1
|
Torres-Quiroz C, Dissanayake J, Park J. Modified oyster shell powder with iron (II) sulfate heptahydrate to improve arsenic uptake in solution and in contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37029-37038. [PMID: 36564695 DOI: 10.1007/s11356-022-24831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Arsenic is a metalloid whose presence can be due to natural or anthropological causes. It is considered as a toxic chemical that puts human health at high risk. In this study, we evaluated a novel modified oyster shell (MOS) that was coated with iron (II) sulfate heptahydrate using two different proportions through batch sorption experiments in an arsenic solution and in arsenic-contaminated soils. The arsenic solution was prepared using As(III)-standard solution. The arsenic contaminated soils were extracted from a contaminated site in Cheonan, South Korea, where the average arsenic concentration of the soil was reported as 136.28 mg/kg. Different doses of oyster shell and modified oyster were used to understand the effect of the addition of iron (II) sulfate heptahydrate via sorption batch experiments in solution and sorption tests in soils. The sorption tests were conducted with 50 g of contaminated soil; then, 150 g of soils was used for the pot cultivation tests, and finally, 150 g of contaminated soils was used for column percolation test. Through the experiments, the authors observed a comparable improvement of arsenic stabilization from 10 to 60% with the addition of iron (II) sulfate heptahydrate to oyster shell.
Collapse
Affiliation(s)
- Cecilia Torres-Quiroz
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea
- DongMyeong Consulting Engineering & Architecture, 15Fl, Gyeongdong Union Building 127, Wangsan-Ro, Dongdaemun-Gu, Seoul, South Korea
| | - Janith Dissanayake
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea
- Newnop Co. Ltd, 22Ho, Bizplant, 18th floor, Building A, 58-1, Giheung-Ro, Giheung-Gu, Yongin-Si, Gyeonggi-Do, South Korea
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.
- Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak- Ro, Gwanak-Gu, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
Rahman MM, Ahmed L, Anika F, Riya AA, Kali SK, Rauf A, Sharma R. Bioinorganic Nanoparticles for the Remediation of Environmental Pollution: Critical Appraisal and Potential Avenues. Bioinorg Chem Appl 2023; 2023:2409642. [PMID: 37077203 PMCID: PMC10110382 DOI: 10.1155/2023/2409642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Nowadays, environmental pollution has become a critical issue for both developed and developing countries. Because of excessive industrialization, burning of fossil fuels, mining and exploration, extensive agricultural activities, and plastics, the environment is being contaminated rapidly through soil, air, and water. There are a variety of approaches for treating environmental toxins, but each has its own set of restrictions. As a result, various therapies are accessible, and approaches that are effective, long-lasting, less harmful, and have a superior outcome are extensively demanded. Modern research advances focus more on polymer-based nanoparticles, which are frequently used in drug design, drug delivery systems, environmental remediation, power storage, transformations, and other fields. Bioinorganic nanomaterials could be a better candidate to control contaminants in the environment. In this article, we focused on their synthesis, characterization, photocatalytic process, and contributions to environmental remediation against numerous ecological hazards. In this review article, we also tried to explore their recent advancements and futuristic contributions to control and prevent various pollutants in the environment.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Anha Akter Riya
- Department of Pharmacy, East-West University, Aftabnagar, Dhaka 1212, Bangladesh
| | - Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Khan QU, Begum N, Rehman ZU, Khan AU, Tahir K, Tag El Din ESM, Alothman AA, Habila MA, Liu D, Bocchetta P, Javed MS. Development of Efficient and Recyclable ZnO-CuO/g-C 3N 4 Nanocomposite for Enhanced Adsorption of Arsenic from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3984. [PMID: 36432270 PMCID: PMC9698871 DOI: 10.3390/nano12223984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (III) is a toxic contaminant in water bodies, especially in drinking water reservoirs, and it is a great challenge to remove it from wastewater. For the successful extraction of arsenic (III), a nanocomposite material (ZnO-CuO/g-C3N4) has been synthesized by using the solution method. The large surface area and plenty of hydroxyl groups on the nanocomposite surface offer an ideal platform for the adsorption of arsenic (III) from water. Specifically, the reduction process involves a transformation from arsenic (III) to arsenic (V), which is favorable for the attachment to the -OH group. The modified surface and purity of the nanocomposite were characterized by SEM, EDX, XRD, FT-IR, HRTEM, and BET models. Furthermore, the impact of various aspects (temperatures, pH of the medium, the concentration of adsorbing materials) on adsorption capacity has been studied. The prepared sample displays the maximum adsorption capacity of arsenic (III) to be 98% at pH ~ 3 of the medium. Notably, the adsorption mechanism of arsenic species on the surface of ZnO-CuO/g-C3N4 nanocomposite at different pH values was explained by surface complexation and structural variations. Moreover, the recycling experiment and reusability of the adsorbent indicate that a synthesized nanocomposite has much better adsorption efficiency than other adsorbents. It is concluded that the ZnO-CuO/g-C3N4 nanocomposite can be a potential candidate for the enhanced removal of arsenic from water reservoirs.
Collapse
Affiliation(s)
- Qudrat Ullah Khan
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China
- Zhongshan-Fudan Joint Innovation Center, Zhongshan 528437, China
| | - Nabila Begum
- School of Medicine, Foshan University, Foshan 528000, China
| | - Zia Ur Rehman
- Department of Chemistry, The University of Haripur, Haripur 22620, Pakistan
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University Dera Ismail Khan, Dera Ismail Khan 29220, Khyber Pakhtunkhwa, Pakistan
| | - El Sayed M. Tag El Din
- Electrical Engineering Department, Faculty of Engineering & Technology, Future University in Egypt, New Cairo 11835, Egypt
| | - Asma A. Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Habila
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan 528000, China
| | - Patrizia Bocchetta
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Zhang M, Liu L, Li A, Zhang T, Qiu G. UV-induced highly efficient removal of As(III) through synergistic photo-oxidation in the presence of Fe(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71583-71592. [PMID: 35604606 DOI: 10.1007/s11356-022-20931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
In polluted waters, arsenic (As) poses substantial risks to the environment and human health. Inorganic As mainly exists as As(V) and As(III), and As(III) usually shows higher mobility and toxicity and is more difficult to be removed by coagulation. The oxidation of coexisting Fe(II) can accelerate As(III) oxidation and removal by promoting the generation of reactive intermediates and Fe(III) coagulant in the presence of dissolved oxygen. However, the removal efficiency of As from acidic wastewaters is far from satisfactory due to the low Fe(II) oxidation rate by dissolved oxygen. Herein, UV irradiation was applied to stimulate the synergistic oxidation of Fe(II)/As(III), and the effects of coexisting Fe(II) concentration and pH were also evaluated. The synergistic oxidation of Fe(II)/As(III) significantly enhanced the removal of As from acidic waters. Under UV irradiation, Fe(II) significantly promoted the generation of reactive oxygen species (ROS), thereby facilitating As(III) oxidation. In addition, the formation of ferric arsenate and amorphous ferric (hydr)oxides contributed much to As removal. In the As(III)-containing solution with 200 μmol L-1 Fe(II) at initial pH 4.0, the total arsenic (As(T)) concentration decreased from 67.0 to 1.3 and 0.5 μmol L-1, respectively, at 25 and 120 min under UV irradiation. The As(T) removal rate increased with increasing Fe(II) concentration, and first increased and then decreased with increasing initial pH from 2.0 to 6.0. This study clarifies the mechanism for the synergistic photo-oxidation of Fe(II)/As(III) under UV irradiation, and proposes a new strategy for highly efficient As(III) removal from acidic industrial and mining wastewaters.
Collapse
Affiliation(s)
- Mingzhe Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Tengfei Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
5
|
Dudek S, Kołodyńska D. Arsenate removal on the iron oxide ion exchanger modified with Neodymium(III) ions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114551. [PMID: 35066202 DOI: 10.1016/j.jenvman.2022.114551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
In this study the iron oxide ion exchanger with the quaternary ammonium groups, Ferrix A33E was modified with neodymium (III) ions in order to obtain the new material Ferrix A33E-Nd(III) characterized by greater sorption efficiency of arsenate(V) ions. A33E-Nd(III) was described by various techniques including scanning electron microscopy SEM, nitrogen adsorption/desorption isotherms, Fourier transform infrared spectroscopy FTIR and X-ray photoelectron spectroscopy XPS. The point of zero charge, pHPZC was also determined. The kinetic and thermodynamic parameters of the arsenate(V) sorption were calculated. The experimental data was fitted to the four isotherm models - Langmuir, Freundlich, Dubinin-Radushkevich and Halsey. Kinetic and equilibrium studies allowed to get to know the behaviour of arsenate(V) ions during the sorption on A33E-Nd(III). The obtained material A33E-Nd(III)- was found to possess a larger maximum sorption capacity than A33E, great stability and the possibility of regeneration at least 3 times without a significant decrease in efficiency. This allows for the complete removal of As(V) ions from a solution with a concentration of 50 mg/dm3 in just 30 min. The Nd(III)-modification improved the sorption properties of the tested ion exchanger.
Collapse
Affiliation(s)
- Sebastian Dudek
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland.
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland
| |
Collapse
|
6
|
Boregowda N, Jogigowda SC, Bhavya G, Sunilkumar CR, Geetha N, Udikeri SS, Chowdappa S, Govarthanan M, Jogaiah S. Recent advances in nanoremediation: Carving sustainable solution to clean-up polluted agriculture soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118728. [PMID: 34974084 DOI: 10.1016/j.envpol.2021.118728] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Agriculture is one of the foremost significant human activities, which symbolizes the key source for food, fuel and fibers. This activity results in a lot of ecological harms particularly with the excessive usage of chemical fertilizers and pesticides. Different agricultural practices have remained industrialized to advance food production, due to the growth in the world population and to meet the food demand through the routine use of more effective fertilizers and pesticides. Soil is intensely embellished by environmental contamination and it can be stated as "universal incline." Soil pollution usually occurs from sewage wastes, accidental discharges or as byproducts of chemical residues of unrestrained production of numerous materials. Soil pollution with hazardous materials alters the physical, chemical, and biological properties, causing undesirable changes in soil fertility and ecosystem. Engineered nanomaterials offer various solutions for remediation of contaminated soils. Engineered nanomaterial-enable technologies are able to prevent the uncontrolled release of harmful materials into the environment along with capabilities to combat soil and groundwater borne pollutants. Currently, nanobiotechnology signifies a hopeful attitude to advance agronomic production and remediate polluted soils. Studies have outlined the way of nanomaterial applications to restore the eminence of the environment and assist the detection of polluted sites, along with potential remedies. This review focuses on the latest developments in agricultural nanobiotechnology and the tools developed to combat soil or land and or terrestrial pollution, as well as the benefits of using these tools to increase soil fertility and reduce potential toxicity.
Collapse
Affiliation(s)
- Nandini Boregowda
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Sanjay C Jogigowda
- Department of Oral Medicine & Radiology, JSS Dental College & Hospital, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurulingaiah Bhavya
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Channarayapatna Ramesh Sunilkumar
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India; Global Association of Scientific Young Minds, GASYM, Mysuru, India
| | - Nagaraja Geetha
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Shashikant Shiddappa Udikeri
- Agricultural Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad, 580005, Karnataka, India
| | - Srinivas Chowdappa
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
7
|
Samuel MS, Selvarajan E, Sarswat A, Muthukumar H, Jacob JM, Mukesh M, Pugazhendhi A. Nanomaterials as adsorbents for As(III) and As(V) removal from water: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127572. [PMID: 34810009 DOI: 10.1016/j.jhazmat.2021.127572] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/07/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Freshwater demand will rise in the next couple of decades, with an increase in worldwide population growth and industrial development. The development activities, on one side, have increased the freshwater demand. However, the ground water has been degraded. Among the various organic and inorganic contaminants, arsenic is one of the most toxic elements. Arsenic contamination in ground waters is a major issue worldwide, especially in South and Southeast Asia. Various methods have been applied to provide a remedy to arsenic contamination, including adsorption, ion exchange, oxidation, coagulation-precipitation and filtration, and membrane filtration. Out of these methods, adsorption of As(III)/As(V) using nanomaterials and biopolymers has been used on a wide scale. The present review focuses on recently used nanomaterials and biopolymer composites for As(III)/As(V) sorptive removal. As(III)/As(V) adsorption mechanisms have been explored for various sorbents. The impacts of environmental factors such as pH and co-existing ions on As(III)/As(V) removal, have been discussed. Comparison of various nanosorbents and biopolymer composites for As(III)/As(V) adsorption and regeneration of exhausted materials has been included. Overall, this review will be useful to understand the sorption mechanisms involved in As(III)/As(V) removal by nanomaterials and biopolymer composites and their comparative sorption performances.
Collapse
Affiliation(s)
- Melvin S Samuel
- Department of Materials Science and Engineering, CEAS, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - E Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankur Sarswat
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Harshiny Muthukumar
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Jaya Mary Jacob
- Department of Biotechnology & Biochemical Engineering, Sree Buddha College of Engineering Pattoor, Alappuzha, Kerala, India
| | - Malavika Mukesh
- Department of Biotechnology & Biochemical Engineering, Sree Buddha College of Engineering Pattoor, Alappuzha, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
8
|
Svarovskaya N, Bakina O, Glazkova E, Rodkevich N, Lerner M, Vornakova E, Chzhou V, Naumova L. Synthesis of novel hierarchical micro/nanostructures AlOOH/AlFe and their application for As(V) removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1246-1258. [PMID: 34355309 DOI: 10.1007/s11356-021-15612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Hierarchical micro/nanostructured composites, which contain iron and/or its (hydr)oxides, demonstrate high rate and capacity of arsenic adsorption. The main objective of this paper is the use of novel low toxicity AlOOH/AlFe hierarchical micro/nanostructures for arsenic removal. AlOOH/AlFe composite was obtained by simple water oxidation in mild conditions using AlFe bimetallic nanopowder as a precursor. AlFe bimetallic nanopowder was produced by electrical explosive of two twisted wires in argon atmosphere. The productivity of the electrical explosion assembly was 50 g/h, with the consumption of the electrical energy was 75 kW·h/kg. AlFe bimetallic nanoparticles were chemically active and interacted with water at 60 °C. This nanocomposite AlOOH/AlFe is low cost and adsorbs more than 200 mg/g As(V) from its aqueous solution. AlOOH/AlFe composite has flower-like morphology and specific surface area 247.1 m2/g. The phase composition of nanostructures is present AlOOH boehmite and AlFe intermetallic compound. AlOOH/AlFe composite was not previously used for this. The flower-shape AlOOH morphology not only facilitated deliverability, but increased the As(V) sorption capacity by up to 200 mg/g. The adsorption kinetics has been found to be described by a pseudo-second-order equation of Lagergren and Weber-Morris models while the experimental adsorption isotherm is closest to the Freundlich model. This indicates the energy heterogeneity of the adsorbent surface and multilayer adsorption. The use of non-toxic nanostructures opens up new options to treat water affected by arsenic pollution.
Collapse
Affiliation(s)
- Natalia Svarovskaya
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 8/2 Akademicheskii pr, Tomsk, 634050, Russia
| | - Olga Bakina
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 8/2 Akademicheskii pr, Tomsk, 634050, Russia.
| | - Elena Glazkova
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 8/2 Akademicheskii pr, Tomsk, 634050, Russia
| | - Nikolay Rodkevich
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 8/2 Akademicheskii pr, Tomsk, 634050, Russia
| | - Marat Lerner
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 8/2 Akademicheskii pr, Tomsk, 634050, Russia
| | - Ekaterina Vornakova
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 8/2 Akademicheskii pr, Tomsk, 634050, Russia
| | - Valeria Chzhou
- Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences (ISPMS SB RAS), 8/2 Akademicheskii pr, Tomsk, 634050, Russia
| | - Liudmila Naumova
- National Research Tomsk State University, 36 Lenin Ave, Tomsk, 634050, Russia
| |
Collapse
|
9
|
R J, Gurunathan B, K S, Varjani S, Ngo HH, Gnansounou E. Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production. ENVIRONMENTAL RESEARCH 2022; 203:111815. [PMID: 34352231 DOI: 10.1016/j.envres.2021.111815] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Due to the development in science field which gives not only benefit but also introducesundesirable pollution to the environment. This pollution is due to poor discharge activities of industrial effluents into the soil and water bodies, surface run off from fields of agricultural lands, dumping of untreated wastes by municipalities, and mining activites, which deteriorates the cardinal virtue of our environment and causes menace to human health and life. Heavy metal(s), a natural constituent on earth's crust and economic important mineral, due to its recalcitrant effects creates heavy metal pollution which affects food chain and also reduces the quality of water. For this, many researchers have performed studies to find efficient methods for wastewater remediation. One of the most promising methods from economic point of view is adsorption, which is simple in design, but leads to use of a wide range of adsorbents and ease of operations. Due to advances in nanotechnology, many nanomaterials were used as adsorbents for wastewater remediation, because of their efficiency. Many researchers have reported that nanoadsorbents are unmitigatedly a fruitful solution to address this world's problem. This review presents a potent view on various classes of nanoadsorbents and their application to wastewater treatment. It provides a bird's eye view of the suitability of different types of nanomaterials for remediation of wastewater and Backspace gives up-to-date information about polymer based and silica-based nanoadsorbents.
Collapse
Affiliation(s)
- Janani R
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 6000119, India
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 6000119, India.
| | - Sivakumar K
- Department of Biotechnology, KarpagaVinayaga College of Engineering and Technology, Chinna Kolambakkam, 603308, Tamilnadu, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, India.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Abstract
Arsenic is a naturally occurring metalloid and one of the few metals that can be metabolized inside the human body. The pervasive presence of arsenic in nature and anthropogenic sources from agricultural and medical use have perpetuated human exposure to this toxic and carcinogenic element. Highly exposed individuals are susceptible to various illnesses, including skin disorders; cognitive impairment; and cancers of the lung, liver, and kidneys. In fact, across the globe, approximately 200 million people are exposed to potentially toxic levels of arsenic, which has prompted substantial research and mitigation efforts to combat this extensive public health issue. This review provides an up-to-date look at arsenic-related challenges facing the global community, including current sources of arsenic, global disease burden, arsenic resistance, and shortcomings of ongoing mitigation measures, and discusses potential next steps.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10010, USA;
| |
Collapse
|
11
|
Zhang N, Eric M, Zhang C, Zhang J, Feng K, Li Y, Wang S. ZVI impregnation altered arsenic sorption by ordered mesoporous carbon in presence of Cr(Ⅵ): A mechanistic investigation. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125507. [PMID: 34030402 DOI: 10.1016/j.jhazmat.2021.125507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
It is challenging to efficiently remove arsenate (As(Ⅴ)) and chromate (Cr(Ⅵ)) simultaneously. Herein, ordered mesoporous carbon (OMC) was fabricated with averaged pore diameter of 6.5 nm and surface area of 997 m2 g-1. Zerovalent iron (ZVI) impregnation reduced surface area of ZVI/OMC (432 m2 g-1) and increased ID/IG ratio by 13%. Maximal Cr(Ⅵ) and As(Ⅴ) sorption capacities at pH 3 were 0.66 and 0.019 mmol g-1 by OMC, and 0.71 and 0.39 mmol g-1 by ZVI/OMC, respectively. Reduction accounted for over 55% for Cr(Ⅵ) and As(Ⅴ) removal followed by complexation and precipitation. Better ZVI/OMC performance was ascribed to higher electron transfer rate and lower electrical resistance than OMC as per electrochemical analysis. Upon Cr(Ⅵ) introduction, As(Ⅴ) removal increased to 0.28 mmol g-1 by OMC, but decreased to 0.16 mmol g-1 by ZVI/OMC. OMC could preferably reduce CrO42- to Cr3+ by hydroxyl group, which enhanced its zeta potential facilitating As(Ⅴ) sorption. Regarding ZVI/OMC, Fe0 and Fe oxide in ZVI/OMC exhibited better affinity to As(Ⅴ), but the competition for the similar active sites resulted in compromised As(Ⅴ) and Cr(Ⅵ) removal. Thus, the novel OMC is advantageous for removal of binary As(Ⅴ) and Cr(Ⅵ), but ZVI/OMC is robust to detoxify single heavy metal.
Collapse
Affiliation(s)
- Ni Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China
| | - Munyabugingo Eric
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Changai Zhang
- School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, PR China
| | - Jian Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Ke Feng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China
| | - Yuncong Li
- Soil and Water Sciences Department, Tropical Research and Education Center, IFAS, University of Florida, Homestead FL 33031, USA
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China.
| |
Collapse
|
12
|
Uz-Zaman KA, Biswas B, Rahman MM, Naidu R. Smectite-supported chain of iron nanoparticle beads for efficient clean-up of arsenate contaminated water. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124396. [PMID: 33246822 DOI: 10.1016/j.jhazmat.2020.124396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/27/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Prolonged exposure to inorganic arsenic (As) via drinking water is a major concern as it poses significant human health risks. Removal of As is crucial but requires effective and environment-friendly clean-up technology to avoid any additional risk to the environment. In this study, we developed Australian smectite (smec)-supported nano zero-valent iron (nZVI) composite for arsenate i.e., As(V) sorption. We used a range of tools, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and energy dispersion X-ray (EDS) spectroscopy to characterise the material. SEM and TEM images and elemental mapping of the composite reflect that the smectite layer was surrounded by a chain of iron nanobeads evenly distributed on clay particles, which is quite exceptional among currently available nZVIs. The maximum As(V) sorption capacity of this composite was 23.12 mg/g in the ambient conditions. Using X-ray photoelectron spectroscopy we unveiled chemical states of As and Fe before and after the sorption process. Additionally, the release of iron nanoparticles from the composite at various pHs (3-10) were found negligible, which demonstrates the effectiveness of smec-nZVI to remove As(V) from contaminated water without posing any secondary pollutant.
Collapse
Affiliation(s)
- Kh Ashraf Uz-Zaman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Bhabananda Biswas
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, STEM Unit, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
13
|
Baruah J, Chaliha C, Nath BK, Kalita E. Enhancing arsenic sequestration on ameliorated waste molasses nanoadsorbents using response surface methodology and machine-learning frameworks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11369-11383. [PMID: 33123890 DOI: 10.1007/s11356-020-11259-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The development of a novel nanobiosorbent derived from waste molasses for the adsorptive removal of arsenic (As) has been attempted in this study. Waste molasses were chemically ameliorated through a solvothermal route for the incorporation of iron oxide, thereby producing iron oxide incorporated carbonaceous nanomaterial (IOCN). Synthesis of IOCN was confirmed through transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and atomic emission spectroscopy (AES) analysis. The surface area and porous behavior of IOCN were elucidated by Brunauer-Emmett-Teller (BET) assessments. The experimental conditions for adsorption were first modeled using response surface methodology (RSM) based on the central composite design (CCD), considering the parameters: adsorbate dosage, adsorbent dosage, pH, and contact time. RSM optimizations were improved upon using a three-layer feed-forward multilayer perceptron (MLP) based Artificial Neural Network (ANN) model. Optimization through ANN model resulted in the increase of the maximal As adsorption efficiency to ~ 96% for IOCN. The IOCN isotherm plots show the best fit for the Sips isotherm, and the reaction kinetics follows the pseudo-second-order model, indicating the chemisorption mechanism for As adsorption. Evidence for direct coordination of As to the surface of adsorbents was further confirmed by FTIR spectroscopic studies before and after As adsorption. The high adsorption efficiencies and the low-cost facile synthesis of the IOCN nanosorbent from agro-industrial waste indicate their potential for commercial applications.
Collapse
Affiliation(s)
- Julie Baruah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
- Department of Chemical Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Chayanika Chaliha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Bikash Kar Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Eeshan Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
14
|
Garcia-Costa AL, Sarabia A, Zazo JA, Casas JA. UV-assisted Catalytic Wet Peroxide Oxidation and adsorption as efficient process for arsenic removal in groundwater. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Lee KHK, Peralta JE, Abboud KA, Christou G. Iron(III)-Oxo Cluster Chemistry with Dimethylarsinate Ligands: Structures, Magnetic Properties, and Computational Studies. Inorg Chem 2020; 59:18090-18101. [PMID: 33291879 DOI: 10.1021/acs.inorgchem.0c02554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A program has been initiated to develop FeIII/oxo cluster chemistry with the "pseudocarboxylate" ligand dimethylarsinate (Me2AsO2-) for comparison with the well investigated FeIII/oxo/carboxylate cluster area. The synthesis and characterization of three polynuclear FeIII complexes are reported, [Fe12O4(O2CtBu)8(O2AsMe2)17(H2O)3]Cl3 (1), Na2[Fe12Na2O4(O2AsMe2)20(NO3)6(Me2AsO2H)2(H2O)4](NO3)6 (2), and [Fe3(O2AsMe2)6(Me2AsO2H)2(hqn)2](NO3) (3), where hqnH is 8-hydroxyquinoline. The Fe12 core of 1 is a type never previously encountered in FeIII carboxylate chemistry, consisting of two Fe6 units each of which comprises two {Fe3(μ3-O2-)} units bridged by three Me2AsO2- groups and linked into an Fe12 loop structure by two anti-anti η1:η1:μ Me2AsO2- groups, a bridging mode extremely rare with carboxylates. 2 also consists of two Fe6 units, differing in their ligation from those in 1, and this time linked together into a linear structure by a central {Na2(NO3)2} bridging unit. 3 is a linear Fe3 complex with no monatomic bridges between FeIII ions, a very rare situation in FeIII chemistry with any ligands and unprecedented in Fe carboxylate chemistry. The distinct differences observed in arsinate vs carboxylate ligation modes are rationalized largely based on the greater basicity of the former vs the latter. Variable-temperature dc and ac magnetic susceptibility data reveal all Fe2 pairwise interactions to be antiferromagnetic. For 1 and 2, the different Jij couplings were estimated by use of a magnetostructural correlation for high nuclearity FeIII-oxo clusters and by density functional theory calculations using broken symmetry methods, allowing identification of their relative spin vector alignments and thus rationalization of their S = 0 ground states. The Jij values were then used as input values to give excellent fits of the experimental χMT vs T data. For 3, the fits of the experimental χMT vs T data to the Van Vleck equation or with PHI gave a very weak J12 = -0.8(1) cm-1 (H = -2JŜi·Ŝj convention) between adjacent FeIII ions and an S = 5/2 ground state. These initial FeIII arsinate complexes also provide structural parameters that help validate literature assignments of arsinate binding modes to iron oxide/hydroxide minerals as part of environmental concerns of using arsenic-containing herbicides in agriculture.
Collapse
Affiliation(s)
- Kenneth Hong Kit Lee
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Juan E Peralta
- Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - George Christou
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
16
|
Baruah J, Chaliha C, Kalita E, Nath BK, Field RA, Deb P. Modelling and optimization of factors influencing adsorptive performance of agrowaste-derived Nanocellulose Iron Oxide Nanobiocomposites during remediation of Arsenic contaminated groundwater. Int J Biol Macromol 2020; 164:53-65. [PMID: 32679332 DOI: 10.1016/j.ijbiomac.2020.07.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 12/07/2022]
Abstract
Nanocellulose Iron Oxide Nanobiocomposites (NIONs) were synthesized from rice husk and sugarcane bagasse derived nanocelluloses for adsorptive removal of arsenic and associated contaminants present in groundwater samples. These NIONSs were superparamagnetic, hence magnetically recoverable and demonstrated promising recyclability. Synthesis of NIONs was confirmed by Transmission electron microscopy (TEM), X-Ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopic (XPS). FTIR and XPS data together with adsorption kinetics provide insights into probable adsorption mechanism of Arsenic by NIONs. The experimental conditions for 10 different variants were modelled using response surface methodology (RSM) based on central composite design (CCD), considering the parameters; adsorbate dosage, adsorbent dosage, pH and contact time. The results identified the best performing variants and the optimal conditions for maximal absorption (~99%). These results were validated using a three-layer feed-forward Multilayer Perceptron (MLP) based Artificial Neural Network (ANN) model. Both RSM and ANN chemometric models were in close conformity for optimized conditions of highest adsorption by specific variants. The standardized conditions were used to expand the study to field-based arsenic contaminated groundwater samples and their performance to commercial adsorbents. NIONs show promising commercial potential for water remediation applications due to their high adsorptive performance, magnetic recoverability and recyclability.
Collapse
Affiliation(s)
- J Baruah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India; Department of Chemical Sciences, Tezpur University, Tezpur, Assam 784028, India
| | - C Chaliha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| | - E Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India.
| | - B K Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| | - R A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - P Deb
- Department of Physics, Tezpur University, Tezpur, Assam 784028, India
| |
Collapse
|
17
|
Uddin MJ, Jeong YK. Review: Efficiently performing periodic elements with modern adsorption technologies for arsenic removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39888-39912. [PMID: 32772289 DOI: 10.1007/s11356-020-10323-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) toxicity is a global phenomenon, and it is continuously threatening human life. Arsenic remains in the Earth's crust in the forms of rocks and minerals, which can be released into water. In addition, anthropogenic activity also contributes to increase of As concentration in water. Arsenic-contaminated water is used as a raw water for drinking water treatment plants in many parts of the world especially Bangladesh and India. Based on extensive literature study, adsorption is the superior method of arsenic removal from water and Fe is the most researched periodic element in different adsorbent. Oxides and hydroxides of Fe-based adsorbents have been reported to have excellent adsorptive capacity to reduce As concentration to below recommended level. In addition, Fe-based adsorbents were found less expensive and not to have any toxicity after treatment. Most of the available commercial adsorbents were also found to be Fe based. Nanoparticles of Fe-, Ti-, Cu-, and Zr-based adsorbents have been found superior As removal capacity. Mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.) removed As efficiently from water. Oxidation of AsO33- to AsO43-and adsorption of oxidized As on the mixed element-based adsorbent occurred by different adsorbents. Metal organic frameworks have also been confirmed as good performance adsorbents for As but had a limited application due to nano-crystallinity. However, using porous materials having extended surface area as carrier for nano-sized adsorbents could alleviate the separation problem of the used adsorbent after treatment and displayed outstanding removal performances.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea.
| | - Yeon-Koo Jeong
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| |
Collapse
|
18
|
Zubrytė E, Gefenienė A, Kaušpėdienė D, Ragauskas R, Binkienė R, Selskienė A, Pakštas V. Fast removal of Pb(II) and Cu(II) from contaminated water by groundwater treatment waste: impact of sorbent composition. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2019.1655455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Edita Zubrytė
- Department of Chemical Technology, Center for Physical Sciences and Technologies, Vilnius, Lithuania
| | - Audronė Gefenienė
- Department of Chemical Technology, Center for Physical Sciences and Technologies, Vilnius, Lithuania
- Education Academy, Vytautas Magnus University, Kaunas, Lithuania
| | - Danutė Kaušpėdienė
- Department of Chemical Technology, Center for Physical Sciences and Technologies, Vilnius, Lithuania
| | - Romas Ragauskas
- Department of Chemical Technology, Center for Physical Sciences and Technologies, Vilnius, Lithuania
| | - Rima Binkienė
- Department of Chemical Technology, Center for Physical Sciences and Technologies, Vilnius, Lithuania
| | - Aušra Selskienė
- Department of Chemical Technology, Center for Physical Sciences and Technologies, Vilnius, Lithuania
| | - Vidas Pakštas
- Department of Chemical Technology, Center for Physical Sciences and Technologies, Vilnius, Lithuania
| |
Collapse
|
19
|
Duborská E, Szabó K, Bujdoš M, Vojtková H, Littera P, Dobročka E, Kim H, Urík M. Assessment of Aspergillus niger Strain's Suitability for Arsenate-Contaminated Water Treatment and Adsorbent Recycling via Bioextraction in a Laboratory-Scale Experiment. Microorganisms 2020; 8:E1668. [PMID: 33121130 PMCID: PMC7693371 DOI: 10.3390/microorganisms8111668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
In this work, the viability of bioaccumulation and bioextraction processes for arsenic removal from contaminated waters, as well as the recycling of arsenate-treated amorphous ferric oxyhydroxide adsorbent (FeOOH) were evaluated using the common soil microscopic filamentous fungus Aspergillus niger. After treating the contaminated arsenate solution (100 mg As L-1) with FeOOH, the remaining solution was exposed to the growing fungus during a static 19-day cultivation period to further decrease the arsenic concentration. Our data indicated that although the FeOOH adsorbent is suitable for arsenate removal with up to 84% removal efficiency, the fungus was capable of accumulating only up to 13.2% of the remaining arsenic from the culture media. This shows that the fungus A. niger, although highly praised for its application in environmental biotechnology research, was insufficient for decreasing the arsenic contamination to an environmentally acceptable level. However, the bioextraction of arsenic from arsenate-treated FeOOH proved relatively effective for reuse of the adsorbent. Due to its production of acidic metabolites, which decreased pH below 2.7, the fungal strain was capable of removing of up to 98.2% of arsenic from the arsenate-treated FeOOH adsorbent.
Collapse
Affiliation(s)
- Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (E.D.); (K.S.); (M.B.); (P.L.)
| | - Kinga Szabó
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (E.D.); (K.S.); (M.B.); (P.L.)
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (E.D.); (K.S.); (M.B.); (P.L.)
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology (FMG), Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic;
| | - Pavol Littera
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (E.D.); (K.S.); (M.B.); (P.L.)
| | - Edmund Dobročka
- Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, Korea;
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (E.D.); (K.S.); (M.B.); (P.L.)
| |
Collapse
|
20
|
Robinson MR, Coustel R, Abdelmoula M, Mallet M. As(V) and As(III) sequestration by starch functionalized magnetite nanoparticles: influence of the synthesis route onto the trapping efficiency. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:524-539. [PMID: 32939177 PMCID: PMC7476536 DOI: 10.1080/14686996.2020.1782714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 05/29/2023]
Abstract
We report the effect of the synthesis route of starch-functionalized magnetite nanoparticles (NPs) on their adsorption properties of As(V) and As(III) from aqueous solutions. NP synthesis was achieved by two different routes implying the alkaline precipitation of either a mixed Fe2+/Fe3+ salt solution (MC samples) or a Fe2+ salt solution in oxidative conditions (MOP samples). Syntheses were carried out with starch to Fe mass ratio (R) ranging from 0 to 10. The crystallites of starch-free MC NPs (14 nm) are smaller than the corresponding MOP (67 nm), which leads to higher As(V) sorption capacity of 0.3 mmol gFe -1 to compare with respect to 0.1 mmol gFe -1 for MOP at pH = 6. MC and MOP starch-functionalized NPs exhibit higher sorption capacities than a pristine one and the difference in sorption capacities between MOP and MC samples decreases with increasing R values. Functionalization tends to reduce the size of the magnetite crystallites and to prevent their agglomeration. Size reduction is more pronounced for MOP samples (67 nm (R0) to 12 nm (R10)) than for MC samples (14 nm (R0) to 9 nm (R10)). Therefore, due to close crystallite size, both MC and MOP samples, when prepared at R = 10, display similar As(V) (respectively, As(III)) sorption capacities close to 1.3 mmol gFe -1 (respectively, 1.0 mmol gFe -1). Additionally, according to the effect of pH on arsenic trapping, the electrostatic interactions appear as a major factor controlling As(V) adsorption while surface complexation may control As(III) adsorption.
Collapse
Affiliation(s)
| | - Romain Coustel
- CNRS, LCPME, Université de Lorraine, F-54000 Nancy, France
| | | | - Martine Mallet
- CNRS, LCPME, Université de Lorraine, F-54000 Nancy, France
| |
Collapse
|
21
|
Yadav MK, Gupta AK, Ghosal PS, Mukherjee A. Remediation of carcinogenic arsenic by pyroaurite-based green adsorbent: isotherm, kinetic, mechanistic study, and applicability in real-life groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24982-24998. [PMID: 32342408 DOI: 10.1007/s11356-020-08868-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
The removal of the harmful carcinogen arsenic from drinking water by a green technology is a major concern in the field of environmental engineering. The sorptive profile of arsenic remediation by calcined Mg-Fe-layered double hydroxide, fabricated by a one-pot synthesis technique, was investigated to delineate its applicability in real-life water. The physicochemical properties of adsorbent, as demonstrated from spectroscopy and microscopy, which described the existence of amorphous material with significant surface roughness possess selectivity towards arsenic. The isotherm and kinetic along with thermodynamic modeling exhibited the occurrence of spontaneous (ΔG0 value = - 8.084 kJ/mol to - 10.942 kJ/mol), endothermic (ΔH0 value = 12.135 kJ/mol), and physisorption reactions (Ead = 4.103-5.832 kJ/mol, Ea = 11.546 kJ/mol, S* = 0.0005 << 1, and ΔHx = 9.23-16.29 kJ/mol) with high uptake rate and adsorption potential of adsorbent. The isotherm and kinetics were demonstrated by Temkin (R2 = 0.944-0.969) and Elovich (R2 = 0.996-0.998) models, respectively, with high statistical significance. The intraparticle diffusion model which established the rate-limiting step is the combination of both film and pore diffusions. The applicability of layered double hydroxide (LDH) material in the real-life water was confirmed by isotherm and kinetic modeling along with the regeneration/reuse potential. The adsorptive removal of arsenic by the LDH material exhibited to be a promising technique without creating any secondary hazard.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Department of Civil Engineering, Environmental Engineering Division, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhijit Mukherjee
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
22
|
A Hybrid {Silk@Zirconium MOF} Material as Highly Efficient As III-sponge. Sci Rep 2020; 10:9358. [PMID: 32518373 PMCID: PMC7283345 DOI: 10.1038/s41598-020-66091-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Exposure of humans to Arsenic from groundwater drinking sources is an acute global public health problem, entailing the urgent need for highly efficient/low-cost Arsenite (AsIII) up-taking materials. Herein we present an innovative hybrid-material, ZrMOF@SFd operating like an “AsIII-sponge” with unprecedented efficiency of 1800 mg AsIII gr−1. ZrMOF@SFd consists of a neutral Zirconium Metal-Organic Framework [ZrMOF] covalently grafted on a natural silk-fiber (SFd). ZrMOF itself exhibits AsIII adsorption of 2200 mg gr−1, which supersedes any -so far- known AsΙΙΙ-sorbent. Using XPS, FTIR, BET-porosimetry data, together with theoretical Surface-Complexation-Modeling (SCM), we show that the high-AsΙΙΙ-uptake is due to a sequence of two phenomena:[i] at low AsIII-concentrations, surface-complexation of H3AsO3 results in AsIII-coated voids of ZrMOF, [ii] at increased AsIII-concentrations, the AsIII-coated voids of ZrMOF are filled-up by H3AsO3via a partitioning-like mechanism. In a more general context, the present research exemplifies a mind-changing concept, i.e. that a “partitioning-like” mechanism can be operating for adsorption of metalloids, such as H3AsO3, by metal oxide materials. So far, such a mechanism has been conceptualized only for the uptake of non-polar organics by natural organic matter or synthetic polymers.
Collapse
|
23
|
Dutta S, Manna K, Srivastava SK, Gupta AK, Yadav MK. Hollow Polyaniline Microsphere/Fe 3O 4 Nanocomposite as an Effective Adsorbent for Removal of Arsenic from Water. Sci Rep 2020; 10:4982. [PMID: 32188897 PMCID: PMC7080834 DOI: 10.1038/s41598-020-61763-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022] Open
Abstract
Polyaniline hollow microsphere (PNHM)/Fe3O4 magnetic nanocomposites have been synthesized by a novel strategy and characterized. Subsequently, PNHM/Fe3O4-40 (Fe3O4 content: 40 wt.%) was used as an adsorbent for the removal of arsenic (As) from the contaminated water. Our investigations showed 98–99% removal of As(III) and As(V) in the presence of PNHM/Fe3O4-40 following pseudo-second-order kinetics (R2 > 0.97) and equilibrium isotherm data fitting well with Freundlich isotherm (R2 > 0.98). The maximum adsorption capacity of As(III) and As(V) correspond to 28.27 and 83.08 mg g−1, respectively. A probable adsorption mechanism based on X-ray photoelectron spectroscopy analysis was also proposed involving monodentate-mononuclear/bidentate-binuclear As-Fe complex formation via legend exchange. In contrast to NO3− and SO42− ions, the presence of PO43− and CO32− co-ions in contaminated water showed decrease in the adsorption capacity of As(III) due to the competitive adsorption. The regeneration and reusability studies of spent PNHM/Fe3O4-40 adsorbent showed ~83% of As(III) removal in the third adsorption cycle. PNHM/Fe3O4-40 was also found to be very effective in the removal of arsenic (<10 μg L−1) from naturally arsenic-contaminated groundwater sample.
Collapse
Affiliation(s)
- Soumi Dutta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kunal Manna
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Suneel Kumar Srivastava
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India. .,School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Manoj Kumar Yadav
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
24
|
Singh P, Sarswat A, Pittman CU, Mlsna T, Mohan D. Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar Nanocomposite Adsorbents-A Mechanistic Study. ACS OMEGA 2020; 5:2575-2593. [PMID: 32095682 PMCID: PMC7033674 DOI: 10.1021/acsomega.9b02842] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/04/2019] [Indexed: 05/04/2023]
Abstract
Rice and wheat husks were converted to biochars by slow pyrolysis (1 h) at 600 °C. Iron oxide rice husk hybrid biochar (RHIOB) and wheat husk hybrid biochar (WHIOB) were synthesized by copyrolysis of FeCl3-impregnated rice or wheat husks at 600 °C. These hybrid sorbents were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, physical parameter measurement system, and Brunauer-Emmett-Teller (BET) surface area techniques. Fe3O4 was the predominant iron oxide present with some Fe2O3. RHIOB and WHIOB rapidly chemisorbed As(III) from water (∼24% removal in first half an hour reaching up to ∼100% removal in 24 h) at surface Fe-OH functions forming monodentate ≡Fe-OAs(OH)2 and bidentate (≡Fe-O)2AsOH complexes. Optimum removal occurred in the pH 7.5-8.5 range for both RHIOB and WHIOB, but excellent removal occurred from pH 3 to 10. Batch kinetic studies at various initial adsorbate-adsorbent concentrations, temperatures, and contact times gave excellent pseudo-second-order model fits. Equilibrium data were fitted to different sorption isotherm models. Fits to isotherm models (based on R 2 and χ2) on RHIOB and WHIOB followed the order: Redlich-Peterson > Toth > Sips = Koble-Corrigan > Langmuir > Freundlich = Radke-Prausnitz > Temkin and Sips = Koble-Corrigan > Toth > Redlich-Peterson > Langmuir > Temkin > Freundlich = Radke-Prausnitz, respectively. Maximum adsorption capacities, Q RHIOB 0 = 96 μg/g and Q WHIOB 0 = 111 μg/g, were obtained. No As(III) oxidation to As(V) was detected. Arsenic adsorption was endothermic. Particle diffusion was a rate-determining step at low (≤50 μg/L) concentrations, but film diffusion controls the rate at ≥100-200 μg/L. Binding interactions with RHIOB and WHIOB were established, and the mechanism was carefully discussed. RHIOB and WHIOB can successfully be used for As(III) removal in single and multicomponent systems with no significant decrease in adsorption capacity in the presence of interfering ions mainly Cl-, HCO3 -, NO3 -, SO4 2-, PO4 3-, K+, Na+, Ca2+. Simultaneous As(III) desorption and regeneration of RHIOB and WHIOB was successfully achieved. A very nominal decrease in As(III) removal capacity in four consecutive cycles demonstrates the reusability of RHIOB and WHIOB. Furthermore, these sustainable composites had good sorption efficiencies and may be removed magnetically to avoid slow filtration.
Collapse
Affiliation(s)
- Prachi Singh
- School
of Environmental Sciences, Jawaharlal Nehru
University, New Delhi 110067, India
| | - Ankur Sarswat
- School
of Environmental Sciences, Jawaharlal Nehru
University, New Delhi 110067, India
| | - Charles U. Pittman
- Department
of Chemistry, Mississippi State University, Starkville, Mississippi
State 39762, United
States
| | - Todd Mlsna
- Department
of Chemistry, Mississippi State University, Starkville, Mississippi
State 39762, United
States
| | - Dinesh Mohan
- School
of Environmental Sciences, Jawaharlal Nehru
University, New Delhi 110067, India
- E-mail: . Phone: 0091-11-26704616. Fax: 0091-11-26704616
| |
Collapse
|
25
|
Wang X, Ding J, Wang L, Zhang S, Hou H, Zhang J, Chen J, Ma M, Tsang DCW, Wu X. Stabilization treatment of arsenic-alkali residue (AAR): Effect of the coexisting soluble carbonate on arsenic stabilization. ENVIRONMENT INTERNATIONAL 2020; 135:105406. [PMID: 31864033 DOI: 10.1016/j.envint.2019.105406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Arsenic-alkali residue (AAR) from antimony smelting is highly hazardous due to its ready leachability of As, seeking for proper disposal such as stabilization treatment. However, As stabilization in AAR would be challenging due to the high content of coexisting soluble carbonate. This study conducted the stabilization treatments of AAR by ferrous sulfate and lime, respectively, and revealed the significant influence of coexisting carbonate. It was found that ferrous sulfate was more efficient than lime, which required only one-tenth of dosages of lime to reduce the As leaching concentration from 915 mg/L to a level below 2.5 mg/L to meet the Chinese regulatory limit. The combining qualitative and quantitative analyses based on XRD, SEM-EDS, and thermodynamic modeling suggested that the formation of insoluble arsenate minerals, ferrous arsenate or calcium arsenate, was the predominant mechanism for As stabilization in the two treatment systems, and their efficiency difference was primarily attributed to the coexisting carbonate, which had a slight effect on ferrous arsenate but severely obstructed calcium arsenate formation. Moreover, the examination of As leaching concentrations in 1-year-cured samples indicated that the long-term stability of ferrous sulfate treatment was far superior to that of lime treatment. This study provides ferrous salts as a promising and green scheme for stabilization treatment of AAR as well as other similar As-bearing solid wastes with coexisting soluble carbonate.
Collapse
Affiliation(s)
- Xin Wang
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Ding
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linling Wang
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shuyuan Zhang
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huijie Hou
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingdong Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Chen
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Miao Ma
- Zhongnan Engineering Corporation Limited, Changsha 410000, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaohui Wu
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
26
|
Park I, Tabelin CB, Seno K, Jeon S, Inano H, Ito M, Hiroyoshi N. Carrier-microencapsulation of arsenopyrite using Al-catecholate complex: nature of oxidation products, effects on anodic and cathodic reactions, and coating stability under simulated weathering conditions. Heliyon 2020; 6:e03189. [PMID: 31956714 PMCID: PMC6961215 DOI: 10.1016/j.heliyon.2020.e03189] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/30/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
Mining activities often generate large amounts of sulfide-rich wastes containing arsenopyrite (FeAsS), which when dissolved releases toxic arsenic (As) and generates acid mine drainage (AMD) that are both disastrous to the environment. To suppress arsenopyrite dissolution, a technique that selectively coats sulfide minerals with a protective layer of Al-oxyhydroxide called Al-based carrier-microencapsulation (CME) was developed. Although a previous study of the authors showed that Al-based CME could significantly limit arsenopyrite dissolution, nature of the coating formed on arsenopyrite, including its electrochemical properties, is still not well understood. Moreover, stability of the coating once exposed to weathering conditions remains unclear. Better understanding of these important issues would greatly improve Al-based CME especially in its application to real mine wastes. In this study, nature of the coating formed by Al-based CME was investigated using SEM-EDX, DRIFTS and XPS while the electrochemical properties of the coating were evaluated by cyclic voltammetry and chronoamperometry. Meanwhile, stability of the coating was elucidated using consecutive batch leaching experiments and weathering cell tests. SEM-EDX, DRIFTS and XPS results indicate that the protective coating formed on arsenopyrite by Al-based CME was mainly composed of bayerite (α-Al(OH)3), gibbsite (γ-Al(OH)3), and boehmite (γ-AlO(OH)). These Al-based coatings, which have insulating properties, made arsenopyrite less electrochemically active. The coatings also limited the extent of both the anodic and cathodic half-cell reactions of arsenopyrite oxidation that suppressed As release and acid generation. Weathering cell tests indicated that the oxidation of CME-treated arsenopyrite was effectively limited until about 15 days but after this, it started to gradually progress with time due to the increasing acidity of the system where Al-based coatings became unstable. Nonetheless, CME-treated arsenopyrite was less oxidized based on the released amounts of Fe, As and S suppressed by 80, 60 and 70%, respectively, compared with the one treated with control.
Collapse
Affiliation(s)
- Ilhwan Park
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
- Corresponding author.
| | - Carlito Baltazar Tabelin
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kensuke Seno
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Sanghee Jeon
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Hiroyuki Inano
- Hokkaido Research Organization Industrial Research Institute, Sapporo, 060-0819, Japan
| | - Mayumi Ito
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Naoki Hiroyoshi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| |
Collapse
|
27
|
2D magnetic scallion sheathing-based biochar composites design and application for effective removal of arsenite in aqueous solutions. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Predicting the adsorption capacity of iron nanoparticles with metallic impurities (Cu, Ni and Pd) for arsenic removal: a DFT study. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00177-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Navarathna CM, Karunanayake AG, Gunatilake SR, Pittman CU, Perez F, Mohan D, Mlsna T. Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109429. [PMID: 31491719 DOI: 10.1016/j.jenvman.2019.109429] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/27/2019] [Accepted: 08/17/2019] [Indexed: 05/21/2023]
Abstract
Magnetic Fe3O4/Douglas fir biochar composites (MBC) were prepared with a 29.2% wt. Fe3O4 loading and used to treat As(III)-contaminated water. Toxicity of As(III) (inorganic) is significantly greater than As(V) and more difficult to remove from water. Removal efficiency was optimized verses pH, contact time and initial concentration. Column sorption and regeneration were also studied. Adsorption kinetics data best fitted the pseudo second order model (R2 > 0.99). Adsorption was analyzed with three isotherm models at 20, 25 and 40 °C. The Sips isotherm showed the best fit at 25 °C with a 5.49 mg/g adsorption capacity, which is comparable with other adsorbents. MBC gave faster kinetics (~1-1.5 h) at pH 7 and ambient temperature than previous adsorbents. The Gibbs free energy (ΔG) of this spontaneous As(III) adsorption was -35 kJ/mol and ΔH = 70 kJ/mol was endothermic. Experiments were performed on industrial and laboratory wastewater samples in the presence of other co-existing contaminants (pharmaceutical residues, heavy metals ions and oxi-anions). The composite reduced the arsenic concentrations below the WHO's safe limit of 0.2 mg/L for waste water discharge. X-ray photoelectron spectroscopy (XPS) studies found As(III) and less toxic As(V) on Fe3O4 surfaces indicating adsorbed (or adsorbing) As(III) oxidation occurred upon contact with O2 and possibly dissolved Fe(III) or upon drying under oxic conditions. Under anoxic conditions magnetite to maghemite transformation drives the oxidation. A pH-dependent surface chemisorption mechanism was proposed governing adsorption aided by XPS studies vs pH.
Collapse
Affiliation(s)
- Chanaka M Navarathna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Akila G Karunanayake
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA; Biochar Supreme Inc., Everson, WA, 98247, USA
| | - Sameera R Gunatilake
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya, CO, 10107, Sri Lanka
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Felio Perez
- Material Science Lab, Integrated Microscopy Center, University of Memphis, Memphis, TN, 38152, USA
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
30
|
Yin Z, Lützenkirchen J, Finck N, Celaries N, Dardenne K, Hansen HCB. Adsorption of arsenic(V) onto single sheet iron oxide: X-ray absorption fine structure and surface complexation. J Colloid Interface Sci 2019; 554:433-443. [DOI: 10.1016/j.jcis.2019.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
31
|
Nath BK, Chaliha C, Kalita E. Iron oxide Permeated Mesoporous rice-husk nanobiochar (IPMN) mediated removal of dissolved arsenic (As): Chemometric modelling and adsorption dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:397-409. [PMID: 31200174 DOI: 10.1016/j.jenvman.2019.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/11/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Adsorption based technologies are most widely used to mitigate the global predominance of heavy-metal groundwater contaminants like Arsenic (As), owing to their high efficiency and economic operation. The current study involves the optimization of Iron oxide Permeated Mesoporous rice-husk nanobiochars (IPMN) for As removal, which were synthesized through a chemically amended pyrolytic approach. The IPMN variants were screened based on preliminary OVAT (one-variable-at-a-time) studies for As removal. Chemometric investigations employing a central composite design matrix of Response surface methodology was further used to understand the influence of the process parameters on the adsorption of As on the most efficient IPMN variant. A Multi-Layered-Perceptron based artificial neural network was further used to confirm the veracity of the experimental and predictive conditions, to derive the optimal condition for the best adsorption efficiency. In addition, the dynamics of As adsorption by the optimal IPMN variant was modelled using pseudo-first-order (Lagergren) and pseudo-second-order (Ho) rate kinetic equations followed by isotherm studies using non-linear regression of Langmuir, Freundlich and Sips adsorption isotherms. The IPMNs have an appreciably higher uptake capacity (>90%) for dissolved As, as compared to the native milled rice husk (∼20%), alongside a substantial recyclability, thereby establishing their potential as a highly efficient, economical and sustainable nanobiochar for As removal.
Collapse
Affiliation(s)
- B K Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - C Chaliha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - E Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
32
|
Karimi A, Andreescu S, Andreescu D. Single-Particle Investigation of Environmental Redox Processes of Arsenic on Cerium Oxide Nanoparticles by Collision Electrochemistry. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24725-24734. [PMID: 31190542 DOI: 10.1021/acsami.9b05234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantification of chemical reactions of nanoparticles (NPs) and their interaction with contaminants is a fundamental need to the understanding of chemical reactivity and surface chemistry of NPs released into the environment. Herein, we propose a novel strategy employing single-particle electrochemistry showing that it is possible to measure reactivity, speciation, and loading of As3+ on individual NPs, using cerium oxide (CeO2) as a model system. We demonstrate that redox reactions and adsorption processes can be electrochemically quantified with high sensitivity via the oxidation of As3+ to As5+ at 0.8 V versus Ag/AgCl or the reduction of As3+ to As0 at -0.3 V (vs Ag/AgCl) generated by collisions of single particles at an ultramicroelectrode. Using collision electrochemistry, As3+ concentrations were determined in basic conditions showing a maximum adsorption capacity at pH 8. In acidic environments (pH < 4), a small fraction of As3+ was oxidized to As5+ by surface Ce4+ and further adsorbed onto the CeO2 surface as a As5+ bidentate complex. The frequency of current spikes (oxidative or reductive) was proportional to the concentration of As3+ accumulated onto the NPs and was found to be representative of the As3+ concentration in solution. Given its sensitivity and speciation capability, the method can find many applications in the analytical, materials, and environmental chemistry fields where there is a need to quantify the reactivity and surface interactions of NPs. This is the first study demonstrating the capability of single-particle collision electrochemistry to monitor the interaction of heavy metal ions with metal oxide NPs. This knowledge is critical to the fundamental understanding of the risks associated with the release of NPs into the environment for their safe implementation and practical use.
Collapse
Affiliation(s)
- Anahita Karimi
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| |
Collapse
|
33
|
Bahmani P, Maleki A, Daraei H, Rezaee R, Khamforoush M, Dehestani Athar S, Gharibi F, Ziaee AH, McKay G. Application of modified electrospun nanofiber membranes with α-Fe 2O 3 nanoparticles in arsenate removal from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21993-22009. [PMID: 31144174 DOI: 10.1007/s11356-019-05228-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
In the present study, electrospun nanofiber membranes (ENMs) of polyacrylonitrile (PAN) were modified by dispersing α-Fe2O3 nanoparticles, synthesized using a thermal solvent process, in a PAN solution. The morphology and physiochemical properties of the prepared ENMs and the α-Fe2O3 were characterized using FESEM, EDX, BET, XRD, FTIR, porosity, and contact angle measurement. XPS was used to investigate the interaction of ENM with arsenate (As(V)) during the adsorption. Moreover, the effect of pH, the equilibrium isotherm, and the kinetics were investigated in batch experiments. The Langmuir isotherm best correlated the experimental results, indicating monolayer adsorption on ENMs, and the kinetics was best fitted, R2 > 0.99, by the pseudo-second-order model. In addition, the effects of certain conditions on the filtration performance were examined, such as feed concentration and transmembrane pressure (TMP). By passing sodium hydroxide (0.1 M) for 20 min, the membrane was regenerated. The increase in TMP, along with the presence of co-ions including chloride, nitrate, and sulfate, had negative impacts on the removal of As(V). The results show that the modified ENMs with α-Fe2O3 nanoparticles are applicable for As(V) ion removal and possibly for eliminating other heavy metals from aqueous media.
Collapse
Affiliation(s)
- Pegah Bahmani
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Hiua Daraei
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Saeed Dehestani Athar
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Gharibi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Hossein Ziaee
- Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
34
|
Mdlovu NV, Lin KS, Chen CY, Mavuso FA, Kunene SC, Carrera Espinoza MJ. In-situ reductive degradation of chlorinated DNAPLs in contaminated groundwater using polyethyleneimine-modified zero-valent iron nanoparticles. CHEMOSPHERE 2019; 224:816-826. [PMID: 30851533 DOI: 10.1016/j.chemosphere.2019.02.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Zero-valent iron nanoparticles (ZVIN) have found applications in many strategies for on-site soil and groundwater decontamination. A number of studies have reported the prospective utilization of ZVIN in the reduction of chlorinated organic compounds such as dense non-aqueous phase liquids (DNAPLs) in groundwater. Due to their bioaccumulation and carcinogenesis, DNAPLs in groundwater are a human health hazard and pose environmental risks. Therefore, decontamination of these contaminants is necessary. This study presents the in-situ remediation of trichloroethylene (TCE), perchloroethene (PCE), and 1,2-dichloroethene (1,2-DCE) DNAPLs through the direct injection of polyethylenimine (PEI)-coated ZVIN (PEI-ZVIN composite materials) to facilitate the reduction of contaminants in low-permeability media. A field test was conducted at the premises of a petrochemical company, situated in the Miaoli County of Northern Taiwan that discharged significant amounts of DNAPLs. After in-situ injection and one-day of reaction with groundwater contaminants, ZVIN was further characterized to examine its efficacy in the reduction of pollutants. After the direct injection of PEI-ZVIN, a notable reduction in the concentration of DNAPLs was recorded with conversion from toxic to non-toxic substances. Use of resistivity image profiling (RIP) technique suggested similar conductivity data for the PEI-coated ZVIN suspension and groundwater samples. X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) studies depicted that the oxidation of ZVIN and PEI-ZVIN was occurring after the reductive reaction with contaminated groundwater. The reacted samples had bond distance values of 1.98, 2.00, 1.96, and 1.94 Å. Combining floating surface-coated ZVIN and RIP technique seems promising and environmentally attractive.
Collapse
Affiliation(s)
- Ndumiso Vukile Mdlovu
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Chung-Yu Chen
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Fikile Agath Mavuso
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Sikhumbuzo Charles Kunene
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Maria Janina Carrera Espinoza
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| |
Collapse
|
35
|
Yang J, Hou B, Wang J, Tian B, Bi J, Wang N, Li X, Huang X. Nanomaterials for the Removal of Heavy Metals from Wastewater. NANOMATERIALS 2019; 9:nano9030424. [PMID: 30871096 PMCID: PMC6473982 DOI: 10.3390/nano9030424] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
Removal of contaminants in wastewater, such as heavy metals, has become a severe problem in the world. Numerous technologies have been developed to deal with this problem. As an emerging technology, nanotechnology has been gaining increasing interest and many nanomaterials have been developed to remove heavy metals from polluted water, due to their excellent features resulting from the nanometer effect. In this work, novel nanomaterials, including carbon-based nanomaterials, zero-valent metal, metal-oxide based nanomaterials, and nanocomposites, and their applications for the removal of heavy metal ions from wastewater were systematically reviewed. Their efficiency, limitations, and advantages were compared and discussed. Furthermore, the promising perspective of nanomaterials in environmental applications was also discussed and potential directions for future work were suggested.
Collapse
Affiliation(s)
- Jinyue Yang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Baohong Hou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Beiqian Tian
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jingtao Bi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xin Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
36
|
Pramanik K, Sarkar P, Bhattacharyay D. 3‑Mercapto‑propanoic acid modified cellulose filter paper for quick removal of arsenate from drinking water. Int J Biol Macromol 2019; 122:185-194. [PMID: 30340008 DOI: 10.1016/j.ijbiomac.2018.10.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 11/20/2022]
Abstract
This paper reports a simple, facile and rapid preparation of 3‑mercapto‑propanoic acid (MPA) modified cellulose filter paper (MPA-Cell paper) for arsenate removal from drinking water. The MPA was covalently grafted to the cellulose filter paper (Cell) by esterification process through the formation of O‑acylisourea intermediate and characterized by the FTIR, SEM, EDS and XPS analyses. The arsenate adsorption efficiency was studied for batch and semi-continuous systems while exploring the adsorption kinetics, isotherm and the effect of pH for the former. The experimental data fitted well with Langmuir, Dubinin-Radushkevich (DR) and pseudo second order kinetic models. The mechanism of adsorption was studied by FTIR spectroscopy utilizing the adsorption isotherm, kinetic model and XPS results. The modified filter paper performed well at nearly neutral pH in arsenate removal through adsorption and demonstrated a significant arsenate uptake capacity of 92.59 mg/g. The DR and FTIR results indicated that the adsorption of arsenate ion occurred through ion exchange process. The MPA-Cell paper could have a potential use as low-cost but efficient commercial adsorbent for arsenate abatement from contaminated drinking water by both batch as well as semi-continuous operating systems. The MPA-Cell paper could purify ground water containing high level of arsenate.
Collapse
Affiliation(s)
- Krishnendu Pramanik
- Biosensor Laboratory, Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India; Department of Chemical Engineering, Calcutta Institute of Technology, Banitabla, Howrah 711316, West Bengal, India
| | - Priyabrata Sarkar
- Department of Chemical Engineering, Calcutta Institute of Technology, Banitabla, Howrah 711316, West Bengal, India.
| | - Dipankar Bhattacharyay
- Department of Chemical Engineering, Calcutta Institute of Technology, Banitabla, Howrah 711316, West Bengal, India
| |
Collapse
|
37
|
Zhang Y, Zhu C, Liu F, Yuan Y, Wu H, Li A. Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:265-279. [PMID: 30055489 DOI: 10.1016/j.scitotenv.2018.07.279] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 05/12/2023]
Abstract
Adsorption is one of the most widely used and effective wastewater treatment methods. The role of ionic strength (IS) in shaping the adsorption performances is much necessary due to the ubiquity of electrolyte ions in water body and industrial effluents. The influences of IS on adsorption are rather complex, because electrolyte ions affect both adsorption kinetics and thermodynamics by changing the basic characteristics of adsorbents and adsorbates. For a given adsorption system, multiple or even contradictory effects of IS may coexist under identical experimental conditions, rendering the dominant mechanism recognition and net effect prediction complicated. We herein reviewed the key advancement on the interaction and mechanisms of IS, including change in number of active sites for adsorbents, ion pair for metal ions, molecular aggregation and salting-out effect for organic compounds, site competition for both inorganic and organic adsorbates, and charge compensation for adsorbent-adsorbate reciprocal interactions. The corresponding fundamental theory was thoroughly described, and the efforts made by various researchers were explicated. The structural optimization of adsorbents affected by IS was detailed, also highlighting polyamine materials with exciting "salt-promotion" effects on heavy metal removal from high salinity wastewater. In addition, the research trends and prospects were briefly discussed.
Collapse
Affiliation(s)
- Yanhong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Changqing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China.
| | - Yuan Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Haide Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| |
Collapse
|
38
|
Karanac M, Đolić M, Veličković Z, Kapidžić A, Ivanovski V, Mitrić M, Marinković A. Efficient multistep arsenate removal onto magnetite modified fly ash. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 224:263-276. [PMID: 30055459 DOI: 10.1016/j.jenvman.2018.07.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/07/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
The modification of the fly ash (FA) by magnetite (M) was performed to obtain FAM adsorbent with improved adsorption efficiency for arsenate removal from water. The novel low cost adsorbents are characterized by liquid nitrogen porosimetry (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), Mössbauer spectroscopy (MB) and Fourier transform infrared (FTIR) spectroscopy. The optimal conditions and key factors influencing the adsorbent synthesis are assessed using the response surface method (RSM). The adsorption experiment was carried out in a batch system by varying the contact time, temperature, pH, and mass of the adsorbent. The adsorption capacity of the FAM adsorbent for As(V), calculated by Langmuir model, was 19.14 mg g-1. The thermodynamic parameters showed spontaneity of adsorption with low endothermic character. The kinetic data followed the pseudo-second-order kinetic model (PSO), and Weber-Morris model indicated intra-particle diffusion as rate limiting step. Alternative to low desorption capability of the FAM was found by five consecutive adsorption/magnetite precipitation processes which gave exhausted layered adsorbent with 65.78 mg g-1 capacity. This research also has shed light on the mechanism of As(V)-ion adsorption, presenting a promising solution for the valorization of a widely abundant industrial waste.
Collapse
Affiliation(s)
- Milica Karanac
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia.
| | - Maja Đolić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Zlate Veličković
- Military Academy, University of Defence, General Pavle Jurišić - Šturm 33, 11000 Belgrade, Serbia
| | - Ana Kapidžić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Valentin Ivanovski
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Miodrag Mitrić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
39
|
Huo L, Huang D, Zeng X, Su S, Wang Y, Bai L, Wu C. Arsenic availability and uptake by edible rape (Brassica campestris L.) grown in contaminated soils spiked with carboxymethyl cellulose-stabilized ferrihydrite nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15080-15088. [PMID: 29557040 DOI: 10.1007/s11356-018-1718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
This study investigated arsenic (As) availability and uptake by rape (Brassica campestris L.) during two harvest periods of carboxymethyl cellulose (CMC)-stabilized ferrihydrite (HFO) nanoparticles for in situ treatment As-contaminated soil. Application of modified HFO nanoparticles in soils not only provided a larger specific surface area but also markedly improved stability against aggregation and recrystallization. For 90-day incubation, bare HFO particles were gradually converted to the crystalline Fe(III) oxide form, although this was not observed for the 0.5% CMC-HFO nanoparticles. CMC-modified HFO nanoparticles could be more effective in lowering the As uptake by rape and available As in soils than bare HFO particles. Compared the control without amendments, As contents in rape and available As in soils decreased 69.7 and 59.0%, respectively, during the second harvest when soils were amended with 0.5% HFO nanoparticles. And the soil-solution distribution coefficient (K d ) increased by 2.6 and 2.8 times for the first and second harvest. Furthermore, the ratio of amorphous and free Fe-oxides (Feo/Fed) showed significant negative linear correlations with Asplant (P < 0.01), available As (P < 0.05), and nonspecifically sorbed As in soil (P < 0.01). In contrast, Feo/Fed was positively correlated with K d and amorphous crystalline Fe/Al oxide-sorbed As, which suggests that a larger amount of As is associated with Fe(hydr)oxide in the amorphous phase or smaller particles.
Collapse
Affiliation(s)
- Lijuan Huo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Institute of Environmental Science, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China
| | - Daoyou Huang
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lingyu Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cuixia Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
40
|
Gore P, Khraisheh M, Kandasubramanian B. Nanofibers of resorcinol-formaldehyde for effective adsorption of As (III) ions from mimicked effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11729-11745. [PMID: 29442308 DOI: 10.1007/s11356-018-1304-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
In the present study, the core-shell structured RF/PVA nanofibers have been developed and used for the adsorption of As3+ ions from the mimicked liquid effluents. Efficient-facile fabrication of the structured nanofibers (300-417 nm diameter) was accomplished using facile electrospinning technique. Chi parameter (χ = 25.56) and free energy of mixing (Emix = 17.19 kcal/mol) calculated via molecular dynamics simulations depicted compatibility of the polymeric system resulting supermolecular core-shell nanofibers, whose adsorption results were also supported by the FE-SEM, FT-IR, and UV-VIS spectroscopy analysis. The adsorption analysis was performed using both linear and non-linear regression methods, for kinetic models and adsorption isotherms. The developed nanofibers demonstrated an adsorption capacity of 11.09 mg/g at a pH of 7, and an adsorption efficiency of 97.46% on protracted exposure, which is even adaptable at high temperatures with 93.1% reclamation. FE-SEM analysis and FT-IR spectra confirm the adsorption of As (III) ions on RF/PVA nanofibers and the presence of embedded hydrophilic oxygen sites for metal ion adsorption. The developed RF/PVA nanofibers demonstrate scalability in fabrication, low-cost, recycling, and less solid waste generation, depicting the large-scale applicability in removing arsenic ions from effluent waste. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Prakash Gore
- Department of Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra, 411025, India
| | - Majeda Khraisheh
- Department of Chemical Engineering, Qatar University, Doha, Qatar
| | - Balasubramanian Kandasubramanian
- Department of Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra, 411025, India.
| |
Collapse
|
41
|
Li FY, Koopal L, Tan WF. Effect of citrate on the species and levels of Al impurities in ferrihydrite. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Biotechnological Advances for Restoring Degraded Land for Sustainable Development. Trends Biotechnol 2017; 35:847-859. [PMID: 28606405 DOI: 10.1016/j.tibtech.2017.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 01/24/2023]
Abstract
Global land resources are under severe threat due to pollution and unsustainable land use practices. Restoring degraded land is imperative for regaining ecosystem services, such as biodiversity maintenance and nutrient and water cycling, and to meet the food, feed, fuel, and fibre requirements of present and future generations. While bioremediation is acknowledged as a promising technology for restoring polluted and degraded lands, its field potential is limited for various reasons. However, recent biotechnological advancements, including producing efficient microbial consortia, applying enzymes with higher degrees of specificity, and designing plants with specific microbial partners, are opening new prospects in remediation technology. This review provides insights into such promising ways to harness biotechnology as ecofriendly methods for remediation and restoration.
Collapse
|