1
|
Alabbad M, Silikas N, Thomas A. Effect of mechanical instrumentation on titanium implant surface properties. Dent Mater 2025; 41:383-390. [PMID: 39788843 DOI: 10.1016/j.dental.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE To assess the impact of mechanical decontamination using rotary brushes on the surface topography, elemental composition, roughness, and wettability of titanium implant surfaces. METHODS Four commercially available rotary brushes were used: Labrida BioClean Brush® (LB), i-Brush1 (IB), NiTiBrush Nano (NiTiB), and Peri-implantitis Brush (PIB). Seventy-five titanium discs with sandblasted, large-grit, acid-etched (SLA) surfaces were randomly assigned to five groups (n = 15): LB, IB, NiTiB, PIB, and a control group. Each disc was treated for 60 seconds with the respective rotary brush according to the manufacturer's instructions. Surface morphology was analysed using Scanning Electron Microscopy (SEM), surface elemental composition with Energy Dispersive X-ray (EDX), surface roughness via optical profilometry, and wettability with a droplet shape analyser. RESULTS SEI analysis revealed morphological changes, including scratches, flattening, and loose titanium particles in the IB, PIB, and NiTiB groups, whereas the LB group preserved the original surface morphology. SEM-EDX analysis showed that LB, PIB, and NiTiB groups closely match the control elemental composition. However, IB groups showed significantly different composition. Surface roughness values in the IB, PIB, and NiTiB groups differed significantly from the control (p < 0.05), whereas the LB group had comparable roughness values (p > 0.05). Contact angle measurements indicated enhanced wettability in IB, PIB, and NiTiB groups (p < 0.05), while the LB group exhibited values comparable to the control (p > 0.05). SIGNIFICANCE Mechanical decontamination of implant surfaces utilising rotary brushes can alter implant surface properties.
Collapse
Affiliation(s)
- Mohammed Alabbad
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK; Department of Periodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nick Silikas
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Andrew Thomas
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; Photon Science Institute, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
2
|
Kotsakis GA, Ganesan SM. Microbial Dysbiosis, Titanium Release, and Peri-implantitis. J Dent Res 2025:220345241307939. [PMID: 39953673 DOI: 10.1177/00220345241307939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
The peri-implant mucosal barrier is a unique microenvironment where host-microbiome interactions take place on the surface of an implanted biomaterial. Therefore, peri-implant immunity not only is quintessential to oral health but also contributes to the maintenance of the biomaterial-tissue equilibrium in health. This review delves into the intricate interplay between host factors, biomaterial properties, and the microbiome with a focus on the mechanisms underlying peri-implant dysbiosis. Investigations into this complex milieu have led to the emerging understanding of titanium particles released from the implant as significant exposomes. When biomaterial breakdown occurs, implant degradation products form particles that are released in the peri-implant crevice, exerting profound effects on the local immune surveillance. Comparative analyses with natural dentition highlight the distinct immune responses elicited by titanium particles, thereby implicating them as a key modulator of peri-implant dysbiosis that differentiates peri-implant from periodontal inflammation. Nonetheless, disruptions in the homeostatic balance of host-biomaterial interactions are linked to pathogenic shifts of the peri-implant microbiome that are correlated with titanium particles in humans. Collectively, it is now well established that to elucidate the mechanisms governing peri-implant dysbiosis, this triangle of host-microbiome-biomaterial has to be conjointly investigated. This review highlights findings from studies that have underscored the multifaceted nature of peri-implant dysbiosis, emphasizing the intricate crosstalk between host immunity, biomaterial characteristics, and microbial ecology. These findings suggest that the titanium particle exposome may alter key inflammatory cascades in the peri-implant tissues including toll-like receptor activation and inflammasome and complement signaling, which lead to nonresolving destructive inflammation. The presence of abiotic danger signals in the form of implant degradation products in peri-implant tissues may make antimicrobial monotherapies largely ineffective for managing peri-implantitis. In turn, the future of peri-implantitis therapy seems to lie in the development of targeted host modulatory interventions against titanium-mediated inflammatory pathways.
Collapse
Affiliation(s)
- G A Kotsakis
- Rutgers School of Dental Medicine, Newark, NJ, USA
| | - S M Ganesan
- The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| |
Collapse
|
3
|
Khan SN, Ribeiro-Vidal H, Virto L, Bravo E, Nuevo P, Koldsland OC, Hjortsjö C, Sanz M. The Decontamination Effect of an Oscillating Chitosan Brush Compared With an Ultrasonic PEEK-Tip: An In Vitro Study Using a Dynamic Biofilm Model. Clin Oral Implants Res 2025; 36:73-81. [PMID: 39425255 DOI: 10.1111/clr.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES This study aimed to assess the effect of an oscillating chitosan brush (OCB) compared with an ultrasonic device with PEEK tip (US-PEEK) for mechanical implant surface decontamination using an in vitro model combining 3D models and a validated dynamic multispecies biofilm. MATERIALS AND METHODS A multispecies biofilm using six bacterial strains (Streptococcus oralis, Veillonella parvula, Actinomyces naeslundii, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans) was seeded on dental implants with machined and sandblasted, large-grit and acid-etched (SLA) surfaces. These were installed in 3D models depicting peri-implant defect. Mechanical decontamination was performed for 120 s using either an OCB or a US-PEEK. A negative control group received no treatment. Scanning electron microscopy (SEM) was used to evaluate the bacterial composition and quantitative PCR (qPCR) analyzed the number of each bacterial species [colony-forming units per milliliter (CFU/mL)]. RESULTS Well-structured biofilms with a dense microbial distribution were observed on the negative control implants after 72 h. qPCR following mechanical decontamination showed a scarce bacterial reduction in the OCB group. The US-PEEK group exhibited a significant decrease in bacterial species compared to both OCB and control groups (p < 0.05). A biofilm removal effect was also observed in the OCB group for the machined implant surfaces. CONCLUSION In vitro assessment using an anatomical 3D model showed that mechanical decontamination effectively reduced biofilm. The US-PEEK group demonstrated biofilm reduction on the SLA surface, while the OCB group showed a reduction on the machined implant surface. Additionally, the US-PEEK group demonstrated greater efficacy in reducing bacterial numbers.
Collapse
Affiliation(s)
- Sadia Nazir Khan
- Department of Prosthetics and Oral Function, Faculty of Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Honorato Ribeiro-Vidal
- Specialization of Periodontology and Dental Implants, Faculty of Dental Medicine, University of Oporto, Porto, Portugal
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Leire Virto
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Faculty of Odontology, University Complutense, Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Optics, University Complutense, Madrid, Spain
| | - Enrique Bravo
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Paula Nuevo
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Odd Carsten Koldsland
- Department of Periodontology Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Carl Hjortsjö
- Department of Prosthetics and Oral Function, Faculty of Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Faculty of Odontology, University Complutense, Madrid, Spain
| |
Collapse
|
4
|
Esplin KC, Tsai Y, Vela K, Diogenes A, Hachem LE, Palaiologou A, Cochran DL, Kotsakis GA. Peri-implantitis induction and resolution around zirconia versus titanium implants. J Periodontol 2024; 95:1180-1189. [PMID: 39003566 PMCID: PMC11708443 DOI: 10.1002/jper.23-0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND This study compared titanium and zirconia implant ligature-induced peri-implant defect progression and response to regenerative surgical intervention. METHODS Eight tissue-level endosseous implants were placed in 6 mixed-breed foxhounds, with 2 zirconia and 2 titanium alternating in each hemimandible. Cotton ligatures were placed subgingivally for 16 weeks followed by 8 weeks of spontaneous progression. Standardized radiographs were captured every 2 weeks to evaluate the rate of bone loss. Regenerative surgery was performed utilizing water-jet decontamination, enamel matrix derivative, and locally harvested autogenous bone. After 16 weeks of healing, final radiographic bone levels as well as probing depths, recession, and clinical attachment levels were assessed. RESULTS All 48 implants integrated successfully. The final average post-ligature radiographic defects were 2.88 and 3.05 mm for titanium and zirconia implants, respectively. There was no significant difference between materials in the rate of radiographic bone loss (p = 0.09). Following regenerative surgery, the total average amount of radiographic bone gain was 1.41 and 1.20 mm for titanium and zirconia, respectively. The percentage of defect fill was 51.56% and 37.98% (p = 0.03) for titanium and zirconia, respectively. Inter-group differences were minimal for clinical parameters at the time of sacrifice including periodontal pocket depths (p = 0.81), recession (p = 0.98), or clinical attachment levels (p = 0.51). CONCLUSIONS No significant difference was found in the rate of peri-implant defect development between titanium and zirconia implants. Both materials gained significant radiographic bone following regenerative surgery with significantly greater defect percentage fill in titanium implants. The final clinical parameters were similar in both groups.
Collapse
Affiliation(s)
- Kaleb C. Esplin
- Department of PeriodonticsUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Yi‐Wen Tsai
- ITI Scholarship CenterUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Kathryn Vela
- Department of PeriodonticsUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Anibal Diogenes
- Department of EndodonticsUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Lea El Hachem
- Department of PeriodonticsUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Archontia Palaiologou
- Department of PeriodonticsUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - David L. Cochran
- Department of PeriodonticsUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Georgios A. Kotsakis
- Department of PeriodonticsUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- ITI Scholarship CenterUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of Oral BiologyRutgers School of Dental MedicineNewarkNew JerseyUSA
| |
Collapse
|
5
|
Jayasree A, Liu C, Salomon C, Ivanovski S, Gulati K, Han P. Microvesicle-eluting nano-engineered implants influence inflammatory response of keratinocytes. Drug Deliv Transl Res 2024; 14:3371-3384. [PMID: 37985540 PMCID: PMC11499444 DOI: 10.1007/s13346-023-01457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Besides enhancing osseo- and soft tissue integration, modulating inflammation at the implant site is also crucial for dental implant success. Uncontrolled peri-implant inflammation can cause significant loss of surrounding tissue and implant failure. It was recently shown that microvesicles (MVs), a less-studied type of extracellular vesicles, play a crucial role in cell-to-cell communication and may modulate angiogenesis and inflammatory response. The effect of MVs on regulating inflammation at an implant site, however, remains unexplored. In the current study, MVs were isolated and characterised from human primary gingival fibroblasts (hGFs) and loaded within titania nanotubes (TNTs, fabricated via anodisation on 3D Ti wire implants) towards their local release. The modified implants were characterised using SEM and confocal imaging to confirm the loading and local release of MVs from TNTs. In vitro studies demonstrated the internalisation of hGFs-MVs by human gingival keratinocytes (OKF6/TERT2 cell line), which caused a significant reduction in the production of pro-inflammatory cytokines. The results support MVs-releasing TNTs as a promising implant surface modification strategy to reduce inflammation, paving the way for further advancements in therapeutic dental implants.
Collapse
Affiliation(s)
- Anjana Jayasree
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD, 4006, Australia
| | - Chun Liu
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD, 4006, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD, 4006, Australia.
| | - Karan Gulati
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD, 4006, Australia.
| | - Pingping Han
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD, 4006, Australia.
| |
Collapse
|
6
|
Kamiński J, Sitek R, Adamczyk-Cieślak B, Kulikowski K. Impact of Glow-Discharge Nitriding Technology on the Properties of 3D-Printed Grade 2 Titanium Alloy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4592. [PMID: 39336333 PMCID: PMC11433006 DOI: 10.3390/ma17184592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
This study presents a comparative analysis of the corrosion resistance of nitrided layers on conventional Grade 2 titanium alloy and those produced by direct metal laser sintering (DMLS). Low-temperature glow-discharge nitriding of the tested materials was carried out using conventional glow-discharge nitriding (so-called nitriding at the cathode potential-TiN/CP) and with the use of an "active screen" (nitriding at the plasma potential-TiN/PP). The TiN + Ti2N + Ti(N) layers were characterized by their microstructure, nanohardness profile distribution, surface topography, and corrosion resistance. The reduction in the cathodic sputtering phenomenon in the process using the active screen allowed the creation of surface layers that retained the topography of the base material. The parameters of the glow-discharge treatment led to grain growth in the printed substrates. This did not adversely affect corrosion resistance. The corrosion resistance of nitrided layers on the printed titanium alloy is only slightly lower than that of layers on the conventional Grade 2 alloy. Iron precipitates at grain boundaries facilitate increased nitrogen diffusion, resulting in reduced nitrogen concentration in the surface layer, slight changes in corrosion potential values, and increased nitrogen concentration in the Ti(N) diffusion layer.
Collapse
Affiliation(s)
- Janusz Kamiński
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (R.S.); (B.A.-C.); (K.K.)
| | | | | | | |
Collapse
|
7
|
Zhao X, Li N, Zhang Z, Hong J, Zhang X, Hao Y, Wang J, Xie Q, Zhang Y, Li H, Liu M, Zhang P, Ren X, Wang X. Beyond hype: unveiling the Real challenges in clinical translation of 3D printed bone scaffolds and the fresh prospects of bioprinted organoids. J Nanobiotechnology 2024; 22:500. [PMID: 39169401 PMCID: PMC11337604 DOI: 10.1186/s12951-024-02759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Bone defects pose significant challenges in healthcare, with over 2 million bone repair surgeries performed globally each year. As a burgeoning force in the field of bone tissue engineering, 3D printing offers novel solutions to traditional bone transplantation procedures. However, current 3D-printed bone scaffolds still face three critical challenges in material selection, printing methods, cellular self-organization and co-culture, significantly impeding their clinical application. In this comprehensive review, we delve into the performance criteria that ideal bone scaffolds should possess, with a particular focus on the three core challenges faced by 3D printing technology during clinical translation. We summarize the latest advancements in non-traditional materials and advanced printing techniques, emphasizing the importance of integrating organ-like technologies with bioprinting. This combined approach enables more precise simulation of natural tissue structure and function. Our aim in writing this review is to propose effective strategies to address these challenges and promote the clinical translation of 3D-printed scaffolds for bone defect treatment.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Ziqi Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jinjia Hong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Meixian Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| |
Collapse
|
8
|
Kandaswamy E, Harsha M, Joshi VM. Titanium corrosion products from dental implants and their effect on cells and cytokine release: A review. J Trace Elem Med Biol 2024; 84:127464. [PMID: 38703537 DOI: 10.1016/j.jtemb.2024.127464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Titanium is considered to be an inert material owing to the ability of the material to form a passive titanium oxide layer. However, once the titanium oxide layer is lost, it can lead to exposure of the underlying titanium substructure and can undergo corrosion. SUMMARY The article explores the role of titanium ions and particles from dental implants on cells, cytokine release, and on the systemic redistribution of these particles as well as theories proposed to elucidate the effects of these particles on peri-implant inflammation based on evidence from in-vitro, human, and animal studies. Titanium particles and ions have a pro-inflammatory and cytotoxic effect on cells and promote the release of pro-inflammatory mediators like cytokines. Three theories to explain etiopathogenesis have been proposed, one based on microbial dysbiosis, the second based on titanium particles and ions and the third based on a synergistic effect between microbiome and titanium particles on the host. CONCLUSION There is clear evidence from in-vitro and limited human and animal studies that titanium particles released from dental implants have a detrimental effect on cells directly and through the release of pro-inflammatory cytokines. Future clinical and translational studies are required to clarify the role of titanium particles and ions in peri-implant inflammation and the etiopathogenesis of peri-implantitis.
Collapse
Affiliation(s)
- Eswar Kandaswamy
- Department of Periodontics, LSUHSC, School of Dentistry, 100 Florida Avenue, New Orleans, LA 70119, USA
| | - M Harsha
- Department of Oral Pathology & Microbiology, Yogita Dental College & Hospital, Naringi Riverside, At Post Tal Dist. SH104, Khed, Maharashtra 415709, India
| | - Vinayak M Joshi
- Department of Periodontics, LSUHSC, School of Dentistry, 100 Florida Avenue, New Orleans, LA 70119, USA.
| |
Collapse
|
9
|
Vierling L, Liu CC, Wiedemeier D, Gubler A, Schmidlin PR. Assessing the Impact of Various Decontamination Instruments on Titanium and Zirconia Dental Implants: An In Vitro Study. Dent J (Basel) 2024; 12:136. [PMID: 38786534 PMCID: PMC11119916 DOI: 10.3390/dj12050136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
This study investigates the impact of various instrumentation techniques on material removal and surface changes in titanium (Ti)- and zirconia (Zr) implant discs. Ti- and Zr discs were subjected to standardized experiments using various instruments including airflow, ultrasound, carbide, and diamond burs. Instrumentation was performed for 60 s with continuous automatic motion. Abrasion and changes in surface roughness were assessed using profilometry, while scanning electron microscopy was used to examine morphological changes and particle size. Carbide burs predominantly caused abrasion on Ti discs, while diamond burs caused more abrasion on Zr discs. The Ti discs were more susceptible to surface changes. However, among the materials tested, machined Zr discs treated with diamond burs produced the largest particle. In certain cases, a statistical significance (p < 0.05) was observed between the groups, while in others, there was no considerable difference among the means (p > 0.05). These results highlighted the statistical significance of our findings. These results found diverse alterations in surface characteristics of Ti- and Zr discs due to different instruments, with carbide and diamond burs causing notable effects. The findings highlight the need for a careful balance between promoting healing and minimizing harm during implantoplasty.
Collapse
Affiliation(s)
- Louisa Vierling
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (L.V.); (C.C.L.); (A.G.)
| | - Chun Ching Liu
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (L.V.); (C.C.L.); (A.G.)
| | - Daniel Wiedemeier
- Statistics Group, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland;
| | - Andrea Gubler
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (L.V.); (C.C.L.); (A.G.)
| | - Patrick R. Schmidlin
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (L.V.); (C.C.L.); (A.G.)
| |
Collapse
|
10
|
Zhao X, Zhang X, Zhou Z, Meng F, Liu R, Zhang M, Hao Y, Xie Q, Sun X, Zhang B, Wang X. Atomic layer deposited TiO 2 nanofilm on titanium implant for reduced the release of particles. Front Bioeng Biotechnol 2024; 12:1346404. [PMID: 38737539 PMCID: PMC11082355 DOI: 10.3389/fbioe.2024.1346404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Objective: Titanium implants are widely used in surgeries for their biocompatibility and mechanical properties. However, excessive titanium particle release can cause implant failure. This study explores Atomic Layer Deposition (ALD) to coat commercially pure titanium (Cp-Ti) with TiO2, aiming to improve its frictional and corrosion resistance while reducing particle release. By comparing TiO2 films with varying ALD cycle numbers, we assess surface properties, particle release, friction, and corrosion performance, providing insights into mitigating particle release from implants. Methods: Cp-Ti surfaces were prepared and coated with TiO2 films of 100, 300, and 500 ALD cycles. Surface characterization involved SEM, EDX, and XRD. Friction was tested using SEM, nanoindentation, and ICP-MS. Corrosion resistance was evaluated through immersion tests and electrochemical analysis. Cytotoxicity was assessed using BMSCs. Results: Surface characterization revealed smoother surfaces with increased ALD cycles, confirming successful TiO2 deposition. Friction testing showed reduced friction coefficients with higher ALD cycles, supported by nanoindentation results. Corrosion resistance improved with increasing ALD cycles, as evidenced by electrochemical tests and reduced titanium release. Cytotoxicity studies showed no significant cytotoxic effects. Conclusion: ALD-coated TiO2 films significantly enhance frictional and corrosion resistance of titanium implants while reducing particle release. The study underscores the importance of ALD cycle numbers in optimizing film performance, offering insights for designing implants with improved properties.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Zilan Zhou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Fanchun Meng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Ruilin Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Xiaojun Sun
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| |
Collapse
|
11
|
Kao A, Tawse-Smith A, Ma S, Duncan WJ, Reid M, Atieh MA. Quantity and Size of Titanium Particles Released from Different Mechanical Decontamination Procedures on Titanium Discs: An In Vitro Study. Dent J (Basel) 2024; 12:123. [PMID: 38786521 PMCID: PMC11119952 DOI: 10.3390/dj12050123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Complications such as peri-implantitis could ultimately affect the survival of a dental implant. The prevention and treatment of peri-implant diseases require managing bacterial biofilm and controlling environmental risks, including the presence of pro-inflammatory titanium (Ti) particles in the peri-implant niche. Objectives included the evaluation of the size and quantity of Ti particles released from moderately roughened Ti surfaces during common mechanical surface decontamination methods. One hundred and forty moderately roughened Ti discs were divided into seven groups (n = 20 per group); six groups received mechanical decontamination procedures (ultrasonic scaling (US) with a metal tip and poly-ether-ketone (PEEK) under low and medium power settings, air-polishing with erythritol powder, and Ti brush), and the control group underwent air-water spray using a dental triplex. The rinsing solution was collected for Ti mass analysis using inductively coupled plasma mass spectrometry (ICPMS), as well as for Ti particle size and count analysis under scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). US metal tip instrumentation generated 34.00 ± 12.54 μg and 34.44 ± 6.08 μg of Ti under low and medium power settings, respectively. This amount of Ti generation was significantly higher than other instrumentation methods. The mean Ti particle size of the US groups ranged from 0.89 ± 0.27 μm to 1.25 ± 0.24 μm. No statistically significant difference was found in the particle size among US groups and Ti brush group (1.05 ± 0.11 μm), except for US with the PEEK tip, where a significantly smaller mean particle diameter was found at the low power setting (0.89 ± 0.27 μm). Mechanical instrumentation can produce Ti particulates and modify the implant surfaces. US using a metal tip generated the highest amount of Ti with smaller Ti size particles compared to all other commonly used mechanical surface instrumentations. The EDS analysis confirmed Ti in PEEK US tips. It can be suggested that deterioration from the PEEK US tip and Ti brush, as observed under SEM, is an additional source of Ti release during Ti surface decontamination.
Collapse
Affiliation(s)
- Anthony Kao
- Sir John Walsh Research Institute, Faculty of Dentistry, 310 Great King Street, Dunedin 9016, New Zealand; (A.K.); (S.M.); (W.J.D.); (M.A.A.)
| | - Andrew Tawse-Smith
- Sir John Walsh Research Institute, Faculty of Dentistry, 310 Great King Street, Dunedin 9016, New Zealand; (A.K.); (S.M.); (W.J.D.); (M.A.A.)
| | - Sunyoung Ma
- Sir John Walsh Research Institute, Faculty of Dentistry, 310 Great King Street, Dunedin 9016, New Zealand; (A.K.); (S.M.); (W.J.D.); (M.A.A.)
| | - Warwick J. Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, 310 Great King Street, Dunedin 9016, New Zealand; (A.K.); (S.M.); (W.J.D.); (M.A.A.)
| | - Malcolm Reid
- Department of Chemistry and Centre for Trace Element Analysis, Department of Geology, Dunedin 9054, New Zealand;
| | - Momen A. Atieh
- Sir John Walsh Research Institute, Faculty of Dentistry, 310 Great King Street, Dunedin 9016, New Zealand; (A.K.); (S.M.); (W.J.D.); (M.A.A.)
- Department of Oral Diagnostics and Surgical Sciences, Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
12
|
Wang J, Chen G, Yang X, Dou W, Mao Y, Zhang Y, Shi X, Xia Y, You Q, Liu M. Inhibitory effects of norcantharidin on titanium particle-induced osteolysis, osteoclast activation and bone resorption via MAPK pathways. Int Immunopharmacol 2024; 129:111655. [PMID: 38340423 DOI: 10.1016/j.intimp.2024.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Wear particles generated from the surface of implanted prostheses can lead to peri-implant osteolysis and subsequent aseptic loosening. In the inflammatory environment, extensive formation and activation of osteoclasts are considered the underlying cause of peri-implant osteolysis. Current medications targeting osteoclasts for the treatment of particle-induced bone resorption are not ideal due to significant side effects. Therefore, there is an urgent need to develop more effective drugs with fewer side effects. Norcantharidin (NCTD), a derivative of cantharidin extracted from blister beetles, is currently primarily used for the treatment of solid tumors in clinical settings. However, the potential role of NCTD in treating aseptic loosening of the prosthesis has not been reported. In this study, the in vitro results demonstrated that NCTD could effectively inhibit the formation of osteoclasts and bone resorption induced by the RANKL. Consistently, NCTD strongly inhibited RANKL-induced mRNA and protein levels of c-Fos and NFATc1, concomitant with reduced expression of osteoclast specific genes including TRAP, CTR and CTSK. The in vivo data showed that NCTD exerted significant protective actions against titanium particle-induced inflammation and subsequent osteolysis. The molecular mechanism investigation revealed that NCTD could suppress the activations of RANKL-induced MAPK (p38, ERK). Overall, these findings support the potential use of NCTD for the treatment of aseptic loosening following total joint arthroplasty.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xue Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenwen Dou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuhang Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yudie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaotian Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yehua Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiuyi You
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
13
|
Lin X, Yang Y, Huang Y, Li E, Zhuang X, Zhang Z, Xu R, Yu X, Deng F. Mettl3‑mediated m 6A RNA methylation regulates osteolysis induced by titanium particles. Mol Med Rep 2024; 29:36. [PMID: 38214327 PMCID: PMC10823336 DOI: 10.3892/mmr.2024.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024] Open
Abstract
Peri‑prosthetic osteolysis (PPO) induced by wear particles is considered the primary cause of titanium prosthesis failure and revision surgery. The specific molecular mechanisms involve titanium particles inducing multiple intracellular pathways, which impact disease prevention and the targeted therapy of PPO. Notably, N6‑methyladenosine (m6A) serves critical roles in epigenetic regulation, particularly in bone metabolism and inflammatory responses. Thus, the present study aimed to determine the role of RNA methylation in titanium particle‑induced osteolysis. Results of reverse transcription‑quantitative PCR (RT‑qPCR), western blotting, ELISA and RNA dot blot assays revealed that titanium particles induced osteogenic inhibition and proinflammatory responses, accompanied by the reduced expression of methyltransferase‑like (Mettl) 3, a key component of m6A methyltransferase. Specific lentiviruses vectors were employed for Mettl3 knockdown and overexpression experiments. RT‑qPCR, western blotting and ELISA revealed that the knockdown of Mettl3 induced osteogenic inhibition and proinflammatory responses comparable with that induced by titanium particle, while Mettl3 overexpression attenuated titanium particle‑induced cellular reactions. Methylated RNA immunoprecipitation‑qPCR results revealed that titanium particles mediated the methylation of two inhibitory molecules, namely Smad7 and SMAD specific E3 ubiquitin protein ligase 1, via Mettl3 in bone morphogenetic protein signaling, leading to osteogenic inhibition. Furthermore, titanium particles induced activation of the nucleotide binding oligomerization domain 1 signaling pathway through methylation regulation, and the subsequent activation of the MAPK and NF‑κB pathways. Collectively, the results of the present study indicated that titanium particles utilized Mettl3 as an upstream regulatory molecule to induce osteogenic inhibition and inflammatory responses. Thus, the present study may provide novel insights into potential therapeutic targets for aseptic loosening in titanium prostheses.
Collapse
Affiliation(s)
- Xiaoxuan Lin
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yang Yang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yaohong Huang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - E Li
- Department of Stomatology, Zhuhai Center for Maternal and Child Healthcare, Zhuhai Women and Children's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Xiumei Zhuang
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Ruogu Xu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xiaolin Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
14
|
Insua A, Galindo-Moreno P, Miron RJ, Wang HL, Monje A. Emerging factors affecting peri-implant bone metabolism. Periodontol 2000 2024; 94:27-78. [PMID: 37904311 DOI: 10.1111/prd.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2023] [Accepted: 09/10/2023] [Indexed: 11/01/2023]
Abstract
Implant dentistry has evolved to the point that standard implant osseointegration is predictable. This is attributed in part to the advancements in material sciences that have led toward improvements in implant surface technology and characteristics. Nonetheless, there remain several cases where implant therapy fails (specifically at early time points), most commonly attributed to factors affecting bone metabolism. Among these patients, smokers are known to have impaired bone metabolism and thus be subject to higher risks of early implant failure and/or late complications related to the stability of the peri-implant bone and mucosal tissues. Notably, however, emerging data have unveiled other critical factors affecting osseointegration, namely, those related to the metabolism of bone tissues. The aim of this review is to shed light on the effects of implant-related factors, like implant surface or titanium particle release; surgical-related factors, like osseodensification or implanted biomaterials; various drugs, like selective serotonin reuptake inhibitors, proton pump inhibitors, anti-hypertensives, nonsteroidal anti-inflammatory medication, and statins, and host-related factors, like smoking, diet, and metabolic syndrome on bone metabolism, and aseptic peri-implant bone loss. Despite the infectious nature of peri-implant biological complications, these factors must be surveyed for the effective prevention and management of peri-implantitis.
Collapse
Affiliation(s)
- Angel Insua
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Galindo-Moreno
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Surgery and Implant Dentistry, University of Granada, Granada, Spain
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Hom-Lay Wang
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, University of Bern, Bern, Switzerland
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
15
|
Li Y, Li X, Guo D, Meng L, Feng X, Zhang Y, Pan S. Immune dysregulation and macrophage polarization in peri-implantitis. Front Bioeng Biotechnol 2024; 12:1291880. [PMID: 38347915 PMCID: PMC10859439 DOI: 10.3389/fbioe.2024.1291880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The term "peri-implantitis" (peri-implantitis) refers to an inflammatory lesion of the mucosa surrounding an endosseous implant and a progressive loss of the peri-implant bone that supports the implant. Recently, it has been suggested that the increased sensitivity of implants to infection and the quick elimination of supporting tissue after infection may be caused by a dysregulated peri-implant mucosal immune response. Macrophages are polarized in response to environmental signals and play multiple roles in peri-implantitis. In peri-implantitis lesion samples, recent investigations have discovered a considerable increase in M1 type macrophages, with M1 type macrophages contributing to the pro-inflammatory response brought on by bacteria, whereas M2 type macrophages contribute to inflammation remission and tissue repair. In an effort to better understand the pathogenesis of peri-implantitis and suggest potential immunomodulatory treatments for peri-implantitis in the direction of macrophage polarization patterns, this review summarizes the research findings related to macrophage polarization in peri-implantitis and compares them with periodontitis.
Collapse
Affiliation(s)
- Yue Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xue Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Danni Guo
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lingwei Meng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xianghui Feng
- Department of Periodontology, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yi Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shaoxia Pan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
16
|
Choi AH, Choi G, Ben-Nissan B. Surface modification and its influence on osseointegration of implants. MULTISCALE CELL-BIOMATERIALS INTERPLAY IN MUSCULOSKELETAL TISSUE ENGINEERING AND REGENERATIVE MEDICINE 2024:93-111. [DOI: 10.1016/b978-0-323-91821-3.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Chen L, Tong Z, Luo H, Qu Y, Gu X, Si M. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. Int J Oral Sci 2023; 15:49. [PMID: 37996420 PMCID: PMC10667540 DOI: 10.1038/s41368-023-00256-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease's prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.
Collapse
Affiliation(s)
- Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Hongke Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Qu
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
18
|
Clunk MJ, Gonzalez MR, Denwood HM, Werenski JO, Sodhi A, Hoffman BA, Merchan N, Lozano-Calderon SA. A PEEK into carbon fiber: A practical guide for high performance composite polymeric implants for orthopaedic oncology. J Orthop 2023; 45:13-18. [PMID: 37822644 PMCID: PMC10562613 DOI: 10.1016/j.jor.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction The use of carbon fiber implants in orthopaedic oncology has increased within recent years. The most widely used type of polymer is carbon fiber polyether ether ketone (CF-PEEK). Its radiolucency enables targeted radiotherapy and artifact-free tumor surveillance, which provides major advantages over metallic hardware. We aim to summarize the unique benefits within orthopaedic oncology, clinical pitfalls, and recent advancements. Methods Four representative patient cases from a single tertiary academic medical center were treated with carbon fiber implants (n = 2 nails, n = 2 plates) from 2021 to 2022. Results There were no adverse events noted during intraoperative implantation or postoperative follow up. All patients reported improvements in pain and no difficulties in ambulation. There were no instances of catastrophic failure or implant loosening. Conclusion CF implants offer a diverse array of advantages regarding its radiolucency, low scatter density, and bioinert profile. Nonetheless, further research is required to understand the long-term surgical outcomes and robustness of CF implants. Multi institutional trials could address important aspects of durability and stability over extended periods, feasibility and ease-of-use for different anatomical sites and bone quality, as well as cost-effectiveness in post-operative imaging, healthcare resource utilization, and revision rates. Providing orthopaedic surgeons with valuable insight will enable thorough clinically supported, informed decision making regarding optimal use of implants.
Collapse
Affiliation(s)
- Marilee J. Clunk
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital Boston, MA, 02114, USA
- University of Toledo College of Medicine and Life Sciences Toledo, OH, 43614, USA
| | - Marcos R. Gonzalez
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital Boston, MA, 02114, USA
| | - Hayley M. Denwood
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital Boston, MA, 02114, USA
- Boston University Chobanian and Avedisian School of Medicine Boston, MA, 02118, USA
| | - Joseph O. Werenski
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital Boston, MA, 02114, USA
| | - Alisha Sodhi
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital Boston, MA, 02114, USA
| | - Brett A. Hoffman
- University of Toledo College of Medicine and Life Sciences Toledo, OH, 43614, USA
| | - Nelson Merchan
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital Boston, MA, 02114, USA
| | - Santiago A. Lozano-Calderon
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital Boston, MA, 02114, USA
| |
Collapse
|
19
|
Daubert D, Lee E, Botto A, Eftekhar M, Palaiologou A, Kotsakis GA. Assessment of titanium release following non-surgical peri-implantitis treatment: A randomized clinical trial. J Periodontol 2023; 94:1122-1132. [PMID: 37070363 PMCID: PMC10524263 DOI: 10.1002/jper.22-0716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Peri-implantitis is a frequent finding. Initial treatment involves non-surgical debridement of the implant surface. Recent studies have found a correlation between titanium (Ti) particle release and peri-implantitis, yet there is a dearth of information regarding the effect of various non-surgical instrumentation on particle release or peri-implantitis resolution. METHODS Patients with peri-implantitis were recruited for a randomized, blinded, parallel-group clinical trial. The implants were randomized to treatment composed of Ti curettes ("Mech" group) or implant-specific treatment composed of rotary polymer microbrushes ("Imp" group). Ti release in submucosal peri-implant plaque pre- and 8 weeks posttreatment was assessed as the primary outcome. Peri-implant probing depth, bleeding on probing, and suppuration on probing were evaluated and compared between groups. RESULTS Thirty-four participants completed treatment; 18 were randomized to the Mech group and 16 to the Imp group. The groups were comparable for Ti levels and probing depths at baseline. A trend was noted for 10-fold greater Ti dissolution in the Mech group posttreatment compared to the Imp group (p = 0.069). The Imp group had a significant reduction in probing depth posttreatment (p = 0.006), while the Mech group reduction was not significant. CONCLUSION Peri-implantitis treated non-surgically with implant-specific instruments (Imp group) had a significantly greater decrease in probing depth versus the Mech treatment group. This improvement was linked with a trend for less Ti release to the peri-implant plaque by the non-abrasive treatment.
Collapse
Affiliation(s)
- Diane Daubert
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Eddie Lee
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Antonella Botto
- Department of Periodontics, UT Health San Antonio, San Antonio, Texas, USA
| | - Mojdeh Eftekhar
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | | | - Georgios A Kotsakis
- Department of Periodontics, UT Health San Antonio, San Antonio, Texas, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Kheder W, Bouzid A, Venkatachalam T, Talaat IM, Elemam NM, Raju TK, Sheela S, Jayakumar MN, Maghazachi AA, Samsudin AR, Hamoudi R. Titanium Particles Modulate Lymphocyte and Macrophage Polarization in Peri-Implant Gingival Tissues. Int J Mol Sci 2023; 24:11644. [PMID: 37511404 PMCID: PMC10381089 DOI: 10.3390/ijms241411644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Titanium dental implants are one of the modalities to replace missing teeth. The release of titanium particles from the implant's surface may modulate the immune cells, resulting in implant failure. However, little is known about the immune microenvironment that plays a role in peri-implant inflammation as a consequence of titanium particles. In this study, the peri-implant gingival tissues were collected from patients with failed implants, successful implants and no implants, and then a whole transcriptome analysis was performed. The gene set enrichment analysis confirmed that macrophage M1/M2 polarization and lymphocyte proliferation were differentially expressed between the study groups. The functional clustering and pathway analysis of the differentially expressed genes between the failed implants and successful implants versus no implants revealed that the immune response pathways were the most common in both comparisons, implying the critical role of infiltrating immune cells in the peri-implant tissues. The H&E and IHC staining confirmed the presence of titanium particles and immune cells in the tissue samples, with an increase in the infiltration of lymphocytes and macrophages in the failed implant samples. The in vitro validation showed a significant increase in the level of IL-1β, IL-8 and IL-18 expression by macrophages. Our findings showed evidence that titanium particles modulate lymphocyte and macrophage polarization in peri-implant gingival tissues, which can help in the understanding of the imbalance in osteoblast-osteoclast activity and failure of dental implant osseointegration.
Collapse
Affiliation(s)
- Waad Kheder
- College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amal Bouzid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noha Mousaad Elemam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tom Kalathil Raju
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Soumya Sheela
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Manju Nidagodu Jayakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Azzam A Maghazachi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abdul Rani Samsudin
- College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
21
|
Tauviqirrahman M, Ammarullah MI, Jamari J, Saputra E, Winarni TI, Kurniawan FD, Shiddiq SA, van der Heide E. Analysis of contact pressure in a 3D model of dual-mobility hip joint prosthesis under a gait cycle. Sci Rep 2023; 13:3564. [PMID: 36864170 PMCID: PMC9981612 DOI: 10.1038/s41598-023-30725-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/28/2023] [Indexed: 03/04/2023] Open
Abstract
Hip joint prostheses are used to replace hip joint function in the human body. The latest dual-mobility hip joint prosthesis has an additional component of an outer liner that acts as a cover for the liner component. Research on the contact pressure generated on the latest model of a dual-mobility hip joint prosthesis under a gait cycle has never been done before. The model is made of ultrahigh molecular weight polyethylene (UHMWPE) on the inner liner and 316L stainless steel (SS 316L) on the outer liner and acetabular cup. Simulation modeling using the finite element method is considered static loading with an implicit solver for studying the geometric parameter design of dual-mobility hip joint prostheses. In this study, simulation modeling was carried out by applying varying inclination angles of 30°, 40°, 45°, 50°, 60°, and 70° to the acetabular cup component. Three-dimensional loads were placed on femoral head reference points with variations of femoral head diameter used at 22 mm, 28 mm, and 32 mm. The results in the inner surface of the inner liner, the outer surface of the outer liner, and the inner surface of the acetabular cup showed that the variations in inclination angle do not have a major effect on the maximum contact pressure value on the liner component, where the acetabular cup with an inclination angle of 45° can reduce contact pressure more than the other studied inclination angle variations. In addition, it was found that the 22 mm diameter of the femoral head increases the contact pressure. The use of a larger diameter femoral head with an acetabular cup configuration at a 45° inclination can minimize the risk of implant failure due to wear.
Collapse
Affiliation(s)
- Mohammad Tauviqirrahman
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Central Java, Indonesia.
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Pasundan University, Bandung, 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Pasundan University, Bandung, 40153, West Java, Indonesia
- Undip Biomechanics Engineering and Research Centre (UBM-ERC), Diponegoro University, Semarang, 50275, Central Java, Indonesia
| | - J Jamari
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Central Java, Indonesia
- Undip Biomechanics Engineering and Research Centre (UBM-ERC), Diponegoro University, Semarang, 50275, Central Java, Indonesia
| | - Eko Saputra
- Department of Mechanical Engineering, Semarang State Polytechnic, Semarang, 50275, Central Java, Indonesia
| | - Tri Indah Winarni
- Undip Biomechanics Engineering and Research Centre (UBM-ERC), Diponegoro University, Semarang, 50275, Central Java, Indonesia
- Department of Anatomy, Faculty of Medicine, Diponegoro University, Semarang, 50275, Central Java, Indonesia
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, 50275, Central Java, Indonesia
| | - Febri Dwi Kurniawan
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Central Java, Indonesia
- Undip Biomechanics Engineering and Research Centre (UBM-ERC), Diponegoro University, Semarang, 50275, Central Java, Indonesia
| | - Shidnan Amir Shiddiq
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Central Java, Indonesia
- Undip Biomechanics Engineering and Research Centre (UBM-ERC), Diponegoro University, Semarang, 50275, Central Java, Indonesia
| | - Emile van der Heide
- Department of Mechanics of Solids, Surfaces and Systems (MS3), Faculty of Engineering Technology, University of Twente, Postbox 217, 7500 AE, Enschede, The Netherlands
- Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology, University of Twente, Postbox 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
22
|
Rangel A, Lam M, Hocini A, Humblot V, Ameyama K, Migonney V, Dirras G, Falentin-Daudre C. Bioactivation of New Harmonic Titanium Alloy to Improve and Control Cellular Response and differentiation. Ing Rech Biomed 2023. [DOI: 10.1016/j.irbm.2023.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
23
|
Albrektsson T, Tengvall P, Amengual L, Coli P, Kotsakis GA, Cochran D. Osteoimmune regulation underlies oral implant osseointegration and its perturbation. Front Immunol 2023; 13:1056914. [PMID: 36761175 PMCID: PMC9902598 DOI: 10.3389/fimmu.2022.1056914] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
In the field of biomaterials, an endosseous implant is now recognized as an osteoimmunomodulatory but not bioinert biomaterial. Scientific advances in bone cell biology and in immunology have revealed a close relationship between the bone and immune systems resulting in a field of science called osteoimmunology. These discoveries have allowed for a novel interpretation of osseointegration as representing an osteoimmune reaction rather than a classic bone healing response, in which the activation state of macrophages ((M1-M2 polarization) appears to play a critical role. Through this viewpoint, the immune system is responsible for isolating the implant biomaterial foreign body by forming bone around the oral implant effectively shielding off the implant from the host bone system, i.e. osseointegration becomes a continuous and dynamic host defense reaction. At the same time, this has led to the proposal of a new model of osseointegration, the foreign body equilibrium (FBE). In addition, as an oral wound, the soft tissues are involved with all their innate immune characteristics. When implant integration is viewed as an osteoimmune reaction, this has implications for how marginal bone is regulated. For example, while bacteria are constitutive components of the soft tissue sulcus, if the inflammatory front and immune reaction is at some distance from the marginal bone, an equilibrium is established. If however, this inflammation approaches the marginal bone, an immune osteoclastic reaction occurs and marginal bone is removed. A number of clinical scenarios can be envisioned whereby the osteoimmune equilibrium is disturbed and marginal bone loss occurs, such as complications of aseptic nature and the synergistic activation of pro-inflammatory pathways (implant/wear debris, DAMPs, and PAMPs). Understanding that an implant is a foreign body and that the host reacts osteoimmunologically to shield off the implant allows for a distinction to be drawn between osteoimmunological conditions and peri-implant bone loss. This review will examine dental implant placement as an osteoimmune reaction and its implications for marginal bone loss.
Collapse
Affiliation(s)
- T. Albrektsson
- Department of Biomaterials, University of Gothenburg, Gothenburg, Sweden
| | - P. Tengvall
- Department of Biomaterials, University of Gothenburg, Gothenburg, Sweden,*Correspondence: P. Tengvall,
| | - L. Amengual
- Dental Implantology Unit, Hospital Leonardo Guzmán, Antofagasta, Chile
| | - P. Coli
- Edinburgh Dental Specialists, Edinburgh, United Kingdom,Department of Prosthetic Dentistry and Dental Material Science, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden,Department of Dental Material Science, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - G. A. Kotsakis
- Department of Periodontology, University of Texas, San Antonio, TX, United States
| | - D. Cochran
- Department of Periodontology, University of Texas, San Antonio, TX, United States
| |
Collapse
|
24
|
Toledano-Serrabona J, Camps-Font O, de Moraes DP, Corte-Rodríguez M, Montes-Bayón M, Valmaseda-Castellón E, Gay-Escoda C, Sánchez-Garcés MÁ. Ion release and local effects of titanium metal particles from dental implants: An experimental study in rats. J Periodontol 2023; 94:119-129. [PMID: 35678251 PMCID: PMC10087269 DOI: 10.1002/jper.22-0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The objective of this study was to evaluate the accumulation of ions in blood and organs caused by titanium (Ti) metal particles in a mandibular defect in rats, together with a description of the local reaction of oral tissues to this Ti alloy debris. METHODS Twenty Sprague-Dawley rats were randomly distributed into three groups: an experimental group with a mandibular bone defect filled with metallic debris obtained by implantoplasty; a positive control group; and a negative control group. Thirty days after surgery, the rats were euthanized and perilesional tissue surrounding the mandibular defect was removed, together with the lungs, spleen, liver, and brain. Two blood samples were collected: immediately before surgery and before euthanasia. The perilesional tissue was histologically analyzed using hematoxylin-eosin staining, and Ti, aluminum, and vanadium ion concentrations in blood and organs were measured by TQ-ICP-MS. Descriptive and bivariate analyses of the data were performed. RESULTS All rats with implanted metal debris showed metal particles and a bone fracture callus on the osseous defect. The metal particles were surrounded by a foreign body reaction characterized by the presence of histiocytes and multinucleated giant cells (MNGCs). The experimental group had a significant higher concentration of Ti ions in all studied organs except lung tissue (p < 0.05). In addition, there were more V ions in the brain in the experimental group (p = 0.008). CONCLUSIONS Although further studies are required to confirm the clinical relevance of these results, Ti metal particles in the jaw might increase the concentration of metal ions in vital organs and induce a foreign body reaction.
Collapse
Affiliation(s)
- Jorge Toledano-Serrabona
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Octavi Camps-Font
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Diogo Pompéu de Moraes
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mario Corte-Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Eduard Valmaseda-Castellón
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Cosme Gay-Escoda
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - M Ángeles Sánchez-Garcés
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
25
|
Supra R, Agrawal DK. Innate Immune Response in Orthopedic Implant Failure. JOURNAL OF ORTHOPAEDICS AND SPORTS MEDICINE 2022; 5:9-19. [PMID: 36777741 PMCID: PMC9912346 DOI: 10.26502/josm.511500073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The total joint replacement is recognized as one of the most effective medical arbitrations leading to increased mobility, pain relief, and an overall restored function of the joint. Unfortunately, prosthetic debris accumulates after long-term wear of the implant leading to activation of the innate immune response and periprosthetic osteolysis. Understanding the intricate biological mechanisms underlying the innate immune response to implant debris would support the development of novel pharmacological treatments to prolong the life span of the implant. This article provides a detailed description on the role of the innate immune system in response to implant debris, emphasizing the most recent research and outstanding questions. Furthermore, a critical discussion is presented on the novel pharmacological treatments currently under investigation to prevent implant failure.
Collapse
Affiliation(s)
- Rajiv Supra
- College of Osteopathic Medicine, Touro University, Henderson, Nevada
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA
| |
Collapse
|
26
|
Barrak FN, Li S, Mohammed AA, Myant C, Jones JR. Anti-inflammatory properties of S53P4 bioactive glass implant material. J Dent 2022; 127:104296. [PMID: 36116542 DOI: 10.1016/j.jdent.2022.104296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To assess whether the dissolution products of S53P4 bioactive glass (BG) affect cellular response of macrophages and clinically relevant peri‑implant cell populations to dental implant particles in vitro. Cells chosen were human gingival fibroblasts (HGFs), osteoblasts and bone marrow derived stromal cells (HBMSCs). METHODS Melt-derived S53P4 bioactive glass were prepared. HGFs, Saos-2 human osteoblastic cell line, HBMSCs and macrophages, derived from THP-1 human monocytic cell line, were cultured in the presence of particles from commercially pure titanium (Ti-CP4), grade 5 titanium alloy (Ti-6Al-4V), titanium-zirconium alloy (Ti-15Zr) or zirconia (Zr) (with respective diameters of 34.1 ± 3.8, 33.3 ± 4.4, 97.8 ± 8.2 and 71.3 ± 6.1 µm) with or without S53P4 dissolution products (conditioned media contained 327.30 ± 2.01 ppm Ca, 51.34 ± 0.41 ppm P and 61.48 ± 1.17 ppm Si, pH 8.01 ± 0.21). Inflammatory and macrophage polarisation markers including TNF-ɑ, IL-1, IL-6 and CD206 were quantified using enzyme-linked immunosorbent assay (ELISA). RESULTS The presence of Ti-6Al-4V implant particles significantly induced the expression of pro-inflammatory markers in all tested cell types. S53P4 BG dissolution products regressed the particle induced up-regulation of pro-inflammatory markers and, appeared to suppress M1 macrophage polarisation. CONCLUSIONS Implant particles, Ti-6Al-4V in particular, resulted in significant inflammatory responses from cells. S53P4 BG may possess anti-inflammatory properties and potentially mediate macrophage polarisation behaviour. CLINICAL SIGNIFICANCE The findings highlight that the use and benefits of BG is a promising field of study. Authors believe more collective efforts are required to fully understand the reliability, efficiency and exact mechanisms of action of BG in the search for new generation of treatment modalities in dentistry.
Collapse
Affiliation(s)
- Fadi N Barrak
- Department of Materials, Imperial College London, SW7 2AZ, United Kingdom; Visiting Specialist Services Academy Ltd, Office 6.072 6th Floor, First Central 200, 2 Lakeside Drive, London NW10 7FQ, United Kingdom
| | - Siwei Li
- Department of Materials, Imperial College London, SW7 2AZ, United Kingdom; Visiting Specialist Services Academy Ltd, Office 6.072 6th Floor, First Central 200, 2 Lakeside Drive, London NW10 7FQ, United Kingdom
| | - Ali A Mohammed
- Dyson School of Design Engineering, Imperial College London, SW7 2AZ, United Kingdom
| | - Connor Myant
- Dyson School of Design Engineering, Imperial College London, SW7 2AZ, United Kingdom
| | - Julian R Jones
- Department of Materials, Imperial College London, SW7 2AZ, United Kingdom.
| |
Collapse
|
27
|
AjitSankardas P, Stein SH, Tipton D, Abhyankar V, Morrow BR. Impact of Metal Particles Released during Ultrasonic Scaling of Titanium Surfaces on Human Gingival Fibroblasts. J Long Term Eff Med Implants 2022; 33:9-22. [PMID: 36382700 DOI: 10.1615/jlongtermeffmedimplants.2022043080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Metal particles found in tissues around dental implants have been proposed to play a pathogenic role in peri-implantitis. Ultrasonic scaling has been suggested as a mechanism by which these particles can be inadvertently released into surrounding tissues. Furthermore, risk factors like diabetes can result in exacerbation of this inflammatory condition. The current study aimed to analyze metal particles released from titanium surfaces during ultrasonic scaling and their impact on pro-inflammatory cytokine production by human gingival fibroblasts. METHODS Metal particles generated from ultrasonic scaling of titanium discs using two different tips (metal and poly-etheretherketone tips) were characterized using scanning electron microscopy and elemental analysis. Endotoxin levels and Human gingival fibroblast viability, in the presence commercial and ultrasonically generated particles were determined. Fibroblasts, cultured in high or low glucose growth medium, were incubated with commercial titanium particles or ultrasonically generated particles in the presence or absence of interluekin-1β. Interleukin 6 and interleukin 8 production were then quantified using Enzyme linked immunosorbent assay. RESULTS Analysis of particles after scaling of titanium discs showed significant levels of titanium particles. Commercial titanium particles and generated particles had no effect of fibroblast viability. Endotoxin levels of all particles were too low to stimulate HGF cells. IL-1β significantly stimulated IL-6 and IL-8 production. However, commercial, and generated particles generally had no significant effect on IL- 6 and IL-8 production. CONCLUSION Our study concluded that particles generated during ultrasonic scaling had no significant effect on viability of HGF cells and cytokine production.
Collapse
Affiliation(s)
- Pooja AjitSankardas
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Sidney H Stein
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - David Tipton
- Department of Bioscience Research, University of Tennessee Health Science Center, College of Dentistry, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Vrushali Abhyankar
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Brian R Morrow
- Department of Bioscience Research, University of Tennessee Health Science Center, College of Dentistry, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| |
Collapse
|
28
|
Pitchai M, Ipe D, Tadakamadla S, Hamlet S. Titanium Implant Surface Effects on Adherent Macrophage Phenotype: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7314. [PMID: 36295379 PMCID: PMC9609829 DOI: 10.3390/ma15207314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Immunomodulatory biomaterials have the potential to stimulate an immune response able to promote constructive and functional tissue remodeling responses as opposed to persistent inflammation and scar tissue formation. As such, the controlled activation of macrophages and modulation of their phenotype through implant surface modification has emerged as a key therapeutic strategy. METHODS Online databases were searched for in vitro studies between January 1991 and June 2020 which examined the effect of titanium implant surface topography on the adherent macrophage phenotype at either the gene or protein level. RESULTS Thirty-nine studies were subsequently included for review. Although there was significant heterogeneity between studies, treatment of titanium surfaces increased the surface roughness or hydrophilicity, and hence increased macrophage attachment but decreased cell spreading. Physical coating of the titanium surface also tended to promote the formation of cell clusters. Titanium and titanium-zirconium alloy with a micro- or nano-scale rough topography combined with a hydrophilic surface chemistry were the most effective surfaces for inducing an anti-inflammatory phenotype in adherent macrophages, as indicated by significant changes in cytokine gene expression and or cytokine secretion profiles. CONCLUSIONS The published data support the hypothesis that incorporation of specific topographical and physiochemical surface modifications to titanium can modulate the phenotypic response of adherent macrophages.
Collapse
Affiliation(s)
| | | | | | - Stephen Hamlet
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| |
Collapse
|
29
|
Toledano-Serrabona J, Bosch BM, Díez-Tercero L, Gil FJ, Camps-Font O, Valmaseda-Castellón E, Gay-Escoda C, Sánchez-Garcés MÁ. Evaluation of the inflammatory and osteogenic response induced by titanium particles released during implantoplasty of dental implants. Sci Rep 2022; 12:15790. [PMID: 36138061 PMCID: PMC9500064 DOI: 10.1038/s41598-022-20100-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Implantoplasty is a mechanical decontamination technique that consists of removing the threads and polishing and smoothing the dental implant surface. During implantoplasty there is a large release of titanium metal particles that might provoke a proinflammatory response and reduce the viability of osteogenic cells. We analyze the inflammatory and osteogenic response induced by Ti6Al4V particles released during implantoplasty and by as-received commercially pure Ti particles. Macrophages stimulated with metal particles obtained by implantoplasty and with as-received Ti particles showed an increased proinflammatory expression of TNF-α and a decreased expression of TGF-β and CD206. Regarding cytokine release, there was an increase in IL-1β, while IL-10 decreased. The osteogenic response of Ti6Al4V extracts showed a significant decrease in Runx2 and OC expression compared to the controls and commercially pure Ti extracts. There were no relevant changes in ALP activity. Thus, implantoplasty releases metal particles that seems to induce a pro-inflammatory response and reduce the expression of osteogenic markers.
Collapse
Affiliation(s)
- Jorge Toledano-Serrabona
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Begoña M Bosch
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain
| | - Leire Díez-Tercero
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain
| | - F Javier Gil
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain.
- Faculty of Dentistry, International University of Catalonia, Sant Cugat del Vallès, Spain.
| | - Octavi Camps-Font
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Eduard Valmaseda-Castellón
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Cosme Gay-Escoda
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Mª Ángeles Sánchez-Garcés
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
30
|
Chen Z, Lu M, Zhang Y, Wang H, Zhou J, Zhou M, Zhang T, Song J. Oxidative stress state inhibits exosome secretion of hPDLCs through a specific mechanism mediated by PRMT1. J Periodontal Res 2022; 57:1101-1115. [PMID: 36063421 DOI: 10.1111/jre.13040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/14/2022] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis, the most common chronic inflammation characterized by persistent alveolar bone resorption in the periodontitis, affects almost half of the adult population worldwide. Oxidative stress is one of the pathophysiological mechanisms underlying periodontitis, which affects the occurrence and development of periodontitis. Exosomes are increasingly recognized as vehicles of intercellular communication and are closely related to periodontitis. However, the effects of oxidative stress on exosome secretion and the specific mechanisms remain elusive in human periodontal ligament cells (hPDLCs). The relationship between exosome secretion and the osteogenic differentiation of hPDLCs also needs to be investigated. METHODS Isolated PDLSCs were identified using flow cytometry. Osteogenesis was measured using alizarin red staining and ALP staining. Expression of exosomal markers and PRMT1 was analyzed using western blot. Immunofluorescence was used to measure exosome uptake and the expression of EEA1. RESULTS The secretion capacity of exosomes was markedly suppressed under oxidative stress. Protein arginine methyltransferase 1 (PRMT1) has been strongly associated with both oxidative stress and inflammation, and PRMT1 was significantly upregulated under oxidative stress conditions. Lentivirus-mediated overexpression of PRMT1 caused a significant reduction in the secretion of exosomes, but multivesicular bodies (MVBs) containing a large number of intraluminal vesicles (ILVs) were increased. Rab11a and Rab27a expression, which mediate MVBs fusion with cell membranes, decreased, although this phenomenon was restored after knocking down PRMT1 expression under oxidative stress. CONCLUSIONS These results indicated that PRMT1 mediated a decrease in exosome secretion of hPDLCs. The decrease in Rab11a and Rab27a leads to a large accumulation of MVBs in cells and is one of the main reasons for impaired exosome secretion. The decrease in osteogenic differentiation of hPDLCs caused by H2 O2 may originate in part from the inhibition of exosome secretion.
Collapse
Affiliation(s)
- Ziqi Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Miao Lu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yanan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - He Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengjiao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
31
|
Nemec M, Behm C, Maierhofer V, Gau J, Kolba A, Jonke E, Rausch-Fan X, Andrukhov O. Effect of Titanium and Zirconia Nanoparticles on Human Gingival Mesenchymal Stromal Cells. Int J Mol Sci 2022; 23:ijms231710022. [PMID: 36077419 PMCID: PMC9456558 DOI: 10.3390/ijms231710022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Nano- and microparticles are currently being discussed as potential risk factors for peri-implant disease. In the present study, we compared the responses of human gingival mesenchymal stromal cells (hG-MSCs) on titanium and zirconia nanoparticles (<100 nm) in the absence and presence of Porphyromonas gingivalis lipopolysaccharide (LPS). The primary hG-MSCs were treated with titanium and zirconia nanoparticles in concentrations up to 2.000 µg/mL for 24 h, 72 h, and 168 h. Additionally, the cells were treated with different nanoparticles (25−100 µg/mL) in the presence of P. gingivalis LPS for 24 h. The cell proliferation and viability assay and live−dead and focal adhesion stainings were performed, and the expression levels of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein (MCP)-1 were measured. The cell proliferation and viability were inhibited by the titanium (>1000 µg/mL) but not the zirconia nanoparticles, which was accompanied by enhanced apoptosis. Both types of nanoparticles (>25 µg/mL) induced the significant expression of IL-8 in gingival MSCs, and a slightly higher effect was observed for titanium nanoparticles. Both nanoparticles substantially enhanced the P. gingivalis LPS-induced IL-8 production; a higher effect was observed for zirconia nanoparticles. The production of inflammatory mediators by hG-MSCs is affected by the nanoparticles. This effect depends on the nanoparticle material and the presence of inflammatory stimuli.
Collapse
Affiliation(s)
- Michael Nemec
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Vera Maierhofer
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonas Gau
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Anastasiya Kolba
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Erwin Jonke
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Xiaohui Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40070-2620
| |
Collapse
|
32
|
Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis 2022; 60:e23490. [PMID: 35757898 PMCID: PMC9786271 DOI: 10.1002/dvg.23490] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Osteoclasts are large multinucleated cells from hematopoietic origin and are responsible for bone resorption. A balance between osteoclastic bone resorption and osteoblastic bone formation is critical to maintain bone homeostasis. The alveolar bone, also called the alveolar process, is the part of the jawbone that holds the teeth and supports oral functions. It differs from other skeletal bones in several aspects: its embryonic cellular origin, the form of ossification, and the presence of teeth and periodontal tissues; hence, understanding the unique characteristic of the alveolar bone remodeling is important to maintain oral homeostasis. Excessive osteoclastic bone resorption is one of the prominent features of bone diseases in the jaw such as periodontitis. Therefore, inhibiting osteoclast formation and bone resorptive process has been the target of therapeutic intervention. Understanding the mechanisms of osteoclastic bone resorption is critical for the effective treatment of bone diseases in the jaw. In this review, we discuss basic principles of alveolar bone remodeling with a specific focus on the osteoclastic bone resorptive process and its unique functions in the alveolar bone. Lastly, we provide perspectives on osteoclast-targeted therapies and regenerative approaches associated with bone diseases in the jaw.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
33
|
Asa'ad F, Thomsen P, Kunrath MF. The Role of Titanium Particles and Ions in the Pathogenesis of Peri-Implantitis. J Bone Metab 2022; 29:145-154. [PMID: 36153850 PMCID: PMC9511127 DOI: 10.11005/jbm.2022.29.3.145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Titanium (Ti) particles and ions have been investigated in recent years as important factors in the pathogenesis of peri-implantitis. However, their role in the pathogenesis is yet to be fully understood. A review of pertinent literature was performed in various databases to determine the current position of Ti particles and ions role in the pathogenesis of peri-implantitis. There are several in vitro, preclinical and clinical published studies that have addressed the role of Ti particles and ions in the pathogenesis of peri-implantitis. These studies explored the effect of Ti particles and ions in the pathogenesis of peri-implantitis with respect to foreign body reaction, cellular response, epigenetic mechanisms, namely DNA methylation, and the oral microbiome. Studies have shown that the release of Ti particles/ions during implant insertion, early healing stages, late healing stages, and treatments during peri-implantitis might contribute to peri-implantitis through different mechanisms, such as foreign body reaction, cellular response, DNA methylation, and shaping the oral microbiome by increasing dysbiosis. However, further studies are needed to elucidate the complex interactions between all these mechanisms and Ti particles/ions in the pathogenesis and progression of peri-implantitis.
Collapse
Affiliation(s)
- Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
34
|
Callejas JA, Gil J, Brizuela A, Pérez RA, Bosch BM. Effect of the Size of Titanium Particles Released from Dental Implants on Immunological Response. Int J Mol Sci 2022; 23:ijms23137333. [PMID: 35806339 PMCID: PMC9266706 DOI: 10.3390/ijms23137333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
The techniques used in oral implantology to remove bacterial biofilm from the surface of implants by machining the titanium surface (implantoplasty) or by placing rough dental implants through friction with the cortical bone generate a large release of particles. In this work, we performed a simulation of particle generation following clinical protocols. The particles were characterized for commercially pure titanium with particle sizes of 5, 10, 15, and 30 μm. The aim was to determine the effect of particle size and chemical composition of the implant on the immune response. For this purpose, their morphology and possible contamination were characterized by scanning electron microscopy and X-ray microanalysis. In addition, the granulometry, specific surface area, release of metal ions into the medium, and studies of cytocompatibility, gene expression, and cytokine release linked to the inflammatory process were studied. The release of ions for titanium particles showed levels below 800 ppb for all sizes. Smaller particle sizes showed less cytotoxicity, although particles of 15 μm presented higher levels of cytocompatibility. In addition, inflammatory markers (TNFα and Il-1β) were higher compared to larger titanium. Specifically, particles of 15 μm presented a lower proinflammatory and higher anti-inflammatory response as characterized by gene expression and cytokine release, compared to control or smaller particles. Therefore, in general, there is a greater tendency for smaller particles to produce greater toxicity and a greater proinflammatory response.
Collapse
Affiliation(s)
- Juan Antonio Callejas
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
| | - Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
- Correspondence: (J.G.); (B.M.B.)
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C. del Padre Julio Chevalier 2, 47012 Valladolid, Spain;
| | - Román A. Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08190 Barcelona, Spain; (J.A.C.); (R.A.P.)
- Correspondence: (J.G.); (B.M.B.)
| |
Collapse
|
35
|
Ti Ions Induce IL-1β Release by Activation of the NLRP3 Inflammasome in a Human Macrophage Cell Line. Inflammation 2022; 45:2027-2037. [PMID: 35726039 PMCID: PMC9499900 DOI: 10.1007/s10753-022-01672-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/05/2022]
Abstract
The aim of the present study was to investigate whether titanium (Ti)-induced release of interleukin (IL)-1β acts through the assembly of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome. In addition, we examined whether particulate Ti or TiO2 activates the same intracellular pathways with the assembly of the NLRP3 inflammasome as Ti ions. Ti ions are known to induce IL-1β maturation and release by the formation of metal-protein aggregates. Wild-type THP-1 (wt.) cells and NLRP3- and ASC- (apoptosis-associated speck-like protein containing caspase recruitment domain (CARD)) knockdown cells were used in the experimental analyses. Macro- and nanoparticles (NPs) of both Ti and TiO2 were used as test agents. IL-1β release as a biomarker for inflammasome activation and cell viability was also analyzed. Periodate-oxidized adenosine triphosphate (oATP) was used to attenuate downstream signaling in NLRP3 inflammasome activation. Cellular uptake of Ti was examined using transmission electron microscopy. Cells exposed to the Ti-ion solution showed a dose-dependent increase in the release of IL-1β; conversely, exposure to particulate Ti did not result in increased IL-1β release. Cell viability was not affected by particulate Ti. Knockdown cells exposed to Ti showed a statistically significant reduction in the release of IL-1β compared with wt. cells (p < 0.001). Cellular uptake was detected in all Ti mixtures, and aggregates with various structures were observed. Ti ion-induced release of bioactive IL-1β in THP-1 cells involves the assembly of the NLRP3 inflammasome.
Collapse
|
36
|
Particle release from dental implants immediately after placement – An ex vivo comparison of different implant systems. Dent Mater 2022; 38:1004-1014. [DOI: 10.1016/j.dental.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
|
37
|
Rakic M, Radunovic M, Petkovic-Curcin A, Tatic Z, Basta-Jovanovic G, Sanz M. Study on the immunopathological effect of titanium particles in peri-implantitis granulation tissue: a case-control study. Clin Oral Implants Res 2022; 33:656-666. [PMID: 35344630 PMCID: PMC9321593 DOI: 10.1111/clr.13928] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Objectives To identify titanium particles (TPs) in biopsy specimens harvested from peri‐implantitis lesions and secondarily to study the histopathological characteristics in peri‐implantitis compared to periodontitis, in order to evaluate whether the presence of TPs could alter respective inflammatory patterns. Material and methods Biopsies containing granulation tissue were harvested during routine surgical treatment in 39 peri‐implantitis cases and 35 periodontitis controls. Serial sections were obtained using titanium‐free microtome blades. The first and last sections of the peri‐implantitis specimens were used for identification of TPs by scanning electron microscopy coupled with dispersive X‐ray spectrometry. Intermediate sections and periodontitis specimens were processed for descriptive histological study using haematoxylin–eosin staining and for immunohistochemical analysis using CD68, IL‐6, Nf‐kB and VEGF markers. Results TPs were identified in all peri‐implantitis specimens as free metal bodies interspersed within granulation tissue. However, presence of macrophages or multinucleated giant cells engulfing the TPs were not identified in any specimen. Peri‐implantitis granulations were characterized by a chronic inflammatory infiltrate rich in neutrophils. About half of peri‐implantitis patients exhibited a subacute infiltrate characterized with lymphocytes interweaved with neutrophils and eosinophils. When compared to periodontitis, peri‐implantitis tissues showed higher proportions of macrophages and a more intense neovascularization, based on significantly higher expression of CD68 and VEGF respectively. Conclusion TPs were identified in all peri‐implantitis specimens, but without evidencing any foreign body reaction suggestive for direct pathological effects of TPs. The peri‐implantitis granulation tissue was characterized by intense neovascularization and presence of a chronic inflammatory infiltrate dominated by plasma cells, neutrophils and macrophages.
Collapse
Affiliation(s)
- Mia Rakic
- Facultad de Odontologia, Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, Universidad Complutense de Madrid, Madrid, Spain
| | - Milena Radunovic
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | - Mariano Sanz
- Facultad de Odontologia, Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
38
|
Atieh MA, Almatrooshi A, Shah M, Hannawi H, Tawse-Smith A, Alsabeeha NHM. Airflow for initial nonsurgical treatment of peri-implantitis: A systematic review and meta-analysis. Clin Implant Dent Relat Res 2022; 24:196-210. [PMID: 35156296 DOI: 10.1111/cid.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 01/23/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Nonsurgical treatment of peri-implantitis may help in reducing microbial load and inflammatory parameters. The potential clinical benefits of using different treatment approaches, in the initial nonsurgical treatment phase, particularly the airflow, are still not clear. The aim of this systematic review and meta-analyses was to evaluate the outcomes of nonsurgical treatment of peri-implantitis using airflow method in terms of changes in periodontal parameters, peri-implant marginal bone level, postoperative pain/discomfort, and patient satisfaction. METHODS Electronic databases were searched to identify randomized controlled trials (RCTs) that compared airflow with mechanical debridement using ultrasonic/curettes. The risk of bias was assessed using the Cochrane Collaboration's Risk of Bias tool. Data were analyzed using a statistical software program. RESULTS A total of 316 studies were identified, of which, five RCTs with 288 dental implants in 174 participants were included. Overall meta-analysis showed more reduction in probing pocket depths at 1-3 months (mean difference [MD] -0.23; 95% confidence interval [CI] -0.50-0.05; p = 0.10) and 6 months (MD -0.04; 95% CI -0.34 to 0.27; p = 0.80) in favor of airflow, but the difference was not statistically significant. The use of airflow was associated with significant reduction in bleeding on probing and increase in peri-implant mucosal recession. The differences in plaque score, peri-implant marginal bone level changes, and patient reported outcomes between airflow and mechanical debridement were not statistically significant. CONCLUSIONS The short-term clinical and radiographic outcomes following nonsurgical treatment of peri-implantitis using airflow or mechanical debridement were comparable. The airflow has short-term positive effects on reducing bleeding on probing. Further evidence from RCTs are still required to substantiate the current findings.
Collapse
Affiliation(s)
- Momen A Atieh
- Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates.,Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Aisha Almatrooshi
- Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Maanas Shah
- Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Haifa Hannawi
- Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates.,Director of Dental Services Department, Emirates Health Services, Dubai, United Arab Emirates
| | - Andrew Tawse-Smith
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Nabeel H M Alsabeeha
- Ras Al-Khaimah Dental Center, Ministry of Health and Prevention, Ras al Khaimah, United Arab Emirates
| |
Collapse
|
39
|
Insight Into Corrosion of Dental Implants: From Biochemical Mechanisms to Designing Corrosion-Resistant Materials. CURRENT ORAL HEALTH REPORTS 2022; 9:7-21. [PMID: 35127334 PMCID: PMC8799988 DOI: 10.1007/s40496-022-00306-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Purpose of Review Despite advanced technologies to avoid corrosion of dental implants, the mechanisms toward the release of metals and their role in the onset of peri-implant diseases are still under-investigated. Effective knowledge on the etiopathogenesis of corrosive products and preventive strategies mitigating the risks for surface degradation are thus in dire need. This review aimed to summarize evidence toward biocorrosion in the oral environment and discuss the current strategies targeting the improvement of dental implants and focusing on the methodological and electrochemical aspects of surface treatments and titanium-based alloys. Recent Findings Recent studies suggest the existence of wear/corrosion products may correlate with peri-implantitis progress by triggering microbial dysbiosis, the release of pro-inflammatory cytokines, and animal bone resorption. Furthermore, current clinical evidence demonstrating the presence of metal-like particles in diseased tissues supports their possible role as a risk factor for peri-implantitis. For instance, to overcome the drawback of titanium corrosion, researchers are primarily focusing on developing corrosion-resistant alloys and coatings for dental implants by changing their physicochemical features. Summary The current state-of-art discussed in this review found corrosion products effective in affecting biofilm virulence and inflammatory factors in vitro. Controversial and unstandardized data are limitations, making the premise of corrosion products being essential for peri-implantitis onset. On the other hand, when it comes to the strategies toward reducing implant corrosion rate, it is evident that the chemical and physical properties are crucial for the in vitro electrochemical behavior of the implant material. For instance, it is foreseeable that the formation of films/coatings and the incorporation of some functional compounds into the substrate may enhance the material’s corrosion resistance and biological response. Nevertheless, the utmost challenge of research in this field is to achieve adequate stimulation of the biological tissues without weakening its protective behavior against corrosion. In addition, the translatability from in vitro findings to clinical studies is still in its infancy. Therefore, further accumulation of high-level evidence on the role of corrosion products on peri-implant tissues is expected to confirm the findings of the present review besides the development of better methods to improve the corrosion resistance of dental implants. Furthermore, such knowledge could further develop safe and long-term implant rehabilitation therapy.
Collapse
|
40
|
Romanos GE, Fischer GA, Rahman ZT, Delgado-Ruiz R. Spectrometric Analysis of the Wear from Metallic and Ceramic Dental Implants following Insertion: An In Vitro Study. MATERIALS 2022; 15:ma15031200. [PMID: 35161144 PMCID: PMC8838065 DOI: 10.3390/ma15031200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022]
Abstract
Titanium wear is a growing area of interest within dental implantology. This study aimed to investigate titanium and zirconium wear from dental implants at the time of insertion using X-ray-fluorescence spectrometry (XRF) and an in vitro protocol utilizing artificial bovine bone plates. Five groups were analyzed using XRF-spectrometry: groups 1–4 (titanium implants) and group 5 (zirconia implants). The implants were inserted into two bone blocks held together by a vice. The blocks were separated, and the insertion sites were analyzed for titanium (Ti) and zirconium (Zr). Statistical descriptive analyses of Ti and Zr concentrations in the coronal, middle and apical bone interface were performed. A comparative analysis confirmed differences between the implant’s surface stability and Ti accumulation within the insertion sites of the bone block. There was a direct relationship between implant length and the quantity of titanium found on the bone block. The data generally indicates greater quantities of titanium in the coronal thirds of the implants, and less in the apical thirds. The titanium and zirconium found in the bone samples where the group 5 implants were inserted was not of statistical significance when compared to control osteotomies. The results of this study confirm wear from metallic, but not ceramic, dental implants at the time of insertion.
Collapse
Affiliation(s)
- Georgios E. Romanos
- Laboratory for Periodontal-Implant-Phototherapy (LA-PIP), Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (G.A.F.); (Z.T.R.)
- Correspondence: ; Tel.: +1-(631)-632-8755; Fax: +1-(631)-632-8670
| | - Gerard A. Fischer
- Laboratory for Periodontal-Implant-Phototherapy (LA-PIP), Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (G.A.F.); (Z.T.R.)
| | - Zaid T. Rahman
- Laboratory for Periodontal-Implant-Phototherapy (LA-PIP), Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (G.A.F.); (Z.T.R.)
| | - Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
41
|
Abofoul S, Hurvitz AZ, Grienstein OK, Shuster A, Vered M, Edel J, Kaplan I. Peripheral giant cell granuloma associated with dental implants: Case-series. Clin Implant Dent Relat Res 2022; 24:133-137. [PMID: 34981625 DOI: 10.1111/cid.13063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The objectives were to characterize clinico-pathologically a large series of peri-implant peripheral giant cell granuloma (PGCG), and investigate the role of foreign material as a possible etiological factor. MATERIAL AND METHODS The study was retrospective, conducted on peri-implant specimens submitted for histology between 2005 and 2021. RESULTS Three hundred and thirty-five peri-implant biopsies were retrieved, of which 52 (15.5%) were PGCG. The study population included 28 females and 24 males, age 35-92 years, mean 61. 51.2% reported bone involvement. The lesion involved the margins of the specimen in 65.3%, recurrence was reported in 46.1%. In 58.8% the implant was removed at the same time the specimen was submitted for histopathological analysis. Small foci of black granular foreign material were observed in 53.8% of cases of which 67.8% were birefringent under polarized light. The foreign material granules were not ingested inside multinucleated giant cells, but were scattered in the stromal compartment. CONCLUSIONS Peri-implant PGCG is locally aggressive, with frequent bone involvement and high recurrence rate, resulting in implant loss in the majority of cases. The high recurrence rate may be related to conservative or inadequate surgery. Foreign material although common does not seem to have a role in its development.
Collapse
Affiliation(s)
- Samar Abofoul
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ayelet Zlotogorski Hurvitz
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Osnat Koren- Grienstein
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Amir Shuster
- Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Department of Oral and Maxillofacial Surgery, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marilena Vered
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jeremy Edel
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ilana Kaplan
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
42
|
Kajikawa T, Mastellos DC, Hasturk H, Kotsakis GA, Yancopoulou D, Lambris JD, Hajishengallis G. C3-targeted host-modulation approaches to oral inflammatory conditions. Semin Immunol 2022; 59:101608. [PMID: 35691883 DOI: 10.1016/j.smim.2022.101608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Periodontitis is an inflammatory disease caused by biofilm accumulation and dysbiosis in subgingival areas surrounding the teeth. If not properly treated, this oral disease may result in tooth loss and consequently poor esthetics, deteriorated masticatory function and compromised quality of life. Epidemiological and clinical intervention studies indicate that periodontitis can potentially aggravate systemic diseases, such as, cardiovascular disease, type 2 diabetes mellitus, rheumatoid arthritis, and Alzheimer disease. Therefore, improvements in the treatment of periodontal disease may benefit not only oral health but also systemic health. The complement system is an ancient host defense system that plays pivotal roles in immunosurveillance and tissue homeostasis. However, complement has unwanted consequences if not controlled appropriately or excessively activated. Complement overactivation has been observed in patients with periodontitis and in animal models of periodontitis and drives periodontal inflammation and tissue destruction. This review places emphasis on a promising periodontal host-modulation therapy targeting the complement system, namely the complement C3-targeting drug, AMY-101. AMY-101 has shown safety and efficacy in reducing gingival inflammation in a recent Phase 2a clinical study. We also discuss the potential of AMY-101 to treat peri-implant inflammatory conditions, where complement also seems to be involved and there is an urgent unmet need for effective treatment.
Collapse
Affiliation(s)
- Tetsuhiro Kajikawa
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA; Tohoku University Graduate School of Dentistry, Department of Periodontology and Endodontology, Sendai, Miyagi, Japan
| | - Dimitrios C Mastellos
- National Center for Scientific Research 'Demokritos', Division of Biodiagnostic Sciences and Technologies, INRASTES, Athens, Greece
| | - Hatice Hasturk
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA, USA
| | - Georgios A Kotsakis
- University of Texas Health Science Center at San Antonio, School of Dentistry, Department of Periodontics, San Antonio, TX, USA
| | | | - John D Lambris
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Silva D, Arcos C, Montero C, Guerra C, Martínez C, Li X, Ringuedé A, Cassir M, Ogle K, Guzmán D, Aguilar C, Páez M, Sancy M. A Tribological and Ion Released Research of Ti-Materials for Medical Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 15:ma15010131. [PMID: 35009273 PMCID: PMC8746336 DOI: 10.3390/ma15010131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 05/12/2023]
Abstract
The increase in longevity worldwide has intensified the use of different types of prostheses for the human body, such as those used in dental work as well as in hip and knee replacements. Currently, Ti-6Al-4V is widely used as a joint implant due to its good mechanical properties and durability. However, studies have revealed that this alloy can release metal ions or particles harmful to human health. The mechanisms are not well understood yet and may involve wear and/or corrosion. Therefore, in this work, commercial pure titanium and a Ti-6Al-4V alloy were investigated before and after being exposed to a simulated biological fluid through tribological tests, surface analysis, and ionic dissolution characterization by ICP-AES. Before exposure, X-ray diffraction and optical microscopy revealed equiaxed α-Ti in both materials and β-Ti in Ti-6Al-4V. Scratch tests exhibited a lower coefficient of friction for Ti-6Al-4V alloy than commercially pure titanium. After exposure, X-ray photoelectron spectroscopy and surface-enhanced Raman spectroscopy results showed an oxide film formed by TiO2, both in commercially pure titanium and in Ti-6Al-4V, and by TiO and Al2O3 associated with the presence of the alloys. Furthermore, inductively coupled plasma atomic emission spectroscopy revealed that aluminum was the main ion released for Ti-6Al-4V, giving negligible values for the other metal ions.
Collapse
Affiliation(s)
- Daniela Silva
- Departamento de Ingeniería Mecánica y Metalúrgica, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- Correspondence: (D.S.); (C.A.)
| | - Camila Arcos
- Departamento de Ingeniería Mecánica y Metalúrgica, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- Correspondence: (D.S.); (C.A.)
| | - Cecilia Montero
- Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago, Santiago 9170022, Chile;
| | - Carolina Guerra
- Departamento de Ingeniería Mecánica y Metalúrgica, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Carola Martínez
- Departamento de Ingeniería de Obras Civiles, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Xuejie Li
- CNRS, Institut de Recherche de Chimie de Paris, Chimie ParisTech, PSL University, 75005 Paris, France; (X.L.); (A.R.); (M.C.); (K.O.)
| | - Armelle Ringuedé
- CNRS, Institut de Recherche de Chimie de Paris, Chimie ParisTech, PSL University, 75005 Paris, France; (X.L.); (A.R.); (M.C.); (K.O.)
| | - Michel Cassir
- CNRS, Institut de Recherche de Chimie de Paris, Chimie ParisTech, PSL University, 75005 Paris, France; (X.L.); (A.R.); (M.C.); (K.O.)
| | - Kevin Ogle
- CNRS, Institut de Recherche de Chimie de Paris, Chimie ParisTech, PSL University, 75005 Paris, France; (X.L.); (A.R.); (M.C.); (K.O.)
| | - Danny Guzmán
- Departamento de Ingeniería en Metalurgia, Universidad de Atacama, Copiapó 1530000, Chile;
| | - Claudio Aguilar
- Departamento de Ingeniería Metalúrgica y de Materiales, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Maritza Páez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
| | - Mamié Sancy
- Escuela de Construcción Civil, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- Centro de Investigación en Nanotecnologiía y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
44
|
The Non-Erythropoietic EPO Analogue Cibinetide Inhibits Osteoclastogenesis In Vitro and Increases Bone Mineral Density in Mice. Int J Mol Sci 2021; 23:ijms23010055. [PMID: 35008482 PMCID: PMC8744753 DOI: 10.3390/ijms23010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/21/2023] Open
Abstract
The two erythropoietin (EPO) receptor forms mediate different cellular responses to erythropoietin. While hematopoiesis is mediated via the homodimeric EPO receptor (EPOR), tissue protection is conferred via a heteromer composed of EPOR and CD131. In the skeletal system, EPO stimulates osteoclast precursors and induces bone loss. However, the underlying molecular mechanisms are still elusive. Here, we evaluated the role of the heteromeric complex in bone metabolism in vivo and in vitro by using Cibinetide (CIB), a non-erythropoietic EPO analogue that exclusively binds the heteromeric receptor. CIB is administered either alone or in combination with EPO. One month of CIB treatment significantly increased the cortical (~5.8%) and trabecular (~5.2%) bone mineral density in C57BL/6J WT female mice. Similarly, administration of CIB for five consecutive days to female mice that concurrently received EPO on days one and four, reduced the number of osteoclast progenitors, defined by flow cytometry as Lin−CD11b−Ly6Chi CD115+, by 42.8% compared to treatment with EPO alone. In addition, CIB alone or in combination with EPO inhibited osteoclastogenesis in vitro. Our findings introduce CIB either as a stand-alone treatment, or in combination with EPO, as an appealing candidate for the treatment of the bone loss that accompanies EPO treatment.
Collapse
|
45
|
Xu Y, Zhou C, Li J, Xu Y, He F. iTRAQ-based proteomic analysis reveals potential osteogenesis-promoted role of ATM in strontium-incorporated titanium implant. J Biomed Mater Res A 2021; 110:964-975. [PMID: 34897987 DOI: 10.1002/jbm.a.37345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/17/2021] [Accepted: 12/04/2021] [Indexed: 11/06/2022]
Abstract
The present study aims to reveal the osteogenic roles played by DNA damage response biomarkers through implementing isobaric tags for relative and absolute quantitation (iTRAQ) technique. First, sandblasted large-grit double acid-etched (SLA) titanium implant and strontium-incorporated (SLA-Sr) titanium implant were used for inserting in the tibiae of rats. iTRAQ technique was used to detect protein expression changes and identify differentially expressed proteins (DEPs). In total, 19,343 peptides and 4280 proteins were screened out. Among them, 91 and 138 DEPs were identified in the SLA-Sr group after implantation for 3 and 7 days, respectively. Ataxia-telangiectasia mutated (ATM) protein up-regulated on the 3rd day showed a trend of further up-regulation on the 7th day. Moreover, functional enrichment analyses were also conducted to explore the biological function of DEPs during the initial stage of osseointegration in vivo, which revealed that the biological functions of the DEPs on the 7th day were mainly related to "mismatch repair" and "mitotic G1 DNA damage checkpoint." Analysis of the Reactome signaling pathway showed that ATM was associated with TP53's regulation and activation. Finally, DNA damage repair related genes were selected for validation at mRNA and protein expression levels. Real-time reverse transcription-polymerase chain reaction and immunohistochemistry validation results demonstrated that mRNA expression level of ATM was higher in SLA-Sr group. In conclusion, SLA-Sr titanium implant could initiate DNA damage repair by activating expression levels of ATM. This study was striving to reveal new faces of better osseointegration and shedding light on the biological function and underlying mechanisms of this important procedure.
Collapse
Affiliation(s)
- Yuzi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Chuan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yangbo Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Abstract
This review aims to discuss the advantages and disadvantages of zirconia implants compared with titanium implants. Moreover, it intends to review the relevant available long-term literature of these two materials regarding osteointegration, soft-tissue, microbiota, and peri-implantitis, focusing on clinical results. Briefly, titanium implants are a reliable alternative for missing teeth; however, they are not incapable of failure. In an attempt to provide an alternative implant material, implants made from ceramic-derivate products were developed. Owing to its optimal osseointegration competence, biocompatibility, and esthetic proprieties, zirconium dioxide (ZrO2), also known as zirconia, has gained popularity among researchers and clinicians, being a metal-free alternative for titanium implants with its main use in the anterior esthetic zones. This type of implant may present similar osseointegration as those noted on titanium implants with a greater soft-tissue response. Furthermore, this material does not show corrosion as its titanium analog, and it is less susceptible to bacterial adhesion. Lastly, even presenting a similar inflammatory response to titanium, zirconia implants offer less biofilm formation, suggesting less susceptibility to peri-implantitis. However, it is a relatively new material that has been commercially available for a decade; consequently, the literature still lacks studies with long follow-up periods.
Collapse
|
47
|
Eger M, Liron T, Hiram-Bab S, Awida Z, Giladi E, Dangoor D, Fridkin M, Kohavi D, Gozes I, Gabet Y. Therapeutic Potential of Vasoactive Intestinal Peptide and its Derivative Stearyl-Norleucine-VIP in Inflammation-Induced Osteolysis. Front Pharmacol 2021; 12:638128. [PMID: 34025407 PMCID: PMC8131842 DOI: 10.3389/fphar.2021.638128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
The common use of dental and orthopedic implants calls for special attention to the immune response leading to peri-prosthetic bone loss and implant failure. In addition to the well-established microbial etiology for oral implant failure, wear debris and in particular titanium (Ti) particles (TiP) in the implant vicinity are an important trigger of inflammation and activation of bone resorption around oral and orthopedic implants, presenting an unmet medical need. Here, we employed bacterial-derived lipopolysaccharides (LPS) to model infection and TiP to model aseptic inflammation and osteolysis. We assessed inflammation in vitro by measuring IL1β, IL6 and TNFα mRNA expression in primary macrophages, osteoclastogenesis in RANKL-induced bone marrow derived pre-osteoclasts and osteolysis in vivo in a mouse calvarial model. We also assessed the trans-epithelial penetrability and safety of the tested compound in rats. Our results show that a lipophilic super-active derivative of vasoactive intestinal peptide (VIP), namely stearyl-norleucine-VIP (SNV) presented superior anti-inflammatory and anti-osteoclastogenic effects compared to VIP in vitro. In the bacterial infection model (LPS), SNV significantly reduced IL1β expression, while VIP increased IL6 expression. In the aseptic models of osteolysis, SNV showed greater suppression of in vitro osteoclastogenesis than VIP, and significantly inhibited inflammation-induced osteolysis in vivo. We also observed that expression levels of the VIP receptor VPAC-2, but not that of VPAC-1, dramatically decreased during osteoclast differentiation. Importantly, SNV previously shown to have an increased stability compared to VIP, showed here significant trans-epithelial penetration and a clean toxicological profile, presenting a novel drug candidate that could be applied topically to counter both aseptic and infection-related bone destruction.
Collapse
Affiliation(s)
- Michal Eger
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Liron
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zamzam Awida
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eliezer Giladi
- Department of Human Molecular Genetics and Biochemistry, Elton Laboratory of Molecular Neuroendocrinology, Sackler Faculty of Medicine, Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - David Dangoor
- Department of Human Molecular Genetics and Biochemistry, Elton Laboratory of Molecular Neuroendocrinology, Sackler Faculty of Medicine, Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Mati Fridkin
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - David Kohavi
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Illana Gozes
- Department of Human Molecular Genetics and Biochemistry, Elton Laboratory of Molecular Neuroendocrinology, Sackler Faculty of Medicine, Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
48
|
De Waal YCM, Vangsted TE, Van Winkelhoff AJ. Systemic antibiotic therapy as an adjunct to non-surgical peri-implantitis treatment: A single-blind RCT. J Clin Periodontol 2021; 48:996-1006. [PMID: 33939193 PMCID: PMC8251966 DOI: 10.1111/jcpe.13464] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/27/2022]
Abstract
Aim The aim of this single‐blind RCT was to evaluate the adjunctive clinical and microbiological effect of systemic amoxicillin (AMX) plus metronidazole (MTZ) to non‐surgical treatment of peri‐implantitis. Material and methods Patients (N = 62) with peri‐implantitis were randomly assigned to receive full‐mouth mechanical debridement and decontamination and use of chlorhexidine (control group) or combined with antibiotic therapy of AMX/MTZ (test group). Primary outcome was change in bleeding score from baseline (T0) to 3‐month follow‐up (T3). Secondary parameters were plaque, suppuration, PPD, CAL, bone level, microbiology, adverse events and need for additional surgery. Data were analysed with linear multiple regression analysis. Results 57 patients with 122 implants completed 3‐month follow‐up. Both groups showed major clinical improvements at T3 in both peri‐implant and periodontal parameters. However, no significant differences were observed between both groups for any of the primary or secondary parameters. Conclusions Systemic antibiotic therapy of AMX/MTZ does not improve clinical and microbiological outcomes of non‐surgical peri‐implantitis treatment and should not be routinely recommended. Although complete disease resolution may be difficult to achieve, meticulously performed full‐mouth non‐surgical treatment, achieving a high level of daily oral hygiene and healthy periodontal tissues, can significantly improve the starting position of the subsequent (surgical) peri‐implantitis treatment phase.
Collapse
Affiliation(s)
- Yvonne C M De Waal
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tine E Vangsted
- Parodontologische Kliniek Den Haag, The Hague, The Netherlands
| | - Arie Jan Van Winkelhoff
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
49
|
Zhou Z, Shi Q, Wang J, Chen X, Hao Y, Zhang Y, Wang X. The unfavorable role of titanium particles released from dental implants. Nanotheranostics 2021; 5:321-332. [PMID: 33732603 PMCID: PMC7961127 DOI: 10.7150/ntno.56401] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Titanium is considered to be a metal material with the best biological safety. Studies have proved that the titanium implanted in the bone continuously releases titanium particles (Ti particles), significantly increasing the total titanium content in human body. Generally, Ti particles are released slowly without causing a systemic immune response. However, the continuous increased local concentration may result in damage to the intraepithelial homeostasis, aggravation of inflammatory reaction in the surrounding tissues, bone resorption and implant detachment. They also migrate with blood flow and aggregate in the distal organ. The release of Ti particles is affected by the score of the implant surface structure, microenvironment wear and corrosion, medical operation wear, and so on, but the specific mechanism is not clear. Thus, it difficult to prevent the release completely. This paper reviews the causes of the Ti particles formation, the damage to the surrounding tissue, and its mechanism, in particular, methods for reducing the release and toxicity of the Ti particles.
Collapse
Affiliation(s)
- Zilan Zhou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Quan Shi
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
50
|
Romanos GE, Fischer GA, Delgado-Ruiz R. Titanium Wear of Dental Implants from Placement, under Loading and Maintenance Protocols. Int J Mol Sci 2021; 22:1067. [PMID: 33494539 PMCID: PMC7865642 DOI: 10.3390/ijms22031067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
The objective of this review was to analyze the process of wear of implants leading to the shedding of titanium particles into the peri-implant hard and soft tissues. Titanium is considered highly biocompatible with low corrosion and toxicity, but recent studies indicate that this understanding may be misleading as the properties of the material change drastically when titanium nanoparticles (NPs) are shed from implant surfaces. These NPs are immunogenic and are associated with a macrophage-mediated inflammatory response by the host. The literature discussed in this review indicates that titanium NPs may be shed from implant surfaces at the time of implant placement, under loading conditions, and during implant maintenance procedures. We also discuss the significance of the micro-gap at the implant-abutment interface and the effect of size of the titanium particles on their toxicology. These findings are significant as the titanium particles can have adverse effects on local soft and hard tissues surrounding implants, implant health and prognosis, and even the health of systemic tissues and organs.
Collapse
Affiliation(s)
- Georgios E. Romanos
- Department of Periodontology, Laboratory for Periodontal-, Implant-, Phototherapy (LA-PIP), School of Dental Medicine, Stony Brook University, 106 Rockland Hall, Stony Brook, NY 11794-8700, USA;
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, Johann Wolfgang Goethe University, 60590 Frankfurt, Germany
| | - Gerard A. Fischer
- Department of Periodontology, Laboratory for Periodontal-, Implant-, Phototherapy (LA-PIP), School of Dental Medicine, Stony Brook University, 106 Rockland Hall, Stony Brook, NY 11794-8700, USA;
| | - Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794-8700, USA;
| |
Collapse
|