1
|
Wang PH, Xing L. The roles of rabies virus structural proteins in immune evasion and implications for vaccine development. Can J Microbiol 2024; 70:461-469. [PMID: 39297428 DOI: 10.1139/cjm-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Rabies is a zoonotic infectious disease that targets the nervous system of human and animals and has about 100% fatality rate without treatment. Rabies virus is a bullet-like viral particle composed of five structural proteins, including nucleoprotein (N), phosphorylated protein (P), matrix protein (M), glycoprotein (G), and large subunit (L) of RNA-dependent RNA polymerase. These multifunctional viral proteins also play critical roles in the immune escape by inhibiting specific immune responses in the host, resulting in massive replication of the virus in the nervous system and abnormal behaviors of patients such as brain dysfunction and hydrophobia, which ultimately lead to the death of patients. Herein, the role of five structural proteins of rabies virus in the viral replication and immune escape and its implication for the development of vaccines were systemically reviewed, so as to shed light on the understanding of pathogenic mechanism of rabies virus.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
2
|
Kawaguchi N, Itakura Y, Intaruck K, Ariizumi T, Harada M, Inoue S, Maeda K, Ito N, Hall WW, Sawa H, Orba Y, Sasaki M. Reverse genetic approaches allowing the characterization of the rabies virus street strain belonging to the SEA4 subclade. Sci Rep 2024; 14:18509. [PMID: 39122768 PMCID: PMC11316049 DOI: 10.1038/s41598-024-69613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Rabies virus (RABV) is the causative agent of rabies, a lethal neurological disease in mammals. RABV strains can be classified into fixed strains (laboratory strains) and street strains (field/clinical strains), which have different properties including cell tropism and neuroinvasiveness. RABV Toyohashi strain is a street strain isolated in Japan from an imported case which had been bitten by rabid dog in the Philippines. In order to facilitate molecular studies of RABV, we established a reverse genetics (RG) system for the study of the Toyohashi strain. The recombinant virus was obtained from a cDNA clone of Toyohashi strain and exhibited similar growth efficiency as the original virus in cultured cell lines. Both the original and recombinant strains showed similar pathogenicity with high neuroinvasiveness in mice, and the infected mice developed a long and inconsistent incubation period, which is characteristic of street strains. We also generated a recombinant Toyohashi strain expressing viral phosphoprotein (P protein) fused with the fluorescent protein mCherry, and tracked the intracellular dynamics of the viral P protein using live-cell imaging. The presented reverse genetics system for Toyohashi strain will be a useful tool to explore the fundamental molecular mechanisms of the replication of RABV street strains.
Collapse
Affiliation(s)
- Nijiho Kawaguchi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Sui B, Zhao J, Wang J, Zheng J, Zhou R, Wu D, Zeng Z, Yuan Y, Fu Z, Zhao L, Zhou M. Lyssavirus matrix protein inhibits NLRP3 inflammasome assembly by binding to NLRP3. Cell Rep 2024; 43:114478. [PMID: 38985668 DOI: 10.1016/j.celrep.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/06/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Lyssavirus is a kind of neurotropic pathogen that needs to evade peripheral host immunity to enter the central nervous system to accomplish infection. NLRP3 inflammasome activation is essential for the host to defend against pathogen invasion. This study demonstrates that the matrix protein (M) of lyssavirus can inhibit both the priming step and the activation step of NLRP3 inflammasome activation. Specifically, M of lyssavirus can compete with NEK7 for binding to NLRP3, which restricts downstream apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization. The serine amino acid at the 158th site of M among lyssavirus is critical for restricting ASC oligomerization. Moreover, recombinant lab-attenuated lyssavirus rabies (rabies lyssavirus [RABV]) with G158S mutation at M decreases interleukin-1β (IL-1β) production in bone-marrow-derived dendritic cells (BMDCs) to facilitate lyssavirus invasion into the brain thereby elevating pathogenicity in mice. Taken together, this study reveals a common mechanism by which lyssavirus inhibits NLRP3 inflammasome activation to evade host defenses.
Collapse
Affiliation(s)
- Baokun Sui
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiao Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxin Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonghui Zeng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueming Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenfang Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Aouadi W, Najburg V, Legendre R, Varet H, Kergoat L, Tangy F, Larrous F, Komarova AV, Bourhy H. Comparative analysis of rabies pathogenic and vaccine strains detection by RIG-I-like receptors. Microbes Infect 2024; 26:105321. [PMID: 38461968 DOI: 10.1016/j.micinf.2024.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Rabies virus (RABV) is a lethal neurotropic virus that causes 60,000 human deaths every year globally. RABV infection is characterized by the suppression of the interferon (IFN)-mediated antiviral response. However, molecular mechanisms leading to RABV sensing by RIG-I-like receptors (RLR) that initiates IFN signaling currently remain elusive. Here, we showed that RABV RNAs are primarily recognized by the RIG-I RLR, resulting in an IFN response in the infected cells, but this response varied according to the type of RABV used. Pathogenic RABV strain RNAs, Tha, were poorly detected in the cytosol by RIG-I and therefore caused a weak antiviral response. However, we revealed a strong IFN activity triggered by the attenuated RABV vaccine strain RNAs, SAD, mediated by RIG-I. We characterized two major 5' copy-back defective interfering (5'cb DI) genomes generated during SAD replication. Furthermore, we identified an interaction between 5'cb DI genomes, and RIG-I correlated with a high stimulation of the type I IFN signaling. This study indicates that wild-type RABV RNAs poorly activate the RIG-I pathway, while the presence of 5'cb DIs in the live-attenuated vaccine strain serves as an intrinsic adjuvant that strengthens its efficiency by enhancing RIG-I detection thus strongly stimulates the IFN response.
Collapse
Affiliation(s)
- Wahiba Aouadi
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France
| | - Valérie Najburg
- Institut Pasteur, Université Paris Cité, Vaccines-innovation Laboratory, 75015 Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Hub Bioinformatics, and Biostatistics, 75015 Paris, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Hub Bioinformatics, and Biostatistics, 75015 Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Université Paris Cité, Vaccines-innovation Laboratory, 75015 Paris, France
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France
| | - Anastassia V Komarova
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity Laboratory, 75015 Paris, France.
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France.
| |
Collapse
|
5
|
Perraud V, Vanderhoydonck B, Bouvier G, Dias de Melo G, Kilonda A, Koukni M, Jochmans D, Rogée S, Ben Khalifa Y, Kergoat L, Lannoy J, Van Buyten T, Izadi-Pruneyre N, Chaltin P, Neyts J, Marchand A, Larrous F, Bourhy H. Mechanism of action of phthalazinone derivatives against rabies virus. Antiviral Res 2024; 224:105838. [PMID: 38373533 DOI: 10.1016/j.antiviral.2024.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Rabies, a viral zoonosis, is responsible for almost 59,000 deaths each year, despite the existence of an effective post-exposure prophylaxis. Indeed, rabies causes acute encephalomyelitis, with a case-fatality rate of 100 % after the onset of neurological clinical signs. Therefore, the development of therapies to inhibit the rabies virus (RABV) is crucial. Here, we identified, from a 30,000 compound library screening, phthalazinone derivative compounds as potent inhibitors of RABV infection and more broadly of Lyssavirus and even Mononegavirales infections. Combining in vitro experiments, structural modelling, in silico docking and in vivo assays, we demonstrated that phthalazinone derivatives display a strong inhibition of lyssaviruses infection by acting directly on the replication complex of the virus, and with noticeable effects in delaying the onset of the clinical signs in our mouse model.
Collapse
Affiliation(s)
- Victoire Perraud
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Bart Vanderhoydonck
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Guillaume Bouvier
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, F-75015, Paris, France
| | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Amuri Kilonda
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Mohamed Koukni
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | | | - Sophie Rogée
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Youcef Ben Khalifa
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | | | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015, Paris, France
| | - Patrick Chaltin
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium; Centre for Drug Design and Discovery (CD3), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Johan Neyts
- Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arnaud Marchand
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France.
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France.
| |
Collapse
|
6
|
Yuan Y, Fang A, Wang H, Wang C, Sui B, Zhao J, Fu ZF, Zhou M, Zhao L. Lyssavirus M protein degrades neuronal microtubules by reprogramming mitochondrial metabolism. mBio 2024; 15:e0288023. [PMID: 38349129 PMCID: PMC10936203 DOI: 10.1128/mbio.02880-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
Infection with neurotropic viruses may result in changes in host behavior, which are closely associated with degenerative changes in neurons. The lyssavirus genus comprises highly neurotropic viruses, including the rabies virus (RABV), which has been shown to induce degenerative changes in neurons, marked by the self-destruction of axons. The underlying mechanism by which the RABV degrades neuronal cytoskeletal proteins remains incomplete. In this study, we show that infection with RABV or overexpression of its M protein can disrupt mitochondrial metabolism by binding to Slc25a4. This leads to a reduction in NAD+ production and a subsequent influx of Ca2+ from the endoplasmic reticulum and mitochondria into the cytoplasm of neuronal cell lines, activating Ca2+-dependent proteinase calpains that degrade α-tubulin. We further screened the M proteins of different lyssaviruses and discovered that the M protein of the dog-derived RABV strain (DRV) does not degrade α-tubulin. Sequence analysis of the DRV M protein and that of the lab-attenuated RABV strain CVS revealed that the 57th amino acid is vital for M-induced microtubule degradation. We generated a recombinant RABV with a mutation at the 57th amino acid position in its M protein and showed that this mutation reduces α-tubulin degradation in vitro and axonal degeneration in vivo. This study elucidates the mechanism by which lyssavirus induces neuron degeneration.IMPORTANCEPrevious studies have suggested that RABV (rabies virus, the representative of lyssavirus) infection induces structural abnormalities in neurons. But there are few articles on the mechanism of lyssavirus' effect on neurons, and the mechanism of how RABV infection induces neurological dysfunction remains incomplete. The M protein of lyssavirus can downregulate cellular ATP levels by interacting with Slc25a4, and this decrease in ATP leads to a decrease in the level of NAD+ in the cytosol, which results in the release of Ca2+ from the intracellular calcium pool, the endoplasmic reticulum, and mitochondria. The presence of large amounts of Ca2+ in the cytoplasm activates Ca2+-dependent proteases and degrades microtubule proteins. The amino acid 57 of M protein is the key site determining its disruption of mitochondrial metabolism and subsequent neuron degeneration.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianqing Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
7
|
Sui B, Zheng J, Fu Z, Zhao L, Zhou M. TRIM72 restricts lyssavirus infection by inducing K48-linked ubiquitination and proteasome degradation of the matrix protein. PLoS Pathog 2024; 20:e1011718. [PMID: 38408103 PMCID: PMC10919858 DOI: 10.1371/journal.ppat.1011718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/07/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
The tripartite motif (TRIM) protein family is the largest subfamily of E3 ubiquitin ligases, playing a crucial role in the antiviral process. In this study, we found that TRIM72, a member of the TRIM protein family, was increased in neuronal cells and mouse brains following rabies lyssavirus (RABV) infection. Over-expression of TRIM72 significantly reduced the viral titer of RABV in neuronal cells and mitigated the pathogenicity of RABV in mice. Furthermore, we found that TRIM72 over-expression effectively prevents the assembly and/or release of RABV. In terms of the mechanism, TRIM72 promotes the K48-linked ubiquitination of RABV Matrix protein (M), leading to the degradation of M through the proteasome pathway. TRIM72 directly interacts with M and the interaction sites were identified and confirmed through TRIM72-M interaction model construction and mutation analysis. Further investigation revealed that the degradation of M induced by TRIM72 was attributed to TRIM72's promotion of ubiquitination at site K195 in M. Importantly, the K195 site was found to be partially conserved among lyssavirus's M proteins, and TRIM72 over-expression induced the degradation of these lyssavirus M proteins. In summary, our study has uncovered a TRIM family protein, TRIM72, that can restrict lyssavirus replication by degrading M, and we have identified a novel ubiquitination site (K195) in lyssavirus M.
Collapse
Affiliation(s)
- Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiaxin Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Zhang W, Liu Y, Li M, Zhu J, Li X, Luo TR, Liang J. Host Desmin Interacts with RABV Matrix Protein and Facilitates Virus Propagation. Viruses 2023; 15:v15020434. [PMID: 36851648 PMCID: PMC9964581 DOI: 10.3390/v15020434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Microfilaments and microtubules, two crucial structures of cytoskeletal networks, are usurped by various viruses for their entry, egress, and/or intracellular trafficking, including the Rabies virus (RABV). Intermediate filaments (IFs) are the third major component of cytoskeletal filaments; however, little is known about the role of IFs during the RABV infection. Here, we identified the IF protein desmin as a novel host interactor with the RABV matrix protein, and we show that this physical interaction has a functional impact on the virus lifecycle. We found that the overexpression of desmin facilitates the RABV infection by increasing the progeny virus yield, and the suppression of endogenous desmin inhibits virus replication. Furthermore, we used confocal microscopy to observe that the RABV-M co-localizes with desmin in IF bundles in the BHK-21 cells. Lastly, we found that mice challenged with RABV displayed an enhanced expression of desmin in the brains of infected animals. These findings reveal a desmin/RABV-M interaction that positively regulates the virus infection and suggests that the RABV may utilize cellular IFs as tracks for the intracellular transport of viral components and efficient budding.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Yuming Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Mengru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Jian Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Xiaoning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Correspondence: (X.L.); (T.R.L.); (J.L.)
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Correspondence: (X.L.); (T.R.L.); (J.L.)
| | - Jingjing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (X.L.); (T.R.L.); (J.L.)
| |
Collapse
|
9
|
Feige L, Kozaki T, Dias de Melo G, Guillemot V, Larrous F, Ginhoux F, Bourhy H. Susceptibilities of CNS Cells towards Rabies Virus Infection Is Linked to Cellular Innate Immune Responses. Viruses 2022; 15:88. [PMID: 36680128 PMCID: PMC9860954 DOI: 10.3390/v15010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Rabies is caused by neurotropic rabies virus (RABV), contributing to 60,000 human deaths annually. Even though rabies leads to major public health concerns worldwide, we still do not fully understand factors determining RABV tropism and why glial cells are unable to clear RABV from the infected brain. Here, we compare susceptibilities and immune responses of CNS cell types to infection with two RABV strains, Tha and its attenuated variant Th2P-4M, mutated on phospho- (P-protein) and matrix protein (M-protein). We demonstrate that RABV replicates in human stem cell-derived neurons and astrocytes but fails to infect human iPSC-derived microglia. Additionally, we observed major differences in transcription profiles and quantification of intracellular protein levels between antiviral immune responses mediated by neurons, astrocytes (IFNB1, CCL5, CXCL10, IL1B, IL6, and LIF), and microglia (CCL5, CXCL10, ISG15, MX1, and IL6) upon Tha infection. We also show that P- and M-proteins of Tha mediate evasion of NF-κB- and JAK-STAT-controlled antiviral host responses in neuronal cell types in contrast to glial cells, potentially explaining the strong neuron-specific tropism of RABV. Further, Tha-infected astrocytes and microglia protect neurons from Tha infection via a filtrable and transferable agent. Overall, our study provides novel insights into RABV tropism, showing the interest in studying the interplay of CNS cell types during RABV infection.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Tatsuya Kozaki
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
| | - Guilherme Dias de Melo
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Vincent Guillemot
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, 75015 Paris, France
| | - Florence Larrous
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Center, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
- Inserm U1015, Gustave Roussy, Bâtiment de Médecine Moléculaire, 114 Rue Edouard Vaillant, 94800 Villejuif, France
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| |
Collapse
|
10
|
Dhulipala S, Uversky VN. Looking at the Pathogenesis of the Rabies Lyssavirus Strain Pasteur Vaccins through a Prism of the Disorder-Based Bioinformatics. Biomolecules 2022; 12:1436. [PMID: 36291645 PMCID: PMC9599798 DOI: 10.3390/biom12101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Rabies is a neurological disease that causes between 40,000 and 70,000 deaths every year. Once a rabies patient has become symptomatic, there is no effective treatment for the illness, and in unvaccinated individuals, the case-fatality rate of rabies is close to 100%. French scientists Louis Pasteur and Émile Roux developed the first vaccine for rabies in 1885. If administered before the virus reaches the brain, the modern rabies vaccine imparts long-lasting immunity to the virus and saves more than 250,000 people every year. However, the rabies virus can suppress the host's immune response once it has entered the cells of the brain, making death likely. This study aimed to make use of disorder-based proteomics and bioinformatics to determine the potential impact that intrinsically disordered protein regions (IDPRs) in the proteome of the rabies virus might have on the infectivity and lethality of the disease. This study used the proteome of the Rabies lyssavirus (RABV) strain Pasteur Vaccins (PV), one of the best-understood strains due to its use in the first rabies vaccine, as a model. The data reported in this study are in line with the hypothesis that high levels of intrinsic disorder in the phosphoprotein (P-protein) and nucleoprotein (N-protein) allow them to participate in the creation of Negri bodies and might help this virus to suppress the antiviral immune response in the host cells. Additionally, the study suggests that there could be a link between disorder in the matrix (M) protein and the modulation of viral transcription. The disordered regions in the M-protein might have a possible role in initiating viral budding within the cell. Furthermore, we checked the prevalence of functional disorder in a set of 37 host proteins directly involved in the interaction with the RABV proteins. The hope is that these new insights will aid in the development of treatments for rabies that are effective after infection.
Collapse
Affiliation(s)
- Surya Dhulipala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
11
|
Besson B, Eun H, Kim S, Windisch MP, Bourhy H, Grailhe R. Optimization of BRET saturation assays for robust and sensitive cytosolic protein-protein interaction studies. Sci Rep 2022; 12:9987. [PMID: 35705637 PMCID: PMC9200754 DOI: 10.1038/s41598-022-12851-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) saturation is a method of studying protein–protein interaction (PPI) upon quantification of the dependence of the BRET signal on the acceptor/donor (A:D) expression ratio. In this study, using the very bright Nluc/YFP BRET pair acquired respectively with microplate reader and automated confocal microscopy, we significantly improved BRET saturation assay by extending A:D expression detection range and normalizing A:D expression with a new BRET-free probe. We next found that upon using variable instead of fixed amount of donor molecules co-expressed with increasing acceptor concentrations, BRET saturation assay robustness can be further improved when studying cytosolic protein, although the relative amounts of dimers (BRETmax) and the relative dimer affinity (BRET50) remain similar. Altogether, we show that our method can be applied to many PPI networks, involving the NF-κB pathway, high-affinity nanobody, rabies virus-host interactions, mTOR complex and JAK/STAT signaling. Altogether our approach paves the way for robust PPI validation and characterization in living cells.
Collapse
Affiliation(s)
- Benoit Besson
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea.,Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, 28 rue du docteur Roux, 75015, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75015, Paris, France
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea
| | - Seonhee Kim
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea
| | - Marc P Windisch
- Applied Molecular Virology, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea
| | - Herve Bourhy
- Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, 28 rue du docteur Roux, 75015, Paris, France
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea.
| |
Collapse
|
12
|
Manokaran G, Audsley MD, Funakoda H, David CT, Garnham KA, Rawlinson SM, Deffrasnes C, Ito N, Moseley GW. Deactivation of the antiviral state by rabies virus through targeting and accumulation of persistently phosphorylated STAT1. PLoS Pathog 2022; 18:e1010533. [PMID: 35576230 PMCID: PMC9135343 DOI: 10.1371/journal.ppat.1010533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/26/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022] Open
Abstract
Antagonism of the interferon (IFN)-mediated antiviral state is critical to infection by rabies virus (RABV) and other viruses, and involves interference in the IFN induction and signaling pathways in infected cells, as well as deactivation of the antiviral state in cells previously activated by IFN. The latter is required for viral spread in the host, but the precise mechanisms involved and roles in RABV pathogenesis are poorly defined. Here, we examined the capacity of attenuated and pathogenic strains of RABV that differ only in the IFN-antagonist P protein to overcome an established antiviral state. Importantly, P protein selectively targets IFN-activated phosphorylated STAT1 (pY-STAT1), providing a molecular tool to elucidate specific roles of pY-STAT1. We find that the extended antiviral state is dependent on a low level of pY-STAT1 that appears to persist at a steady state through ongoing phosphorylation/dephosphorylation cycles, following an initial IFN-induced peak. P protein of pathogenic RABV binds and progressively accumulates pY-STAT1 in inactive cytoplasmic complexes, enabling recovery of efficient viral replication over time. Thus, P protein-pY-STAT1 interaction contributes to ‘disarming’ of the antiviral state. P protein of the attenuated RABV is defective in this respect, such that replication remains suppressed over extended periods in cells pre-activated by IFN. These data provide new insights into the nature of the antiviral state, indicating key roles for residual pY-STAT1 signaling. They also elucidate mechanisms of viral deactivation of antiviral responses, including specialized functions of P protein in selective targeting and accumulation of pY-STAT1. Following viral infection, the host activates multiple antiviral defenses. The ability of viruses to overcome these defenses is critical to disease. The earliest antiviral response involves the production of interferon messenger molecules. Interferons act on infected cells to inhibit viral proliferation, as well as on non-infected cells to establish an antiviral state before infection and so limit viral spread through the host organism. Many strategies used by viruses to overcome the former are well understood, but mechanisms important to the latter, and their importance to disease, are less well defined. In this study, we investigated how rabies virus overcomes a pre-established antiviral state in target cells. We found that the capacity to disable the antiviral state correlates with the ability to cause disease, and involves binding of a viral protein to cellular signaling proteins, which our data indicate are responsible for the maintenance of a prolonged antiviral state. This advances our understanding of antiviral responses, and identifies a key step in lethal infection by rabies virus that causes approximately 60,000 human deaths per year. The findings may contribute to new approaches for the development of vaccines or antivirals.
Collapse
Affiliation(s)
- Gayathri Manokaran
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Michelle D. Audsley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Haruka Funakoda
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Cassandra T. David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Katherine A. Garnham
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Stephen M. Rawlinson
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Celine Deffrasnes
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- * E-mail: (NI); (GWM)
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- * E-mail: (NI); (GWM)
| |
Collapse
|
13
|
Kim S, Larrous F, Varet H, Legendre R, Feige L, Dumas G, Matsas R, Kouroupi G, Grailhe R, Bourhy H. Early Transcriptional Changes in Rabies Virus-Infected Neurons and Their Impact on Neuronal Functions. Front Microbiol 2021; 12:730892. [PMID: 34970230 PMCID: PMC8713068 DOI: 10.3389/fmicb.2021.730892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Rabies is a zoonotic disease caused by rabies virus (RABV). As rabies advances, patients develop a variety of severe neurological symptoms that inevitably lead to coma and death. Unlike other neurotropic viruses that can induce symptoms of a similar range, RABV-infected post-mortem brains do not show significant signs of inflammation nor the structural damages on neurons. This suggests that the observed neurological symptoms possibly originate from dysfunctions of neurons. However, many aspects of neuronal dysfunctions in the context of RABV infection are only partially understood, and therefore require further investigation. In this study, we used differentiated neurons to characterize the RABV-induced transcriptomic changes at the early time-points of infection. We found that the genes modulated in response to the infection are particularly involved in cell cycle, gene expression, immune response, and neuronal function-associated processes. Comparing a wild-type RABV to a mutant virus harboring altered matrix proteins, we found that the RABV matrix protein plays an important role in the early down-regulation of host genes, of which a significant number is involved in neuronal functions. The kinetics of differentially expressed genes (DEGs) are also different between the wild type and mutant virus datasets. The number of modulated genes remained constant upon wild-type RABV infection up to 24 h post-infection, but dramatically increased in the mutant condition. This result suggests that the intact viral matrix protein is important to control the size of host gene modulation. We then examined the signaling pathways previously studied in relation to the innate immune responses against RABV, and found that these pathways contribute to the changes in neuronal function-associated processes. We further examined a set of regulated genes that could impact neuronal functions collectively, and demonstrated in calcium imaging that indeed the spontaneous activity of neurons is influenced by RABV infection. Overall, our findings suggest that neuronal function-associated genes are modulated by RABV early on, potentially through the viral matrix protein-interacting signaling molecules and their downstream pathways.
Collapse
Affiliation(s)
- Seonhee Kim
- Technology Development Platform, Institut Pasteur Korea, Seongnam, South Korea
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
- Université de Paris, Doctoral School Bio Sorbonne Paris Cité, Paris, France
| | - Florence Larrous
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Hugo Varet
- Institut Pasteur, Université de Paris, Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Paris, France
- Institut Pasteur, Université de Paris, Plate-Forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université de Paris, Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Paris, France
- Institut Pasteur, Université de Paris, Plate-Forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Lena Feige
- Technology Development Platform, Institut Pasteur Korea, Seongnam, South Korea
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
- Université de Paris, Doctoral School Bio Sorbonne Paris Cité, Paris, France
| | - Guillaume Dumas
- Department of Psychiatry, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Mila, Quebec Artificial Intelligence Institute, University of Montreal, Montreal, QC, Canada
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam, South Korea
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| |
Collapse
|
14
|
Research Advances on the Interactions between Rabies Virus Structural Proteins and Host Target Cells: Accrued Knowledge from the Application of Reverse Genetics Systems. Viruses 2021; 13:v13112288. [PMID: 34835093 PMCID: PMC8617671 DOI: 10.3390/v13112288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Rabies is a lethal zoonotic disease caused by lyssaviruses, such as rabies virus (RABV), that results in nearly 100% mortality once clinical symptoms appear. There are no curable drugs available yet. RABV contains five structural proteins that play an important role in viral replication, transcription, infection, and immune escape mechanisms. In the past decade, progress has been made in research on the pathogenicity of RABV, which plays an important role in the creation of new recombinant RABV vaccines by reverse genetic manipulation. Here, we review the latest advances on the interaction between RABV proteins in the infected host and the applied development of rabies vaccines by using a fully operational RABV reverse genetics system. This article provides a background for more in-depth research on the pathogenic mechanism of RABV and the development of therapeutic drugs and new biologics.
Collapse
|
15
|
Gern OL, Mulenge F, Pavlou A, Ghita L, Steffen I, Stangel M, Kalinke U. Toll-like Receptors in Viral Encephalitis. Viruses 2021; 13:v13102065. [PMID: 34696494 PMCID: PMC8540543 DOI: 10.3390/v13102065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Viral encephalitis is a rare but serious syndrome. In addition to DNA-encoded herpes viruses, such as herpes simplex virus and varicella zoster virus, RNA-encoded viruses from the families of Flaviviridae, Rhabdoviridae and Paramyxoviridae are important neurotropic viruses. Whereas in the periphery, the role of Toll-like receptors (TLR) during immune stimulation is well understood, TLR functions within the CNS are less clear. On one hand, TLRs can affect the physiology of neurons during neuronal progenitor cell differentiation and neurite outgrowth, whereas under conditions of infection, the complex interplay between TLR stimulated neurons, astrocytes and microglia is just on the verge of being understood. In this review, we summarize the current knowledge about which TLRs are expressed by cell subsets of the CNS. Furthermore, we specifically highlight functional implications of TLR stimulation in neurons, astrocytes and microglia. After briefly illuminating some examples of viral evasion strategies from TLR signaling, we report on the current knowledge of primary immunodeficiencies in TLR signaling and their consequences for viral encephalitis. Finally, we provide an outlook with examples of TLR agonist mediated intervention strategies and potentiation of vaccine responses against neurotropic virus infections.
Collapse
Affiliation(s)
- Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Correspondence:
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Imke Steffen
- Department of Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Martin Stangel
- Translational Medicine, Novartis Institute for Biomedical Research (NIBR), 4056 Basel, Switzerland;
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Cluster of Excellence—Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
16
|
Zhao W, Su J, Wang N, Zhao N, Su S. Expression Profiling and Bioinformatics Analysis of CircRNA in Mice Brain Infected with Rabies Virus. Int J Mol Sci 2021; 22:ijms22126537. [PMID: 34207166 PMCID: PMC8234020 DOI: 10.3390/ijms22126537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Rabies virus (RABV) induces acute, fatal encephalitis in mammals including humans. The circRNAs are important in virus infection process, but whether circRNAs regulated RABV infection remains largely unknown. Here, mice brain with or without the RABV CVS-11 strain were subjected to RNA sequencing and a total of 30,985 circRNAs were obtained. Among these, 9021 candidates were shared in both groups, and 14,610 and 7354 circRNAs were expressed specifically to the control and experimental groups, indicating that certain circRNAs were specifically inhibited or induced on RABV infection. The circRNAs mainly derived from coding exons. In total, 636 circRNAs were differentially expressed in RABV infection, of which 426 significantly upregulated and 210 significantly downregulated (p < 0.05 and fold change ≥2). The expression of randomly selected 6 upregulated and 6 downregulated circRNAs was tested by RT-qPCR, and the expression trend of the 11 out of 12 circRNAs was consistent in RT- qPCR and RNA-seq analysis. Rnase R-resistant assay and Sanger sequencing were conducted to verify the circularity of circRNAs. GO analysis demonstrated that source genes of all differentially regulated circRNAs were mainly related to cell plasticity and synapse function. Both KEGG and GSEA analysis revealed that these source genes were engaged in the cGMP–PKG and MAPK signaling pathway, and HTLV-I infection. Also, pathways related to glucose metabolism and synaptic functions were enriched in KEGG analysis. The circRNA–miRNA–mRNA network was built with 25 of 636 differentially expressed circRNAs, 264 mRNAs involved in RABV infection, and 29 miRNAs. Several miRNAs and many mRNAs in the network were reported to be related to viral infection and the immune response, suggesting that circRNAs could regulate RABV infection via interacting with miRNAs and mRNAs. Taken together, this study first characterized the transcriptomic pattern of circRNAs, and signaling pathways and function that circRNAs are involved in, which may indicate directions for further research to understand mechanisms of RABV pathogenesis.
Collapse
|
17
|
Embregts CWE, Begeman L, Voesenek CJ, Martina BEE, Koopmans MPG, Kuiken T, GeurtsvanKessel CH. Street RABV Induces the Cholinergic Anti-inflammatory Pathway in Human Monocyte-Derived Macrophages by Binding to nAChr α7. Front Immunol 2021; 12:622516. [PMID: 33679766 PMCID: PMC7933221 DOI: 10.3389/fimmu.2021.622516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Rabies virus (RABV) is able to reach the central nervous system (CNS) without triggering a strong immune response, using multiple mechanisms to evade and suppress the host immune system. After infection via a bite or scratch from a rabid animal, RABV comes into contact with macrophages, which are the first antigen-presenting cells (APCs) that are recruited to the area and play an essential role in the onset of a specific immune response. It is poorly understood how RABV affects macrophages, and if the interaction contributes to the observed immune suppression. This study was undertaken to characterize the interactions between RABV and human monocyte-derived macrophages (MDMs). We showed that street RABV does not replicate in human MDMs. Using a recombinant trimeric RABV glycoprotein (rRABV-tG) we showed binding to the nicotinic acetylcholine receptor alpha 7 (nAChr α7) on MDMs, and confirmed the specificity using the nAChr α7 antagonist alpha-bungarotoxin (α-BTX). We found that this binding induced the cholinergic anti-inflammatory pathway (CAP), characterized by a significant decrease in tumor necrosis factor α (TNF-α) upon LPS challenge. Using confocal microscopy we found that induction of the CAP is associated with significant cytoplasmic retention of nuclear factor κB (NF-κB). Co-cultures of human MDMs exposed to street RABV and autologous T cells further revealed that the observed suppression of MDMs might affect their function as T cell activators as well, as we found a significant decrease in proliferation of CD8+ T cells and an increased production of the anti-inflammatory cytokine IL-10. Lastly, using flow cytometric analysis we observed a significant increase in expression of the M2-c surface marker CD163, hinting that street RABV might be able to affect macrophage polarization. Taken together, these results show that street RABV is capable of inducing an anti-inflammatory state in human macrophages, possibly affecting T cell functioning.
Collapse
Affiliation(s)
| | - Lineke Begeman
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
18
|
Hwang JY, Lee UH, Heo MJ, Kim MS, Jeong JM, Kim SY, Kwon MG, Jee BY, Kim KH, Park CI, Park JW. Naturally occurring substitution in one amino acid in VHSV phosphoprotein enhances viral virulence in flounder. PLoS Pathog 2021; 17:e1009213. [PMID: 33465148 PMCID: PMC7845975 DOI: 10.1371/journal.ppat.1009213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/29/2021] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus that causes high mortality in cultured flounder. Naturally occurring VHSV strains vary greatly in virulence. Until now, little has been known about genetic alterations that affect the virulence of VHSV in flounder. We recently reported the full-genome sequences of 18 VHSV strains. In this study, we determined the virulence of these 18 VHSV strains in flounder and then the assessed relationships between differences in the amino acid sequences of the 18 VHSV strains and their virulence to flounder. We identified one amino acid substitution in the phosphoprotein (P) (Pro55-to-Leu substitution in the P protein; PP55L) that is specific to highly virulent strains. This PP55L substitution was maintained stably after 30 cell passages. To investigate the effects of the PP55L substitution on VHSV virulence in flounder, we generated a recombinant VHSV carrying PP55L (rVHSV-P) from rVHSV carrying P55 in the P protein (rVHSV-wild). The rVHSV-P produced high level of viral RNA in cells and showed increased growth in cultured cells and virulence in flounder compared to the rVHSV-wild. In addition, rVHSV-P significantly inhibited the induction of the IFN1 gene in both cells and fish at 6 h post-infection. An RNA-seq analysis confirmed that rVHSV-P infection blocked the induction of several IFN-related genes in virus-infected cells at 6 h post-infection compared to rVHSV-wild. Ectopic expression of PP55L protein resulted in a decrease in IFN induction and an increase in viral RNA synthesis in rVHSV-wild-infected cells. Taken together, our results are the first to identify that the P55L substitution in the P protein enhances VHSV virulence in flounder. The data from this study add to the knowledge of VHSV virulence in flounder and could benefit VHSV surveillance efforts and the generation of a VHSV vaccine. Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus that causes huge economic losses to the fish culture industry throughout the world. Virulence among naturally occurring VHSV strains varies widely. However, little is known about the viral factors that determine VHSV virulence. Here, we identify a naturally-occurring, single-amino-acid substitution in the VHSV P protein that enhances VHSV virulence in flounder. This amino acid substitution in the P protein was detected only in highly virulent VHSV strains, and it enhances viral RNA synthesis and inhibits the interferon response of host cells early after virus infection. Recombinant VHSV containing this amino acid substitution caused increased mortality in flounder compared with the wild type. This is the first study to identify a naturally occurring amino acid substitution in VHSV that determines its virulence in flounder. We expect that our result can be applied to other fish species, and this finding will provide new opportunities to generate an effective VHSV vaccine.
Collapse
Affiliation(s)
- Jee Youn Hwang
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Min Jin Heo
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, Gyeongnam, Korea
| | - Min Sun Kim
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, Korea
| | - Ji Min Jeong
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - So Yeon Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - Mun Gyeong Kwon
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - Bo Young Jee
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
- * E-mail: (KHK); (CIP); (JWP)
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, Gyeongnam, Korea
- * E-mail: (KHK); (CIP); (JWP)
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- * E-mail: (KHK); (CIP); (JWP)
| |
Collapse
|
19
|
Liu X, Li F, Zhang J, Wang L, Wang J, Wen Z, Wang Z, Shuai L, Wang X, Ge J, Zhao D, Bu Z. The ATPase ATP6V1A facilitates rabies virus replication by promoting virion uncoating and interacting with the viral matrix protein. J Biol Chem 2021; 296:100096. [PMID: 33208464 PMCID: PMC7949080 DOI: 10.1074/jbc.ra120.014190] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
Rabies virus (RABV) matrix protein (M) plays crucial roles in viral transcription, replication, assembly, and budding; however, its function during the early stage of virus replication remains unknown. Here, we mapped the protein interactome between RABV M and human host factors using a proteomic approach, finding a link to the V-type proton ATPase catalytic subunit A (ATP6V1A), which is located in the endosomes where RABV first enters. By downregulating or upregulating ATP6V1A expression in HEK293T cells, we found that ATP6V1A facilitated RABV replication. We further found that ATP6V1A was involved in the dissociation of incoming viral M proteins during viral uncoating. Coimmunoprecipitation demonstrated that M interacted with the full length or middle domain of ATP6V1A, which was dependent on the lysine residue at position 256 and the glutamic acid residue at position 279. RABV growth and uncoating in ATP6V1A-depleted cells was restored by trans-complementation with the full length or interaction domain of ATP6V1A. Moreover, stably overexpressed ATP6V1A enhanced RABV growth in Vero cells, which are used for the production of rabies vaccine. Our findings identify a new partner for RABV M proteins and establish a new role of ATP6V1A by promoting virion uncoating during RABV replication.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Fang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jiwen Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Lulu Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jinliang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zilong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Lei Shuai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Dongming Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China; National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin, People's Republic of China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China; National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin, People's Republic of China.
| |
Collapse
|
20
|
Hossain MA, Larrous F, Rawlinson SM, Zhan J, Sethi A, Ibrahim Y, Aloi M, Lieu KG, Mok YF, Griffin MDW, Ito N, Ose T, Bourhy H, Moseley GW, Gooley PR. Structural Elucidation of Viral Antagonism of Innate Immunity at the STAT1 Interface. Cell Rep 2020; 29:1934-1945.e8. [PMID: 31722208 DOI: 10.1016/j.celrep.2019.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/16/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
To evade immunity, many viruses express interferon antagonists that target STAT transcription factors as a major component of pathogenesis. Because of a lack of direct structural data, these interfaces are poorly understood. We report the structural analysis of full-length STAT1 binding to an interferon antagonist of a human pathogenic virus. The interface revealed by transferred cross-saturation NMR is complex, involving multiple regions in both the viral and cellular proteins. Molecular mapping analysis, combined with biophysical characterization and in vitro/in vivo functional assays, indicates that the interface is significant in disease caused by a pathogenic field-strain lyssavirus, with critical roles for contacts between the STAT1 coiled-coil/DNA-binding domains and specific regions within the viral protein. These data elucidate the potentially complex nature of IFN antagonist/STAT interactions, and the spatial relationship of protein interfaces that mediate immune evasion and replication, providing insight into how viruses can regulate these essential functions via single multifunctional proteins.
Collapse
Affiliation(s)
- Md Alamgir Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Florence Larrous
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; Unité Lyssavirus, Epidémiologie et Neuropathologie - CNR de la RAGE, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Stephen M Rawlinson
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia
| | - Jingyu Zhan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Youssef Ibrahim
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Maria Aloi
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia
| | - Kim G Lieu
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Hervé Bourhy
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; Unité Lyssavirus, Epidémiologie et Neuropathologie - CNR de la RAGE, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
21
|
Astrocyte Infection during Rabies Encephalitis Depends on the Virus Strain and Infection Route as Demonstrated by Novel Quantitative 3D Analysis of Cell Tropism. Cells 2020; 9:cells9020412. [PMID: 32053954 PMCID: PMC7072253 DOI: 10.3390/cells9020412] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/25/2022] Open
Abstract
Although conventional immunohistochemistry for neurotropic rabies virus (RABV) usually shows high preference for neurons, non-neuronal cells are also potential targets, and abortive astrocyte infection is considered a main trigger of innate immunity in the CNS. While in vitro studies indicated differences between field and less virulent lab-adapted RABVs, a systematic, quantitative comparison of astrocyte tropism in vivo is lacking. Here, solvent-based tissue clearing was used to measure RABV cell tropism in infected brains. Immunofluorescence analysis of 1 mm-thick tissue slices enabled 3D-segmentation and quantification of astrocyte and neuron infection frequencies. Comparison of three highly virulent field virus clones from fox, dog, and raccoon with three lab-adapted strains revealed remarkable differences in the ability to infect astrocytes in vivo. While all viruses and infection routes led to neuron infection frequencies between 7–19%, striking differences appeared for astrocytes. Whereas astrocyte infection by field viruses was detected independent of the inoculation route (8–27%), only one lab-adapted strain infected astrocytes route-dependently [0% after intramuscular (i.m.) and 13% after intracerebral (i.c.) inoculation]. Two lab-adapted vaccine viruses lacked astrocyte infection altogether (0%, i.c. and i.m.). This suggests a model in which the ability to establish productive astrocyte infection in vivo functionally distinguishes field and attenuated lab RABV strains.
Collapse
|
22
|
Hellert J, Buchrieser J, Larrous F, Minola A, de Melo GD, Soriaga L, England P, Haouz A, Telenti A, Schwartz O, Corti D, Bourhy H, Rey FA. Structure of the prefusion-locking broadly neutralizing antibody RVC20 bound to the rabies virus glycoprotein. Nat Commun 2020; 11:596. [PMID: 32001700 PMCID: PMC6992781 DOI: 10.1038/s41467-020-14398-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022] Open
Abstract
Rabies virus (RABV) causes fatal encephalitis in more than 59,000 people yearly. Upon the bite of an infected animal, the development of clinical disease can be prevented with post-exposure prophylaxis (PEP), which includes the administration of Rabies immunoglobulin (RIG). However, the high cost and limited availability of serum-derived RIG severely hamper its wide use in resource-limited countries. A safe low-cost alternative is provided by using broadly neutralizing monoclonal antibodies (bnAbs). Here we report the X-ray structure of one of the most potent and most broadly reactive human bnAbs, RVC20, in complex with its target domain III of the RABV glycoprotein (G). The structure reveals that the RVC20 binding determinants reside in a highly conserved surface of G, rationalizing its broad reactivity. We further show that RVC20 blocks the acid-induced conformational change required for membrane fusion. Our results may guide the future development of direct antiviral small molecules for Rabies treatment.
Collapse
Affiliation(s)
- Jan Hellert
- Structural Virology Unit, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Docteur Roux, Cedex 15, 75724, Paris, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Docteur Roux, Cedex 15, 75724, Paris, France
| | - Florence Larrous
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, Cedex 15, 75724, Paris, France
| | - Andrea Minola
- Humabs BioMed SA, a subsidiary of Vir Biotechnology Inc., Via dei Gaggini 3, 6500, Bellinzona, Switzerland
| | - Guilherme Dias de Melo
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, Cedex 15, 75724, Paris, France
| | - Leah Soriaga
- Vir Biotechnology Inc, San Francisco, CA, 94158, USA
| | - Patrick England
- Molecular Biophysics Platform C2RT, Institut Pasteur, CNRS UMR 3528, 25-28 rue du Docteur Roux, Cedex 15, 75724, Paris, France
| | - Ahmed Haouz
- Crystallography Platform C2RT, Institut Pasteur, CNRS UMR 3528, 25-28 rue du Dr. Roux, Cedex 15, 75724, Paris, France
| | | | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Docteur Roux, Cedex 15, 75724, Paris, France
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology Inc., Via dei Gaggini 3, 6500, Bellinzona, Switzerland
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, Cedex 15, 75724, Paris, France.
| | - Félix A Rey
- Structural Virology Unit, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Docteur Roux, Cedex 15, 75724, Paris, France.
| |
Collapse
|
23
|
Luo J, Zhang Y, Zhang Q, Wu Y, Zhang B, Mo M, Tian Q, Zhao J, Mei M, Guo X. The Deoptimization of Rabies Virus Matrix Protein Impacts Viral Transcription and Replication. Viruses 2019; 12:v12010004. [PMID: 31861477 PMCID: PMC7019236 DOI: 10.3390/v12010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Rabies virus (RABV) matrix (M) protein plays several important roles during RABV infection. Although previous studies have assessed the functions of M through gene rearrangements, this interferes with the position of other viral proteins. In this study, we attenuated M expression through deoptimizing its codon usage based on codon pair bias in RABV. This strategy more objectively clarifies the role of M during virus infection. Codon-deoptimized M inhibited RABV replication during the early stages of infection, but enhanced viral titers at later stages. Codon-deoptimized M also inhibited genome synthesis at early stage of infection and increased the RABV transcription rates. Attenuated M through codon deoptimization enhanced RABV glycoprotein expression following RABV infection in neuronal cells, but had no influence on the cell-to-cell spread of RABV. In addition, codon-deoptimized M virus induced higher levels of apoptosis compared to the parental RABV. These results indicate that codon-deoptimized M increases glycoprotein expression, providing a foundation for further investigation of the role of M during RABV infection.
Collapse
|
24
|
Sonthonnax F, Besson B, Bonnaud E, Jouvion G, Merino D, Larrous F, Bourhy H. Lyssavirus matrix protein cooperates with phosphoprotein to modulate the Jak-Stat pathway. Sci Rep 2019; 9:12171. [PMID: 31434934 PMCID: PMC6704159 DOI: 10.1038/s41598-019-48507-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Phosphoprotein (P) and matrix protein (M) cooperate to undermine the immune response to rabies virus (RABV) infections. While P is involved in the modulation of the Jak-Stat pathway through the cytoplasmic retention of interferon (IFN)-activated STAT1 (pSTAT1), M interacts with the RelAp43-p105-ABIN2-TPL2 complex, to efficiently inhibit the nuclear factor-κB (NF-κB) pathway. Using transfections, protein-complementation assays, reverse genetics and DNA ChIP, we identified a role of M protein in the control of Jak-Stat signaling pathway, in synergy with the P protein. In unstimulated cells, both M and P proteins were found to interact with JAK1. Upon type-I IFN stimulation, the M switches toward pSTAT1 interaction, which results in an enhanced capacity of P protein to interact with pSTAT1 and restrain it in the cytoplasm. Furthermore, the role for M-protein positions 77, 100, 104 and 110 was also demonstrated in interaction with both JAK1 and pY-STAT1, and confirmed in vivo. Together, these data indicate that M protein cooperates with P protein to restrain in parallel, and sequentially, NF-κB and Jak-Stat pathways.
Collapse
Affiliation(s)
- Florian Sonthonnax
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.,Université Paris-Diderot, Sorbonne-Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Benoit Besson
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.,Université Paris-Diderot, Sorbonne-Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Emilie Bonnaud
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Grégory Jouvion
- Unité de Neuropathologie expérimentale, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - David Merino
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Florence Larrous
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| | - Hervé Bourhy
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| |
Collapse
|
25
|
Kinome-Wide RNA Interference Screening Identifies Mitogen-Activated Protein Kinases and Phosphatidylinositol Metabolism as Key Factors for Rabies Virus Infection. mSphere 2019; 4:4/3/e00047-19. [PMID: 31118297 PMCID: PMC6531879 DOI: 10.1128/msphere.00047-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rabies virus relies on cellular machinery for its replication while simultaneously evading the host immune response. Despite their importance, little is known about the key host factors required for rabies virus infection. Here, we focused on the human kinome, at the core of many cellular pathways, to unveil a new understanding of the rabies virus infectious cycle and to discover new potential therapeutic targets in a small interfering RNA screening. The mitogen-activated protein kinase pathway and phosphatidylinositol metabolism were identified as prominent factors involved in rabies virus infection, and those findings were further confirmed in human neurons. While bringing a new insight into rabies virus biology, we also provide a new list of host factors involved in rabies virus infection. Throughout the rabies virus (RABV) infectious cycle, host-virus interactions define its capacity to replicate, escape the immune response, and spread. As phosphorylation is a key regulatory mechanism involved in most cellular processes, kinases represent a target of choice to identify host factors required for viral replication. A kinase and phosphatase small interfering RNA (siRNA) high-content screening was performed on a fluorescent protein-recombinant field isolate (Tha RABV). We identified 57 high-confidence key host factors important for RABV replication with a readout set at 18 h postinfection and 73 with a readout set at 36 h postinfection, including 24 common factors at all stages of the infection. Amongst them, gene clusters of the most prominent pathways were determined. Up to 15 mitogen-activated protein kinases (MAPKs) and effectors, including MKK7 (associated with Jun N-terminal protein kinase [JNK] signalization) and DUSP5, as well as 17 phosphatidylinositol (PI)-related proteins, including PIP5K1C and MTM1, were found to be involved in the later stage of RABV infection. The importance of these pathways was further validated, as small molecules Ro 31-8820 and PD 198306 inhibited RABV replication in human neurons. IMPORTANCE Rabies virus relies on cellular machinery for its replication while simultaneously evading the host immune response. Despite their importance, little is known about the key host factors required for rabies virus infection. Here, we focused on the human kinome, at the core of many cellular pathways, to unveil a new understanding of the rabies virus infectious cycle and to discover new potential therapeutic targets in a small interfering RNA screening. The mitogen-activated protein kinase pathway and phosphatidylinositol metabolism were identified as prominent factors involved in rabies virus infection, and those findings were further confirmed in human neurons. While bringing a new insight into rabies virus biology, we also provide a new list of host factors involved in rabies virus infection.
Collapse
|
26
|
Li C, Zhang H, Ji L, Wang X, Wen Y, Li G, Fu ZF, Yang Y. Deficient Incorporation of Rabies Virus Glycoprotein into Virions Enhances Virus-Induced Immune Evasion and Viral Pathogenicity. Viruses 2019; 11:v11030218. [PMID: 30836694 PMCID: PMC6466124 DOI: 10.3390/v11030218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Previous studies have shown that wild-type (wt) rabies virus (RABV) evades the host immune response by restricting expression of glycoprotein (G), which blocks activation of dendritic cells (DCs) and induces production of virus-neutralizing antibodies (VNAs). In the present study, wt RABVs not only restricted G expression but also reduced incorporation of G into mature virions compared with laboratory-adapted viruses. A recombinant RABV expressing triple G was used to further determine whether G expression relates to incorporation. The recombinant virus showed higher expression and incorporation of G and activated more DCs than the virus that expressed a single copy of G. Removal of G from viruses using subtilisin or Dithiothreitol (DTT)/ Nonidet P-40 (NP40) almost completely abolishes DC activation and VNA production. Consequently, these G-depleted viruses cause lethal infection in mice. Thus, wt RABVs can subvert DC-induced antiviral immune response and maintain pathogenicity by decreasing G expression in infected cells and G incorporation into virions.
Collapse
Affiliation(s)
- Chunfu Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Hongliang Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Lina Ji
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Xiao Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Yongjun Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Guangpeng Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Zhen F Fu
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yang Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr Opin Virol 2019; 35:1-13. [PMID: 30753961 DOI: 10.1016/j.coviro.2018.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Rabies virus (RABV) constitutes a major social and economic burden associated with 60 000 deaths annually worldwide. Although pre-exposure and post-exposure treatment options are available, they are efficacious only when initiated before the onset of clinical symptoms. Aggravating the problem, the current RABV vaccine does not cross-protect against the emerging zoonotic phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and high cost of the immunoglobulin component of rabies prophylaxis generate an unmet need for the development of RABV-specific antivirals. We discuss desirable anti-RABV drug profiles, past efforts to address the problem and inhibitor candidates identified, and examine how the rapidly expanding structural insight into RABV protein organization has illuminated novel druggable target candidates and paved the way to structure-aided drug optimization. Special emphasis is given to the viral RNA-dependent RNA polymerase complex as a promising target for direct-acting broad-spectrum RABV inhibitors.
Collapse
|
28
|
Rogée S, Larrous F, Jochmans D, Ben-Khalifa Y, Neyts J, Bourhy H. Pyrimethamine inhibits rabies virus replication in vitro. Antiviral Res 2019; 161:1-9. [DOI: 10.1016/j.antiviral.2018.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022]
|
29
|
|
30
|
Fooks AR, Cliquet F, Finke S, Freuling C, Hemachudha T, Mani RS, Müller T, Nadin-Davis S, Picard-Meyer E, Wilde H, Banyard AC. Rabies. Nat Rev Dis Primers 2017; 3:17091. [PMID: 29188797 DOI: 10.1038/nrdp.2017.91] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rabies is a life-threatening neglected tropical disease: tens of thousands of cases are reported annually in endemic countries (mainly in Africa and Asia), although the actual numbers are most likely underestimated. Rabies is a zoonotic disease that is caused by infection with viruses of the Lyssavirus genus, which are transmitted via the saliva of an infected animal. Dogs are the most important reservoir for rabies viruses, and dog bites account for >99% of human cases. The virus first infects peripheral motor neurons, and symptoms occur after the virus reaches the central nervous system. Once clinical disease develops, it is almost certainly fatal. Primary prevention involves dog vaccination campaigns to reduce the virus reservoir. If exposure occurs, timely post-exposure prophylaxis can prevent the progression to clinical disease and involves appropriate wound care, the administration of rabies immunoglobulin and vaccination. A multifaceted approach for human rabies eradication that involves government support, disease awareness, vaccination of at-risk human populations and, most importantly, dog rabies control is necessary to achieve the WHO goal of reducing the number of cases of dog-mediated human rabies to zero by 2030.
Collapse
Affiliation(s)
- Anthony R Fooks
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.,Institute of Infection &Global Health, University of Liverpool, Liverpool, UK.,Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - Florence Cliquet
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad Freuling
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thiravat Hemachudha
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Thai Red Cross Emerging Infectious Disease-Health Science Centre, Thai Red Cross Society, Bangkok, Thailand
| | - Reeta S Mani
- Department of Neurovirology (WHO Collaborating Centre for Reference and Research in Rabies), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Susan Nadin-Davis
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency (WHO Collaborating Centre for Control, Pathogenesis and Epidemiology of Rabies in Carnivores), Ottawa, Ontario, Canada
| | - Evelyne Picard-Meyer
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Henry Wilde
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ashley C Banyard
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
31
|
Begeman L, GeurtsvanKessel C, Finke S, Freuling CM, Koopmans M, Müller T, Ruigrok TJH, Kuiken T. Comparative pathogenesis of rabies in bats and carnivores, and implications for spillover to humans. THE LANCET. INFECTIOUS DISEASES 2017; 18:e147-e159. [PMID: 29100899 DOI: 10.1016/s1473-3099(17)30574-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022]
Abstract
Bat-acquired rabies is becoming increasingly common, and its diagnosis could be missed partly because its clinical presentation differs from that of dog-acquired rabies. We reviewed the scientific literature to compare the pathogenesis of rabies in bats and carnivores-including dogs-and related this pathogenesis to differences in the clinical presentation of bat-acquired and dog-acquired rabies in human beings. For bat-acquired rabies, we found that the histological site of exposure is usually limited to the skin, the anatomical site of exposure is more commonly the face, and the virus might be more adapted for entry via the skin than for dog-acquired rabies. These factors could help to explain several differences in clinical presentation between individuals with bat-acquired and those with dog-acquired rabies. A better understanding of these differences should improve the recording of a patient's history, enable drawing up of a more sophisticated list of clinical characteristics, and therefore obtain an earlier diagnosis of rabies after contact with a bat or carnivore that has rabies.
Collapse
Affiliation(s)
- Lineke Begeman
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Corine GeurtsvanKessel
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Stefan Finke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Greifswald, Insel Riems, Germany
| | - Conrad M Freuling
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Greifswald, Insel Riems, Germany
| | - Marion Koopmans
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Thomas Müller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Greifswald, Insel Riems, Germany
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus University Medical Centre, Rotterdam, Netherlands.
| |
Collapse
|
32
|
Besson B, Sonthonnax F, Duchateau M, Ben Khalifa Y, Larrous F, Eun H, Hourdel V, Matondo M, Chamot-Rooke J, Grailhe R, Bourhy H. Regulation of NF-κB by the p105-ABIN2-TPL2 complex and RelAp43 during rabies virus infection. PLoS Pathog 2017; 13:e1006697. [PMID: 29084252 PMCID: PMC5679641 DOI: 10.1371/journal.ppat.1006697] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/09/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
At the crossroad between the NF-κB and the MAPK pathways, the ternary complex composed of p105, ABIN2 and TPL2 is essential for the host cell response to pathogens. The matrix protein (M) of field isolates of rabies virus was previously shown to disturb the signaling induced by RelAp43, a NF-κB protein close to RelA/p65. Here, we investigated how the M protein disturbs the NF-κB pathway in a RelAp43-dependant manner and the potential involvement of the ternary complex in this mechanism. Using a tandem affinity purification coupled with mass spectrometry approach, we show that RelAp43 interacts with the p105-ABIN2-TPL2 complex and we observe a strong perturbation of this complex in presence of M protein. M protein interaction with RelAp43 is associated with a wide disturbance of NF-κB signaling, involving a modulation of IκBα-, IκBβ-, and IκBε-RelAp43 interaction and a favored interaction of RelAp43 with the non-canonical pathway (RelB and p100/p52). Monitoring the interactions between host and viral proteins using protein-fragment complementation assay and bioluminescent resonance energy transfer, we further show that RelAp43 is associated to the p105-ABIN2-TPL2 complex as RelAp43-p105 interaction stabilizes the formation of a complex with ABIN2 and TPL2. Interestingly, the M protein interacts not only with RelAp43 but also with TPL2 and ABIN2. Upon interaction with this complex, M protein promotes the release of ABIN2, which ultimately favors the production of RelAp43-p50 NF-κB dimers. The use of recombinant rabies viruses further indicates that this mechanism leads to the control of IFNβ, TNF and CXCL2 expression during the infection and a high pathogenicity profile in rabies virus infected mice. All together, our results demonstrate the important role of RelAp43 and M protein in the regulation of NF-κB signaling. Rabies virus is a recurring zoonosis responsible for about 60,000 deaths per year. A key feature of rabies virus is its stealth, allowing it to spread within the host and escape the immune response. To do so, rabies virus developed several mechanisms, including a thorough interference with cell signaling pathways. Here, we focused our attention on the molecular aspects of rabies virus escape to the NF-κB pathway through the interaction between the M protein and the NF-κB protein RelAp43. Monitoring close range interactions, we found that RelAp43 plays an important role in the stabilization of the p105-ABIN2-TPL2 complex, which is essential in the regulation of both NF-κB and MAPK pathways, and we brought a new insight on the dynamics within the host protein complex. These results were confirmed in living cells and in mice. Overall, our data suggest that rabies virus interference with the p105-ABIN2-TPL2 complex is a cornerstone of its stealth strategy to escape the immune response.
Collapse
Affiliation(s)
- Benoit Besson
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Florian Sonthonnax
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Magalie Duchateau
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | | | - Florence Larrous
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France
| | - Hyeju Eun
- Technology Development Platform, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Rep. of Korea
| | - Véronique Hourdel
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Mariette Matondo
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Julia Chamot-Rooke
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Regis Grailhe
- Technology Development Platform, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Rep. of Korea
| | - Hervé Bourhy
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France
| |
Collapse
|