1
|
Li S, Gao X, Han Y, Song Y, Wu W, Fan Y, Ren C, Hao L. Dynamic whole-transcriptome landscape of acute bilirubin encephalopathy in newborns. J Pharm Biomed Anal 2024; 247:116250. [PMID: 38850848 DOI: 10.1016/j.jpba.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024]
Abstract
Hyperbilirubinemia in newborns may progress to acute bilirubin encephalopathy (ABE), posing short- and long-term health risks. Despite extensive research identifying numerous mRNAs, lncRNAs, circRNAs, and miRNAs associated with brain injury, their roles in neonatal bilirubin-induced brain injury remain elusive. This study employed whole-transcriptome sequencing to ascertain the differentially expressed (DE) RNA profiles in a newborn ABE rat model, followed by bioinformatic analysis. A time-series competing endogenous RNA (ceRNA) regulatory network was established, and the expression trends of 9 arbitrarily chosen RNAs were verified through quantitative real-time polymerase chain reaction(qRT-PCR). In comparison with the control group, we identified 595, 888, and 1448 DE mRNAs; 22, 37, and 37 DE miRNAs; 1945, 1869, and 1997 DE lncRNAs; and 31, 28, and 36 DE circRNAs at 6 h, 12 h, and 24 h, respectively. Predominantly, these DERNAs contribute to biological functions and pathways associated with inflammation, immunity, metabolism, cell death, and neurodevelopmental regulation. Moreover, we constructed ceRNA networks of DE lncRNA/circRNA-DE miRNA-DE mRNA based on time series. The qRT-PCR expression trends for the selected 9 RNAs were generally similar to the RNA-seq outcomes. This investigation uniquely delineated the temporal expression patterns of mRNA and non-coding RNA in ABE, establishing ceRNA networks and identifying potential molecular mechanisms underlying bilirubin-induced hippocampal damage. Nonetheless, further studies are warranted to corroborate these findings in humans.
Collapse
Affiliation(s)
- Shangbin Li
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Xiong Gao
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Yiwei Han
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Yankun Song
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Wenhui Wu
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Yuqing Fan
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Changjun Ren
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China.
| | - Ling Hao
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
2
|
Zhou J, Tang J, Zhang C, Li G, Lin X, Liao S, Luo J, Yu G, Zheng F, Guo Z, Shao W, Hu H, Xu L, Wu S, Li H. ALKBH5 targets ACSL4 mRNA stability to modulate ferroptosis in hyperbilirubinemia-induced brain damage. Free Radic Biol Med 2024; 220:271-287. [PMID: 38734267 DOI: 10.1016/j.freeradbiomed.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Bilirubin-induced brain damage is a serious clinical consequence of hyperbilirubinemia, yet the underlying molecular mechanisms remain largely unknown. Ferroptosis, an iron-dependent cell death, is characterized by iron overload and lipid peroxidation. Here, we report a novel regulatory mechanism of demethylase AlkB homolog 5 (ALKBH5) in acyl-coenzyme A synthetase long-chain family member 4 (ACSL4)-mediated ferroptosis in hyperbilirubinemia. Hyperdifferential PC12 cells and newborn Sprague-Dawley rats were used to establish in vitro and in vivo hyperbilirubinemia models, respectively. Proteomics, coupled with bioinformatics analysis, first suggested the important role of ferroptosis in hyperbilirubinemia-induced brain damage. In vitro experiments showed that ferroptosis is activated in hyperbilirubinemia, and ferroptosis inhibitors (desferrioxamine and ferrostatin-1) treatment effectively alleviates hyperbilirubinemia-induced oxidative damage. Notably, we observed that the ferroptosis in hyperbilirubinemia was regulated by m6A modification through the downregulation of ALKBH5 expression. MeRIP-seq and RIP-seq showed that ALKBH5 may trigger hyperbilirubinemia ferroptosis by stabilizing ACSL4 mRNA via m6A modification. Further, hyperbilirubinemia-induced oxidative damage was alleviated through ACSL4 genetic knockdown or rosiglitazone-mediated chemical repression but was exacerbated by ACSL4 overexpression. Mechanistically, ALKBH5 promotes ACSL4 mRNA stability and ferroptosis by combining the 669 and 2015 m6A modified sites within 3' UTR of ACSL4 mRNA. Our findings unveil a novel molecular mechanism of ferroptosis and suggest that m6A-dependent ferroptosis could be an underlying clinical target for the therapy of hyperbilirubinemia.
Collapse
Affiliation(s)
- Jinfu Zhou
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Jianping Tang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Chenran Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Guilin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Sining Liao
- Center for Disease Control and Prevention of Shantou, Shantou, Guangdong, 515000, China
| | - Jinying Luo
- Obstetrics and Gynecology Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
3
|
Huang SS, Ding Y, Yi XN, Mao HY, Xie ZY, Shen XK, Lu Y, Yan J, Wang YW, Yang ZX. Exploring the inverse relationship between serum total bilirubin and systemic immune-inflammation index: insights from NHANES data (2009-2018). Eur J Med Res 2024; 29:362. [PMID: 38997774 PMCID: PMC11241915 DOI: 10.1186/s40001-024-01963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Bilirubin is known for its multifaceted attributes, including antioxidant, anti-inflammatory, immunomodulatory, and antiapoptotic properties. The systemic immune-inflammation index (SII) is a recent marker that reflects the balance between inflammation and immune response. Despite the wealth of information available on bilirubin's diverse functionalities, the potential correlation between the total bilirubin (TB) levels and SII has not been investigated so far. METHODS Leveraging data from the National Health and Nutrition Examination Survey spanning 2009-2018, the TB levels were categorized using tertiles. Employing the chi-squared test with Rao and Scott's second-order correction and Spearman's rank correlation analysis, the association between TB and SII was examined. The potential nonlinearities between TB and SII were evaluated using restricted cubic spline (RCS) analysis. Weighted linear regression, adjusted for covariates, was used to explore the correlation between TB and SII, with further subgroup analyses. RESULTS A total of 16,858 participants were included, and the findings revealed significant SII variations across TB tertiles (p < 0.001). The third tertile (Q3) exhibited the lowest SII level at 495.73 (295.00) 1000 cells/µL. Spearman rank correlation disclosed the negative association between TB and SII. RCS analysis exposed the lack of statistically significant variations in the nonlinear relationship (p > 0.05), thereby providing support for a linear relationship. Weighted linear regression analysis underscored the negative correlation between TB and SII (β 95% CI - 3.9 [- 5.0 to - 2.9], p < 0.001). The increase in the TB levels is associated with a significant linear trend toward decreasing SII. After controlling for relative covariates, this negative correlation increased (p < 0.001). Subgroup analysis confirmed the significant negative TB-SII association. CONCLUSION A notable negative correlation between TB and SII implies the potential protective effects of bilirubin in inflammation-related diseases.
Collapse
Affiliation(s)
- Shan-Shan Huang
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Yi Ding
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Xiao-Na Yi
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Hai-Yan Mao
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Zhen-Ye Xie
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Xing-Kai Shen
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Yan Lu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, 310030, China
| | - Jing Yan
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, 310030, China.
| | - You-Wei Wang
- Institute of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Zhou-Xin Yang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, 310030, China.
| |
Collapse
|
4
|
Gazzin S, Tiribelli C. An egg a day keeps kernicterus away. Pediatr Res 2024; 96:21-22. [PMID: 38402318 DOI: 10.1038/s41390-024-03103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/26/2024]
Affiliation(s)
- Silvia Gazzin
- Liver Brian Unit "Rita Moretti", Fondazione Italiana Fegato - Onlus, AREA Science Park - Basovizza Campus, 34149, Trieste, Italy
| | - Claudio Tiribelli
- Liver Brian Unit "Rita Moretti", Fondazione Italiana Fegato - Onlus, AREA Science Park - Basovizza Campus, 34149, Trieste, Italy.
| |
Collapse
|
5
|
Gazzin S, Bellarosa C, Tiribelli C. Molecular events in brain bilirubin toxicity revisited. Pediatr Res 2024; 95:1734-1740. [PMID: 38378754 DOI: 10.1038/s41390-024-03084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Abstract
The mechanisms involved in bilirubin neurotoxicity are still far from being fully elucidated. Several different events concur to damage mainly the neurons among which inflammation and alteration of the redox state play a major role. An imbalance of cellular calcium homeostasis has been recently described to be associated with toxic concentrations of bilirubin, and this disequilibrium may in turn elicit an inflammatory reaction. The different and age-dependent sensitivity to bilirubin damage must also be considered in describing the dramatic clinical picture of bilirubin-induced neurological damage (BIND) formerly known as kernicterus spectrum disorder (KSD). This review aims to critically address what is known and what is not in the molecular events of bilirubin neurotoxicity to provide hints for a better diagnosis and more successful treatments. Part of these concepts have been presented at the 38th Annual Audrey K. Brown Kernicterus Symposium of Pediatric American Society, Washington DC, May 1, 2023.
Collapse
Affiliation(s)
- Silvia Gazzin
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Cristina Bellarosa
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Claudio Tiribelli
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy.
| |
Collapse
|
6
|
Ficiarà E, Molinar C, Gazzin S, Jayanti S, Argenziano M, Nasi L, Casoli F, Albertini F, Ansari SA, Marcantoni A, Tomagra G, Carabelli V, Guiot C, D’Agata F, Cavalli R. Developing Iron Nanochelating Agents: Preliminary Investigation of Effectiveness and Safety for Central Nervous System Applications. Int J Mol Sci 2024; 25:729. [PMID: 38255803 PMCID: PMC10815234 DOI: 10.3390/ijms25020729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Excessive iron levels are believed to contribute to the development of neurodegenerative disorders by promoting oxidative stress and harmful protein clustering. Novel chelation treatments that can effectively remove excess iron while minimizing negative effects on the nervous system are being explored. This study focuses on the creation and evaluation of innovative nanobubble (NB) formulations, shelled with various polymers such as glycol-chitosan (GC) and glycol-chitosan conjugated with deferoxamine (DFO), to enhance their ability to bind iron. Various methods were used to evaluate their physical and chemical properties, chelation capacity in diverse iron solutions and impact on reactive oxygen species (ROS). Notably, the GC-DFO NBs demonstrated the ability to decrease amyloid-β protein misfolding caused by iron. To assess potential toxicity, in vitro cytotoxicity testing was conducted using organotypic brain cultures from the substantia nigra, revealing no adverse effects at appropriate concentrations. Additionally, the impact of NBs on spontaneous electrical signaling in hippocampal neurons was examined. Our findings suggest a novel nanochelation approach utilizing DFO-conjugated NBs for the removal of excess iron in cerebral regions, potentially preventing neurotoxic effects.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, Center for Neuroscience, University of Camerino, 62032 Camerino, Italy;
| | - Chiara Molinar
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.G.); (S.J.)
| | - Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.G.); (S.J.)
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Lucia Nasi
- Institute of Materials for Electronics and Magnetism (IMEM) CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Francesca Casoli
- Institute of Materials for Electronics and Magnetism (IMEM) CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Franca Albertini
- Institute of Materials for Electronics and Magnetism (IMEM) CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Shoeb Anwar Ansari
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (C.G.)
| | - Andrea Marcantoni
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Giulia Tomagra
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Valentina Carabelli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (C.G.)
| | - Federico D’Agata
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (C.G.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| |
Collapse
|
7
|
Llido JP, Fioriti E, Pascut D, Giuffrè M, Bottin C, Zanconati F, Tiribelli C, Gazzin S. Bilirubin-Induced Transcriptomic Imprinting in Neonatal Hyperbilirubinemia. BIOLOGY 2023; 12:834. [PMID: 37372119 DOI: 10.3390/biology12060834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Recent findings indicated aberrant epigenetic control of the central nervous system (CNS) development in hyperbilirubinemic Gunn rats as an additional cause of cerebellar hypoplasia, the landmark of bilirubin neurotoxicity in rodents. Because the symptoms in severely hyperbilirubinemic human neonates suggest other regions as privileged targets of bilirubin neurotoxicity, we expanded the study of the potential impact of bilirubin on the control of postnatal brain development to regions correlating with human symptoms. Histology, transcriptomic, gene correlation, and behavioral studies were performed. The histology revealed widespread perturbation 9 days after birth, restoring in adulthood. At the genetic level, regional differences were noticed. Bilirubin affected synaptogenesis, repair, differentiation, energy, extracellular matrix development, etc., with transient alterations in the hippocampus (memory, learning, and cognition) and inferior colliculi (auditory functions) but permanent changes in the parietal cortex. Behavioral tests confirmed the presence of a permanent motor disability. The data correlate well both with the clinic description of neonatal bilirubin-induced neurotoxicity, as well as with the neurologic syndromes reported in adults that suffered neonatal hyperbilirubinemia. The results pave the way for better deciphering the neurotoxic features of bilirubin and evaluating deeply the efficacy of new therapeutic approaches against the acute and long-lasting sequels of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- John Paul Llido
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - Emanuela Fioriti
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Devis Pascut
- Liver Cancer Unit, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| | - Silvia Gazzin
- Liver Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, 34149 Basovizza, Italy
| |
Collapse
|
8
|
Models of bilirubin neurological damage: lessons learned and new challenges. Pediatr Res 2022:10.1038/s41390-022-02351-x. [PMID: 36302856 DOI: 10.1038/s41390-022-02351-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Jaundice (icterus) is the visible manifestation of the accumulation of bilirubin in the tissue and is indicative of potential toxicity to the brain. Since its very first description more than 2000 years ago, many efforts have been undertaken to understand the molecular determinants of bilirubin toxicity to neuronal cells to reduce the risk of neurological sequelae through the use of available chemicals and in vitro, ex vivo, in vivo, and clinical models. Although several studies have been performed, important questions remain unanswered, such as the reasons for regional sensitivity and the interplay with brain development. The number of new molecular effects identified has increased further, which has added even more complexity to the understanding of the condition. As new research challenges emerged, so does the need to establish solid models of prematurity. METHODS This review critically summarizes the key mechanisms of severe neonatal hyperbilirubinemia and the use of the available models and technologies for translational research. IMPACT We critically review the conceptual dogmas and models used for studying bilirubin-induced neurotoxicity. We point out the pitfalls and translational gaps, and suggest new clinical research challenges. We hope to inform researchers on the pro and cons of the models used, and to help direct their experimental focus in a most translational research.
Collapse
|
9
|
Pranty AI, Shumka S, Adjaye J. Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Organoid Models. Cells 2022; 11:2647. [PMID: 36078055 PMCID: PMC9454749 DOI: 10.3390/cells11172647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Bilirubin-induced neurological damage (BIND) has been a subject of studies for decades, yet the molecular mechanisms at the core of this damage remain largely unknown. Throughout the years, many in vivo chronic bilirubin encephalopathy models, such as the Gunn rat and transgenic mice, have further elucidated the molecular basis of bilirubin neurotoxicity as well as the correlations between high levels of unconjugated bilirubin (UCB) and brain damage. Regardless of being invaluable, these models cannot accurately recapitulate the human brain and liver system; therefore, establishing a physiologically recapitulating in vitro model has become a prerequisite to unveil the breadth of complexities that accompany the detrimental effects of UCB on the liver and developing human brain. Stem-cell-derived 3D brain organoid models offer a promising platform as they bear more resemblance to the human brain system compared to existing models. This review provides an explicit picture of the current state of the art, advancements, and challenges faced by the various models as well as the possibilities of using stem-cell-derived 3D organoids as an efficient tool to be included in research, drug screening, and therapeutic strategies for future clinical applications.
Collapse
Affiliation(s)
| | | | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Faculty of Medicine, Heinrich-Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| |
Collapse
|
10
|
Magai DN, Koot HM, Newton CR, Abubakar A. Long-Term Mental Health and Quality of Life Outcomes of Neonatal Insults in Kilifi, Kenya. Child Psychiatry Hum Dev 2022; 53:212-222. [PMID: 33452950 PMCID: PMC8924086 DOI: 10.1007/s10578-020-01079-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
We examined the mental health and quality of life (QoL) outcomes and their correlates of school-aged survivors of neonatal jaundice (NNJ), hypoxic-ischemic encephalopathy (HIE), and a comparison group. The Child Behavior Checklist and the Pediatric Quality of Life Inventory were administered to assess the mental health and QoL of 375 children (134 with NNJ, 107 with HIE, and 134 comparison group) aged 6 to 12 years [Median age 9 (interquartile range 7 to 11)]. The results showed that survivors of NNJ and HIE have mental health problems and QoL similar to the comparison group. Maternal mental health was the predominant covariate of mental health and QoL in survivors of NNJ and HIE. This result could indicate that mothers with mental health problems are more likely to have children with mental health issues, but also that caring for children with these adversities may affect mental health well-being of the caregivers. There is a need for early mental health screening and psychosocial intervention for caregivers and their children to enhance both their mental health and QoL.
Collapse
Affiliation(s)
- Dorcas N Magai
- Department of Clinical, Neuro- and Developmental Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands.
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya.
| | - Hans M Koot
- Department of Clinical, Neuro- and Developmental Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands
| | - Charles R Newton
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
- Department of Public Health, Pwani University, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Amina Abubakar
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
- Department of Public Health, Pwani University, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
- Institute for Human Development, Aga Khan University, Nairobi, Kenya
| |
Collapse
|
11
|
Yang ZX, Lv XL, Yan J. Serum Total Bilirubin Level Is Associated With Hospital Mortality Rate in Adult Critically Ill Patients: A Retrospective Study. Front Med (Lausanne) 2021; 8:697027. [PMID: 34671613 PMCID: PMC8520946 DOI: 10.3389/fmed.2021.697027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Serum bilirubin level has been suggested to be associated with mortality for patients with severe sepsis. This study aimed to investigate the association of serum total bilirubin level with hospital mortality rate in adult critically ill patients. Method: Data were extracted from the Medical Information Mart for Intensive Care-III (MIMIC-III) database. Patients with measured serum total bilirubin levels that recorded within 24 h after admission were involved in this study. Association of serum total bilirubin level and hospital mortality rate was assessed using logistic regression analysis. Propensity score-matching (PSM) was used to minimize differences between different groups. Results: A total of 12,035 critically ill patients were herein involved. In patients with serum total bilirubin level ≥ 2 mg/dL, the hospital mortality rate was 31.9% compared with 17.0% for patients with serum total bilirubin level < 2 mg/dL (546/1714 vs. 1750/10321, P < 0.001). The results of multivariable logistic regression analysis showed that the odds ratio of mortality in patients with serum total bilirubin level ≥ 2 mg/dL was 1.654 [95% confidence interval (CI): 1.307, 2.093, P < 0.001]. After propensity score matching, in patients with serum total bilirubin level ≥ 2 mg/dL, the weighted hospital mortality rate was 32.2% compared with 24.8% for patients with serum total bilirubin level < 2 mg/dL, P = 0.001). Conclusions: Serum total bilirubin concentration was found to be independently associated with hospital mortality rate in adult critically ill patients.
Collapse
Affiliation(s)
- Zhou-Xin Yang
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, China
| | - Xiao-Ling Lv
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, China
| | - Jing Yan
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
12
|
The Effects of Bilirubin and Lumirubin on the Differentiation of Human Pluripotent Cell-Derived Neural Stem Cells. Antioxidants (Basel) 2021; 10:antiox10101532. [PMID: 34679668 PMCID: PMC8532948 DOI: 10.3390/antiox10101532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
The ‘gold standard’ treatment of severe neonatal jaundice is phototherapy with blue–green light, which produces more polar photo-oxidation products that are easily excreted via the bile or urine. The aim of this study was to compare the effects of bilirubin (BR) and its major photo-oxidation product lumirubin (LR) on the proliferation, differentiation, morphology, and specific gene and protein expressions of self-renewing human pluripotent stem cell-derived neural stem cells (NSC). Neither BR nor LR in biologically relevant concentrations (12.5 and 25 µmol/L) affected cell proliferation or the cell cycle phases of NSC. Although none of these pigments affected terminal differentiation to neurons and astrocytes, when compared to LR, BR exerted a dose-dependent cytotoxicity on self-renewing NSC. In contrast, LR had a substantial effect on the morphology of the NSC, inducing them to form highly polar rosette-like structures associated with the redistribution of specific cellular proteins (β-catenin/N-cadherin) responsible for membrane polarity. This observation was accompanied by lower expressions of NSC-specific proteins (such as SOX1, NR2F2, or PAX6) together with the upregulation of phospho-ERK. Collectively, the data indicated that both BR and LR affect early human neurodevelopment in vitro, which may have clinical relevance in phototherapy-treated hyperbilirubinemic neonates.
Collapse
|
13
|
Dvořák A, Pospíšilová K, Žížalová K, Capková N, Muchová L, Vecka M, Vrzáčková N, Křížová J, Zelenka J, Vítek L. The Effects of Bilirubin and Lumirubin on Metabolic and Oxidative Stress Markers. Front Pharmacol 2021; 12:567001. [PMID: 33746746 PMCID: PMC7969661 DOI: 10.3389/fphar.2021.567001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
For severe unconjugated hyperbilirubinemia the gold standard treatment is phototherapy with blue-green light, producing more polar photo-oxidation products, believed to be non-toxic. The aim of the present study was to compare the effects of bilirubin (BR) and lumirubin (LR), the major BR photo-oxidation product, on metabolic and oxidative stress markers. The biological activities of these pigments were investigated on several human and murine cell lines, with the focus on mitochondrial respiration, substrate metabolism, reactive oxygen species production, and the overall effects on cell viability. Compared to BR, LR was found to be much less toxic, while still maintaining a similar antioxidant capacity in the serum as well as suppressing activity leading to mitochondrial superoxide production. Nevertheless, due to its lower lipophilicity, LR was less efficient in preventing lipoperoxidation. The cytotoxicity of BR was affected by the cellular glycolytic reserve, most compromised in human hepatoblastoma HepG2 cells. The observed effects were correlated with changes in the production of tricarboxylic acid cycle metabolites. Both BR and LR modulated expression of PPARα downstream effectors involved in lipid and glucose metabolism. Proinflammatory effects of BR, evidenced by increased expression of TNFα upon exposure to bacterial lipopolysaccharide, were observed in murine macrophage-like RAW 264.7 cells. Collectively, these data point to the biological effects of BR and its photo-oxidation products, which might have clinical relevance in phototherapy-treated hyperbilirubinemic neonates and adult patients.
Collapse
Affiliation(s)
- Aleš Dvořák
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateřina Pospíšilová
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateřina Žížalová
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Nikola Capková
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Lucie Muchová
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Marek Vecka
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
- 4 Department of Internal Medicine, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Nikola Vrzáčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Jana Křížová
- Department of Paediatrics and Inherited Metabolic Disorders, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
- 4 Department of Internal Medicine, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
14
|
Gazzin S, Dal Ben M, Montrone M, Jayanti S, Lorenzon A, Bramante A, Bottin C, Moretti R, Tiribelli C. Curcumin Prevents Cerebellar Hypoplasia and Restores the Behavior in Hyperbilirubinemic Gunn Rat by a Pleiotropic Effect on the Molecular Effectors of Brain Damage. Int J Mol Sci 2020; 22:ijms22010299. [PMID: 33396688 PMCID: PMC7795686 DOI: 10.3390/ijms22010299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 01/08/2023] Open
Abstract
Bilirubin toxicity to the central nervous system (CNS) is responsible for severe and permanent neurologic damage, resulting in hearing loss, cognitive, and movement impairment. Timely and effective management of severe neonatal hyperbilirubinemia by phototherapy or exchange transfusion is crucial for avoiding permanent neurological consequences, but these therapies are not always possible, particularly in low-income countries. To explore alternative options, we investigated a pharmaceutical approach focused on protecting the CNS from pigment toxicity, independently from serum bilirubin level. To this goal, we tested the ability of curcumin, a nutraceutical already used with relevant results in animal models as well as in clinics in other diseases, in the Gunn rat, the spontaneous model of neonatal hyperbilirubinemia. Curcumin treatment fully abolished the landmark cerebellar hypoplasia of Gunn rat, restoring the histological features, and reverting the behavioral abnormalities present in the hyperbilirubinemic rat. The protection was mediated by a multi-target action on the main bilirubin-induced pathological mechanism ongoing CNS damage (inflammation, redox imbalance, and glutamate neurotoxicity). If confirmed by independent studies, the result suggests the potential of curcumin as an alternative/complementary approach to bilirubin-induced brain damage in the clinical scenario.
Collapse
Affiliation(s)
- Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (M.D.B.); (M.M.); (S.J.); (C.T.)
- Correspondence:
| | - Matteo Dal Ben
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (M.D.B.); (M.M.); (S.J.); (C.T.)
| | - Michele Montrone
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (M.D.B.); (M.M.); (S.J.); (C.T.)
| | - Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (M.D.B.); (M.M.); (S.J.); (C.T.)
| | - Andrea Lorenzon
- SPF Animal Facility, CBM Scarl, Bldg. Q2, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (A.L.); (A.B.)
| | - Alessandra Bramante
- SPF Animal Facility, CBM Scarl, Bldg. Q2, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (A.L.); (A.B.)
| | - Cristina Bottin
- Department of Medical Sciences, Ospedale di Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy;
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (M.D.B.); (M.M.); (S.J.); (C.T.)
| |
Collapse
|
15
|
Hansen TWR, Wong RJ, Stevenson DK. Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn. Physiol Rev 2020; 100:1291-1346. [PMID: 32401177 DOI: 10.1152/physrev.00004.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Thor W R Hansen
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ronald J Wong
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
16
|
Schmitt C, Lechanteur A, Cossais F, Bellefroid C, Arnold P, Lucius R, Held-Feindt J, Piel G, Hattermann K. Liposomal Encapsulated Curcumin Effectively Attenuates Neuroinflammatory and Reactive Astrogliosis Reactions in Glia Cells and Organotypic Brain Slices. Int J Nanomedicine 2020; 15:3649-3667. [PMID: 32547020 PMCID: PMC7259452 DOI: 10.2147/ijn.s245300] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction The polyphenolic spice and food coloring ingredient curcumin has beneficial effects in a broad variety of inflammatory diseases. Amongst them, curcumin has been shown to attenuate microglia reaction and prevent from glial scar formation in spinal cord and brain injuries. Methods We developed a protocol for the efficient encapsulation of curcumin as a model for anti-inflammatory drugs yielding long-term stable, non-toxic liposomes with favorable physicochemical properties. Subsequently, we evaluate the effects of liposomal curcumin in experimental models for neuroinflammation and reactive astrogliosis. Results We could show that liposomal curcumin can efficiently reduce the reactivity of human microglia and astrocytes and preserve tissue integrity of murine organotypic cortex slices. Discussion and Perspective In perspective, we want to administer this curcumin formulation in brain implant coatings to prevent neuroinflammation and glial scar formation as foreign body responses of the brain towards implanted materials.
Collapse
Affiliation(s)
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | | | - Coralie Bellefroid
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | - Philipp Arnold
- Institute of Anatomy, University Kiel, Kiel D-24098, Germany
| | - Ralph Lucius
- Institute of Anatomy, University Kiel, Kiel D-24098, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Kiel D-24105, Germany
| | - Geraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | | |
Collapse
|
17
|
Famulari ES, Navarro-Tableros V, Herrera Sanchez MB, Bortolussi G, Gai M, Conti L, Silengo L, Tolosano E, Tetta C, Muro AF, Camussi G, Fagoonee S, Altruda F. Human liver stem cells express UGT1A1 and improve phenotype of immunocompromised Crigler Najjar syndrome type I mice. Sci Rep 2020; 10:887. [PMID: 31965023 PMCID: PMC6972964 DOI: 10.1038/s41598-020-57820-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023] Open
Abstract
Crigler Najjar Syndrome type I (CNSI) is a rare recessive disorder caused by mutations in the Ugt1a1 gene. There is no permanent cure except for liver transplantation, and current therapies present several shortcomings. Since stem cell-based therapy offers a promising alternative for the treatment of this disorder, we evaluated the therapeutic potential of human liver stem cells (HLSC) in immune-compromised NOD SCID Gamma (NSG)/Ugt1−/− mice, which closely mimic the pathological manifestations in CNSI patients. To assess whether HLSC expressed UGT1A1, decellularised mouse liver scaffolds were repopulated with these cells. After 15 days’ culture ex vivo, HLSC differentiated into hepatocyte-like cells showing UGT1A1 expression and activity. For the in vivo human cell engraftment and recovery experiments, DiI-labelled HLSC were injected into the liver of 5 days old NSG/Ugt1−/− pups which were analysed at postnatal Day 21. HLSC expressed UGT1A1 in vivo, induced a strong decrease in serum unconjugated bilirubin, thus significantly improving phenotype and survival compared to untreated controls. A striking recovery from brain damage was also observed in HLSC-injected mutant mice versus controls. Our proof-of-concept study shows that HLSC express UGT1A1 in vivo and improve the phenotype and survival of NSG/Ugt1−/− mice, and show promises for the treatment of CNSI.
Collapse
Affiliation(s)
- Elvira Smeralda Famulari
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Victor Navarro-Tableros
- 2i3T - Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico dell'Università degli studi di Torino, Scarl and Molecular Biotechnology Center, Turin, Italy
| | - Maria Beatriz Herrera Sanchez
- 2i3T - Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico dell'Università degli studi di Torino, Scarl and Molecular Biotechnology Center, Turin, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marta Gai
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Conti
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Turin, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Andrés Fernando Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Turin, Italy.
| | - Fiorella Altruda
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy. .,Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Turin, Italy.
| |
Collapse
|
18
|
Review of bilirubin neurotoxicity I: molecular biology and neuropathology of disease. Pediatr Res 2020; 87:327-331. [PMID: 31600770 DOI: 10.1038/s41390-019-0608-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Despite the availability of successful prevention strategies to prevent excessive hyperbilirubinemia, the neurological sequelae of bilirubin neurotoxicity (BNTx) still occur throughout the world. Kernicterus, encephalopathy due to BNTx, is now understood to be a spectrum of severity and phenotypes known as kernicterus spectrum disorder (KSD). A better understanding of the selective neuropathology and molecular biology of BNTx and using consistent clinical definitions of KSDs as outcome measure can lead to more accurately predicting the risk and causes of BNTx and KSDs. In Part I of our two-part review, we will summarize current and recent advances in the understanding of the selective neuropathology and molecular biology of the disease. Herein we emphasize the role of unbound, free unconjugated bilirubin as well as genetic contributions to the susceptibility BNTx and the development of KSDs. In Part II, we focus on current and possible novel methods to prevent BNTx and ABE and treat ABE and KSDs.
Collapse
|
19
|
Experimental models assessing bilirubin neurotoxicity. Pediatr Res 2020; 87:17-25. [PMID: 31493769 DOI: 10.1038/s41390-019-0570-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023]
Abstract
The molecular and cellular events leading to bilirubin-induced neurotoxicity, the mechanisms regulating liver and intestine expression in neonates, and alternative pathways of bilirubin catabolism remain incompletely defined. To answer these questions, researchers have developed a number of model systems to closely recapitulate the main characteristics of the disease, ranging from tissue cultures to engineered mouse models. In the present review we describe in vitro, ex vivo, and in vivo models developed to study bilirubin metabolism and neurotoxicity, with a special focus on the use of engineered animal models. In addition, we discussed the most recent studies related to potential therapeutic approaches to treat neonatal hyperbilirubinemia, ranging from anti-inflammatory drugs, activation of nuclear receptor pathways, blockade of bilirubin catabolism, and stimulation of alternative bilirubin-disposal pathways.
Collapse
|
20
|
Dal Ben M, Bongiovanni R, Tuniz S, Fioriti E, Tiribelli C, Moretti R, Gazzin S. Earliest Mechanisms of Dopaminergic Neurons Sufferance in a Novel Slow Progressing Ex Vivo Model of Parkinson Disease in Rat Organotypic Cultures of Substantia Nigra. Int J Mol Sci 2019; 20:E2224. [PMID: 31064126 PMCID: PMC6539377 DOI: 10.3390/ijms20092224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
The current treatments of Parkinson disease (PD) are ineffective mainly due to the poor understanding of the early events causing the decline of dopaminergic neurons (DOPAn). To overcome this problem, slow progressively degenerating models of PD allowing the study of the pre-clinical phase are crucial. We recreated in a short ex vivo time scale (96 h) all the features of human PD (needing dozens of years) by challenging organotypic culture of rat substantia nigra with low doses of rotenone. Thus, taking advantage of the existent knowledge, the model was used to perform a time-dependent comparative study of the principal possible causative molecular mechanisms undergoing DOPAn demise. Alteration in the redox state and inflammation started at 3 h, preceding the reduction in DOPAn number (pre-diagnosis phase). The number of DOPAn declined to levels compatible with diagnosis only at 12 h. The decline was accompanied by a persistent inflammation and redox imbalance. Significant microglia activation, apoptosis, a reduction in dopamine vesicle transporters, and the ubiquitination of misfolded protein clearance pathways were late (96 h, consequential) events. The work suggests inflammation and redox imbalance as simultaneous early mechanisms undergoing DOPAn sufferance, to be targeted for a causative treatment aimed to stop/delay PD.
Collapse
Affiliation(s)
- Matteo Dal Ben
- Department of Medical, Surgical, and Health Sciences, University of Trieste, 34100 Trieste, Italy.
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | | | - Simone Tuniz
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Emanuela Fioriti
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34100 Trieste, Italy.
| | - Silvia Gazzin
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| |
Collapse
|
21
|
Dani C, Pratesi S, Ilari A, Lana D, Giovannini MG, Nosi D, Buonvicino D, Landucci E, Bani D, Mannaioni G, Gerace E. Neurotoxicity of Unconjugated Bilirubin in Mature and Immature Rat Organotypic Hippocampal Slice Cultures. Neonatology 2019; 115:217-225. [PMID: 30645995 DOI: 10.1159/000494101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND The physiopathology of bilirubin-induced neurological disorders is not completely understood. OBJECTIVES The aim of our study was to assess the effect on bilirubin neurotoxicity of the maturity or immaturity of exposed cells, the influence of different unconjugated bilirubin (UCB) and human serum albumin (HSA) concentrations, and time of UCB exposure. METHODS Organotypic hippocampal slices were exposed for 48 h to different UCB and HSA concentrations after 14 (mature) or 7 (immature) days of in vitro culture. Immature slices were also exposed to UCB and HSA for 72 h. The different effects of exposure time to UCB on neurons and astrocytes were evaluated. RESULTS We found that 48 h of UCB exposure was neurotoxic for mature rat organotypic hippocampal slices while 72 h of exposure was neurotoxic for immature slices. Forty-eight-hour UCB exposure was toxic for astrocytes but not for neurons, while 72-h exposure was toxic for both astrocytes and neurons. HSA prevented UCB toxicity when the UCB:HSA molar ratio was ≤1 in both mature and immature slices. CONCLUSIONS We confirmed UCB neurotoxicity in mature and immature rat hippocampal slices, although immature ones were more resistant. HSA was effective in preventing UCB neurotoxicity in both mature and immature rat hippocampal slices.
Collapse
Affiliation(s)
- Carlo Dani
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy, .,Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy,
| | - Simone Pratesi
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Alice Ilari
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Clinical and Experimental Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Elisabetta Gerace
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
22
|
Histone acetylation as a new mechanism for bilirubin-induced encephalopathy in the Gunn rat. Sci Rep 2018; 8:13690. [PMID: 30209300 PMCID: PMC6135864 DOI: 10.1038/s41598-018-32106-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Bilirubin neurotoxicity has been studied for decades and has been shown to affect various mechanisms via significant modulation of gene expression. This suggests that vital regulatory mechanisms of gene expression, such as epigenetic mechanisms, could play a role in bilirubin neurotoxicity. Histone acetylation has recently received attention in the CNS due to its role in gene modulation for numerous biological processes, such as synaptic plasticity, learning, memory, development and differentiation. Aberrant epigenetic regulation of gene expression in psychiatric and neurodegenerative disorders has also been described. In this work, we followed the levels of histone 3 lysine 14 acetylation (H3K14Ac) in the cerebellum (Cll) of the developing (2, 9, 17 days after the birth) and adult Gunn rat, the natural model for neonatal hyperbilirubinemia and kernicterus. We observed an age-specific alteration of the H3K14Ac in the hyperbilirubinemic animals. The GeneOntology analysis of the H3K14Ac linked chromatin revealed that almost 45% of H3K14Ac ChiP-Seq TSS-promoter genes were involved in CNS development including maturation and differentiation, morphogenesis, dendritogenesis, and migration. These data suggest that the hallmark Cll hypoplasia in the Gunn rat occurs also via epigenetically controlled mechanisms during the maturation of this brain structure, unraveling a novel aspect of the bilirubin-induced neurotoxicity.
Collapse
|
23
|
Neuro-inflammatory effects of photodegradative products of bilirubin. Sci Rep 2018; 8:7444. [PMID: 29748620 PMCID: PMC5945592 DOI: 10.1038/s41598-018-25684-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
Phototherapy was introduced in the early 1950’s, and is the primary treatment of severe neonatal jaundice or Crigler-Najjar syndrome. Nevertheless, the potential biological effects of the products generated from the photodegradation of bilirubin during phototherapy remain unknown. This is very relevant in light of recent clinical observations demonstrating that the use of aggressive phototherapy can increase morbidity or even mortality, in extremely low birthweight (ELBW) infants. The aim of our study was to investigate the effects of bilirubin, lumirubin (LR, its major photo-oxidative product), and BOX A and B (its monopyrrolic oxidative products) on the central nervous system (CNS) using in vitro and ex vivo experimental models. The effects of bilirubin photoproducts on cell viability and expression of selected genes were tested in human fibroblasts, three human CNS cell lines (neuroblastoma SH-SY5Y, microglial HMC3, and glioblastoma U-87 cell lines), and organotypic rat hippocampal slices. Neither bilirubin nor its photo-oxidative products affected cell viability in any of our models. In contrast, LR in biologically-relevant concentrations (25 μM) significantly increased gene expression of several pro-inflammatory genes as well as production of TNF-α in organotypic rat hippocampal slices. These findings might underlie the adverse outcomes observed in ELBW infants undergoing aggressive phototherapy.
Collapse
|