molecules greatly inhibit the detection of aminoglycosides and vancomycin at therapeutic levels. In the current study, an optimized method was developed that enabled the detection of these antibiotics by MSI. Tissue spotting experiments demonstrated a 5-, 15-, 35-, and 54-fold increase in detection sensitivity in the washed samples for kanamycin, amikacin, streptomycin, and vancomycin, respectively. Tissue mimetic models were utilized to optimize the washing time and matrix additive concentration. These studies determined the improved limit of detection was 40 to 5 μg/g of tissue for vancomycin and streptomycin, and 40 to 10 μg/g of tissue for kanamycin and amikacin. The optimized protocol was applied to lung sections from mice dosed with therapeutic levels of kanamycin and vancomycin. The washing protocol enabled the first drug distribution investigations of aminoglycosides and vancomycin by MSI, paving the way for site-of-disease antibiotic penetration studies.
Collapse
Affiliation(s)
- Ning Wang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
| | - Claire L. Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
23
|
Chen Q, Lin W, Yang J, Lin M, Lin X, Weng Y, Chen Y. Prognostic Value of Two Polymorphisms, rs1045642 and rs1128503, in ABCB1 Following Taxane-based Chemotherapy: A Meta-Analysis. Asian Pac J Cancer Prev 2021; 22:3-10. [PMID: 33507672 PMCID: PMC8184199 DOI: 10.31557/apjcp.2021.22.1.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: Genetic polymorphisms can influence the chemotherapeutic response; however, previous studies have produced conflicting results, and have failed to identify the most relevant polymorphisms for predicting the response to treatment in patients with cancer. The present meta-analysis was conducted to determine the correlation between two polymorphisms (rs1045642 and rs1128503) in ATP-binding cassette transporter B subfamily member 1 (ABCB1), which is associated with multidrug resistance, and the survival of patients treated with taxane-containing chemotherapy. Methods: Several databases, including PubMed and Embase, were used to retrieve articles evaluating the association between the ABCB1 rs1045642 and rs1128503 polymorphisms and survival, published prior to August 2019. The meta-analysis was conducted using R software to determine the pooled hazard ratio (HR) and 95% confidence intervals (95% CIs). Results: Fifteen studies involving 3320 patients were included in the meta-analysis. The effect of the rs1128503 polymorphism on progression-free survival remained significant in the heterozygote (HR 0.81; 95% CI: 0.67–0.98) and homozygote (HR 0.71; 95% CI: 0.58–0.88) models. The TT genotype rs1128503 was associated with better overall survival (HR 0.72; 95% CI: 0.53–0.97). Conclusion: Carriers of the rs1128503 T allele of ABCB1 showed a survival benefit after taxane-containing chemotherapy.
Collapse
Affiliation(s)
- Quanyao Chen
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wanlong Lin
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianhui Yang
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Min Lin
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiuxian Lin
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yiyin Weng
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yao Chen
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
24
|
Saigusa D, Matsukawa N, Hishinuma E, Koshiba S. Identification of biomarkers to diagnose diseases and find adverse drug reactions by metabolomics. Drug Metab Pharmacokinet 2020; 37:100373. [PMID: 33631535 DOI: 10.1016/j.dmpk.2020.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Metabolomics has been widely used for investigating the biological functions of disease expression and has the potential to discover biomarkers in circulating biofluids or tissue extracts that reflect in phenotypic changes. Metabolic profiling has advantages because of the use of unbiased techniques, including multivariate analysis, and has been applied in pharmacological studies to predict therapeutic and adverse reactions of drugs, which is called pharmacometabolomics (PMx). Nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based metabolomics has contributed to the discovery of recent disease biomarkers; however, the optimal strategy for the study purpose must be selected from many established protocols, methodologies and analytical platforms. Additionally, information on molecular localization in tissue is essential for further functional analyses related to therapeutic and adverse effects of drugs in the process of drug development. MS imaging (MSI) is a promising technology that can visualize molecules on tissue surfaces without labeling and thus provide localized information. This review summarizes recent uses of MS-based global and wide-targeted metabolomics technologies and the advantages of the MSI approach for PMx and highlights the PMx technique for the biomarker discovery of adverse drug effects.
Collapse
Affiliation(s)
- Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Eiji Hishinuma
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| |
Collapse
|
25
|
Pavlatovská B, Machálková M, Brisudová P, Pruška A, Štěpka K, Michálek J, Nečasová T, Beneš P, Šmarda J, Preisler J, Kozubek M, Navrátilová J. Lactic Acidosis Interferes With Toxicity of Perifosine to Colorectal Cancer Spheroids: Multimodal Imaging Analysis. Front Oncol 2020; 10:581365. [PMID: 33344237 PMCID: PMC7746961 DOI: 10.3389/fonc.2020.581365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is a disease with constantly increasing incidence and high mortality. The treatment efficacy could be curtailed by drug resistance resulting from poor drug penetration into tumor tissue and the tumor-specific microenvironment, such as hypoxia and acidosis. Furthermore, CRC tumors can be exposed to different pH depending on the position in the intestinal tract. CRC tumors often share upregulation of the Akt signaling pathway. In this study, we investigated the role of external pH in control of cytotoxicity of perifosine, the Akt signaling pathway inhibitor, to CRC cells using 2D and 3D tumor models. In 3D settings, we employed an innovative strategy for simultaneous detection of spatial drug distribution and biological markers of proliferation/apoptosis using a combination of mass spectrometry imaging and immunohistochemistry. In 3D conditions, low and heterogeneous penetration of perifosine into the inner parts of the spheroids was observed. The depth of penetration depended on the treatment duration but not on the external pH. However, pH alteration in the tumor microenvironment affected the distribution of proliferation- and apoptosis-specific markers in the perifosine-treated spheroid. Accurate co-registration of perifosine distribution and biological response in the same spheroid section revealed dynamic changes in apoptotic and proliferative markers occurring not only in the perifosine-exposed cells, but also in the perifosine-free regions. Cytotoxicity of perifosine to both 2D and 3D cultures decreased in an acidic environment below pH 6.7. External pH affects cytotoxicity of the other Akt inhibitor, MK-2206, in a similar way. Our innovative approach for accurate determination of drug efficiency in 3D tumor tissue revealed that cytotoxicity of Akt inhibitors to CRC cells is strongly dependent on pH of the tumor microenvironment. Therefore, the effect of pH should be considered during the design and pre-clinical/clinical testing of the Akt-targeted cancer therapy.
Collapse
Affiliation(s)
- Barbora Pavlatovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Markéta Machálková
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Brisudová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Karel Štěpka
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Jan Michálek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Tereza Nečasová
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Center for Biological and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Michal Kozubek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Jarmila Navrátilová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Center for Biological and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| |
Collapse
|
26
|
Giordano S, Takeda S, Donadon M, Saiki H, Brunelli L, Pastorelli R, Cimino M, Soldani C, Franceschini B, Di Tommaso L, Lleo A, Yoshimura K, Nakajima H, Torzilli G, Davoli E. Rapid automated diagnosis of primary hepatic tumour by mass spectrometry and artificial intelligence. Liver Int 2020; 40:3117-3124. [PMID: 32662575 PMCID: PMC7754124 DOI: 10.1111/liv.14604] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Complete surgical resection with negative margin is one of the pillars in treatment of liver tumours. However, current techniques for intra-operative assessment of tumour resection margins are time-consuming and empirical. Mass spectrometry (MS) combined with artificial intelligence (AI) is useful for classifying tissues and provides valuable prognostic information. The aim of this study was to develop a MS-based system for rapid and objective liver cancer identification and classification. METHODS A large dataset derived from 222 patients with hepatocellular carcinoma (HCC, 117 tumours and 105 non-tumours) and 96 patients with mass-forming cholangiocarcinoma (MFCCC, 50 tumours and 46 non-tumours) were analysed by Probe Electrospray Ionization (PESI) MS. AI by means of support vector machine (SVM) and random forest (RF) algorithms was employed. For each classifier, sensitivity, specificity and accuracy were calculated. RESULTS The overall diagnostic accuracy exceeded 94% in both the AI algorithms. For identification of HCC vs non-tumour tissue, RF was the best, with 98.2% accuracy, 97.4% sensitivity and 99% specificity. For MFCCC vs non-tumour tissue, both algorithms gave 99.0% accuracy, 98% sensitivity and 100% specificity. CONCLUSIONS The herein reported MS-based system, combined with AI, permits liver cancer identification with high accuracy. Its bench-top size, minimal sample preparation and short working time are the main advantages. From diagnostics to therapeutics, it has the potential to influence the decision-making process in real-time with the ultimate aim of improving cancer patient cure.
Collapse
Affiliation(s)
- Silvia Giordano
- Mass Spectrometry LaboratoryEnvironmental Health Sciences DepartmentIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly,Present address:
Shimadzu Italia SrlMilanItaly
| | - Sen Takeda
- Department of Anatomy and Cell BiologyUniversity of Yamanashi Faculty of MedicineChuoJapan
| | - Matteo Donadon
- Department of Hepatobiliary and General SurgeryHumanitas UniversityHumanitas Clinical and Research Center – IRCCSMilanItaly,Laboratory of Hepatobiliary ImmunopathologyHumanitas Clinical and Research Center – IRCCSMilanItaly
| | | | - Laura Brunelli
- Mass Spectrometry LaboratoryEnvironmental Health Sciences DepartmentIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Roberta Pastorelli
- Mass Spectrometry LaboratoryEnvironmental Health Sciences DepartmentIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Matteo Cimino
- Department of Hepatobiliary and General SurgeryHumanitas UniversityHumanitas Clinical and Research Center – IRCCSMilanItaly,Laboratory of Hepatobiliary ImmunopathologyHumanitas Clinical and Research Center – IRCCSMilanItaly
| | - Cristiana Soldani
- Department of Hepatobiliary and General SurgeryHumanitas UniversityHumanitas Clinical and Research Center – IRCCSMilanItaly
| | - Barbara Franceschini
- Department of Hepatobiliary and General SurgeryHumanitas UniversityHumanitas Clinical and Research Center – IRCCSMilanItaly
| | - Luca Di Tommaso
- Department of PathologyHumanitas UniversityHumanitas Clinical and Research Center – IRCCSMilanItaly
| | - Ana Lleo
- Laboratory of Hepatobiliary ImmunopathologyHumanitas Clinical and Research Center – IRCCSMilanItaly,Department of Internal MedicineHumanitas UniversityHumanitas Clinical and Research Center – IRCCSMilanItaly
| | - Kentaro Yoshimura
- Department of Anatomy and Cell BiologyUniversity of Yamanashi Faculty of MedicineChuoJapan
| | | | - Guido Torzilli
- Department of Hepatobiliary and General SurgeryHumanitas UniversityHumanitas Clinical and Research Center – IRCCSMilanItaly,Laboratory of Hepatobiliary ImmunopathologyHumanitas Clinical and Research Center – IRCCSMilanItaly
| | - Enrico Davoli
- Mass Spectrometry LaboratoryEnvironmental Health Sciences DepartmentIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| |
Collapse
|
27
|
Prasad M, Postma G, Franceschi P, Morosi L, Giordano S, Falcetta F, Giavazzi R, Davoli E, Buydens LMC, Jansen J. A methodological approach to correlate tumor heterogeneity with drug distribution profile in mass spectrometry imaging data. Gigascience 2020; 9:6006351. [PMID: 33241286 PMCID: PMC7688471 DOI: 10.1093/gigascience/giaa131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/28/2020] [Accepted: 11/01/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Drug mass spectrometry imaging (MSI) data contain knowledge about drug and several other molecular ions present in a biological sample. However, a proper approach to fully explore the potential of such type of data is still missing. Therefore, a computational pipeline that combines different spatial and non-spatial methods is proposed to link the observed drug distribution profile with tumor heterogeneity in solid tumor. Our data analysis steps include pre-processing of MSI data, cluster analysis, drug local indicators of spatial association (LISA) map, and ions selection. RESULTS The number of clusters identified from different tumor tissues. The spatial homogeneity of the individual cluster was measured using a modified version of our drug homogeneity method. The clustered image and drug LISA map were simultaneously analyzed to link identified clusters with observed drug distribution profile. Finally, ions selection was performed using the spatially aware method. CONCLUSIONS In this paper, we have shown an approach to correlate the drug distribution with spatial heterogeneity in untargeted MSI data. Our approach is freely available in an R package 'CorrDrugTumorMSI'.
Collapse
Affiliation(s)
- Mridula Prasad
- IMM/ Analytical Chemistry, Radboud University, Heyendaalseweg, 6525 AJ Nijmegen, Netherlands.,Unit of Computational Biology, Research and Innovation Center, Fondazione Edmund Mach, 38010 San Michele all' Adige, Italy
| | - Geert Postma
- IMM/ Analytical Chemistry, Radboud University, Heyendaalseweg, 6525 AJ Nijmegen, Netherlands
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Center, Fondazione Edmund Mach, 38010 San Michele all' Adige, Italy
| | - Lavinia Morosi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa, 19-20156 Milan, Italy
| | - Silvia Giordano
- Mass Spectrometry Laboratory, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa, 19-20156 Milan, Italy
| | - Francesca Falcetta
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa, 19-20156 Milan, Italy
| | - Raffaella Giavazzi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa, 19-20156 Milan, Italy
| | - Enrico Davoli
- Mass Spectrometry Laboratory, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa, 19-20156 Milan, Italy
| | - Lutgarde M C Buydens
- IMM/ Analytical Chemistry, Radboud University, Heyendaalseweg, 6525 AJ Nijmegen, Netherlands
| | - Jeroen Jansen
- IMM/ Analytical Chemistry, Radboud University, Heyendaalseweg, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
28
|
Treu A, Kokesch-Himmelreich J, Walter K, Hölscher C, Römpp A. Integrating High-Resolution MALDI Imaging into the Development Pipeline of Anti-Tuberculosis Drugs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2277-2286. [PMID: 32965115 DOI: 10.1021/jasms.0c00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Successful treatment of tuberculosis (TB) requires antibiotics to reach their intended point of action, i.e., necrotizing granulomas in the lung. MALDI mass spectrometry imaging (MSI) is able to visualize the distribution of antibiotics in tissue, but resolving the small histological structures in mice, which are most commonly used in preclinical trials, requires high spatial resolution. We developed a MALDI MSI method to image antibiotics in the mouse lung with high mass resolution (240k @ m/z 200 fwhm) and high spatial resolution (10 μm pixel size). A crucial step was to develop a cryosectioning protocol that retains the distribution of water-soluble drugs in small and fragile murine lung lobes without inflation or embedding. Choice and application of matrices were optimized to detect human-equivalent drug concentrations in tissue, and measurement parameters were optimized to detect multiple drugs in a single tissue section. We succeeded in visualizing the distribution of all current first-line anti-TB drugs (pyrazinamide, rifampicin, ethambutol, isoniazid) and the second-line drugs moxifloxacin and clofazimine. Four of these compounds were imaged for the first time in the mouse lung. Accurate mass identification was confirmed by on-tissue MS/MS. Evaluation of fragmentation pathways revealed the structure of the double-protonated molecular ion of pyrazinamide. Clofazimine was imaged for the first time with 10 μm pixel size revealing clofazimine accumulation in lipid deposits around airways. In summary, we developed a platform to resolve the detailed histology in the murine lung and to reliably detect a range of anti-TB drugs at human-equivalent doses. Our workflow is currently being employed in preclinical mouse studies to evaluate the efficacy of novel anti-TB drugs.
Collapse
Affiliation(s)
- Axel Treu
- Chair of Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- German Center for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Julia Kokesch-Himmelreich
- Chair of Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- German Center for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Kerstin Walter
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany
- German Center for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Christoph Hölscher
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany
- German Center for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Andreas Römpp
- Chair of Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- German Center for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
29
|
Goodwin RJA, Takats Z, Bunch J. A Critical and Concise Review of Mass Spectrometry Applied to Imaging in Drug Discovery. SLAS DISCOVERY 2020; 25:963-976. [PMID: 32713279 DOI: 10.1177/2472555220941843] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past decade, mass spectrometry imaging (MSI) has become a robust and versatile methodology to support modern pharmaceutical research and development. The technologies provide data on the biodistribution, metabolism, and delivery of drugs in tissues, while also providing molecular maps of endogenous metabolites, lipids, and proteins. This allows researchers to make both pharmacokinetic and pharmacodynamic measurements at cellular resolution in tissue sections or clinical biopsies. Despite drug imaging within samples now playing a vital role within research and development (R&D) in leading pharmaceutical companies, however, the challenges in turning compounds into medicines continue to evolve as rapidly as the technologies used to discover them. The increasing cost of development of new and emerging therapeutic modalities, along with the associated risks of late-stage program attrition, means there is still an unmet need in our ability to address an increasing array of challenging bioanalytical questions within drug discovery. We require new capabilities and strategies of integrated imaging to provide context for fundamental disease-related biological questions that can also offer insights into specific project challenges. Integrated molecular imaging and advanced image analysis have the opportunity to provide a world-class capability that can be deployed on projects in which we cannot answer the question with our battery of established assays. Therefore, here we will provide an updated concise review of the use of MSI for drug discovery; we will also critically consider what is required to embed MSI into a wider evolving R&D landscape and allow long-lasting impact in the industry.
Collapse
Affiliation(s)
- Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.,Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK
| | - Zoltan Takats
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK.,The Rosalind Franklin Institute, Oxfordshire, UK
| | - Josephine Bunch
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK.,The Rosalind Franklin Institute, Oxfordshire, UK.,National Physical Laboratory, Teddington, London, UK
| |
Collapse
|
30
|
Abbott DM, Bortolotto C, Benvenuti S, Lancia A, Filippi AR, Stella GM. Malignant Pleural Mesothelioma: Genetic and Microenviromental Heterogeneity as an Unexpected Reading Frame and Therapeutic Challenge. Cancers (Basel) 2020; 12:cancers12051186. [PMID: 32392897 PMCID: PMC7281319 DOI: 10.3390/cancers12051186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Mesothelioma is a malignancy of serosal membranes including the peritoneum, pleura, pericardium and the tunica vaginalis of the testes. Malignant mesothelioma (MM) is a rare disease with a global incidence in countries like Italy of about 1.15 per 100,000 inhabitants. Malignant Pleural Mesothelioma (MPM) is the most common form of mesothelioma, accounting for approximately 80% of disease. Although rare in the global population, mesothelioma is linked to industrial pollutants and mineral fiber exposure, with approximately 80% of cases linked to asbestos. Due to the persistent asbestos exposure in many countries, a worldwide progressive increase in MPM incidence is expected for the current and coming years. The tumor grows in a loco-regional pattern, spreading from the parietal to the visceral pleura and invading the surrounding structures that induce the clinical picture of pleural effusion, pain and dyspnea. Distant spreading and metastasis are rarely observed, and most patients die from the burden of the primary tumor. Currently, there are no effective treatments for MPM, and the prognosis is invariably poor. Some studies average the prognosis to be roughly one-year after diagnosis. The uniquely poor mutational landscape which characterizes MPM appears to derive from a selective pressure operated by the environment; thus, inflammation and immune response emerge as key players in driving MPM progression and represent promising therapeutic targets. Here we recapitulate current knowledge on MPM with focus on the emerging network between genetic asset and inflammatory microenvironment which characterize the disease as amenable target for novel therapeutic approaches.
Collapse
Affiliation(s)
- David Michael Abbott
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Chandra Bortolotto
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Silvia Benvenuti
- Candiolo Cancer Institute, FPO—IRCCS—Str. Prov.le 142, km. 3,95—10060 Candiolo (TO), Italy;
| | - Andrea Lancia
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Andrea Riccardo Filippi
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
- Correspondence:
| |
Collapse
|
31
|
Matsumoto T, Ikarashi Y, Takiyama M, Watanabe J, Setou M. Brain distribution of geissoschizine methyl ether in rats using mass spectrometry imaging analysis. Sci Rep 2020; 10:7293. [PMID: 32350314 PMCID: PMC7190722 DOI: 10.1038/s41598-020-63474-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Geissoschizine methyl ether (GM) is one of the main active ingredients responsible for ameliorating the behavioral and psychological symptoms of dementia (BPSD) in Kampo medicine yokukansan. GM is mainly metabolized into hydroxylated forms (HM-1/2). However, the brain distributions of GM and HM has not been reported in vivo. In this study, therefore, the plasma concentrations and brain distribution of these compounds were examined in vivo using rats injected intravenously with GM. Plasma concentrations were analyzed using liquid chromatography-tandem mass spectrometry analysis and brain distribution using mass spectrometry imaging analysis. Plasma GM and HM-1 concentrations decreased in the 4 h after injection, whereas the concentration of plasma HM-2 increased at 4 h. In the 0.25 h-brain, GM signals were diffusely observed throughout the brain, including the cerebral cortex, hippocampus, striatum, thalamus, amygdala, cerebellum, and cerebral ventricle. HM signals were detected only in the ventricles of the brain at 4 h. These results suggest that plasma GM enters the brain and distributes in the parenchyma of various brain regions involved in BPSD, while plasma HM does not enter the brain parenchyma. This study is also the first to visually demonstrate the brain distribution of GM and its metabolite in vivo.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan.
| | - Yasushi Ikarashi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Mikina Takiyama
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Junko Watanabe
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
32
|
Morosi L, Matteo C, Ceruti T, Giordano S, Ponzo M, Frapolli R, Zucchetti M, Davoli E, D'Incalci M, Ubezio P. Quantitative determination of niraparib and olaparib tumor distribution by mass spectrometry imaging. Int J Biol Sci 2020; 16:1363-1375. [PMID: 32210725 PMCID: PMC7085221 DOI: 10.7150/ijbs.41395] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/18/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Optimal intratumor distribution of an anticancer drug is fundamental to reach an active concentration in neoplastic cells, ensuring the therapeutic effect. Determination of drug concentration in tumor homogenates by LC-MS/MS gives important information about this issue but the spatial information gets lost. Targeted mass spectrometry imaging (MSI) has great potential to visualize drug distribution in the different areas of tumor sections, with good spatial resolution and superior specificity. MSI is rapidly evolving as a quantitative technique to measure the absolute drug concentration in each single pixel. Methods: Different inorganic nanoparticles were tested as matrices to visualize the PARP inhibitors (PARPi) niraparib and olaparib. Normalization by deuterated internal standard and a custom preprocessing pipeline were applied to achieve a reliable single pixel quantification of the two drugs in human ovarian tumors from treated mice. Results: A quantitative method to visualize niraparib and olaparib in tumor tissue of treated mice was set up and validated regarding precision, accuracy, linearity, repeatability and limit of detection. The different tumor penetration of the two drugs was visualized by MSI and confirmed by LC-MS/MS, indicating the homogeneous distribution and higher tumor exposure reached by niraparib compared to olaparib. On the other hand, niraparib distribution was heterogeneous in an ovarian tumor model overexpressing the multidrug resistance protein P-gp, a possible cause of resistance to PARPi. Conclusions: The current work highlights for the first time quantitative distribution of PAPRi in tumor tissue. The different tumor distribution of niraparib and olaparib could have important clinical implications. These data confirm the validity of MSI for spatial quantitative measurement of drug distribution providing fundamental information for pharmacokinetic studies, drug discovery and the study of resistance mechanisms.
Collapse
Affiliation(s)
- Lavinia Morosi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Cristina Matteo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Tommaso Ceruti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Silvia Giordano
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Mass Spectrometry
| | - Marianna Ponzo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Roberta Frapolli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Massimo Zucchetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Enrico Davoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Mass Spectrometry
| | - Maurizio D'Incalci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Paolo Ubezio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| |
Collapse
|
33
|
de Maar JS, Sofias AM, Porta Siegel T, Vreeken RJ, Moonen C, Bos C, Deckers R. Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Am J Cancer Res 2020; 10:1884-1909. [PMID: 32042343 PMCID: PMC6993242 DOI: 10.7150/thno.38625] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic and phenotypic tumour heterogeneity is an important cause of therapy resistance. Moreover, non-uniform spatial drug distribution in cancer treatment may cause pseudo-resistance, meaning that a treatment is ineffective because the drug does not reach its target at sufficient concentrations. Together with tumour heterogeneity, non-uniform drug distribution causes “therapy heterogeneity”: a spatially heterogeneous treatment effect. Spatial heterogeneity in drug distribution occurs on all scales ranging from interpatient differences to intratumour differences on tissue or cellular scale. Nanomedicine aims to improve the balance between efficacy and safety of drugs by targeting drug-loaded nanoparticles specifically to tumours. Spatial heterogeneity in nanoparticle and payload distribution could be an important factor that limits their efficacy in patients. Therefore, imaging spatial nanoparticle distribution and imaging the tumour environment giving rise to this distribution could help understand (lack of) clinical success of nanomedicine. Imaging the nanoparticle, drug and tumour environment can lead to improvements of new nanotherapies, increase understanding of underlying mechanisms of heterogeneous distribution, facilitate patient selection for nanotherapies and help assess the effect of treatments that aim to reduce heterogeneity in nanoparticle distribution. In this review, we discuss three groups of imaging modalities applied in nanomedicine research: non-invasive clinical imaging methods (nuclear imaging, MRI, CT, ultrasound), optical imaging and mass spectrometry imaging. Because each imaging modality provides information at a different scale and has its own strengths and weaknesses, choosing wisely and combining modalities will lead to a wealth of information that will help bring nanomedicine forward.
Collapse
|
34
|
Besse HC, Barten-van Rijbroek AD, van der Wurff-Jacobs KMG, Bos C, Moonen CTW, Deckers R. Tumor Drug Distribution after Local Drug Delivery by Hyperthermia, In Vivo. Cancers (Basel) 2019; 11:cancers11101512. [PMID: 31600958 PMCID: PMC6826934 DOI: 10.3390/cancers11101512] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023] Open
Abstract
Tumor drug distribution and concentration are important factors for effective tumor treatment. A promising method to enhance the distribution and the concentration of the drug in the tumor is to encapsulate the drug in a temperature sensitive liposome. The aim of this study was to investigate the tumor drug distribution after treatment with various injected doses of different liposomal formulations of doxorubicin, ThermoDox (temperature sensitive liposomes) and DOXIL (non-temperature sensitive liposomes), and free doxorubicin at macroscopic and microscopic levels. Only ThermoDox treatment was combined with hyperthermia. Experiments were performed in mice bearing a human fibrosarcoma. At low and intermediate doses, the largest growth delay was obtained with ThermoDox, and at the largest dose, the largest growth delay was obtained with DOXIL. On histology, tumor areas with increased doxorubicin concentration correlated with decreased cell proliferation, and substantial variations in doxorubicin heterogeneity were observed. ThermoDox treatment resulted in higher tissue drug levels than DOXIL and free doxorubicin for the same dose. A relation with the distance to the vasculature was shown, but vessel perfusion was not always sufficient to determine doxorubicin delivery. Our results indicate that tumor drug distribution is an important factor for effective tumor treatment and that its dependence on delivery formulation merits further systemic investigation.
Collapse
Affiliation(s)
- Helena C Besse
- Center of Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | - Kim M G van der Wurff-Jacobs
- Center of Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Clemens Bos
- Center of Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Chrit T W Moonen
- Center of Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Roel Deckers
- Center of Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
35
|
Jenčič B, Vavpetič P, Kelemen M, Vencelj M, Vogel-Mikuš K, Kavčič A, Pelicon P. MeV-SIMS TOF Imaging of Organic Tissue with Continuous Primary Beam. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1801-1812. [PMID: 31250317 DOI: 10.1007/s13361-019-02258-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
MeV-SIMS is an emerging mass spectrometry imaging method, which utilizes fast, heavy ions to desorb secondary molecules. High yields and low fragmentation rates of large molecules, associated with the electronic sputtering process, make it particularly useful in biomedical research, where insight into distribution of organic molecules is needed. Since the implementation of MeV-SIMS in to the micro-beam line at the tandem accelerator of Jožef Stefan Institute, MeV-SIMS provided some valuable observations on the distribution of biomolecules in plant tissue, as discussed by Jenčič et al. (Nucl. Inst. Methods Phys. Res. B. 371, 205-210, 2016; Nucl. Inst. Methods Phys. Res. B. 404, 140-145, 2017). However, limited focusing ability of the chlorine ion beam only allowed imaging at the tissue level. In order to surpass shortcomings of the existing method, we introduced a new approach, where we employ a continuous, low-current primary beam. In this mode, we bombard thin samples with a steady chlorine ion flux of approx. 5000 ions/s. After desorbing molecules, chlorine ions penetrate through the thinly cut sample and trigger the time-of-flight "start" signal on a continuous electron multiplier detector, positioned behind the sample. Such bombardment is more effective than previously used pulsing-beam mode, which demanded several orders of magnitude higher primary ion beam currents. Sub-micrometer focusing of low-current primary ion beam allows imaging of biological tissue on a subcellular scale. Simultaneously, new time-of-flight acquisition approach also improves mass resolution by a factor of 5. Within the article, we compare the performance of both methods and demonstrate the application of continuous mode on biological tissue. We also describe the thin sample preparation protocol, necessary for measurements with low primary ion currents.
Collapse
Affiliation(s)
- Boštjan Jenčič
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Primož Vavpetič
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Mitja Kelemen
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Matjaž Vencelj
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 11, SI-1000, Ljubljana, Slovenia
| | - Anja Kavčič
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 11, SI-1000, Ljubljana, Slovenia
| | - Primož Pelicon
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
36
|
Barré FPY, Paine MRL, Flinders B, Trevitt AJ, Kelly PD, Ait-Belkacem R, Garcia JP, Creemers LB, Stauber J, Vreeken RJ, Cillero-Pastor B, Ellis SR, Heeren RMA. Enhanced Sensitivity Using MALDI Imaging Coupled with Laser Postionization (MALDI-2) for Pharmaceutical Research. Anal Chem 2019; 91:10840-10848. [PMID: 31355633 PMCID: PMC6706868 DOI: 10.1021/acs.analchem.9b02495] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Visualizing the distributions of drugs and their metabolites is one of the key emerging application areas of matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) within pharmaceutical research. The success of a given MALDI-MSI experiment is ultimately determined by the ionization efficiency of the compounds of interest, which in many cases are too low to enable detection at relevant concentrations. In this work we have taken steps to address this challenge via the first application of laser-postionisation coupled with MALDI (so-called MALDI-2) to the analysis and imaging of pharmaceutical compounds. We demonstrate that MALDI-2 increased the signal intensities for 7 out of the 10 drug compounds analyzed by up to 2 orders of magnitude compared to conventional MALDI analysis. This gain in sensitivity enabled the distributions of drug compounds in both human cartilage and dog liver tissue to be visualized using MALDI-2, whereas little-to-no signal from tissue was obtained using conventional MALDI. This work demonstrates the vast potential of MALDI-2-MSI in pharmaceutical research and drug development and provides a valuable tool to broaden the application areas of MSI. Finally, in an effort to understand the ionization mechanism, we provide the first evidence that the preferential formation of [M + H]+ ions with MALDI-2 has no obvious correlation with the gas-phase proton affinity values of the analyte molecules, suggesting, as with MALDI, the occurrence of complex and yet to be elucidated ionization phenomena.
Collapse
Affiliation(s)
- Florian P Y Barré
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Martin R L Paine
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Bryn Flinders
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Adam J Trevitt
- School of Chemistry , University of Wollongong , Wollongong , Australia
| | - Patrick D Kelly
- School of Chemistry , University of Wollongong , Wollongong , Australia
| | | | - João P Garcia
- University Medical Centre (UMC) Utrecht , Department of Orthopedics , Heidelberglaan 100 , 3584 CX Utrecht , The Netherlands
| | - Laura B Creemers
- University Medical Centre (UMC) Utrecht , Department of Orthopedics , Heidelberglaan 100 , 3584 CX Utrecht , The Netherlands
| | | | - Rob J Vreeken
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands.,Discovery Sciences , Janssen Research and Development , Beerse , Belgium
| | - Berta Cillero-Pastor
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Shane R Ellis
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| |
Collapse
|
37
|
Applications of MALDI mass spectrometry imaging for pharmacokinetic studies during drug development. Drug Metab Pharmacokinet 2019; 34:209-216. [DOI: 10.1016/j.dmpk.2019.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
|
38
|
Quantitative Mass Spectrometry Imaging Reveals Mutation Status-independent Lack of Imatinib in Liver Metastases of Gastrointestinal Stromal Tumors. Sci Rep 2019; 9:10698. [PMID: 31337874 PMCID: PMC6650609 DOI: 10.1038/s41598-019-47089-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
Mass spectrometry imaging (MSI) is an enabling technology for label-free drug disposition studies at high spatial resolution in life science- and pharmaceutical research. We present the first extensive clinical matrix-assisted laser desorption/ionization (MALDI) quantitative mass spectrometry imaging (qMSI) study of drug uptake and distribution in clinical specimen, analyzing 56 specimens of tumor and corresponding non-tumor tissues from 27 imatinib-treated patients with the biopsy-proven rare disease gastrointestinal stromal tumors (GIST). For validation, we compared MALDI-TOF-qMSI with conventional UPLC-ESI-QTOF-MS-based quantification from tissue extracts and with ultra-high resolution MALDI-FTICR-qMSI. We introduced a novel generalized nonlinear calibration model of drug quantities based on computational evaluation of drug-containing areas that enabled better data fitting and assessment of the inherent method nonlinearities. Imatinib tissue spatial maps revealed striking inefficiency in drug penetration into GIST liver metastases even though the corresponding healthy liver tissues in the vicinity showed abundant imatinib levels beyond the limit of quantification (LOQ), thus providing evidence for secondary drug resistance independent of mutation status. Taken together, these findings underscore the important application of MALDI-qMSI in studying the spatial distribution of molecularly targeted therapeutics in oncology, namely to serve as orthogonal post-surgical approach to evaluate the contribution of anticancer drug disposition to resistance against treatment.
Collapse
|
39
|
Schulz S, Becker M, Groseclose MR, Schadt S, Hopf C. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr Opin Biotechnol 2019; 55:51-59. [DOI: 10.1016/j.copbio.2018.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/21/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
40
|
Blanc L, Daudelin IB, Podell BK, Chen PY, Zimmerman M, Martinot AJ, Savic RM, Prideaux B, Dartois V. High-resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types. eLife 2018; 7:e41115. [PMID: 30427309 PMCID: PMC6249001 DOI: 10.7554/elife.41115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding the distribution patterns of antibiotics at the site of infection is paramount to selecting adequate drug regimens and developing new antibiotics. Tuberculosis (TB) lung lesions are made of various immune cell types, some of which harbor persistent forms of the pathogen, Mycobacterium tuberculosis. By combining high resolution MALDI MSI with histology staining and quantitative image analysis in rabbits with active TB, we have mapped the distribution of a fluoroquinolone at high resolution, and identified the immune-pathological factors driving its heterogeneous penetration within TB lesions, in relation to where bacteria reside. We find that macrophage content, distance from lesion border and extent of necrosis drive the uneven fluoroquinolone penetration. Preferential uptake in macrophages and foamy macrophages, where persistent bacilli reside, compared to other immune cells present in TB granulomas, was recapitulated in vitro using primary human cells. A nonlinear modeling approach was developed to help predict the observed drug behavior in TB lesions. This work constitutes a methodological advance for the co-localization of drugs and infectious agents at high spatial resolution in diseased tissues, which can be applied to other diseases with complex immunopathology.
Collapse
Affiliation(s)
- Landry Blanc
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| | - Isaac B Daudelin
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| | - Brendan K Podell
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsUnited States
| | - Pei-Yu Chen
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| | - Matthew Zimmerman
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| | - Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUnited States
| | - Rada M Savic
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and MedicineUniversity of California San FranciscoSan FranciscoCanada
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| |
Collapse
|
41
|
Prasad M, Postma G, Morosi L, Giordano S, Giavazzi R, D'Incalci M, Falcetta F, Davoli E, Jansen J, Franceschi P. Drug-Homogeneity Index in Mass-Spectrometry Imaging. Anal Chem 2018; 90:13257-13264. [PMID: 30359532 DOI: 10.1021/acs.analchem.8b01870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enhancing drug penetration in solid tumors is an interesting clinical issue of considerable importance. In preclinical research, mass-spectrometry imaging is a promising technique for visualizing drug distribution in tumors under different treatment conditions and its application in this field is rapidly increasing. However, in view of the huge variability among MSI data sets, drug homogeneity is usually manually assessed by an expert, and this approach is biased by interobserver variability and lacks reproducibility. We propose a new texture-based feature, the drug-homogeneity index (DHI), which provides an objective, automated measure of drug homogeneity in MSI data. A simulation study on synthetic data sets showed that previously known texture features do not give an accurate picture of intratumor drug-distribution patterns and are easily influenced by the tumor-tissue morphology. The DHI has been used to study the distribution profile of the anticancer drug paclitaxel in various xenograft models, which were either pretreated or not pretreated with antiangiogenesis compounds. The conclusion is that drug homogeneity is better in the pretreated condition, which is in agreement with previous experimental findings published by our group. This study shows that DHI could be useful in preclinical studies as a new parameter for the evaluation of protocols for better drug penetration.
Collapse
Affiliation(s)
- Mridula Prasad
- Unit of Computational Biology, Research and Innovation Centre , Fondazione Edmund Mach , via E. Mach 1 , 38010 San Michele all'Adige , Italy.,Nanotechnology in Medicinal Chemistry, Department of Molecular Biotechnology and Health Sciences , Università di Torino , 10124 Torino , Italy.,IMM/Analytical Chemistry , Radboud University , Heyendaalseweg , 6525 AJ Nijmegen , The Netherlands
| | - Geert Postma
- IMM/Analytical Chemistry , Radboud University , Heyendaalseweg , 6525 AJ Nijmegen , The Netherlands
| | - Lavinia Morosi
- Department of Oncology , IRCCS Istituto di Ricerche Farmacologiche Mario Negri , Via La Masa 19 , 20156 Milan , Italy
| | - Silvia Giordano
- Department of Environmental Health Science, Mass Spectrometry Laboratory , IRCCS Istituto di Ricerche Farmacologiche Mario Negri , Via La Masa 19 , 20156 Milan , Italy
| | - Raffaella Giavazzi
- Department of Oncology , IRCCS Istituto di Ricerche Farmacologiche Mario Negri , Via La Masa 19 , 20156 Milan , Italy
| | - Maurizio D'Incalci
- Department of Oncology , IRCCS Istituto di Ricerche Farmacologiche Mario Negri , Via La Masa 19 , 20156 Milan , Italy
| | - Francesca Falcetta
- Department of Oncology , IRCCS Istituto di Ricerche Farmacologiche Mario Negri , Via La Masa 19 , 20156 Milan , Italy
| | - Enrico Davoli
- Department of Environmental Health Science, Mass Spectrometry Laboratory , IRCCS Istituto di Ricerche Farmacologiche Mario Negri , Via La Masa 19 , 20156 Milan , Italy
| | - Jeroen Jansen
- IMM/Analytical Chemistry , Radboud University , Heyendaalseweg , 6525 AJ Nijmegen , The Netherlands
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Centre , Fondazione Edmund Mach , via E. Mach 1 , 38010 San Michele all'Adige , Italy
| |
Collapse
|
42
|
Falcetta F, Morosi L, Ubezio P, Giordano S, Decio A, Giavazzi R, Frapolli R, Prasad M, Franceschi P, D'Incalci M, Davoli E. Past-in-the-Future. Peak detection improves targeted mass spectrometry imaging. Anal Chim Acta 2018; 1042:1-10. [PMID: 30428975 DOI: 10.1016/j.aca.2018.06.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 11/30/2022]
Abstract
Mass spectrometry imaging is a valuable tool for visualizing the localization of drugs in tissues, a critical issue especially in cancer pharmacology where treatment failure may depend on poor drug distribution within the tumours. Proper preprocessing procedures are mandatory to obtain quantitative data of drug distribution in tumours, even at low intensity, through reliable ion peak identification and integration. We propose a simple preprocessing and quantification pipeline. This pipeline was designed starting from classical peak integration methods, developed when "microcomputers" became available for chromatography, now applied to MSI. This pre-processing approach is based on a novel method using the fixed mass difference between the analyte and its 5 d derivatives to set up a mass range gate. We demonstrate the use of this pipeline for the evaluating the distribution of the anticancer drug paclitaxel in tumour sections. The procedure takes advantage of a simple peak analysis and allows to quantify the drug concentration in each pixel with a limit of detection below 0.1 pmol mm-2 or 10 μg g-1. Quantitative images of paclitaxel distribution in different tumour models were obtained and average paclitaxel concentrations were compared with HPLC measures in the same specimens, showing <20% difference. The scripts are developed in Python and available through GitHub, at github.com/FrancescaFalcetta/Imaging_of_drugs_distribution_and_quantifications.git.
Collapse
Affiliation(s)
- Francesca Falcetta
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19-20156, Milan, Italy
| | - Lavinia Morosi
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19-20156, Milan, Italy
| | - Paolo Ubezio
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19-20156, Milan, Italy
| | - Silvia Giordano
- Mass Spectrometry Laboratory, Department of Environmental Health Sciences, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19-20156, Milan, Italy
| | - Alessandra Decio
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19-20156, Milan, Italy
| | - Raffaella Giavazzi
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19-20156, Milan, Italy
| | - Roberta Frapolli
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19-20156, Milan, Italy
| | - Mridula Prasad
- IMM/Analytical Chemistry, Radboud University, Heyendaalseweg, 6525 AJ, Nijmegen, Netherlands; Biostatistics and Data Management Group, Fondazione Edmund Mach, 38010, San Michele all' Adige, Italy; Nanotechnology in Medicinal Chemistry, Department of Molecular Biotechnology and Health Sciences, Università di Torino, 10126, Torino, Italy
| | - Pietro Franceschi
- Biostatistics and Data Management Group, Fondazione Edmund Mach, 38010, San Michele all' Adige, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19-20156, Milan, Italy
| | - Enrico Davoli
- Mass Spectrometry Laboratory, Department of Environmental Health Sciences, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19-20156, Milan, Italy.
| |
Collapse
|
43
|
Raccagni I, Belloli S, Valtorta S, Stefano A, Presotto L, Pascali C, Bogni A, Tortoreto M, Zaffaroni N, Daidone MG, Russo G, Bombardieri E, Moresco RM. [18F]FDG and [18F]FLT PET for the evaluation of response to neo-adjuvant chemotherapy in a model of triple negative breast cancer. PLoS One 2018; 13:e0197754. [PMID: 29791503 PMCID: PMC5965848 DOI: 10.1371/journal.pone.0197754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
Rationale Pathological response to neo-adjuvant chemotherapy (NAC) represents a commonly used predictor of survival in triple negative breast cancer (TNBC) and the need to identify markers that predict response to NAC is constantly increasing. Aim of this study was to evaluate the potential usefulness of PET imaging with [18F]FDG and [18F]FLT for the discrimination of TNBC responders to Paclitaxel (PTX) therapy compared to the response assessed by an adapted Response Evaluation Criteria In Solid Tumors (RECIST) criteria based on tumor volume (Tumor Volume Response). Methods Nu/nu mice bearing TNBC lesions of different size were evaluated with [18F]FDG and [18F]FLT PET before and after PTX treatment. SUVmax, Metabolic Tumor Volume (MTV) and Total Lesion Glycolysis (TLG) and Proliferation (TLP) were assessed using a graph-based random walk algorithm. Results We found that in our TNBC model the variation of [18F]FDG and [18F]FLT SUVmax similarly defined tumor response to therapy and that SUVmax variation represented the most accurate parameter. Response evaluation using Tumor Volume Response (TVR) showed that the effectiveness of NAC with PTX was completely independent from lesions size at baseline. Conclusions Our study provided interesting results in terms of sensitivity and specificity of PET in TNBC, revealing the similar performances of [18F]FDG and [18F]FLT in the identification of responders to Paclitaxel.
Collapse
Affiliation(s)
- Isabella Raccagni
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy
- Tecnomed, Foundation of the University of Milano-Bicocca, Monza, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Belloli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Valtorta
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Medicine and Surgery Department, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy
| | - Luca Presotto
- Nuclear Medicine Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Claudio Pascali
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Bogni
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Experimental Oncology and Molecular Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Experimental Oncology and Molecular Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Daidone
- Biomarkers Unit, Experimental Oncology and Molecular Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy
| | | | - Rosa Maria Moresco
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy
- Tecnomed, Foundation of the University of Milano-Bicocca, Monza, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Medicine and Surgery Department, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| |
Collapse
|
44
|
Wang Y, Li H. Identification of proteins associated with paclitaxel resistance of epithelial ovarian cancer using iTRAQ-based proteomics. Oncol Lett 2018; 15:9793-9801. [PMID: 29928353 PMCID: PMC6004651 DOI: 10.3892/ol.2018.8600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/26/2017] [Indexed: 01/01/2023] Open
Abstract
Chemotherapy is an important adjuvant therapy for epithelial ovarian cancer (EOC). The main cause of chemotherapy failure in EOC is paclitaxel resistance. The present study aimed to identify novel biomarkers to predict chemosensitivity to paclitaxel and improve our understanding of the molecular mechanisms underlying paclitaxel resistance in EOC. In the present study, the heterogeneity of EOC was evaluated by adenosine triphosphate-tumor chemosensitivity assay (ATP-TCA) in vitro. Fresh samples were collected from 54 EOC cases during cytoreductive surgery. Tumor cells were isolated, cultured, and tested for sensitivity to paclitaxel. Proteins that were differentially expressed between paclitaxel-resistant tissues and paclitaxel-sensitive tissues were identified via isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. Two upregulated proteins, plexin domain containing 2 (Plxdc2) and cytokeratin 7 (CK7), were selected to verify the iTRAQ method using western blot analysis in EOC tissues with different chemosensitivities (sensitive, weakly sensitive and resistant). There was notable heterogeneity of chemosensitivity in the EOC specimens. Highly to mildly-differentiated or early-stage (I/II) EOC specimens had decreased sensitivity to paclitaxel compared with specimens with low differentiation (P<0.05) or an advanced stage (III; P<0.05), respectively. A total of 496 significantly differentially expressed proteins, including 263 that were downregulated (P<0.05) and 233 that were upregulated (P<0.05) in paclitaxel-resistant tissues compared with paclitaxel-sensitive tissues, were identified using iTRAQ in combination with LC-MS/MS. The expression levels of two proteins associated with paclitaxel resistance, Plxdc2 and CK7, were further validated by western blotting, which revealed that they were upregulated in the paclitaxel-resistant tissues. The present study determined candidate proteins associated with paclitaxel resistance in EOC. Plxdc2 and CK7 may be potential makers for distinguishing patients with paclitaxel-resistant EOC from those with paclitaxel-sensitive EOC.
Collapse
Affiliation(s)
- Yuanjing Wang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Hongxia Li
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
45
|
Kenworthy R, Bosco DB, DeLigio JT, Zorio DAR. Micro-RNA149 confers taxane resistance to malignant mesothelioma cells via regulation of P-glycoprotein expression. Cancer Biol Ther 2018; 19:181-187. [PMID: 29261027 DOI: 10.1080/15384047.2017.1415677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance (MDR) represents a major hindrance to the efficacy of cancer chemotherapeutics. While surgical resection, radiation, and chemotherapy can be used to reduce tumor size, the subsequent appearance of drug resistant cells is a frequent problem. One of the main contributors to the development of MDR is increased expression of multi-drug resistant protein 1 (MDR1), also known as P-glycoprotein (P-gp). P-gp is a membrane-associated efflux pump that can efficiently remove internalized taxane-base chemotherapeutics thus preventing drug accumulation and maintaining cellular viability. Consequently, investigation into the molecular mechanisms responsible for regulation of P-gp expression is necessary to facilitate treatment of MDR tumors. Using molecular and biochemical approaches, we identified that the micro-RNA, miRNA149, contributes to the development of MDR within malignant mesothelioma cells by regulating the expression of MDR1.
Collapse
Affiliation(s)
- Rachael Kenworthy
- a Department of Math and Sciences , Andrew College , Cuthbert , GA , United States
| | - Dale B Bosco
- c Department of Biomedical Sciences , School of Medicine, Florida State University , Tallahassee , FL , United States
| | - James T DeLigio
- b Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA , United States
| | - Diego A R Zorio
- c Department of Biomedical Sciences , School of Medicine, Florida State University , Tallahassee , FL , United States
| |
Collapse
|
46
|
Schorzman AN, Lucas AT, Kagel JR, Zamboni WC. Methods and Study Designs for Characterizing the Pharmacokinetics and Pharmacodynamics of Carrier-Mediated Agents. Methods Mol Biol 2018; 1831:201-228. [PMID: 30051434 DOI: 10.1007/978-1-4939-8661-3_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Major advances in carrier-mediated agents (CMAs), which include nanoparticles, nanosomes, and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages, such as greater solubility, duration of exposure, and delivery to the site of action over their small molecule counterparts, there is substantial variability in systemic clearance and distribution, tumor delivery, and pharmacologic effects (efficacy and toxicity) of these agents. In this chapter, we focus on the analytical and phenotypic methods required to design a study that characterizes the pharmacokinetics (PK) and pharmacodynamics (PD) of all forms of these nanoparticle-based drug agents. These methods include separation of encapsulated and released drugs, ultrafiltration for measurement of non-protein bound active drug, microdialysis to measure intra-tumor drug concentrations, immunomagnetic separation and flow cytometry for sorting cell types, and evaluation of spatial distribution of drug forms relative to tissue architecture by mass spectrometry imaging and immunohistochemistry.
Collapse
Affiliation(s)
- Allison N Schorzman
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew T Lucas
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John R Kagel
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William C Zamboni
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Ryu S, Hayashi M, Aikawa H, Okamoto I, Fujiwara Y, Hamada A. Heterogeneous distribution of alectinib in neuroblastoma xenografts revealed by matrix-assisted laser desorption ionization mass spectrometry imaging: a pilot study. Br J Pharmacol 2017; 175:29-37. [PMID: 29027209 DOI: 10.1111/bph.14067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/07/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The penetration of the anaplastic lymphoma kinase (ALK) inhibitor alectinib in neuroblastomas and the relationship between alectinib and ALK expression are unknown. The aim of this study was to perform a quantitative investigation of the inter- and intra-tumoural distribution of alectinib in different neuroblastoma xenograft models using matrix-assisted laser desorption ionization MS imaging (MALDI-MSI). EXPERIMENTAL APPROACH The distribution of alectinib in NB1 (ALK amplification) and SK-N-FI (ALK wild-type) xenograft tissues was analysed using MALDI-MSI. The abundance of alectinib in tumours and intra-tumoural areas was quantified using ion signal intensities from MALDI-MSI after normalization by correlation with LC-MS/MS. KEY RESULTS The distribution of alectinib was heterogeneous in neuroblastomas. The penetration of alectinib was not significantly different between ALK amplification and ALK wide-type tissues using both LC-MS/MS concentrations and MSI intensities. Normalization with an internal standard increased the quantitative property of MSI by adjusting for the ion suppression effect. The distribution of alectinib in different intra-tumoural areas can alternatively be quantified from MS images by correlation with LC-MS/MS. CONCLUSION AND IMPLICATIONS The penetration of alectinib into tumour tissues may not be homogenous or influenced by ALK expression in the early period after single-dose administration. MALDI-MSI may prove to be a valuable pharmaceutical method for elucidating the mechanism of action of drugs by clarifying their microscopic distribution in heterogeneous tissues.
Collapse
Affiliation(s)
- Shoraku Ryu
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Mitsuhiro Hayashi
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Clinical Pharmacology and Translational Research Exploratory Oncology Research and Clinical Trial Center National Cancer Center, Tokyo, Japan
| | - Hiroaki Aikawa
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Clinical Pharmacology and Translational Research Exploratory Oncology Research and Clinical Trial Center National Cancer Center, Tokyo, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Clinical Pharmacology and Translational Research Exploratory Oncology Research and Clinical Trial Center National Cancer Center, Tokyo, Japan.,Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan.,Department of Medical Oncology and Translational Research, Graduate school of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
48
|
A Nanostructured Matrices Assessment to Study Drug Distribution in Solid Tumor Tissues by Mass Spectrometry Imaging. NANOMATERIALS 2017; 7:nano7030071. [PMID: 28336905 PMCID: PMC5388173 DOI: 10.3390/nano7030071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 11/17/2022]
Abstract
The imaging of drugs inside tissues is pivotal in oncology to assess whether a drug reaches all cells in an adequate enough concentration to eradicate the tumor. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) is one of the most promising imaging techniques that enables the simultaneous visualization of multiple compounds inside tissues. The choice of a suitable matrix constitutes a critical aspect during the development of a MALDI-MSI protocol since the matrix ionization efficiency changes depending on the analyte structure and its physico-chemical properties. The objective of this study is the improvement of the MALDI-MSI technique in the field of pharmacology; developing specifically designed nanostructured surfaces that allow the imaging of different drugs with high sensitivity and reproducibility. Among several nanomaterials, we tested the behavior of gold and titanium nanoparticles, and halloysites and carbon nanotubes as possible matrices. All nanomaterials were firstly screened by co-spotting them with drugs on a MALDI plate, evaluating the drug signal intensity and the signal-to-noise ratio. The best performing matrices were tested on control tumor slices, and were spotted with drugs to check the ion suppression effect of the biological matrix. Finally; the best nanomaterials were employed in a preliminary drug distribution study inside tumors from treated mice.
Collapse
|
49
|
Matsumoto T, Kushida H, Matsushita S, Oyama Y, Suda T, Watanabe J, Kase Y, Setou M. Distribution Analysis via Mass Spectrometry Imaging of Ephedrine in the Lungs of Rats Orally Administered the Japanese Kampo Medicine Maoto. Sci Rep 2017; 7:44098. [PMID: 28272490 PMCID: PMC5341069 DOI: 10.1038/srep44098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/02/2017] [Indexed: 01/10/2023] Open
Abstract
Maoto, a traditional Japanese Kampo medicine, has been used to treat various respiratory diseases, including respiratory infections and influenza. Ephedrine (EPD), the main ingredient in maoto, is also clinically used to treat respiratory diseases. However, the pharmacokinetics and distribution of EPD in the lungs after the administration of maoto have not been demonstrated. This study aimed to determine the concentrations, distribution, and pharmacokinetics of EPD and its precursor methylephedrine (MEPD) in the lungs of rats orally administered maoto (1 and 4 g/kg). We used liquid chromatography–electrospray ionization-tandem mass spectrometry to measure the ingredient concentrations. Both ingredients were detected in maoto-treated lung homogenates. Next, we examined the distribution of both ingredients in lung sections by using matrix-assisted laser desorption/ionization-mass spectrometry imaging, a powerful tool for the visualization of the distribution of biological molecules. The mass spectrometry imaging analysis detected only EPD and provided the first visual demonstration that EPD is distributed in the alveoli, bronchi, and bronchioles in the lungs of rats orally administered maoto (4 g/kg, three times at 2-h intervals). These results suggest that the pharmacological efficacy of maoto for the amelioration of respiratory symptoms is related to the distribution of EPD in the lung.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., Ibaraki, Japan
| | - Hirotaka Kushida
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., Ibaraki, Japan
| | - Shoko Matsushita
- Department of Cellular &Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshiyuki Oyama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Junko Watanabe
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., Ibaraki, Japan
| | - Yoshio Kase
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., Ibaraki, Japan
| | - Mitsutoshi Setou
- Department of Cellular &Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
50
|
Colmegna B, Morosi L, D'Incalci M. Molecular and Pharmacological Mechanisms of Drug Resistance:An Evolving Paradigm. Handb Exp Pharmacol 2017; 249:1-12. [PMID: 28332049 DOI: 10.1007/164_2017_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The high heterogeneity and genomic instability of malignant tumors explains why even responsive tumors contain cell clones that are resistant for many possible mechanisms involving intracellular drug inactivation, low uptake or high efflux of anticancer drugs from cancer cells, qualitative or quantitative changes in the drug target. Many tumors, however, are resistant because of insufficient exposure to anticancer drugs, due to pharmacokinetic reasons and inefficient and heterogeneous tumor drug distribution, related to a deficient vascularization and high interstitial pressure. Finally, resistance can be related to the activation of anti-apoptotic and cell survival pathways by cancer cells and often enhanced by tumor microenvironment.
Collapse
Affiliation(s)
- Benedetta Colmegna
- Department of Oncology, IRCCS 'Mario Negri', Institute for Pharmacological Research, 20145, Milan, Italy
| | - Lavinia Morosi
- Department of Oncology, IRCCS 'Mario Negri', Institute for Pharmacological Research, 20145, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS 'Mario Negri', Institute for Pharmacological Research, 20145, Milan, Italy.
| |
Collapse
|