1
|
Zhang C, Singla RK, Tang M, Shen B. Natural products act as game-changer potentially in treatment and management of sepsis-mediated inflammation: A clinical perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155710. [PMID: 38759311 DOI: 10.1016/j.phymed.2024.155710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Sepsis, a life-threatening condition resulting from uncontrolled host responses to infection, poses a global health challenge with limited therapeutic options. Due to high heterogeneity, sepsis lacks specific therapeutic drugs. Additionally, there remains a significant gap in the clinical management of sepsis regarding personalized and precise medicine. PURPOSE This review critically examines the scientific landscape surrounding natural products in sepsis and sepsis-mediated inflammation, highlighting their clinical potential. METHODS Following the PRISMA guidelines, we retrieved articles from PubMed to explore potential natural products with therapeutic effects in sepsis-mediated inflammation. RESULTS 434 relevant in vitro and in vivo studies were identified and screened. Ultimately, 55 studies were obtained as the supporting resources for the present review. We divided the 55 natural products into three categories: those influencing the synthesis of inflammatory factors, those affecting surface receptors and modulatory factors, and those influencing signaling pathways and the inflammatory cascade. CONCLUSION Natural products' potential as game-changers in sepsis-mediated inflammation management lies in their ability to modulate hallmarks in sepsis, including inflammation, immunity, and coagulopathy, which provides new therapeutic avenues that are readily accessible and capable of undergoing rapid clinical validation and deployment, offering a gift from nature to humanity. Innovative techniques like bioinformatics, metabolomics, and systems biology offer promising solutions to overcome these obstacles and facilitate the development of natural product-based therapeutics, holding promise for personalized and precise sepsis management and improving patient outcomes. However, standardization, bioavailability, and safety challenges arise during experimental validation and clinical trials of natural products.
Collapse
Affiliation(s)
- Chi Zhang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Min Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; West China School of Nursing, Sichuan University, Chengdu, PR China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China.
| |
Collapse
|
2
|
LI Z, WANG X, Luis U, Ayman Y, BAI Y, XU X, LIU Q. Complementary and alternative medicine on cognitive defects and neuroinflammation after sepsis. J TRADIT CHIN MED 2024; 44:408-416. [PMID: 38504548 PMCID: PMC10927414 DOI: 10.19852/j.cnki.jtcm.20240203.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a common manifestation of sepsis, ranging from mild confusion and delirium to severe cognitive impairment and deep coma. SAE is associated with higher mortality and long-term outcomes, particularly substantial declines in cognitive function. The mechanisms of SAE probably include neuroinflammation that is mediated by systemic inflammation and ischemic lesions in the brain, a disrupted blood-brain barrier, oxidative stress, neurotransmitter dysfunction, and severe microglial activation. Increasing evidence suggests that complementary and alternative medicine, especially Traditional Chinese Medicine (TCM), is favorable in alleviating cognitive decline after sepsis. Here, we summarized the studies of traditional herbal remedies, TCM formulas and acupuncture therapy in animal models of neurological dysfunctions after sepsis in recent decades and reviewed their potential mechanisms.
Collapse
Affiliation(s)
- Zhenxuan LI
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xuerui WANG
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ulloa Luis
- 5 Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Youssef Ayman
- 5 Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yunjing BAI
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaolong XU
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qingquan LIU
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Malik H, Usman M, Arif M, Ahmed Z, Ali G, Rauf K, Sewell RDE. Diosgenin normalization of disrupted behavioral and central neurochemical activity after single prolonged stress. Front Pharmacol 2023; 14:1232088. [PMID: 37663254 PMCID: PMC10468593 DOI: 10.3389/fphar.2023.1232088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Post-traumatic stress disorder (PTSD) is a chronic mental illness triggered by traumatic experiences such as wars, natural disasters, or catastrophes, and it is characterized by anxiety, depression and cognitive impairment. Diosgenin is a steroidal sapogenin with known neuroprotective and antioxidant properties. This study aimed to assess the pharmacological potential of diosgenin in a single prolonged stress (SPS) model of PTSD, plus other behavioral models along with any consequent alterations in brain neurochemistry in male mice. Methodology: SPS was induced by restraining animals for 2 h, followed by 20 min of forced swim, recuperation for 15 min, and finally, exposure to ether to induce anesthesia. The SPS-exposed animals were treated with diosgenin (20, 40, and 60 mg/kg) and compared with the positive controls, fluoxetine or donepezil, then they were observed for any changes in anxiety/depression-like behaviors, and cognitive impairment. After behavioral screening, postmortem serotonin, noradrenaline, dopamine, vitamin C, adenosine and its metabolites inosine and hypoxanthine were quantified in the frontal cortex, hippocampus, and striatum by high-performance liquid chromatography. Additionally, animal serum was screened for changes in corticosterone levels. Results: The results showed that diosgenin reversed anxiety- and depression-like behaviors, and ameliorated cognitive impairment in a dose-dependent manner. Additionally, diosgenin restored monoamine and vitamin C levels dose-dependently and modulated adenosine and its metabolites in the brain regions. Diosgenin also reinstated otherwise increased serum corticosterone levels in SPS mice. Conclusion: The findings suggest that diosgenin may be a potential candidate for improving symptoms of PTSD.
Collapse
Affiliation(s)
- Hurmat Malik
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Usman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Sun N, Cui WQ, Min XM, Zhang GM, Liu JZ, Wu HY. A new perspective on hippocampal synaptic plasticity and post-stroke depression. Eur J Neurosci 2023; 58:2961-2984. [PMID: 37518943 DOI: 10.1111/ejn.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
Post-stroke depression, a common complication after stroke, severely affects the recovery and quality of life of patients with stroke. Owing to its complex mechanisms, post-stroke depression treatment remains highly challenging. Hippocampal synaptic plasticity is one of the key factors leading to post-stroke depression; however, the precise molecular mechanisms remain unclear. Numerous studies have found that neurotrophic factors, protein kinases and neurotransmitters influence depressive behaviour by modulating hippocampal synaptic plasticity. This review further elaborates on the role of hippocampal synaptic plasticity in post-stroke depression by summarizing recent research and analysing possible molecular mechanisms. Evidence for the correlation between hippocampal mechanisms and post-stroke depression helps to better understand the pathological process of post-stroke depression and improve its treatment.
Collapse
Affiliation(s)
- Ning Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Man Min
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia-Zheng Liu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Ji MH, Gao YZ, Shi CN, Wu XM, Yang JJ. Acute and long-term cognitive impairment following sepsis: mechanism and prevention. Expert Rev Neurother 2023; 23:931-943. [PMID: 37615511 DOI: 10.1080/14737175.2023.2250917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Sepsis is a severe host response to infection, which induces both acute and long-term cognitive impairment. Despite its high incidence following sepsis, the underlying mechanisms remain elusive and effective treatments are not available clinically. AREA COVERED This review focuses on elucidating the pathological mechanisms underlying cognitive impairment following sepsis. Specifically, the authors discuss the role of systemic inflammation response, blood-brain barrier disruption, neuroinflammation, mitochondrial dysfunction, neuronal dysfunction, and Aβ accumulation and tau phosphorylation in cognitive impairment after sepsis. Additionally, they review current strategies to ameliorate cognitive impairment. EXPERT OPINION Potential interventions to reduce cognitive impairment after sepsis include earlier diagnosis and effective infection control, hemodynamic homeostasis, and adequate brain perfusion. Furthermore, interventions to reduce inflammatory response, reactive oxygen species, blood-brain barrier disruption, mitochondrial dysfunction, neuronal injury or death could be beneficial. Implementing strategies to minimize delirium, sleep disturbance, stress factors, and immobility are also recommended. Furthermore, avoiding neurotoxins and implementing early rehabilitation may also be important for preventing cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Na Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Miao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Ding Q, Zhang R, Sheng G, Wang T, Jing S, Ma T, Wang S, Zhao H, Wu H, Li W. Dioscin alleviates the progression of osteoarthritis: an in vitro and in vivo study. J Inflamm (Lond) 2023; 20:14. [PMID: 37055831 PMCID: PMC10100120 DOI: 10.1186/s12950-023-00339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease and is the main cause of physical disability in the elderly. Currently, there is no adequate therapeutic strategy to reverse the progression of OA. Many natural plant extracts have received attention in the treatment of OA due to their potential anti-inflammatory properties, and reduced incidence of adverse events. Dioscin (Dio), a natural steroid saponin, has been demonstrated to inhibit the release of inflammatory cytokines in mouse and rat models of various diseases, and has a protective effect in chronic inflammatory diseases. However, whether Dio alleviates OA progression remains to be explored. In this research, our purposes were to investigate the therapeutic potential of Dio in OA. The results demonstrated that Dio exerted anti-inflammatory effects by repressing NO, PGE2, iNOS and COX-2. Moreover, the application of Dio could repress IL-1β-induced overexpression of matrix metalloproteinases (MMPs, including MMP1, MMP3, and MMP13) and ADAMTS-5, and improve the synthesis of collagen II and aggrecan, which contribute to the maintenance of chondrocyte matrix homeostasis. The underlying mechanism involved the inhibition of the MAPK and NF-κB signaling pathways by Dio. Furthermore, the treatment of Dio significantly improved the pain behaviors of rat OA models. The in vivo study revealed that Dio could ameliorate cartilage erosion and degradation. These results collectively indicate that Dio can be used as a promising and effective agent for the therapy of OA.
Collapse
Affiliation(s)
- Qing Ding
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhuo Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoze Jing
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenkai Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Guan L, Mao Z, Yang S, Wu G, Chen Y, Yin L, Qi Y, Han L, Xu L. Dioscin alleviates Alzheimer's disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed Pharmacother 2022; 152:113248. [PMID: 35691153 DOI: 10.1016/j.biopha.2022.113248] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with amyloid beta (Aβ) deposition and intracellular neurofibrillary tangles (NFTs) as its characteristic pathological changes. Ameliorating oxidative stress and inflammation has become a new trend in the prevention and treatment of AD. Dioscin, a natural steroidal saponin which exists in Dioscoreae nipponicae rhizomes, displays various pharmacological activities, but its role in Alzheimer's disease (AD) is still unknown. In the present work, effect of dioscin on AD was evaluated in injured SH-SY5Y cells induced by H2O2 and C57BL/6 mice with AD challenged with AlCl₃ combined with D-galactose. Results showed that dioscin obviously increased cell viability and decreased reactive oxygen species (ROS) level in injured SH-SY5Y cells. In vivo, dioscin obviously improved the spatial learning and memory abilities as well as gait and interlimb coordination disorders of mice with AD. Moreover, dioscin distinctly restored the levels of malondialdehyde (MDA), superoxide dismutase (SOD), amyloid beta 42 (Aβ42), acetylcholine (ACh) and acetylcholinesterase (AChE) of mice, and reversed the histopathological changes of brain tissue. Mechanism studies revealed that dioscin markedly down-regulated the expression levels of RAGE and NOX4. Subsequently, dioscin markedly up-regulated the expression levels of Nrf2 and HO-1 related to oxidative stress, and down-regulated the levels of p-NF-κB(p-p65)/NF-κB(p65), AP-1 and inflammatory factors involved in inflammatory pathway. RAGE siRNAs transfection further clarified that the pharmacological activity of dioscin in AD was achieved by regulating RAGE/NOX4 pathway. In conclusion, dioscin showed excellent anti-AD effect by adjusting RAGE/NOX4-mediated oxidative stress and inflammation, which provided the basis for the further research and development against AD.
Collapse
Affiliation(s)
- Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhang Mao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sen Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Guanlin Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yurong Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lan Han
- School of pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
8
|
Azam S, Haque ME, Cho DY, Kim JS, Jakaria M, Kim IS, Choi DK. Dioscin-Mediated Autophagy Alleviates MPP +-Induced Neuronal Degeneration: An In Vitro Parkinson's Disease Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092827. [PMID: 35566180 PMCID: PMC9104838 DOI: 10.3390/molecules27092827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022]
Abstract
Autophagy is a cellular homeostatic process by which cells degrade and recycle their malfunctioned contents, and impairment in this process could lead to Parkinson’s disease (PD) pathogenesis. Dioscin, a steroidal saponin, has induced autophagy in several cell lines and animal models. The role of dioscin-mediated autophagy in PD remains to be investigated. Therefore, this study aims to investigate the hypothesis that dioscin-regulated autophagy and autophagy-related (ATG) proteins could protect neuronal cells in PD via reducing apoptosis and enhancing neurogenesis. In this study, the 1-methyl-4-phenylpyridinium ion (MPP+) was used to induce neurotoxicity and impair autophagic flux in a human neuroblastoma cell line (SH-SY5Y). The result showed that dioscin pre-treatment counters MPP+-mediated autophagic flux impairment and alleviates MPP+-induced apoptosis by downregulating activated caspase-3 and BCL2 associated X, apoptosis regulator (Bax) expression while increasing B-cell lymphoma 2 (Bcl-2) expression. In addition, dioscin pre-treatment was found to increase neurotrophic factors and tyrosine hydroxylase expression, suggesting that dioscin could ameliorate MPP+-induced degeneration in dopaminergic neurons and benefit the PD model. To conclude, we showed dioscin’s neuroprotective activity in neuronal SH-SY5Y cells might be partly related to its autophagy induction and suppression of the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Shofiul Azam
- BK21 Program, Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (D.-Y.C.); (J.-S.K.)
| | - Md. Ezazul Haque
- BK21 Program, Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (D.-Y.C.); (J.-S.K.)
| | - Duk-Yeon Cho
- BK21 Program, Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (D.-Y.C.); (J.-S.K.)
| | - Joon-Soo Kim
- BK21 Program, Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (D.-Y.C.); (J.-S.K.)
| | - Md. Jakaria
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea;
| | - Dong-Kug Choi
- BK21 Program, Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (D.-Y.C.); (J.-S.K.)
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea;
- Correspondence: ; Tel.: +82-43-840-3610; Fax: +82-43-840-3872
| |
Collapse
|
9
|
He Y, Luo R, Xia M, Liu J, Yao Y, Min F, Jin R, Wang R, Peng X. Orally Administered Diosgenin Alleviates Colitis in Mice Induced by Dextran Sulfate Sodium through Gut Microbiota Modulation and Short-Chain Fatty Acid Generation. J Med Food 2022; 25:261-271. [PMID: 35320010 DOI: 10.1089/jmf.2021.k.0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diosgenin (DIO) is a kind of steroid sapogenin derived from natural plants. It exerts strong anti-infection, antiallergy, antiviral, and antishock pharmacological properties. In this article, the protective effects of DIO against dextran sulfate sodium (DSS)-induced colitis in mice were researched. Compared with the 2.5% DSS treatment group, 15 mg/kg body weight of diosgenin alleviated colitis disease, evidenced by the increased body weight, the decrease in the disease activity index, and the histological scores. Furthermore, 16S rRNA high-throughput sequencing results demonstrated that DIO improved the colon homeostasis through modulating the gut microbiota, including increases in the relative abundance of several probiotic bacteria, such as Prevotellaceae (from 1.4% to 5.8%), Lactobacillus (from 12.3% to 29.7%), Mucispirillum (from 0.07% to 0.49%), and decreases in the pathogenic bacteria, such as Streptococcus (from 1.6% to 0.6%) and Pseudomonadaceae (from 0.004% to 0%). In addition, the concentration of gut microbial metabolites, total short-chain fatty acids (SCFAs), acetic acid, and propionic acid were significantly increased after DIO supplementation. In conclusion, our findings suggested that DIO attenuates DSS-induced colitis in mice by means of modulating imbalanced gut microbiota and increases in SCFA generation.
Collapse
Affiliation(s)
- Yushu He
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Manying Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanpeng Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Fenyi Min
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruolin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Passos FRS, Araújo-Filho HG, Monteiro BS, Shanmugam S, Araújo AADS, Almeida JRGDS, Thangaraj P, Júnior LJQ, Quintans JDSS. Anti-inflammatory and modulatory effects of steroidal saponins and sapogenins on cytokines: A review of pre-clinical research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153842. [PMID: 34952766 DOI: 10.1016/j.phymed.2021.153842] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Saponins are glycosides which, after acid hydrolysis, liberate sugar(s) and an aglycone (sapogenin) which can be triterpenoid or steroidal in nature. Steroidal saponins and sapogenins have attracted significant attention as important natural anti-inflammatory compounds capable of acting on the activity of several inflammatory cytokines in various inflammatory models. PURPOSE The aim of this review is to collect preclinical in vivo studies on the anti-inflammatory activity of steroidal saponins through the modulation of inflammatory cytokines. STUDY DESIGN AND METHODS This review was carried out through a specialized search in three databases, that were accessed between September and October, 2021, and the publication period of the articles was not limited. Information about the name of the steroidal saponins, the animals used, the dose and route of administration, the model of pain or inflammation used, the tissue and experimental method used in the measurement of the cytokines, and the results observed on the levels of cytokines was retrieved. RESULTS Forty-five (45) articles met the inclusion criteria, involving the saponins cantalasaponin-1, α-chaconine, dioscin, DT-13, lycoperoside H, protodioscin, α-solanine, timosaponin AIII and BII, trillin, and the sapogenins diosgenin, hecogenin, and ruscogenin. The surveys were carried out in seven different countries and only articles between 2007 and 2021 were found. The studies included in the review showed that the saponins and sapogenins were anti-inflammatory, antinociceptive and antioxidant and they modulate inflammatory cytokines mainly through the Nf-κB, TLR4 and MAPKs pathways. CONCLUSION Steroidal saponins and sapogenins are promising compounds in handling of pain and inflammation for the development of natural product-derived drugs. However, it is necessary to increase the methodological quality of preclinical studies, mainly blinding and sample size calculation.
Collapse
Affiliation(s)
- Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Heitor Gomes Araújo-Filho
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | - Lucindo José Quintans Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Jullyana de Souza Siqueira Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil.
| |
Collapse
|
11
|
Bandopadhyay S, Anand U, Gadekar VS, Jha NK, Gupta PK, Behl T, Kumar M, Shekhawat MS, Dey A. Dioscin: A review on pharmacological properties and therapeutic values. Biofactors 2022; 48:22-55. [PMID: 34919768 DOI: 10.1002/biof.1815] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Dioscin has gained immense popularity as a natural, bioactive steroid saponin, which offers numerous medical benefits. The growing global incidence of disease-associated morbidity and mortality continues to compromise human health, facilitating an increasingly urgent need for nontoxic, noninvasive, and efficient treatment alternatives. Natural compounds can contribute vastly to this field. Over recent years, studies have demonstrated the remarkable protective actions of dioscin against a variety of human malignancies, metabolic disorders, organ injuries, and viral/fungal infections. The successful usage of this phytocompound has been widely seen in medical treatment procedures under traditional Chinese medicine, and it is becoming progressively prevalent worldwide. This review provides an insight into the wide spectrum of pharmacological activities of dioscin, as reported and compiled in recent literature. The various novel approaches and applications of dioscin also verify the advantages exhibited by plant extracts against commercially available drugs, highlighting the potential of phytochemical agents like dioscin to be further incorporated into clinical practice.
Collapse
Affiliation(s)
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vijaykumar Shivaji Gadekar
- Zoology Department, Sangola College (affiliated to Punyashlok Ahilyadevi Holkar Solapur University), Solapur, Maharashtra, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
12
|
HUANG N, YU D, WU J, DU X. Diosgenin: an important natural pharmaceutical active ingredient. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.94521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nannan HUANG
- Heilongjiang University of Chinese Medicine, China
| | - Dan YU
- Heilongjiang University of Chinese Medicine, China
| | - Junkai WU
- Heilongjiang University of Chinese Medicine, China
| | - Xiaowei DU
- Heilongjiang University of Chinese Medicine, China
| |
Collapse
|
13
|
Li XL, Ma RH, Zhang F, Ni ZJ, Thakur K, Wang S, Zhang JG, Wei ZJ. Evolutionary research trend of Polygonatum species: a comprehensive account of their transformation from traditional medicines to functional foods. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34669530 DOI: 10.1080/10408398.2021.1993783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
With the advances in Polygonatum research, there is a huge interest in harnessing the valuable functional ingredients of this genus with the potential for functional foods. This review emphasizes the different aspects of Ploygonatum based research starting from its bioactive compounds, their structural characterization, various extraction methods, as well as biological activities. In view of its integral use as an essential medicinal plant, our review emphasizes on its promising food applications both as an ingredient and as a whole food, and its improved health benefits with potential for agricultural and environmental relevance are also discussed. As we collated the recent research information, we present the main challenges and limitations of the current research trend in this area which can upgrade the further expansion of Polygonatum-related research that will strengthen its economic and accessible nutritional value in the food and health industries. By highlighting the need for the unattended species, this review not only fills existing research gaps, but also encourages the researchers to find new avenues for the natural production of bio-based functional materials and the development of highly functional and health-promoting foods for disease prevention and treatment.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Zhi-Jing Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| |
Collapse
|
14
|
Chen Y, Wu J, Yu D, Du X. Advances in steroidal saponins biosynthesis. PLANTA 2021; 254:91. [PMID: 34617240 DOI: 10.1007/s00425-021-03732-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
This work reviews recent advances in the pathways and key enzymes of steroidal saponins biosynthesis and sets the foundation for the biotechnological production of these useful compounds through transformation of microorganisms. Steroidal saponins, due to their specific chemical structures and active effects, have long been important natural products and that are irreplaceable in hormone production and other pharmaceutical industries. This article comprehensively reviewed the previous and current research progress and summarized the biosynthesis pathways and key biosynthetic enzymes of steroidal saponins that have been discovered in plants and microoganisms. On the basis of the general biosynthetic pathway in plants, it was found that the starting components, intermediates and catalysing enzymes were diverse between plants and microorganisms; however, the functions of their related enzymes tended to be similar. The biosynthesis pathways of steroidal saponins in microorganisms and marine organisms have not been revealed as clearly as those in plants and need further investigation. The elucidation of biosynthetic pathways and key enzymes is essential for understanding the synthetic mechanisms of these compounds and provides researchers with important information to further develop and implement the massive production of steroidal saponins by biotechnological approaches and methodologies.
Collapse
Affiliation(s)
- Yiyang Chen
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Junkai Wu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Dan Yu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Xiaowei Du
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China.
| |
Collapse
|
15
|
Lin J, Sun-Waterhouse D, Cui C. The therapeutic potential of diet on immune-related diseases: based on the regulation on tryptophan metabolism. Crit Rev Food Sci Nutr 2021; 62:8793-8811. [PMID: 34085885 DOI: 10.1080/10408398.2021.1934813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tryptophan (TRP), as an essential amino acid, plays crucial roles in maintaining immune homeostasis due to its complex metabolism pathway, including the microbial metabolism, 5-hydroxytryptamine and kynurenine pathways (KP). Metabolites from these pathways can act antioxidant and endogenous ligand of aryl hydrocarbon receptor (including microbiota metabolites: indole, indole aldehyde, indole acetic acid, indole acrylic acid, indole lactate, indole pyruvate acid, indole propionic acid, skatole, tryptamine, and indoxyl sulfate; and KP metabolites: kynurenine, kynurenic acid, 3-hydroxyanthranilic acid, xanthurenic acid, and cinnabarinic acid) for regulating immune response. In immune-related diseases, the production of pro-inflammatory cytokine activates indoleamine-2,3-dioxygenase, a rate-limiting enzyme of KP, leading to abnormal TRP metabolism in vivo. Many recent studies found that TRP metabolism could be regulated by diet, and the diet regulation on TRP metabolism could therapy related diseases. Accordingly, this review provides a critical overview of the relationships among diet, TRP metabolism and immunity with the aim to seek a treatment opportunity for immune-related diseases.
Collapse
Affiliation(s)
- Junjie Lin
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Chun Cui
- College of Food Science and Technology, South China University of Technology, Guangzhou, China.,Guangdong Wei-Wei Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
16
|
Lee W, Lee CH, Lee J, Jeong Y, Park JH, Nam IJ, Lee DS, Lee HM, Lee J, Yun N, Song J, Choi S, Kim S. Botanical formulation, TADIOS, alleviates lipopolysaccharide (LPS)-Induced acute lung injury in mice via modulation of the Nrf2-HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113795. [PMID: 33421604 PMCID: PMC7832766 DOI: 10.1016/j.jep.2021.113795] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE TADIOS is an herbal formulation prepared from a mixture of Taraxacum officinale (L.) Weber ex F.H.Wigg, Dioscorea batatas Decaisne and Schizonepeta tenuifolia (Benth.) Briquet. These plants have traditionally been used in Asia to treat a variety of respiratory diseases. A bulk of literature on traditional Korean medicine describe their activities and functions for respiratory problems. Therefore, we hypothesized that the combination of these plants might be effective in alleviating respiratory symptoms. AIM OF THE STUDY In this study, we investigated whether TADIOS ameliorates LPS-induced acute lung injury via regulation of the Nrf2-HO-1 signaling pathway. MATERIALS AND METHODS The LPS-induced acute lung injury mouse model was used to determine the anti-inflammatory and anti-oxidative stress effects of TADIOS. The amount of marker compounds contained in TADIOS was quantified using high-performance liquid chromatography (HPLC) analysis. The protein level of pro-inflammatory cytokines in culture supernatant was measured by ELISA. Changes in the RNA level of pro-inflammatory cytokines in mice lungs and RAW264.7 cells were measured by quantitative RT-PCR. The relative amounts of reactive oxygen species (ROS) were measured by DCF-DA assay. Western blot analysis was used to evaluate expression of cellular proteins. Effects of TADIOS on antioxidant responsive elements (AREs) were determined by luciferase assay. The severity of acute lung injury was evaluated by Hematoxylin & Eosin (H&E) staining. To test the effects of TADIOS on LPS-induced oxidative stress, myeloperoxidase (MPO) activity and the total antioxidant capacity were measured. RESULTS TADIOS was prepared by extraction of a blend of these three plants by ethanol, and quality control was performed through quantification of marker compounds by HPLC and measurement of bioactivities using cell-based bioassays. In the murine macrophage cell line RAW264.7, TADIOS effectively suppressed the production of pro-inflammatory cytokines such as IL-6 and IL-1β, and also ROS induced by LPS. When RAW264.7 cells were transfected with a luciferase reporter plasmid containing nucleotide sequences for AREs, TADIOS treatment increased the level of relative luciferase units in a dose-dependent manner. In the LPS-induced acute lung injury mouse model, orally administered TADIOS alleviated lung damage and neutrophil infiltration induced by LPS. Consistent with the in vitro data, treatment with TADIOS inhibited the LPS-mediated expression of pro-inflammatory cytokines and oxidative stress, and activated the Nrf2-HO-1 axis. CONCLUSION Our data suggest the potential for TADIOS to be developed as a safe and effective therapeutics for the treatment of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Wonwoo Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Chang Hyung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jungkyu Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Yoonseon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jong-Hyung Park
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - In-Jeong Nam
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Doo Suk Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Hyun Myung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jaehyun Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Nayoung Yun
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jisun Song
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Sooyeon Choi
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Sunyoung Kim
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| |
Collapse
|
17
|
Bluemel P, Wickel J, Grünewald B, Ceanga M, Keiner S, Witte OW, Redecker C, Geis C, Kunze A. Sepsis promotes gliogenesis and depletes the pool of radial glia like stem cells in the hippocampus. Exp Neurol 2020; 338:113591. [PMID: 33387461 DOI: 10.1016/j.expneurol.2020.113591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/24/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022]
Abstract
Sepsis associated encephalopathy (SAE) is a major complication of patients surviving sepsis with a prevalence up to 70%. Although the initial pathophysiological events of SAE are considered to arise during the acute phase of sepsis, there is increasing evidence that SAE leads to persistent brain dysfunction with severe cognitive decline in later life. Previous studies suggest that the hippocampal formation is particularly involved leading to atrophy in later stages. Thereby, the underlying cellular mechanisms are only poorly understood. Here, we hypothesized that endogenous neural stems cells and adult neurogenesis in the hippocampus are impaired following sepsis and that these changes may contribute to persistent cognitive dysfunction when the animals have physically fully recovered. We used the murine sepsis model of peritoneal contamination and infection (PCI) and combined different labeling methods of precursor cells with confocal microscopy studies to assess the neurogenic niche in the dentate gyrus at day 42 postsepsis. We found that following sepsis i) gliogenesis is increased, ii) the absolute number of radial glia-like cells (type 1 cells), which are considered the putative stem cells, is significantly reduced, iii) the generation of new neurons is not significantly altered, while iv) the synaptic spine maturation of new neurons is impaired with a shift to expression of more immature and less mature spines. In conclusion, sepsis mainly leads to depletion of the neural stem cell pool and enhanced gliogenesis in the dentate gyrus which points towards an accelerated aging of the hippocampus due to septic insult.
Collapse
Affiliation(s)
- Priscilla Bluemel
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany
| | - Jonathan Wickel
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany; Section of Translational Neuroimmunology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Benedikt Grünewald
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany; Section of Translational Neuroimmunology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Mihai Ceanga
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany; Section of Translational Neuroimmunology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany
| | - Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany
| | - Christoph Redecker
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany; Department of Neurology, Lippe General Hospital, Rintelner Str. 85, D-32657 Lemgo, Germany
| | - Christian Geis
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany; Section of Translational Neuroimmunology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany..
| | - Albrecht Kunze
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinkum 1, D-07747 Jena, Germany.
| |
Collapse
|
18
|
Yongjun C, Nan Q, Yumeng S, Xiaowen J, Weibo W. Dioscin alleviates hashimoto's thyroiditis by regulating the SUMOylation of IRF4 to promote CD4 +CD25 +Foxp3 + treg cell differentiation. Autoimmunity 2020; 54:51-59. [PMID: 33274645 DOI: 10.1080/08916934.2020.1855428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Dioscin has been used as a treatment for Hashimoto's thyroiditis (HT) in China. However, the molecular mechanisms governing the modes of action of dioscin have not been elucidated. In this study, flow cytometry and Western blotting were used to identify the proportions of CD4+CD25+ regulatory T (Treg) cells and the expression of forkhead box P3 (Foxp3) and SUMO-specific protease 1 (SENP1) in HT patients' peripheral blood mononuclear cells (PBMCs). A pTg-induced rat model of HT was established by injection of 100 μg pTg. Then, the model rats were randomly divided into three groups (n = 5): control (NC), model (HT) and dioscin treatment. After oral administration of dioscin each day for two weeks, CD4+CD25+Foxp3+ Treg cells were analysed by flow cytometry, and the protein expression levels of SENP1, Foxp3, SUMO-1 and SUMO-2/3 were measured by Western blotting. Co-immunoprecipitation (Co-IP) was used to identify the SUMOylation of interferon regulatory factor 4 (IRF4). The results showed that the proportions of CD4+CD25+ Treg cells and the expression of Foxp3 were significantly decreased in HT patients, but the expression of SENP1 was enhanced compared to healthy controls (HCs). However, compared to the pTg-induced HT rat group, the expression of Foxp3, SUMO-1, and SUMO-2/3 and the proportions of CD4+CD25+Foxp3+ Treg cells were increased, whereas the expression of SENP1 was decreased, in the dioscin-treated group. Furthermore, the SUMOylation of IRF4 was increased after SENP1 was knocked down. The results of our study indicate that dioscin can promote the differentiation of the CD4+CD25+Foxp3+ Treg cells and subsequently upregulate the SUMOylation of IRF4 by downregulating SENP1 expression.
Collapse
Affiliation(s)
- Cao Yongjun
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Qiao Nan
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Sun Yumeng
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Jin Xiaowen
- Department of Diabetes and Endocrinology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong, China
| | - Wen Weibo
- The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
19
|
Hu W, Xie G, Zhou T, Tu J, Zhang J, Lin Z, Zhang H, Gao L. Intranasal administration of white tea alleviates the olfactory function deficit induced by chronic unpredictable mild stress. PHARMACEUTICAL BIOLOGY 2020; 58:1221-1228. [PMID: 33321058 PMCID: PMC7875552 DOI: 10.1080/13880209.2020.1855213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT White tea [Camellia sinensis (L) O.Ktze. (Theaceae)] is popular in Asia, but its benefits on olfactory injury are unknown. OBJECTIVE The present study explores the effects of white tea on the olfactory injury caused by chronic unpredictable mild stress (CUMS). MATERIALS AND METHODS C57BL/6J mice (WT) were exposed to CUMS. CUMS mice (CU) were intranasally treated with white tea extract [low tea (LT), 20 mg/kg; high tea (HT), 40 mg/kg] and fluoxetine (CF, 20 mg/kg) for 7 days. Several behavioural tests were conducted to assess depression and olfactory function. The transmission electron microscope (TEM) and semi-quantitative reverse transcription PCR were performed separately to observe the changes of related structures and genes transcription level. RESULTS The depressive behaviours of the LT and HT mice were reversed. The latency time of the buried food pellet test decreased from 280 s (CU) to 130 s (HT), while the olfactory sensitivity and olfactory avoidance test showed that the olfactory behaviours disorder of LT and HT mice were alleviated. The white tea increased the A490 nm values of the cortisol treated cells from 0.15 to 1.4. Reduced mitochondrial and synaptic damage in the olfactory bulb (OB), enhanced expression of the brain-derived neurotrophic factor (BDNF) and olfactory marker protein (OMP) were observed in the LT and HT mice. CONCLUSIONS AND DISCUSSION White tea has the potential in curing the olfactory deficiency related to chronic stress. It lays the foundation for the development of new and reliable drug to improve olfactory.
Collapse
Affiliation(s)
- Wenhao Hu
- School of Life Science, East China Normal University, Shanghai, China
| | - Guixiang Xie
- School of Life Science, East China Normal University, Shanghai, China
| | - Tian Zhou
- School of Life Science, East China Normal University, Shanghai, China
| | - Jialu Tu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiayi Zhang
- School of Life Science, East China Normal University, Shanghai, China
| | - Zejie Lin
- School of Life Science, East China Normal University, Shanghai, China
| | - Haiyang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Liangcai Gao
- School of Life Science, East China Normal University, Shanghai, China
- CONTACT Liangcai Gao
| |
Collapse
|
20
|
Isoorientin Inhibits Inflammation in Macrophages and Endotoxemia Mice by Regulating Glycogen Synthase Kinase 3 β. Mediators Inflamm 2020; 2020:8704146. [PMID: 33192176 PMCID: PMC7641714 DOI: 10.1155/2020/8704146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Isoorientin has anti-inflammatory effects; however, the mechanism remains unclear. We previously found isoorientin is an inhibitor of glycogen synthase kinase 3β (GSK3β) in vitro. Overactivation of GSK3β is associated with inflammatory responses. GSK3β is inactivated by phosphorylation at Ser9 (i.e., p-GSK3β). Lithium chloride (LiCl) inhibits GSK3β and also increases p-GSK3β (Ser9). The present study investigated the anti-inflammatory effect and mechanism of isoorientin via GSK3β regulation in lipopolysaccharide- (LPS-) induced RAW264.7 murine macrophage-like cells and endotoxemia mice. LiCl was used as a control. While AKT phosphorylates GSK3β, MK-2206, a selective AKT inhibitor, was used to activate GSK3β via AKT inhibition (i.e., not phosphorylate GSK3β at Ser9). The proinflammatory cytokines TNF-α, IL-6, and IL-1β were detected by ELISA or quantitative real-time PCR, while COX-2 by Western blotting. The p-GSK3β and GSK3β downstream signal molecules, including NF-κB, ERK, Nrf2, and HO-1, as well as the tight junction proteins ZO-1 and occludin were measured by Western blotting. The results showed that isoorientin decreased the production of TNF-α, IL-6, and IL-1β and increased the expression of p-GSK3β in vitro and in vivo, similar to LiCl. Coadministration of isoorientin and LiCl showed antagonistic effects. Isoorientin decreased the expression of COX-2, inhibited the activation of ERK and NF-κB, and increased the activation of Nrf2/HO-1 in LPS-induced RAW264.7 cells. Isoorientin increased the expressions of occludin and ZO-1 in the brain of endotoxemia mice. In summary, isoorientin can inhibit GSK3β by increasing p-GSK3β and regulate the downstream signal molecules to inhibit inflammation and protect the integrity of the blood-brain barrier and the homeostasis in the brain.
Collapse
|
21
|
Li JM, Zhao Y, Sun Y, Kong LD. Potential effect of herbal antidepressants on cognitive deficit: Pharmacological activity and possible molecular mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112830. [PMID: 32259666 DOI: 10.1016/j.jep.2020.112830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive symptom is a "core" symptom of major depressive disorder (MDD) patients with clear deficit in memory, social and occupational function, and may persist during the remitting phase. Therefore, the remission of cognitive symptom has been considered as one of the main objectives in the treatment of MDD. Herbal antidepressants have been used to treat MDD, and there has been great advances in the understanding of the ability of these herbs to improve cognitive deficit linked to brain injury and various diseases including depression, Alzheimer disease, diabetes and age-related disorders. This systematic review summarizes the evidence from preclinical studies and clinical trials of herbal antidepressants with positive effects on cognitive deficit. The potential mechanisms by which herbal antidepressants prevent cognitive deficit are also reviewed. This review will facilitate further research and applications. MATERIALS AND METHODS We conducted an open-ended, English restricted search of MEDLINE (PubMed), Web of Science and Scopus for all available articles published or online before 31 December 2019, using terms pertaining to medical herb/phytomedicine/phytochemical/Chinese medicine and depression/major depressive disorder/antidepressant and/or cognitive impairment/cognitive deficit/cognitive dysfunction. RESULTS 7 prescriptions, more than 30 individual herbs and 50 phytochemicals from China, Japan, Korea and India with positive effects on the depressive state and cognitive deficit are reviewed herein. The evidence from preclinical studies and clinical trials proves that these herbal antidepressants exhibit positive effects on one or more aspects of cognitive defect including spatial, episodic, aversive, and short- and long-term memory. The action mode of the improvement of cognitive deficit by these herbal antidepressants is mediated mainly through two pathways. One pathway is to promote hippocampal neurogenesis through activating brain derived neurotrophic factor-tropomyosin-related kinase B signaling. The other pathway is to prevent neuronal apoptosis through the inhibition of neuro-inflammation and neuro-oxidation. CONCLUSION These herbal antidepressants, having potential therapy for cognitive deficit, may prevent pathological processes of neurodegenerative diseases. Furthermore, these herbal medicines should provide a treasure trove, which will accelerate the development of new antidepressants that can effectively improve cognitive symptom in MDD. Studies on their molecular mechanisms may provide more potential targets and therapeutic approaches for new drug discovery.
Collapse
Affiliation(s)
- Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
22
|
Choi JG, Khan Z, Choi SZ, Kim SY, Oh MS. DA-9801, a standardized Dioscorea extract, improves memory function via the activation of nerve growth factor-mediated signaling. Nutr Neurosci 2020; 25:219-230. [DOI: 10.1080/1028415x.2020.1743916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jin Gyu Choi
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East–West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Zahra Khan
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Republic of Korea
| | | | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East–West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| |
Collapse
|
23
|
Cai B, Zhang Y, Wang Z, Xu D, Jia Y, Guan Y, Liao A, Liu G, Chun C, Li J. Therapeutic Potential of Diosgenin and Its Major Derivatives against Neurological Diseases: Recent Advances. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3153082. [PMID: 32215172 PMCID: PMC7079249 DOI: 10.1155/2020/3153082] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Diosgenin (DG), a well-known steroidal sapogenin, is present abundantly in medicinal herbs such as Dioscorea rhizome, Dioscorea villosa, Trigonella foenum-graecum, Smilax China, and Rhizoma polgonati. DG is utilized as a major starting material for the production of steroidal drugs in the pharmaceutical industry. Due to its wide range of pharmacological activities and medicinal properties, it has been used in the treatment of cancers, hyperlipidemia, inflammation, and infections. Numerous studies have reported that DG is useful in the prevention and treatment of neurological diseases. Its therapeutic mechanisms are based on the mediation of different signaling pathways, and targeting these pathways might lead to the development of effective therapeutic agents for neurological diseases. The present review mainly summarizes recent progress using DG and its derivatives as therapeutic agents for multiple neurological disorders along with their various mechanisms in the central nervous system. In particular, those related to therapeutic efficacy for Parkinson's disease, Alzheimer's disease, brain injury, neuroinflammation, and ischemia are discussed. This review article also critically evaluates existing limitations associated with the solubility and bioavailability of DG and discusses imperatives for translational clinical research. It briefly recapitulates recent advances in structural modification and novel formulations to increase the therapeutic efficacy and brain levels of DG. In the present review, databases of PubMed, Web of Science, and Scopus were used for studies of DG and its derivatives in the treatment of central nervous system diseases published in English until December 10, 2019. Three independent researchers examined articles for eligibility. A total of 150 articles were screened from the above scientific literature databases. Finally, a total of 46 articles were extracted and included in this review. Keywords related to glioma, ischemia, memory, aging, cognitive impairment, Alzheimer, Parkinson, and neurodegenerative disorders were searched in the databases based on DG and its derivatives.
Collapse
Affiliation(s)
- Bangrong Cai
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ying Zhang
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Zengtao Wang
- Department of Medicinal Chemistry, College of Pharmacy JiangXi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dujuan Xu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongyan Jia
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yanbin Guan
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Aimei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Gaizhi Liu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - ChangJu Chun
- Research Institute of Drug Development, College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jiansheng Li
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| |
Collapse
|
24
|
Tian L, Sun SS, Cui LB, Wang SQ, Peng ZW, Tan QR, Hou WG, Cai M. Repetitive Transcranial Magnetic Stimulation Elicits Antidepressant- and Anxiolytic-like Effect via Nuclear Factor-E2-related Factor 2-mediated Anti-inflammation Mechanism in Rats. Neuroscience 2020; 429:119-133. [PMID: 31918011 DOI: 10.1016/j.neuroscience.2019.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) treatment is widely accepted as an evidence-based treatment option for depression and anxiety. However, the underlying mechanism of this treatment maneuver has not been clearly understood. The chronic unpredictable mild stress (CUMS) procedure was used to establish depression and anxiety-like behavior in rats. The rTMS was performed with a commercially available stimulator for seven consecutive days, and then depression and anxiety-like behaviors were subsequently measured. The expression of nuclear factor-E2-related factor 2 (Nrf2) was measured by western-blot, and the level of tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and interleukin-6 (IL-6) was measured with Enzyme-linked immunesorbent assay (ELISA) analyzing kits. Furthermore, a small interfering RNA was employed to knockdown Nrf2, after which the neurobehavioral assessment, Nrf2 nuclear expression, and the amount of inflammation factors were evaluated. Application of rTMS exhibited a significant antidepressant and anxiolytic-like effect, which was associated with the increased Nrf2 nuclear translocation and reduced level of TNF-α, iNOS, IL-1β, and IL-6 in the hippocampus. Following Nrf2 silencing, the antidepressant and anxiolytic-like effect produced by rTMS was abolished. Moreover, the elevated Nrf2 nuclear translocation, and the reduced production of TNF-α, iNOS, IL-1β, and IL-6 in hippocampus mediated by rTMS, were reversed by Nrf2 knockdown. Together, these results reveal that the Nrf2-induced anti-inflammation effect is crucial in regulating antidepressant-related behaviors produced by rTMS.
Collapse
Affiliation(s)
- Li Tian
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Si-Si Sun
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China; Medical Department of Xi'an Emergency Center, the 111th of Fengcheng 4th Road, Xi'an 718900, Shaanxi, China
| | - Long-Biao Cui
- School of Medical Psychology, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Shi-Quan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Wu-Gang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
25
|
Yang Q, Wang C, Jin Y, Ma X, Xie T, Wang J, Liu K, Sun H. Disocin prevents postmenopausal atherosclerosis in ovariectomized LDLR-/- mice through a PGC-1α/ERα pathway leading to promotion of autophagy and inhibition of oxidative stress, inflammation and apoptosis. Pharmacol Res 2019; 148:104414. [PMID: 31449974 DOI: 10.1016/j.phrs.2019.104414] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 08/04/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Atherosclerosis (AS) is one of the major causes leading to mortality of dysfunctional cardiovascular events in the menopausal women, which has long-term deficiency of estrogen. At present, the primary treatment for postmenopausal AS is hormone replacement therapy (HRT). However, it can increase the risks of ovarian and uterine cancers with long-term therapy. So seeking for a phytoestrogen which can overcome the disadvantages of HRT is a great mission. Dioscin, a traditional Chinese medicine, extracted from the roots of dioscorea nipponica, has anti-inflammatory, anti-tumor and anti-apoptosis activities. Especially, it also has estrogenic activity. Thus, this study aims to investigate the effects of dioscin on postmenopausal AS. Currently, ovariectomy (OVX) is the accepted model for AS associated with estrogen deficiency, and it can mimic the cessation of ovarian function that occurs in postmenopausal women as well. We used the high fat diet and ovariectomy(HFD-OVX)model to induce postmenopausal AS in the low-density lipoprotein receptor- deficient (LDLR-/-) mice. (1) The levels of TG, TC, LDL-C, HDLC, MDA, GSH, MDA and GSH in serum of HFD-OVX induced LDLR-/- mice were measured by colorimetric assay. (2) The artery injury of HFD-OVX induced LDLR-/- mice was detected with Oil Red O staining. (3) The protein expressions of NOX4, P22phox, IκB, p-p65, n-p65, ICAM-1, VCAM-1, caspase-3, caspase-9, bcl-2, PGC-1α, ERα, ERβ in the arterial tissue of HFD-OVX induced LDLR-/- mice were detected by Western blot analysis. In vitro, the model of human aortic endothelial cells (HAECs) induced by oxidized low-density lipoprotein (ox-LDL) (150 μg /ml) was established, and the molecular mechanism of dioscin on atherosclerosis in postmenopausal women was investigated. (1) The levels of MDA, GSH, MDA and GSH in ox-LDL induced HAECs were measured by colorimetric assay. (2) Reactive Oxygen Species (ROS) of ox-LDL induced HAEC cells was detected by fluorescence staining. (3) The protein expressions of PGC-1α, ERα, ERβ, NOX4, P22phox, IκB, p-p65, n-p65, ICAM-1, VCAM-1, caspase-3, caspase-9, bcl-2 and LC3 in ox-LDL induced HAECs were detected by Western blot analysis. (4) The autophagy level of ox-LDL induced HAECs was measured by transmission electron microscopy. (5) The applications of si-RNA transfection were used to explore whether dioscin could activate PGC-1α/ERα pathway to inhibit postmenopausal atherosclerosis. In vivo, we found that dioscin decreased the level of TG, TC, LDL-C and increased the level of HDLC in serum of HFD-OVX induced LDLR-/- mice, and it has protective effects to maintain the lipid homeostasis; The Oil Red O staining study showed that dioscin could significantly inhibit the formation of atherosclerotic plaques in HFD-OVX-treated LDLR-/- mice; Dioscin decreased the levels of NOX4, P22phox, p-p65, n-p65, ICAM-1, VCAM-1, caspase-3, caspase-9, but increased the levels of HDL-C, GSH, SOD, PGC-1α, ERα, ERβ, IκB, Bcl-2 and elevated the autophagy level in arterial tissues of HFD-OVX induced LDLR-/- mice. It is particularly worth mentioning that the up-regulating effect of dioscin on ERα is stronger than ERβ in OVX treated mice. In vitro, the results of colorimetric assay showed that dioscin decreased the level of MDA and LDH, increased the level of SOD and GSH in ox-LDL-induced HAEC cells; Dioscin also suppressed the release of ROS in ox-LDL-induced HAECs by fluorescence staining; Dioscin decreased the levels of NOX4, P22phox, p-p65, n-p65, ICAM-1, VCAM-1, caspase-3, caspase-9, but increased the levels of PGC-1α, ERα, ERβ, IκB, Bcl-2 and the ratio of LC3-II/LC3-I in ox-LDL-induced HAECs; Dioscin significantly elevated the autophagy level of ox-LDL-induced HAECs by transmission electron microscopy analysis; In addition, by si-RNA transfection, we found that the inhibitory effects of dioscin on oxidative stress, inflammatory response and apoptosis might partly through PGC-1α/ERα pathway in ox-LDL induced HAECs. The data of dual-Luciferase reporter assay revealed that dioscin activated ERα at least partly through PGC-1α pathway. Dioscin significantly inhibited oxidative stress, inflammatory response, apoptosis and increased the level of autophagy in vivo and vitro. In addition, dioscin could regulate the balance of lipid metabolism. Moreover, we proved that the effects of dioscin attenuating postmenopausal atherosclerosis by inhibiting oxidative stress, inflammation and apoptosis were partly dependent on PGC-1α/ERα pathway. Therefore, dioscin, as a phytoestrogen, might become a drug for the treatment of atherosclerosis in postmenopausal women.
Collapse
Affiliation(s)
- Qining Yang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Tianqi Xie
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jiaying Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China; Academy of Integrative Medicine, Dalian Medical University, Dalian, China.
| |
Collapse
|
26
|
Yang L, Ren S, Xu F, Ma Z, Liu X, Wang L. Recent Advances in the Pharmacological Activities of Dioscin. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5763602. [PMID: 31511824 PMCID: PMC6710808 DOI: 10.1155/2019/5763602] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Dioscin is a typical saponin with multiple pharmacological activities. The past few years have seen an emerging interest in and growing research on this pleiotropic saponin. Here, we review the emerging pharmacological activities reported recently, with foci on its antitumor, antimicrobial, anti-inflammatory, antioxidative, and tissue-protective properties. The potential use of dioscin in therapies of diverse clinical disorders is also discussed.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shengnan Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fei Xu
- Department of Acupuncture and Moxibustion, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lufei Wang
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| |
Collapse
|
27
|
Cai B, Seong KJ, Bae SW, Kook MS, Chun C, Lee JH, Choi WS, Jung JY, Kim WJ. Water-Soluble Arginyl–Diosgenin Analog Attenuates Hippocampal Neurogenesis Impairment Through Blocking Microglial Activation Underlying NF-κB and JNK MAPK Signaling in Adult Mice Challenged by LPS. Mol Neurobiol 2019; 56:6218-6238. [DOI: 10.1007/s12035-019-1496-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022]
|
28
|
Uncaria rhynchophylla ameliorates amyloid beta deposition and amyloid beta-mediated pathology in 5XFAD mice. Neurochem Int 2018; 121:114-124. [PMID: 30291956 DOI: 10.1016/j.neuint.2018.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 01/31/2023]
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is the abnormal aggregation of amyloid beta (Aβ) peptides. Uncaria rhynchophylla (UR), one of the Uncaria species, has long been used to treat neurodegenerative disease. In particular, it has been reported that UR inhibits aggregation of Aβ in vitro. However, little is known about the histological effects of UR treatment on Aβ pathology in AD animal models. In the present study, we investigated the effect of UR on Aβ aggregation, Aβ-mediated pathologies and adult hippocampal neurogenesis in the brain of 5XFAD mice. First, using the thioflavin T assay and amyloid staining, we demonstrated that UR treatment effectively inhibited Aβ aggregation and accumulation in the cortex and subiculum. Second, immunofluorescence staining showed that administration of UR attenuated gliosis and neurodegeneration in the subiculum and cortex. Third, UR treatment ameliorated impaired adult hippocampal neurogenesis. The present results indicate that UR significantly alleviates Aβ deposition and Aβ-mediated neuropathology in the brain in 5XFAD mice, suggesting the potency of UR as a preventive and therapeutic agent for AD.
Collapse
|