1
|
Lu Y, Jabbari P, Mukhamedshin A, Zvyagin AV. Fluorescence lifetime imaging in drug delivery research. Adv Drug Deliv Rev 2025; 218:115521. [PMID: 39848547 DOI: 10.1016/j.addr.2025.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Once an exotic add-on to fluorescence microscopy for life science research, fluorescence lifetime imaging (FLIm) has become a powerful and increasingly utilised technique owing to its self-calibration nature, which affords superior quantification over conventional steady-state fluorescence imaging. This review focuses on the state-of-the-art implementation of FLIm related to the formulation, release, dosage, and mechanism of action of drugs aimed for innovative diagnostics and therapy. Quantitative measurements using FLIm have appeared instrumental for encapsulated drug delivery design, pharmacokinetics and pharmacodynamics, pathological investigations, early disease diagnosis, and evaluation of therapeutic efficacy. Attention is paid to the latest advances in lifetime-engineered nanomaterials and practical instrumentation, which begin to show preclinical and clinical translation potential beyond in vitro samples of cells and tissues. Finally, major challenges that need to be overcome in order to facilitate future perspectives are discussed.
Collapse
Affiliation(s)
- Yiqing Lu
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Parinaz Jabbari
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Anton Mukhamedshin
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA; Research Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sochi, Russia; National Research Ogarev Mordovia State University, Saransk, Mordovia Republic 430005, Russia
| | - Andrei V Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Research Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sochi, Russia; National Research Ogarev Mordovia State University, Saransk, Mordovia Republic 430005, Russia
| |
Collapse
|
2
|
Sun Y, Du D, Wu K, Zhang L, Chen Y. Nanoswimmers statistical mechanics: Unlocking whole-blood viscosity sensing for tumor microenvironment. Comput Biol Med 2024; 183:109160. [PMID: 39378577 DOI: 10.1016/j.compbiomed.2024.109160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND AND OBJECTIVE The ability to sense the biological microenvironment surrounding early-stage tumor tissues is critical for tumorigenesis tracing and tumor detection and treatment. An efficient tumor microenvironment (TME) sensing strategy remains a significant challenge. We propose a novel "seeing is sensing" approach that has the potential to discern the whole-blood viscosity (WBV) information of the TME by using a swarm of nanoswimmers (NS). METHODS In this study, we employ statistical mechanics methods to derive the relationship between the aggregation of NS in the microscale and their macroscopic concentration distribution. We utilize the finite difference method to develop a discrete numerical model of the NS diffusion in the blood. We further develop a novel model for TME sensing that can dynamically detect the WBV by analyzing the kinematic motion of the NS swarm, which enables real-time detection of WBV by observing the Full Width at Half Maximum (FWHM) of the NS swarm motion. RESULTS The viscosity value obtained with our sensing method is benchmarked against the gold standard results obtained from the Brookfield viscometer. The measurements obtained from both methods exhibit an excellent correlation, with a coefficient of determination (R2) of 0.9617. Furthermore, the constructed Bland-Altman plot reveals that the majority of observed data points lie within the limits of agreement of the 95% clinical confidence interval (lower limit of agreement = -0.0660, upper limit of agreement = 0.1130), thus validating the feasibility of our sensing strategy. CONCLUSIONS We present a new sensing strategy that utilizes the diffusion dynamics of the NS swarm within the vascular network to infer variations in WBV. Comparative analysis with gold standard data substantiates the accuracy and applicability of this method in assessing WBV parameters in the vicinity of tumor tissues. Our work demonstrates relevant prospects for visualizing, comprehending, and evaluating the pathological progression of blood-related disorders in real-time.
Collapse
Affiliation(s)
- Yue Sun
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Dong Du
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Kunlun Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Luyao Zhang
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Yifan Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China; The Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China.
| |
Collapse
|
3
|
Chowdhury M, John A, Hudson RHE. Breaking the blue barrier of nucleobase fluorescence emission with dicyanovinyl-based uracil molecular rotor probes. RSC Adv 2024; 14:37605-37609. [PMID: 39588240 PMCID: PMC11586925 DOI: 10.1039/d4ra07000c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Dicyanovinyl-modified uracil produces fluorescent molecular rotors (FMR) that display massively red-shifted emission and huge Stokes shifts. They are exemplified by DCVSU - an intrinsically fluorescent nucleobase analog (IFNA) with the longest emission wavelength of 592 nm (DMSO) reported thus far which also shows strong polarity sensitivity and large Stokes shift (λ = 181 nm). The IFNAs exhibited typical molecular rotor response to solvent viscosity with brightnesses (ε × φ) of up to 8700 cm-1 M-1. 1H NMR titration confirmed the expected association of the IFNA with the complementary nucleobase adenine-9-ethyl acetate.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| | - Akym John
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| | - Robert H E Hudson
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| |
Collapse
|
4
|
Shimolina LE, Khlynova AE, Elagin VV, Bureev PA, Sherin PS, Kuimova MK, Shirmanova MV. Unraveling Microviscosity Changes Induced in Cancer Cells by Photodynamic Therapy with Targeted Genetically Encoded Photosensitizer. Biomedicines 2024; 12:2550. [PMID: 39595116 PMCID: PMC11591579 DOI: 10.3390/biomedicines12112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood. METHODS In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied during PDT with KillerRed, a genetically encoded photosensitizer, in different cellular localizations. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive BODIPY2 rotor. RESULTS Depending on the localization of the phototoxic protein, different effects on membrane microviscosity were observed. With nuclear localization of KillerRed, a gradual decrease in microviscosity was detected throughout the entire observation period, while for membrane localization of KillerRed, a dramatic increase in microviscosity was observed in the first minutes after PDT, and then a significant decrease at later stages of monitoring. The obtained data on cell monolayers are in good agreement with the data obtained for 3D tumor spheroids. CONCLUSIONS These results indicate the involvement of membrane microviscosity in the response of tumor cells to PDT, which strongly depends on the localization of reactive oxygen species attack via targeting of a genetically encoded photosensitizer.
Collapse
Affiliation(s)
- Liubov E. Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Aleksandra E. Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Vadim V. Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Pavel A. Bureev
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Petr S. Sherin
- Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK; (P.S.S.); (M.K.K.)
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK; (P.S.S.); (M.K.K.)
| | - Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| |
Collapse
|
5
|
Lan BQ, Wang YJ, Yu SX, Liu W, Liu YJ. Physical effects of 3-D microenvironments on confined cell behaviors. Am J Physiol Cell Physiol 2024; 327:C1192-C1201. [PMID: 39246142 DOI: 10.1152/ajpcell.00288.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Cell migration is a fundamental and functional cellular process, influenced by a complex microenvironment consisting of different cells and extracellular matrix. Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instructs cell movement. Here, we explore various examples of three-dimensional microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.
Collapse
Affiliation(s)
- Bao-Qiong Lan
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| |
Collapse
|
6
|
Shimolina LE, Khlynova AE, Gulin AA, Elagin VV, Gubina MV, Bureev PA, Sherin PS, Kuimova MK, Shirmanova MV. Photodynamic therapy with Photoditazine increases microviscosity of cancer cells membrane in cellulo and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113007. [PMID: 39137702 DOI: 10.1016/j.jphotobiol.2024.113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Photodynamic therapy (PDT) is a minimally invasive method for cancer treatment, one of the effects of which is the oxidation of membrane lipids. However, changes in biophysical properties of lipid membranes during PDT have been poorly explored. In this work, we investigated the effects of PDT on membrane microviscosity in cancer cells in the culture and tumor xenografts. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive rotor BODIPY2. It was found that PDT using chlorine e6-based photosensitizer Photoditazine caused a quick, steady elevation of membrane microviscosity both in cellulo and in vivo. The proposed mechanisms responsible for the increase in microviscosity was lipid peroxidation by reactive oxygen species that resulted in a decrease of phosphatidylcholine and the fraction of unsaturated fatty acids in the membranes. Our results suggest that the increased microviscosity is an important factor that contributes to tumor cell damage during PDT.
Collapse
Affiliation(s)
- Liubov E Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russian Federation
| | - Aleksandra E Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russian Federation
| | - Aleksander A Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Vadim V Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russian Federation
| | - Margarita V Gubina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Pavel A Bureev
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russian Federation
| | - Petr S Sherin
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, United Kingdom
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, United Kingdom
| | - Marina V Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russian Federation.
| |
Collapse
|
7
|
Salam A, Kaushik K, Mukherjee B, Anjum F, Sapkal GT, Sharma S, Garg R, Nandi CK. A zinc metal complex as an NIR emissive probe for real-time dynamics and in vivo embryogenic evolution of lysosomes using super-resolution microscopy. Chem Sci 2024:d4sc04638b. [PMID: 39246364 PMCID: PMC11376271 DOI: 10.1039/d4sc04638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
Zinc (Zn) based fluorescent metal complexes have gained increasing attention due to their non-toxicity and high brightness with marked fluorescence quantum yield (QY). However, they have rarely been employed in super-resolution microscopy (SRM) to study live cells and in vivo dynamics of lysosomes. Here, we present an NIR emissive highly photostable Zn-complex as a multifaceted fluorescent probe for the long-term dynamical distribution of lysosomes in various cancerous and non-cancerous cells in live condition and in vivo embryogenic evolution in Caenorhabditis elegans (C. elegans). Apart from the normal fission, fusion, and kiss & run, the motility and the exact location of lysosomes at each point were mapped precisely. A notable difference in the lysosomal motility in the peripheral region between cancerous and non-cancerous cells was distinctly observed. This is attributed to the difference in viscosity of the cytoplasmic environment. On the other hand, along with the super-resolved structure of the smallest size lysosome (∼77 nm) in live C. elegans, the complete in vivo embryogenic evolution of lysosomes and lysosome-related organelles (LROs) was captured. We were able to capture the images of lysosomes and LROs at different stages of C. elegans, starting from a single cell and extending to a fully matured adult animal.
Collapse
Affiliation(s)
- Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Bodhidipra Mukherjee
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| | - Farhan Anjum
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| | - Goraksha T Sapkal
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Shagun Sharma
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Richa Garg
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| |
Collapse
|
8
|
Ojwang' AME, Bazargan S, Johnson JO, Pilon-Thomas S, Rejniak KA. Histology-guided mathematical model of tumor oxygenation: sensitivity analysis of physical and computational parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583363. [PMID: 38496532 PMCID: PMC10942376 DOI: 10.1101/2024.03.05.583363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
A hybrid off-lattice agent-based model has been developed to reconstruct the tumor tissue oxygenation landscape based on histology images and simulated interactions between vasculature and cells with microenvironment metabolites. Here, we performed a robustness sensitivity analysis of that model's physical and computational parameters. We found that changes in the domain boundary conditions, the initial conditions, and the Michaelis constant are negligible and, thus, do not affect the model outputs. The model is also not sensitive to small perturbations of the vascular influx or the maximum consumption rate of oxygen. However, the model is sensitive to large perturbations of these parameters and changes in the tissue boundary condition, emphasizing an imperative aim to measure these parameters experimentally.
Collapse
Affiliation(s)
- Awino Maureiq E Ojwang'
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sarah Bazargan
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joseph O Johnson
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Mittelheisser V, Gensbittel V, Bonati L, Li W, Tang L, Goetz JG. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. NATURE NANOTECHNOLOGY 2024; 19:281-297. [PMID: 38286876 DOI: 10.1038/s41565-023-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/26/2023] [Indexed: 01/31/2024]
Abstract
Disease progression is usually accompanied by changes in the biochemical composition of cells and tissues and their biophysical properties. For instance, hallmarks of cancer include the stiffening of tissues caused by extracellular matrix remodelling and the softening of individual cancer cells. In this context, accumulating evidence has shown that immune cells sense and respond to mechanical signals from the environment. However, the mechanisms regulating these mechanical aspects of immune surveillance remain partially understood. The growing appreciation for the 'mechano-immunology' field has urged researchers to investigate how immune cells sense and respond to mechanical cues in various disease settings, paving the way for the development of novel engineering strategies that aim at mechanically modulating and potentiating immune cells for enhanced immunotherapies. Recent pioneer developments in this direction have laid the foundations for leveraging 'mechanical immunoengineering' strategies to treat various diseases. This Review first outlines the mechanical changes occurring during pathological progression in several diseases, including cancer, fibrosis and infection. We next highlight the mechanosensitive nature of immune cells and how mechanical forces govern the immune responses in different diseases. Finally, we discuss how targeting the biomechanical features of the disease milieu and immune cells is a promising strategy for manipulating therapeutic outcomes.
Collapse
Affiliation(s)
- Vincent Mittelheisser
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Lucia Bonati
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Weilin Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France.
| |
Collapse
|
10
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
11
|
Paez‐Perez M, Kuimova MK. Molecular Rotors: Fluorescent Sensors for Microviscosity and Conformation of Biomolecules. Angew Chem Int Ed Engl 2024; 63:e202311233. [PMID: 37856157 PMCID: PMC10952837 DOI: 10.1002/anie.202311233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
The viscosity and crowding of biological environment are considered vital for the correct cellular function, and alterations in these parameters are known to underly a number of pathologies including diabetes, malaria, cancer and neurodegenerative diseases, to name a few. Over the last decades, fluorescent molecular probes termed molecular rotors proved extremely useful for exploring viscosity, crowding, and underlying molecular interactions in biologically relevant settings. In this review, we will discuss the basic principles underpinning the functionality of these probes and will review advances in their use as sensors for lipid order, protein crowding and conformation, temperature and non-canonical nucleic acid structures in live cells and other relevant biological settings.
Collapse
Affiliation(s)
- Miguel Paez‐Perez
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| |
Collapse
|
12
|
Reese A, de Moliner F, Mendive-Tapia L, Benson S, Kuru E, Bridge T, Richards J, Rittichier J, Kitamura T, Sachdeva A, McSorley HJ, Vendrell M. Inserting "OFF-to-ON" BODIPY Tags into Cytokines: A Fluorogenic Interleukin IL-33 for Real-Time Imaging of Immune Cells. ACS CENTRAL SCIENCE 2024; 10:143-154. [PMID: 38292608 PMCID: PMC10823590 DOI: 10.1021/acscentsci.3c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
The essential functions that cytokine/immune cell interactions play in tissue homeostasis and during disease have prompted the molecular design of targeted fluorophores to monitor their activity in real time. Whereas activatable probes for imaging immune-related enzymes are common, many immunological functions are mediated by binding events between cytokines and their cognate receptors that are hard to monitor by live-cell imaging. A prime example is interleukin-33 (IL-33), a key cytokine in innate and adaptive immunity, whose interaction with the ST2 cell-surface receptor results in downstream signaling and activation of NF-κB and AP-1 pathways. In the present work, we have designed a chemical platform to site-specifically introduce OFF-to-ON BODIPY fluorophores into full cytokine proteins and generate the first nativelike fluorescent analogues of IL-33. Among different incorporation strategies, chemical aminoacylation followed by bioorthogonal derivatization led to the best labeling results. Importantly, the BODIPY-labeled IL-33 derivatives-unlike IL-33-GFP constructs-exhibited ST2-specific binding and downstream bioactivity profiles comparable to those of the wild-type interleukin. Real-time fluorescence microscopy assays under no wash conditions confirmed the internalization of IL-33 through ST2 receptors and its intracellular trafficking through the endosomal pathway. We envision that the modularity and versatility of our BODIPY labeling platform will facilitate the synthesis of minimally tagged fluorogenic cytokines as the next generation of imaging reagents for real-time visualization of signaling events in live immune cells.
Collapse
Affiliation(s)
- Abigail
E. Reese
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Fabio de Moliner
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Lorena Mendive-Tapia
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Sam Benson
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Erkin Kuru
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - Thomas Bridge
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Josh Richards
- Division
of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Jonathan Rittichier
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Takanori Kitamura
- Centre
for Reproductive Health, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
| | - Amit Sachdeva
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Henry J. McSorley
- Division
of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Poonja S, Forero Pinto A, Lloyd MC, Damaghi M, Rejniak KA. Dynamics of Fibril Collagen Remodeling by Tumor Cells: A Model of Tumor-Associated Collagen Signatures. Cells 2023; 12:2688. [PMID: 38067116 PMCID: PMC10705683 DOI: 10.3390/cells12232688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Many solid tumors are characterized by a dense extracellular matrix (ECM) composed of various ECM fibril proteins. These proteins provide structural support and a biological context for the residing cells. The reciprocal interactions between growing and migrating tumor cells and the surrounding stroma result in dynamic changes in the ECM architecture and its properties. With the use of advanced imaging techniques, several specific patterns in the collagen surrounding the breast tumor have been identified in both tumor murine models and clinical histology images. These tumor-associated collagen signatures (TACS) include loosely organized fibrils far from the tumor and fibrils aligned either parallel or perpendicular to tumor colonies. They are correlated with tumor behavior, such as benign growth or invasive migration. However, it is not fully understood how one specific fibril pattern can be dynamically remodeled to form another alignment. Here, we present a novel multi-cellular lattice-free (MultiCell-LF) agent-based model of ECM that, in contrast to static histology images, can simulate dynamic changes between TACSs. This model allowed us to identify the rules of cell-ECM physical interplay and feedback that guided the emergence and transition among various TACSs.
Collapse
Affiliation(s)
- Sharan Poonja
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
| | - Ana Forero Pinto
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Mark C. Lloyd
- Fujifilm Healthcare US, Inc., Lexington, MA 02421, USA;
| | - Mehdi Damaghi
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Katarzyna A. Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
14
|
Efremov YM, Shimolina L, Gulin A, Ignatova N, Gubina M, Kuimova MK, Timashev PS, Shirmanova MV. Correlation of Plasma Membrane Microviscosity and Cell Stiffness Revealed via Fluorescence-Lifetime Imaging and Atomic Force Microscopy. Cells 2023; 12:2583. [PMID: 37947661 PMCID: PMC10650173 DOI: 10.3390/cells12212583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
The biophysical properties of cells described at the level of whole cells or their membranes have many consequences for their biological behavior. However, our understanding of the relationships between mechanical parameters at the level of cell (stiffness, viscoelasticity) and at the level of the plasma membrane (fluidity) remains quite limited, especially in the context of pathologies, such as cancer. Here, we investigated the correlations between cells' stiffness and viscoelastic parameters, mainly determined via the actin cortex, and plasma membrane microviscosity, mainly determined via its lipid profile, in cancer cells, as these are the keys to their migratory capacity. The mechanical properties of cells were assessed using atomic force microscopy (AFM). The microviscosity of membranes was visualized using fluorescence-lifetime imaging microscopy (FLIM) with the viscosity-sensitive probe BODIPY 2. Measurements were performed for five human colorectal cancer cell lines that have different migratory activity (HT29, Caco-2, HCT116, SW 837, and SW 480) and their chemoresistant counterparts. The actin cytoskeleton and the membrane lipid composition were also analyzed to verify the results. The cell stiffness (Young's modulus), measured via AFM, correlated well (Pearson r = 0.93) with membrane microviscosity, measured via FLIM, and both metrics were elevated in more motile cells. The associations between stiffness and microviscosity were preserved upon acquisition of chemoresistance to one of two chemotherapeutic drugs. These data clearly indicate that mechanical parameters, determined by two different cellular structures, are interconnected in cells and play a role in their intrinsic migratory potential.
Collapse
Affiliation(s)
- Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Liubov Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (M.V.S.)
| | - Alexander Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Nadezhda Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (M.V.S.)
| | - Margarita Gubina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK;
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
| | - Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (M.V.S.)
| |
Collapse
|
15
|
Shimolina L, Gulin A, Khlynova A, Ignatova N, Druzhkova I, Gubina M, Zagaynova E, Kuimova MK, Shirmanova M. Effects of Paclitaxel on Plasma Membrane Microviscosity and Lipid Composition in Cancer Cells. Int J Mol Sci 2023; 24:12186. [PMID: 37569560 PMCID: PMC10419023 DOI: 10.3390/ijms241512186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The cell membrane is an important regulator for the cytotoxicity of chemotherapeutic agents. However, the biochemical and biophysical effects that occur in the membrane under the action of chemotherapy drugs are not fully described. In the present study, changes in the microviscosity of membranes of living HeLa-Kyoto tumor cells were studied during chemotherapy with paclitaxel, a widely used antimicrotubule agent. To visualize the microviscosity of the membranes, fluorescence lifetime imaging microscopy (FLIM) with a BODIPY 2 fluorescent molecular rotor was used. The lipid profile of the membranes was assessed using time-of-flight secondary ion mass spectrometry ToF-SIMS. A significant, steady-state decrease in the microviscosity of membranes, both in cell monolayers and in tumor spheroids, was revealed after the treatment. Mass spectrometry showed an increase in the unsaturated fatty acid content in treated cell membranes, which may explain, at least partially, their low microviscosity. These results indicate the involvement of membrane microviscosity in the response of tumor cells to paclitaxel treatment.
Collapse
Affiliation(s)
- Liubov Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Alexander Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Alexandra Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Nadezhda Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Irina Druzhkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Margarita Gubina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Elena Zagaynova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia;
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London (White City Campus), London W12 0BZ, UK;
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| |
Collapse
|
16
|
Lermontova SA, Arsenyev MV, Cherkasov AV, Fukin GK, Afanasyev AV, Yudintsev AV, Grigoryev IS, Ladilina EY, Lyubova TS, Shilyagina NY, Balalaeva IV, Klapshina LG, Piskunov AV. Novel Rigidochromic and Anti-Kasha Dual Emission Fluorophores Based on D-π-A Dyads as the Promising Materials for Potential Applications Ranging from Optoelectronics and Optical Sensing to Biophotonics and Medicine. Int J Mol Sci 2023; 24:ijms24065818. [PMID: 36982890 PMCID: PMC10057995 DOI: 10.3390/ijms24065818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Today we see an increasing demand for new fluorescent materials exhibiting various sensory abilities due to their broad applicability ranging from the construction of flexible devices to bioimaging. In this paper, we report on the new fluorescent pigments AntTCNE, PyrTCNE, and PerTCNE which consist of 3-5 fused aromatic rings substituted with tricyanoethylene fragments forming D-π-A diad. Our studies reveal that all three compounds exhibit pronounced rigidochromic properties, i.e., strong sensitivity of their fluorescence to the viscosity of the local environment. We also demonstrate that our new pigments belong to a very rare type of organic fluorophores which do not obey the well-known empirical Kasha'rule stating that photoluminescence transition always occurs from the lowest excited state of an emitting molecule. This rare spectral feature of our pigments is accompanied by an even rarer capability of spectrally and temporally well-resolved anti-Kasha dual emission (DE) from both higher and lowest electronic states in non-polar solvents. We show that among three new pigments, PerTCNE has significant potential as the medium-bandgap non-fullerene electron acceptor. Such materials are now highly demanded for indoor low-power electronics and portable devices for the Internet-of-Things. Additionally, we demonstrate that PyrTCNE has been successfully used as a structural unit in template assembling of the new cyanoarylporphyrazine framework with 4 D-π-A dyads framing this macrocycle (Pyr4CN4Pz). Similarly to its structural unit, Pyr4CN4Pz is also the anti-Kasha fluorophore, exhibiting intensive DE in viscous non-polar medium and polymer films, which strongly depends on the polarity of the local environment. Moreover, our studies showed high photodynamic activity of this new tetrapyrrole macrocycle which is combined with its unique sensory capacities (strong sensitivity of its fluorescent properties to the local environmental stimuli such as viscosity and polarity. Thus, Pyr4CN4Pz can be considered the first unique photosensitizer that potentially enables the real-time combination of photodynamic therapy and double-sensory approaches which is very important for modern biomedicine.
Collapse
Affiliation(s)
- Svetlana A Lermontova
- G.A. Razuvaev Institute of Organometallic Chemistry of RAS, 603950 Nizhny Novgorod, Russia
| | - Maxim V Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry of RAS, 603950 Nizhny Novgorod, Russia
| | - Anton V Cherkasov
- G.A. Razuvaev Institute of Organometallic Chemistry of RAS, 603950 Nizhny Novgorod, Russia
| | - Georgy K Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry of RAS, 603950 Nizhny Novgorod, Russia
| | | | - Andrey V Yudintsev
- Biological Faculty, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Ilya S Grigoryev
- G.A. Razuvaev Institute of Organometallic Chemistry of RAS, 603950 Nizhny Novgorod, Russia
| | - Elena Yu Ladilina
- G.A. Razuvaev Institute of Organometallic Chemistry of RAS, 603950 Nizhny Novgorod, Russia
| | - Tatyana S Lyubova
- G.A. Razuvaev Institute of Organometallic Chemistry of RAS, 603950 Nizhny Novgorod, Russia
| | - Natalia Yu Shilyagina
- Biological Faculty, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Irina V Balalaeva
- Biological Faculty, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Larisa G Klapshina
- G.A. Razuvaev Institute of Organometallic Chemistry of RAS, 603950 Nizhny Novgorod, Russia
| | - Alexandr V Piskunov
- G.A. Razuvaev Institute of Organometallic Chemistry of RAS, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
17
|
Semenov AN, Gvozdev DA, Moysenovich AM, Zlenko DV, Parshina EY, Baizhumanov AA, Budylin GS, Maksimov EG. Probing Red Blood Cell Membrane Microviscosity Using Fluorescence Anisotropy Decay Curves of the Lipophilic Dye PKH26. Int J Mol Sci 2022; 23:ijms232415767. [PMID: 36555408 PMCID: PMC9781149 DOI: 10.3390/ijms232415767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Red blood cell (RBC) aggregation and deformation are governed by the molecular processes occurring on the membrane. Since several social important diseases are accompanied by alterations in RBC aggregation and deformability, it is important to develop a diagnostic parameter of RBC membrane structural integrity and stability. In this work, we propose membrane microviscosity assessed by time-resolved fluorescence anisotropy of the lipophilic PKH26 fluorescent probe as a diagnostic parameter. We measured the fluorescence decay curves of the PKH26 probe in the RBC membrane to establish the optimal parameters of the developed fluorescence assay. We observed a complex biphasic profile of the fluorescence anisotropy decay characterized by two correlation times corresponding to the rotational diffusion of free PKH26, and membrane-bounded molecules of the probe. The developed assay allowed us to estimate membrane microviscosity ηm in the range of 100-500 cP depending on the temperature, which paves the way for assessing RBC membrane properties in clinical applications as predictors of blood microrheological abnormalities.
Collapse
Affiliation(s)
- Alexey N. Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Daniil A. Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Anastasia M. Moysenovich
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Dmitry V. Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Evgenia Yu. Parshina
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Adil A. Baizhumanov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory Str., 119991 Moscow, Russia
| | - Gleb S. Budylin
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Eugene G. Maksimov
- Interdisciplinary Scientific and Educational School, Molecular Technologies of the Living Systems and Synthetic Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
18
|
Pittman M, Ali AM, Chen Y. How sticky? How tight? How hot? Imaging probes for fluid viscosity, membrane tension and temperature measurements at the cellular level. Int J Biochem Cell Biol 2022; 153:106329. [PMID: 36336304 PMCID: PMC10148659 DOI: 10.1016/j.biocel.2022.106329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
We review the progress made in imaging probes for three important physical parameters: viscosity, membrane tension, and temperature, all of which play important roles in many cellular processes. Recent evidences showed that cell migration speed can be modulated by extracellular fluid viscosity; membrane tension contributes to the regulation of cell motility, exo-/endo-cytosis, and cell spread area; and temperature affects neural activity and adipocyte differentiation. We discuss the techniques implementing imaging-based probes to measure viscosity, membrane tension, and temperature at subcellular resolution dynamically. The merits and shortcomings of each technique are examined, and the future applications of the recently developed techniques are also explored.
Collapse
Affiliation(s)
- Matthew Pittman
- Department of Mechanical Engineering, Johns Hopkins University, MD, USA; Center for Cell Dynamics, Johns Hopkins University, MD, USA; Institute for NanoBio Technology, Johns Hopkins University, MD, USA
| | - Abdulla M Ali
- Center for Cell Dynamics, Johns Hopkins University, MD, USA; Institute for NanoBio Technology, Johns Hopkins University, MD, USA; T.C. Jenkins Department of Biophysics, Johns Hopkins University, MD, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, MD, USA; Center for Cell Dynamics, Johns Hopkins University, MD, USA; Institute for NanoBio Technology, Johns Hopkins University, MD, USA.
| |
Collapse
|
19
|
Semenov AN, Gvozdev DA, Zlenko DV, Protasova EA, Khashimova AR, Parshina EY, Baizhumanov AA, Lotosh NY, Kim EE, Kononevich YN, Pakhomov AA, Selishcheva AA, Sluchanko NN, Shirshin EA, Maksimov EG. Modulation of Membrane Microviscosity by Protein-Mediated Carotenoid Delivery as Revealed by Time-Resolved Fluorescence Anisotropy. MEMBRANES 2022; 12:905. [PMID: 36295665 PMCID: PMC9609150 DOI: 10.3390/membranes12100905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are potent antioxidants with a wide range of biomedical applications. However, their delivery into human cells is challenging and relatively inefficient. While the use of natural water-soluble carotenoproteins capable to reversibly bind carotenoids and transfer them into membranes is promising, the quantitative estimation of the delivery remains unclear. In the present work, we studied echinenone (ECN) delivery by cyanobacterial carotenoprotein AnaCTDH (C-terminal domain homolog of the Orange Carotenoid Protein from Anabaena), into liposome membranes labelled with BODIPY fluorescent probe. We observed that addition of AnaCTDH-ECN to liposomes led to the significant changes in the fast-kinetic component of the fluorescence decay curve, pointing on the dipole-dipole interactions between the probe and ECN within the membrane. It may serve as an indirect evidence of ECN delivery into membrane. To study the delivery in detail, we carried out molecular dynamics modeling of the localization of ECN within the lipid bilayer and calculate its orientation factor. Next, we exploited FRET to assess concentration of ECN delivered by AnaCTDH. Finally, we used time-resolved fluorescence anisotropy to assess changes in microviscosity of liposomal membranes. Incorporation of liposomes with β-carotene increased membrane microviscosity while the effect of astaxanthin and its mono- and diester forms was less pronounced. At temperatures below 30 °C addition of AnaCTDH-ECN increased membrane microviscosity in a concentration-dependent manner, supporting the protein-mediated carotenoid delivery mechanism. Combining all data, we propose FRET-based analysis and assessment of membrane microviscosity as potent approaches to characterize the efficiency of carotenoids delivery into membranes.
Collapse
Affiliation(s)
- Alexey N. Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Danil A. Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Dmitry V. Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Elena A. Protasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Anastasia R. Khashimova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Evgenia Yu. Parshina
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Adil A. Baizhumanov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Natalia Yu. Lotosh
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Eleonora E. Kim
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Yuriy N. Kononevich
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Pakhomov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alla A. Selishcheva
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Evgeny A. Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., Troitsk, Moscow 108840, Russia
| | - Eugene G. Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
| |
Collapse
|
20
|
Pittman M, Iu E, Li K, Wang M, Chen J, Taneja N, Jo MH, Park S, Jung WH, Liang L, Barman I, Ha T, Gaitanaros S, Liu J, Burnette D, Plotnikov S, Chen Y. Membrane Ruffling is a Mechanosensor of Extracellular Fluid Viscosity. NATURE PHYSICS 2022; 18:1112-1121. [PMID: 37220497 PMCID: PMC10202009 DOI: 10.1038/s41567-022-01676-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/17/2022] [Indexed: 05/25/2023]
Abstract
Cell behaviour is affected by the physical forces and mechanical properties of the cells and of their microenvironment. The viscosity of extracellular fluid - a component of the cellular microenvironment - can vary by orders of magnitude, but its effect on cell behaviour remains largely unexplored. Using bio-compatible polymers to increase the viscosity of the culture medium, we characterize how viscosity affects cell behaviour. We find that multiple types of adherent cells respond in an unexpected but similar manner to elevated viscosity. In a highly viscous medium, cells double their spread area, exhibit increased focal adhesion formation and turnover, generate significantly greater traction forces, and migrate nearly two times faster. We observe that when cells are immersed in regular medium, these viscosity-dependent responses require an actively ruffling lamellipodium - a dynamic membrane structure at the front of the cell. We present evidence that cells utilize membrane ruffling to sense changes in extracellular fluid viscosity and to trigger adaptive responses.
Collapse
Affiliation(s)
- Matthew Pittman
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Ernest Iu
- Department of Cell & Systems Biology, University of Toronto
| | - Keva Li
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Mingjiu Wang
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University
| | | | - Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Le Liang
- Department of Mechanical Engineering, Johns Hopkins University
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University
| | | | - Jian Liu
- Department of Cell Biology, Johns Hopkins University School of Medicine
| | - Dylan Burnette
- Department of Cell and Developmental Biology, Vanderbilt University
| | | | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| |
Collapse
|
21
|
Shimolina L, Gulin A, Khlynova A, Ignatova N, Druzhkova I, Gubina M, Zagaynova E, Kuimova M, Shirmanova M. Development of resistance to 5-fluorouracil affects membrane viscosity and lipid composition of cancer cells. Methods Appl Fluoresc 2022; 10. [PMID: 35970177 DOI: 10.1088/2050-6120/ac89cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022]
Abstract
The investigations reported here were designed to determine whether the bulk plasma membrane is involved in mechanisms of acquired resistance of colorectal cancer cells to 5-fluorouracil (5-FU). Fluorescence lifetime imaging microscopy (FLIM) of live cultured cells stained with viscosity-sensitive probe BODIPY 2 was exploited to non-invasively assess viscosity in the course of treatment and adaptation to the drug. In parallel, lipid composition of membranes was examined with the time-of-flight secondary ion mass spectrometry (ToF-SIMS). Our results showed that a single treatment with 5-FU induced only temporal changes of viscosity in 5-FU sensitive cells immediately after adding the drug. Acquisition of chemoresistance was accompanied by persistent increase of viscosity, which was preserved upon treatment without any changes. Lipidomic analysis revealed that the resistant cells had a lower level of monounsaturated fatty acids and increased sphingomyelin or decreased phosphatidylcholine in their membranes, which partly explain increase of the viscosity. Thus, we propose that a high membrane viscosity mediates the acquisition of resistance to 5-FU.
Collapse
Affiliation(s)
- Liubov Shimolina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Aleksandr Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin st. 4, Moskva, Moskva, 119991, RUSSIAN FEDERATION
| | - Aleksandra Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Nadezhda Ignatova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Irina Druzhkova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Margarita Gubina
- Russian Academy of Sciences, Kosygin st. 4, Moskva, Moskva, 119991, RUSSIAN FEDERATION
| | - Elena Zagaynova
- Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, Niznij Novgorod, Nižegorodskaâ, 603950, RUSSIAN FEDERATION
| | - Marina Kuimova
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London , SW7 2AZ, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Marina Shirmanova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| |
Collapse
|
22
|
Spanning BODIPY fluorescence with self-assembled micellar clusters. Colloids Surf B Biointerfaces 2022; 216:112532. [PMID: 35525227 DOI: 10.1016/j.colsurfb.2022.112532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022]
Abstract
BODIPY dyes possess favorable optical properties for a variety of applications including in vivo and in vitro diagnostics. However, their utilization might be limited by their water insolubility and incompatibility with chemical modifications, resulting in low aggregation stability. Here, we outline the route for addressing this issue. We have demonstrated two approaches, based on dye entrapment in micellar coordination clusters (MCCs); this provides a general solution for water solubility as well as aggregation stability of the seven BODIPY derivatives. These derivatives have various bulky aromatic substituents in the 2,3,5,6- and meso-positions and can rotate relative to a dipyrrin core, which also provides molecular rotor properties. The molecular structural features and the presence of aromatic groups allows BODIPY dyes to be used as "supporting molecules", thus promoting micelle-micelle interaction and micellar network stabilization. In the second approach, self-micellization, following BODIPY use, leads to MCC formation without the use of any mediators, including chelators and/or metal ions. In both approaches, BODIPY exhibits an excellent optical response, at a concentration beyond its solubilization limit in aqueous media and without undesired crystallization. The suggested approaches represent systems used to encapsulate BODIPY in a capsule-based surfactant environment, enabling one to track the aggregation of BODIPY; these approaches represent an alternative system to study and apply BODIPY's molecular rotor properties. The stabilized compounds, i.e., the BODIPY-loaded MCCs, provide a unique feature of permeability to hydrophilic ligand-switching proteins such as BSA; they exhibit a bright "turn-on" fluorescence signal within the clusters via macromolecular complexation, thus expanding the possibilities of water-soluble BODIPY-loaded MCCs utilization for functional indicators.
Collapse
|
23
|
Collot M, Pfister S, Klymchenko AS. Advanced functional fluorescent probes for cell plasma membranes. Curr Opin Chem Biol 2022; 69:102161. [DOI: 10.1016/j.cbpa.2022.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
|
24
|
Dara A, Mast DM, Razgoniaev AO, Hauke CE, Castellano FN, Ostrowski AD. Real-Time and In Situ Viscosity Monitoring in Industrial Adhesives Using Luminescent Cu(I) Phenanthroline Molecular Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33976-33983. [PMID: 35830615 DOI: 10.1021/acsami.2c06554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monitoring the viscosity of polymers in real-time remains a challenge, especially in confined environments where traditional rheological measurements are hard to apply. In this study, we have utilized the luminescent complex [Cu(diptmp)2]+ (diptmp = 2,9-diisopropyl-3,4,7,8-tetramethyl-1,10-phenanthroline) as an optical probe for real-time sensing of viscosity in various adhesives during the curing process (viscosity increases). The emission lifetime of the triplet metal-to-ligand charge transfer (3MLCT) state of [Cu(diptmp)2]+ in epoxy adhesive increased exponentially during curing, similar to viscosity values obtained from oscillatory rheology. The longer lifetime in higher viscosity materials was attributed to changes in the excited-state deactivation processes from a known Jahn-Teller distortion in the Cu(I) geometry from tetrahedral in the ground state to square planar in the excited state. The real-time viscosity was also monitored reversibly by emission lifetime during polymer swelling (viscosity and lifetime decrease) and unswelling (viscosity and lifetime increase). Monitoring emission lifetime, unlike measuring the excited-state lifetime via transient absorption measurements in our previous study, allowed us to measure viscosity in opaque samples which scatter light. The optical probe [Cu(diptmp)2]+ in Gorilla Glue adhesive showed a clear correlation of the emission intensity or lifetime to viscosity during the curing process. We have also compared these lifetime changes using [Ru(bpy)3]2+ (bpy = bipyridine) as a control. [Cu(diptmp)2]+ showed not only a higher emission lifetime but also more ubiquity as a real-time viscosity sensor.
Collapse
Affiliation(s)
- Ankit Dara
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403 United States
| | - Derek M Mast
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403 United States
| | - Anton O Razgoniaev
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403 United States
| | - Cory E Hauke
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Alexis D Ostrowski
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403 United States
| |
Collapse
|
25
|
Zheng X, Zhao K, Jackson T, Lowengrub J. Tumor growth towards lower extracellular matrix conductivity regions under Darcy's Law and steady morphology. J Math Biol 2022; 85:5. [PMID: 35796898 PMCID: PMC9968407 DOI: 10.1007/s00285-022-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/27/2022] [Accepted: 04/16/2022] [Indexed: 10/17/2022]
Abstract
We study a classic Darcy's law model for tumor cell motion with inhomogeneous and isotropic conductivity. The tumor cells are assumed to be a constant density fluid flowing through porous extracellular matrix (ECM). The ECM is assumed to be rigid and motionless with constant porosity. One and two dimensional simulations show that the tumor mass grows from high to low conductivity regions when the tumor morphology is steady. In the one-dimensional case, we proved that when the tumor size is steady, the tumor grows towards lower conductivity regions. We conclude that this phenomenon is produced by the coupling of a special inward flow pattern in the steady tumor and Darcy's law which gives faster flow speed in higher conductivity regions.
Collapse
Affiliation(s)
- Xiaoming Zheng
- Department of Mathematics, Central Michigan University, Mount Pleasant, MI, 48858, USA.
| | - Kun Zhao
- Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
| | - Trachette Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Lowengrub
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Jurgutis D, Jarockyte G, Poderys V, Dodonova-Vaitkuniene J, Tumkevicius S, Vysniauskas A, Rotomskis R, Karabanovas V. Exploring BODIPY-Based Sensor for Imaging of Intracellular Microviscosity in Human Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23105687. [PMID: 35628497 PMCID: PMC9143602 DOI: 10.3390/ijms23105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
BODIPY-based molecular rotors are highly attractive imaging tools for imaging intracellular microviscosity in living cells. In our study, we investigated the ability to detect the microviscosity of biological objects by using BDP-NO2 and BDP-H molecular rotors. We describe in detail the optical properties of BDP-NO2 and BDP-H molecular rotors in aqueous media with and without proteins, together with their accumulation dynamics and localization in live and fixed human breast cancer cells. Furthermore, we investigate the applicability of these molecules to monitor microviscosity in the organelles of human breast cancer cells by fluorescence lifetime imaging microscopy (FLIM). We demonstrate that the BDP-NO2 molecular rotor aggregates in aqueous media and is incompatible with live cell imaging. The opposite effect is observed with BDP-H which preserves its stability in aqueous media, diffuses through the plasma membrane and accumulates in lipid droplets (LDs) and the cytosol of both live and fixed MCF-7 and MDA-MB-231 cancer cells. Finally, by utilizing BDP-H we demonstrate that LD microviscosity is significantly elevated in more malignant MDA-MB-231 human breast cancer cells, as compared to MCF-7 breast cancer cells. Our findings demonstrate that BDP-H is a water-compatible probe that can be successfully applied to measure microviscosity in the LDs of living cells.
Collapse
Affiliation(s)
- Dziugas Jurgutis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, 10257 Vilnius, Lithuania;
| | - Greta Jarockyte
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
| | - Vilius Poderys
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
| | - Jelena Dodonova-Vaitkuniene
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, 03225 Vilnius, Lithuania; (J.D.-V.); (S.T.)
| | - Sigitas Tumkevicius
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, 03225 Vilnius, Lithuania; (J.D.-V.); (S.T.)
| | - Aurimas Vysniauskas
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, 10257 Vilnius, Lithuania;
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, 10223 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
27
|
Assessing hypoxic damage to placental trophoblasts by measuring membrane viscosity of extracellular vesicles. Placenta 2022; 121:14-22. [PMID: 35245720 PMCID: PMC9010367 DOI: 10.1016/j.placenta.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION As highly sophisticated intercellular communication vehicles in biological systems, extracellular vesicles (EVs) have been investigated as both promising liquid biopsy-based disease biomarkers and drug delivery carriers. Despite tremendous progress in understanding their biological and physiological functions, mechanical characterization of these nanoscale entities remains challenging due to the limited availability of proper techniques. Especially, whether damage to parental cells can be reflected by the mechanical properties of their EVs remains unknown. METHODS In this study, we characterized membrane viscosities of different types of EVs collected from primary human trophoblasts (PHTs), including apoptotic bodies, microvesicles and small extracellular vesicles, using fluorescence lifetime imaging microscopy (FLIM). The biochemical origin of EV membrane viscosity was examined by analyzing their phospholipid composition, using mass spectrometry. RESULTS We found that different EV types derived from the same cell type exhibit different membrane viscosities. The measured membrane viscosity values are well supported by the lipidomic analysis of the phospholipid compositions. We further demonstrate that the membrane viscosity of microvesicles can faithfully reveal hypoxic injury of the human trophoblasts. More specifically, the membrane of PHT microvesicles released under hypoxic condition is less viscous than its counterpart under standard culture condition, which is supported by the reduction in the phosphatidylethanolamine-to-phosphatidylcholine ratio in PHT microvesicles. DISCUSSION Our study suggests that biophysical properties of released trophoblastic microvesicles can reflect cell health. Characterizing EV's membrane viscosity may pave the way for the development of new EV-based clinical applications.
Collapse
|
28
|
Shimolina L, Gulin A, Ignatova N, Druzhkova I, Gubina M, Lukina M, Snopova L, Zagaynova E, Kuimova MK, Shirmanova M. The Role of Plasma Membrane Viscosity in the Response and Resistance of Cancer Cells to Oxaliplatin. Cancers (Basel) 2021; 13:cancers13246165. [PMID: 34944789 PMCID: PMC8699340 DOI: 10.3390/cancers13246165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Understanding the role of the plasma membrane in the responses of cancer cells to chemotherapy is important because the cell membrane is directly involved in drug transport and the regulation of numerous biological processes. However, the role of the plasma membrane in cell resistance to platinum drugs like oxaliplatin is not fully understood. In this study we identified the changes to plasma membrane viscosity and lipid composition induced by oxaliplatin in responsive, cultured cancer cells and in mouse tumors. It was also found that the acquisition of chemoresistance is accompanied by modification of membrane lipids in ways that preserve the viscous properties unchanged upon further treatment. Therefore, new therapeutic approaches could be developed to reverse chemoresistance based on membrane lipid modifications and the de-stabilisation of membrane viscosity. Abstract Maintenance of the biophysical properties of membranes is essential for cell survival upon external perturbations. However, the links between a fluid membrane state and the drug resistance of cancer cells remain elusive. Here, we investigated the role of membrane viscosity and lipid composition in the responses of cancer cells to oxaliplatin and the development of chemoresistance. Plasma membrane viscosity was monitored in live colorectal cancer cells and tumor xenografts using two-photon excited fluorescence lifetime imaging microscopy (FLIM) using the fluorescent molecular rotor BODIPY 2. The lipid profile was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that the plasma membrane viscosity increased upon oxaliplatin treatment, both in vitro and in vivo, and that this correlated with lower phosphatidylcholine and higher cholesterol content. The emergence of resistance to oxaliplatin was accompanied by homeostatic adaptation of the membrane lipidome, and the recovery of lower viscosity. These results suggest that maintaining a constant plasma membrane viscosity via remodeling of the lipid profile is crucial for drug resistance in cancer.
Collapse
Affiliation(s)
- Liubov Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (I.D.); (M.L.); (L.S.)
- Institute of Biology and Biomedicine, Nizhny Novgorod State University, Gagarin Avenue 23, 603950 Nizhny Novgorod, Russia;
| | - Alexander Gulin
- The Semenov Institute of Chemical Physics of Russian Academy of Sciences (RAS), Kosygina Str. 4, 117977 Moscow, Russia; (A.G.); (M.G.)
| | - Nadezhda Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (I.D.); (M.L.); (L.S.)
| | - Irina Druzhkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (I.D.); (M.L.); (L.S.)
| | - Margarita Gubina
- The Semenov Institute of Chemical Physics of Russian Academy of Sciences (RAS), Kosygina Str. 4, 117977 Moscow, Russia; (A.G.); (M.G.)
| | - Maria Lukina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (I.D.); (M.L.); (L.S.)
| | - Ludmila Snopova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (I.D.); (M.L.); (L.S.)
| | - Elena Zagaynova
- Institute of Biology and Biomedicine, Nizhny Novgorod State University, Gagarin Avenue 23, 603950 Nizhny Novgorod, Russia;
| | - Marina K. Kuimova
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK;
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (I.D.); (M.L.); (L.S.)
- Correspondence:
| |
Collapse
|
29
|
Chen X, Hughes R, Mullin N, Hawkins RJ, Holen I, Brown NJ, Hobbs JK. Atomic force microscopy reveals the mechanical properties of breast cancer bone metastases. NANOSCALE 2021; 13:18237-18246. [PMID: 34710206 PMCID: PMC8584157 DOI: 10.1039/d1nr03900h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Mechanically dependent processes are essential in cancer metastases. However, reliable mechanical characterization of metastatic cancer remains challenging whilst maintaining the tissue complexity and an intact sample. Using atomic force microscopy, we quantified the micro-mechanical properties of relatively intact metastatic breast tumours and their surrounding bone microenvironment isolated from mice, and compared with other breast cancer models both ex vivo and in vitro. A mechanical distribution of extremely low elastic modulus and viscosity was identified on metastatic tumours, which were significantly more compliant than both 2D in vitro cultured cancer cells and subcutaneous tumour explants. The presence of mechanically distinct metastatic tumour did not result in alterations of the mechanical properties of the surrounding microenvironment at meso-scale distances (>200 μm). These findings demonstrate the utility of atomic force microscopy in studies of complex tissues and provide new insights into the mechanical properties of cancer metastases in bone.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK.
- Department of Oncology and Metabolism, University of Sheffield, S10 2RX, UK
- The Krebs Institute, University of Sheffield, S10 2TN, UK
| | - Russell Hughes
- Department of Oncology and Metabolism, University of Sheffield, S10 2RX, UK
| | - Nic Mullin
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK.
- The Krebs Institute, University of Sheffield, S10 2TN, UK
| | - Rhoda J Hawkins
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK.
- The Krebs Institute, University of Sheffield, S10 2TN, UK
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, S10 2RX, UK
| | - Nicola J Brown
- Department of Oncology and Metabolism, University of Sheffield, S10 2RX, UK
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK.
- The Krebs Institute, University of Sheffield, S10 2TN, UK
| |
Collapse
|
30
|
McTiernan CD, Zuñiga-Bustos M, Rosales-Rojas R, Barrias P, Griffith M, Poblete H, Sherin PS, López-Duarte I, Kuimova MK, Alarcon EI. Molecular rotors as reporters for viscosity of solutions of collagen like peptides. Phys Chem Chem Phys 2021; 23:24545-24549. [PMID: 34704576 DOI: 10.1039/d1cp04398f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have studied the suitability of using a molecular rotor-based steady-state fluorometric assay for evaluating changes in both the conformation and the viscosity of collagen-like peptide solutions. Our results indicate that a positive charge incorporated on the hydrophobic tail of the BODIPY molecular rotor favours the dye specificity as a reporter for viscosity of these solutions.
Collapse
Affiliation(s)
- Christopher D McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Canada.
| | - Matias Zuñiga-Bustos
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Roberto Rosales-Rojas
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile.,Doctorado en ciencias Mención Modelado de Sistemas Químicos y Biológicos, Facultad de Ingeniería, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Pablo Barrias
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Horacio Poblete
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Peter S Sherin
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Ismael López-Duarte
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Marina K Kuimova
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Emilio I Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Canada. .,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
31
|
Sherin PS, Vyšniauskas A, López-Duarte I, Ogilby PR, Kuimova MK. Visualising UV-A light-induced damage to plasma membranes of eye lens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112346. [PMID: 34736070 DOI: 10.1016/j.jphotobiol.2021.112346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023]
Abstract
An eye lens is constantly exposed to the solar UV radiation, which is considered the most important external source of age-related changes to eye lens constituents. The accumulation of modifications of proteins and lipids with age can eventually lead to the development of progressive lens opacifications, such as cataracts. Though the impact of solar UV radiation on the structure and function of proteins is actively studied, little is known about the effect of photodamage on plasma membranes of lens cells. In this work we exploit Fluorescence Lifetime Imaging Microscopy (FLIM), together with viscosity-sensitive fluorophores termed molecular rotors, to study the changes in viscosity of plasma membranes of porcine eye lens resulting from two different types of photodamage: Type I (electron transfer) and Type II (singlet oxygen) reactions. We demonstrate that these two types of photodamage result in clearly distinct changes in viscosity - a decrease in the case of Type I damage and an increase in the case of Type II processes. Finally, to simulate age-related changes that occur in vivo, we expose an intact eye lens to UV-A light under anaerobic conditions. The observed decrease in viscosity within plasma membranes is consistent with the ability of eye lens constituents to sensitize Type I photodamage under natural irradiation conditions. These changes are likely to alter the transport of metabolites and predispose the whole tissue to the development of pathological processes such as cataracts.
Collapse
Affiliation(s)
- Peter S Sherin
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK; International Tomography Center SB RAS, Institutskaya street 3A, Novosibirsk 630090, Russia.
| | - Aurimas Vyšniauskas
- Center for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius LT-10257, Lithuania; Chemistry Department, Vilnius University, Naugarduko st. 24, Vilnius LT-03225, Lithuania
| | - Ismael López-Duarte
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus DK-8000, Denmark
| | - Marina K Kuimova
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
32
|
Yin J, Huang L, Wu L, Li J, James TD, Lin W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem Soc Rev 2021; 50:12098-12150. [PMID: 34550134 DOI: 10.1039/d1cs00645b] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, People's Republic of China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
33
|
Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: Actionable insights for membrane-based therapy and diagnoses. Med Res Rev 2021; 42:983-1018. [PMID: 34719798 DOI: 10.1002/med.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/18/2021] [Accepted: 10/24/2021] [Indexed: 01/17/2023]
Abstract
Cancer cells display altered cellular lipid metabolism, including disruption in endogenous lipid synthesis, storage, and exogenous uptake for membrane biogenesis and functions. Altered lipid metabolism and, consequently, lipid composition impacts cellular function by affecting membrane structure and properties, such as fluidity, rigidity, membrane dynamics, and lateral organization. Herein, we provide an overview of lipid membranes and how their properties affect cellular functions. We also detail how the rewiring of lipid metabolism impacts the lipidomic landscape of cancer cell membranes and influences the characteristics of cancer cells. Furthermore, we discuss how the altered cancer lipidome provides cues for developing lipid-inspired innovative therapeutic and diagnostic strategies while improving our limited understanding of the role of lipids in cancer initiation and progression. We also present the arcade of membrane characterization techniques to cement their relevance in cancer diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Prema K Agarwala
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.,Depertment of Biofunctional Science and Technology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
34
|
Maleckaitė K, Dodonova J, Toliautas S, Žilėnaitė R, Jurgutis D, Karabanovas V, Tumkevičius S, Vyšniauskas A. Designing a Red-Emitting Viscosity-Sensitive BODIPY Fluorophore for Intracellular Viscosity Imaging. Chemistry 2021; 27:16768-16775. [PMID: 34553449 DOI: 10.1002/chem.202102743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Viscosity imaging at a microscopic scale can provide important information about biosystems, including the development of serious illnesses. Microviscosity imaging is achievable with viscosity-sensitive fluorophores, the most popular of which are based on the BODIPY group. However, most of the BODIPY probes fluoresce green light, whereas the red luminescence is desired for the imaging of biological samples. Designing a new viscosity probe with suitable spectroscopic properties is a challenging task because it is difficult to preserve viscosity sensitivity after modifying the molecular structure. Here we describe how we developed a new red-emitting, viscosity-sensitive, BODIPY fluorophore BP-PH-2M-NO2 that is suitable for reliable intracellular viscosity imaging of lipid droplets in MCF-7 breast cancer cells. The design of BP-PH-2M-NO2 was aided by DFT calculations that allowed a successful prediction of the viscosity sensitivity of fluorophores before synthesis. In summary, we report a new red viscosity probe possessing monoexponential fluorescence decay that makes it attractive for lifetime-based viscosity imaging.
Collapse
Affiliation(s)
- Karolina Maleckaitė
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT, 10257, Lithuania
| | - Jelena Dodonova
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT, 03225, Lithuania
| | - Stepas Toliautas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 9-III, Vilnius, LT, 10222, Lithuania
| | - Rugilė Žilėnaitė
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT, 10257, Lithuania
| | - Džiugas Jurgutis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio str. 3b, Vilnius, LT, 08406, Lithuania
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio str. 3b, Vilnius, LT, 08406, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio av. 11, Vilnius, LT, 10223, Lithuania
| | - Sigitas Tumkevičius
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT, 03225, Lithuania
| | - Aurimas Vyšniauskas
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT, 10257, Lithuania
| |
Collapse
|
35
|
Lisitsa AE, Sukovatyi LA, Bartsev SI, Deeva AA, Kratasyuk VA, Nemtseva EV. Mechanisms of Viscous Media Effects on Elementary Steps of Bacterial Bioluminescent Reaction. Int J Mol Sci 2021; 22:8827. [PMID: 34445534 PMCID: PMC8396235 DOI: 10.3390/ijms22168827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Enzymes activity in a cell is determined by many factors, among which viscosity of the microenvironment plays a significant role. Various cosolvents can imitate intracellular conditions in vitro, allowing to reduce a combination of different regulatory effects. The aim of the study was to analyze the media viscosity effects on the rate constants of the separate stages of the bacterial bioluminescent reaction. Non-steady-state reaction kinetics in glycerol and sucrose solutions was measured by stopped-flow technique and analyzed with a mathematical model developed in accordance with the sequence of reaction stages. Molecular dynamics methods were applied to reveal the effects of cosolvents on luciferase structure. We observed both in glycerol and in sucrose media that the stages of luciferase binding with flavin and aldehyde, in contrast to oxygen, are diffusion-limited. Moreover, unlike glycerol, sucrose solutions enhanced the rate of an electronically excited intermediate formation. The MD simulations showed that, in comparison with sucrose, glycerol molecules could penetrate the active-site gorge, but sucrose solutions caused a conformational change of functionally important αGlu175 of luciferase. Therefore, both cosolvents induce diffusion limitation of substrates binding. However, in sucrose media, increasing enzyme catalytic constant neutralizes viscosity effects. The activating effect of sucrose can be attributed to its exclusion from the catalytic gorge of luciferase and promotion of the formation of the active site structure favorable for the catalysis.
Collapse
Affiliation(s)
- Albert E Lisitsa
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Lev A Sukovatyi
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Sergey I Bartsev
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
- The Institute of Biophysics SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
| | - Anna A Deeva
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Valentina A Kratasyuk
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
- The Institute of Biophysics SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
| | - Elena V Nemtseva
- Biophysics Department, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
- The Institute of Biophysics SB RAS, Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
| |
Collapse
|
36
|
Bridging cell-scale simulations and radiologic images to explain short-time intratumoral oxygen fluctuations. PLoS Comput Biol 2021; 17:e1009206. [PMID: 34310608 PMCID: PMC8341701 DOI: 10.1371/journal.pcbi.1009206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/05/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
Radiologic images provide a way to monitor tumor development and its response to therapies in a longitudinal and minimally invasive fashion. However, they operate on a macroscopic scale (average value per voxel) and are not able to capture microscopic scale (cell-level) phenomena. Nevertheless, to examine the causes of frequent fast fluctuations in tissue oxygenation, models simulating individual cells’ behavior are needed. Here, we provide a link between the average data values recorded for radiologic images and the cellular and vascular architecture of the corresponding tissues. Using hybrid agent-based modeling, we generate a set of tissue morphologies capable of reproducing oxygenation levels observed in radiologic images. We then use these in silico tissues to investigate whether oxygen fluctuations can be explained by changes in vascular oxygen supply or by modulations in cellular oxygen absorption. Our studies show that intravascular changes in oxygen supply reproduce the observed fluctuations in tissue oxygenation in all considered regions of interest. However, larger-magnitude fluctuations cannot be recreated by modifications in cellular absorption of oxygen in a biologically feasible manner. Additionally, we develop a procedure to identify plausible tissue morphologies for a given temporal series of average data from radiology images. In future applications, this approach can be used to generate a set of tissues comparable with radiology images and to simulate tumor responses to various anti-cancer treatments at the tissue-scale level. Low levels of oxygen, called hypoxia, are observable in many solid tumors. They are associated with more aggressive malignant cells that are resistant to chemo-, radio-, and immunotherapies. Recently developed imaging techniques provide a way to measure the magnitude of frequent short-term oxygen fluctuations, but they operate on a macro-scale voxel level. To examine the possible causes of rapid oxygen fluctuations at the cell level, we developed a hybrid agent-based mathematical model. We tested two different mechanisms that may be responsible for these cyclic effects on tissue oxygenation: temporal variations in vascular influx of oxygen and modulations in cellular oxygen absorption. Additionally, we developed a procedure to identify plausible tissue morphologies from data collected from radiological images. This can provide a bridge between the micro-scale simulations with individual cells and the longitudinal medical images containing average values. In future applications, this approach can be used to generate a set of tissues compatible with radiology images and to simulate tumor responses to various anticancer treatments at the cell-scale level.
Collapse
|
37
|
An Overview of CMOS Photodetectors Utilizing Current-Assistance for Swift and Efficient Photo-Carrier Detection. SENSORS 2021; 21:s21134576. [PMID: 34283109 PMCID: PMC8271902 DOI: 10.3390/s21134576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/01/2023]
Abstract
This review paper presents an assortment of research on a family of photodetectors which use the same base mechanism, current assistance, for the operation. Current assistance is used to create a drift field in the semiconductor, more specifically silicon, in order to improve the bandwidth and the quantum efficiency. Based on the detector and application, the drift field can be static or modulated. Applications include 3D imaging (both direct and indirect time-of-flight), optical receivers and fluorescence lifetime imaging. This work discusses the current-assistance principle, the various photodetectors using this principle and a comparison is made with other state-of-the-art photodetectors used for the same application.
Collapse
|
38
|
Ouyang Y, Liu Y, Wang ZM, Liu Z, Wu M. FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring. NANO-MICRO LETTERS 2021; 13:133. [PMID: 34138374 PMCID: PMC8175610 DOI: 10.1007/s40820-021-00653-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has been rapidly developed over the past 30 years and widely applied in biomedical engineering. Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence. Because fluorescence lifetime is sensitive to microenvironments and molecule alterations, FLIM is promising for the detection of pathological conditions. Current cancer-related FLIM applications can be divided into three main categories: (i) FLIM with autofluorescence molecules in or out of a cell, especially with reduced form of nicotinamide adenine dinucleotide, and flavin adenine dinucleotide for cellular metabolism research; (ii) FLIM with Förster resonance energy transfer for monitoring protein interactions; and (iii) FLIM with fluorophore-dyed probes for specific aberration detection. Advancements in nanomaterial production and efficient calculation systems, as well as novel cancer biomarker discoveries, have promoted FLIM optimization, offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring. This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development. We also highlight current challenges and provide perspectives for further investigation.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
- Shenzhen Research Institute of Central South University, A510a, Virtual University Building, Nanshan District, Southern District, High-tech Industrial Park, Yuehai Street, Shenzhen, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
39
|
Suveges S, Chamseddine I, Rejniak KA, Eftimie R, Trucu D. Collective Cell Migration in a Fibrous Environment: A Hybrid Multiscale Modelling Approach. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS 2021; 7:680029. [PMID: 34322539 PMCID: PMC8315487 DOI: 10.3389/fams.2021.680029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The specific structure of the extracellular matrix (ECM), and in particular the density and orientation of collagen fibres, plays an important role in the evolution of solid cancers. While many experimental studies discussed the role of ECM in individual and collective cell migration, there are still unanswered questions about the impact of nonlocal cell sensing of other cells on the overall shape of tumour aggregation and its migration type. There are also unanswered questions about the migration and spread of tumour that arises at the boundary between different tissues with different collagen fibre orientations. To address these questions, in this study we develop a hybrid multi-scale model that considers the cells as individual entities and ECM as a continuous field. The numerical simulations obtained through this model match experimental observations, confirming that tumour aggregations are not moving if the ECM fibres are distributed randomly, and they only move when the ECM fibres are highly aligned. Moreover, the stationary tumour aggregations can have circular shapes or irregular shapes (with finger-like protrusions), while the moving tumour aggregations have elongate shapes (resembling to clusters, strands or files). We also show that the cell sensing radius impacts tumour shape only when there is a low ratio of fibre to non-fibre ECM components. Finally, we investigate the impact of different ECM fibre orientations corresponding to different tissues, on the overall tumour invasion of these neighbouring tissues.
Collapse
Affiliation(s)
| | - Ibrahim Chamseddine
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa Florida, USA
| | - Katarzyna A. Rejniak
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa Florida, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa Florida, USA
| | - Raluca Eftimie
- Laboratoire Mathématiques de Besançon, UMR-CNRS 6623, Université de Bourgogne Franche-Comté, 16 Route de Gray, Besançon, France
| | - Dumitru Trucu
- Department of Mathematics, University of Dundee, Dundee, UK
| |
Collapse
|
40
|
Ma C, Sun W, Xu L, Qian Y, Dai J, Zhong G, Hou Y, Liu J, Shen B. A minireview of viscosity-sensitive fluorescent probes: design and biological applications. J Mater Chem B 2021; 8:9642-9651. [PMID: 32986068 DOI: 10.1039/d0tb01146k] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microenvironment-related parameters like viscosity, polarity, and pH play important roles in controlling the physical or chemical behaviors of local molecules, which determine the physical or chemical behaviors of surrounding molecules. In general, changes of the internal microenvironment will usually lead to cellular malfunction or the occurrence of relevant diseases. In the last few decades, the field of chemicobiology has received great attention. Also, remarkable progress has been made in developing viscosity-sensitive fluorescent probes. These probes were particularly efficient for imaging viscosity in biomembranes as well as lighting up specific organelles, such as mitochondria and lysosome. Besides, there are some fluorescent probes that can be used to quantify intracellular viscosity when combined with fluorescence lifetime (FLIM) and ratiometric imaging under water-free conditions. In this review, we summarized the majority of viscosity-sensitive chemosensors that have been reported thus far.
Collapse
Affiliation(s)
- Chenggong Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Wen Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Limin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jianan Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Guoyan Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yadan Hou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Jialong Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
41
|
Afadzi M, Myhre OF, Yemane PT, Bjorkoy A, Torp SH, van Wamel A, Lelu S, Angelsen BAJ, de Lange Davies C. Effect of Acoustic Radiation Force on the Distribution of Nanoparticles in Solid Tumors. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:432-445. [PMID: 32986550 DOI: 10.1109/tuffc.2020.3027072] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acoustic radiation force (ARF) might improve the distribution of nanoparticles (NPs) in tumors. To study this, tumors growing subcutaneously in mice were exposed to focused ultrasound (FUS) either 15 min or 4 h after the injection of NPs, to investigate the effect of ARF on the transport of NPs across the vessel wall and through the extracellular matrix. Quantitative analysis of confocal microscopy images from frozen tumor sections was performed to estimate the displacement of NPs from blood vessels. Using the same experimental exposure parameters, ARF was simulated and compared with the experimental data. Enhanced interstitial transport of NPs in tumor tissues was observed when FUS (10 MHz, acoustic power 234 W/cm2, 3.3% duty cycle) was given either 15 min or 4 h after NP administration. According to acoustic simulations, the FUS generated an ARF per unit volume of 2.0×106 N/m3. The displacement of NPs was larger when FUS was applied 4 h after NP injection compared with after 15 min. This study shows that ARF might contribute to a modest improved distribution of NPs into the tumor interstitium.
Collapse
|
42
|
Lisitsyna E, Efimov A, Depresle C, Cauchois P, Vuorimaa-Laukkanen E, Laaksonen T, Durandin N. Deciphering Multiple Critical Parameters of Polymeric Self-Assembly by Fluorescence Spectroscopy of a Single Molecular Rotor BODIPY-C12. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ekaterina Lisitsyna
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Alexander Efimov
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Clémentine Depresle
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
- INSA Rouen Normandie, 685 Avenue de l’université, 76800 Saint-Etienne-du-Rouvray, France
| | - Pierre Cauchois
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
- Ecole Nationale Supérieure de Chimie de Lille, Avenue Mendeleiev, 59652 Villeneuve-d’Ascq, France
| | - Elina Vuorimaa-Laukkanen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Timo Laaksonen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Nikita Durandin
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| |
Collapse
|
43
|
Yin J, Kong X, Lin W. Noninvasive Cancer Diagnosis In Vivo Based on a Viscosity-Activated Near-Infrared Fluorescent Probe. Anal Chem 2021; 93:2072-2081. [DOI: 10.1021/acs.analchem.0c03803] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Junling Yin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
- Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People’s Republic of China
| |
Collapse
|
44
|
Shimolina LE, Gulin AA, Paez-Perez M, López-Duarte I, Druzhkova IN, Lukina MM, Gubina MV, Brooks NJ, Zagaynova EV, Kuimova MK, Shirmanova MV. Mapping cisplatin-induced viscosity alterations in cancer cells using molecular rotor and fluorescence lifetime imaging microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200248R. [PMID: 33331150 PMCID: PMC7744042 DOI: 10.1117/1.jbo.25.12.126004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Despite the importance of the cell membrane in regulation of drug activity, the influence of drug treatments on its physical properties is still poorly understood. The combination of fluorescence lifetime imaging microscopy (FLIM) with specific viscosity-sensitive fluorescent molecular rotors allows the quantification of membrane viscosity with high spatiotemporal resolution, down to the individual cell organelles. AIM The aim of our work was to analyze microviscosity of the plasma membrane of living cancer cells during chemotherapy with cisplatin using FLIM and correlate the observed changes with lipid composition and cell's response to treatment. APPROACH FLIM together with viscosity-sensitive boron dipyrromethene-based fluorescent molecular rotor was used to map the fluidity of the cell's membrane. Chemical analysis of membrane lipid composition was performed with time-of-flight secondary ion mass spectrometry (ToF-SIMS). RESULTS We detected a significant steady increase in membrane viscosity in viable cancer cells, both in cell monolayers and tumor spheroids, upon prolonged treatment with cisplatin, as well as in cisplatin-adapted cell line. ToF-SIMS revealed correlative changes in lipid profile of cisplatin-treated cells. CONCLUSIONS These results suggest an involvement of membrane viscosity in the cell adaptation to the drug and in the acquisition of drug resistance.
Collapse
Affiliation(s)
- Liubov E. Shimolina
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexander A. Gulin
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | - Miguel Paez-Perez
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Ismael López-Duarte
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Irina N. Druzhkova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Maria M. Lukina
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Margarita V. Gubina
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nicolas J. Brooks
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Elena V. Zagaynova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Marina K. Kuimova
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Marina V. Shirmanova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| |
Collapse
|
45
|
Park S, Jung WH, Pittman M, Chen J, Chen Y. The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. J Biomech Eng 2020; 142:100804. [PMID: 32803227 PMCID: PMC7477718 DOI: 10.1115/1.4048110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Cells sense biophysical cues in the micro-environment and respond to the cues biochemically and biophysically. Proper responses from cells are critical to maintain the homeostasis in the body. Abnormal biophysical cues will cause pathological development in the cells; pathological or aging cells, on the other hand, can alter their micro-environment to become abnormal. In this minireview, we discuss four important biophysical cues of the micro-environment-stiffness, curvature, extracellular matrix (ECM) architecture and viscosity-in terms of their roles in health, aging, and diseases.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Matthew Pittman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
46
|
Poncelet M, Driesschaert B. A 13 C-Labeled Triarylmethyl Radical as an EPR Spin Probe Highly Sensitive to Molecular Tumbling. Angew Chem Int Ed Engl 2020; 59:16451-16454. [PMID: 32542924 PMCID: PMC7901239 DOI: 10.1002/anie.202006591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/21/2022]
Abstract
A stable triarylmethyl spin probe whose electron paramagnetic resonance (EPR) spectrum is highly sensitive to molecular tumbling is reported. The strong anisotropy of the hyperfine coupling tensor with the central carbon of a 13 C1 -labeled triarylmethyl radical enables the measurement of the probe rotational correlation time with applications to measure microviscosity and molecular dynamics.
Collapse
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
47
|
Kashirina AS, López-Duarte I, Kubánková M, Gulin AA, Dudenkova VV, Rodimova SA, Torgomyan HG, Zagaynova EV, Meleshina AV, Kuimova MK. Monitoring membrane viscosity in differentiating stem cells using BODIPY-based molecular rotors and FLIM. Sci Rep 2020; 10:14063. [PMID: 32820221 PMCID: PMC7441180 DOI: 10.1038/s41598-020-70972-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022] Open
Abstract
Membrane fluidity plays an important role in many cell functions such as cell adhesion, and migration. In stem cell lines membrane fluidity may play a role in differentiation. Here we report the use of viscosity-sensitive fluorophores based on a BODIPY core, termed “molecular rotors”, in combination with Fluorescence Lifetime Imaging Microscopy, for monitoring of plasma membrane viscosity changes in mesenchymal stem cells (MSCs) during osteogenic and chondrogenic differentiation. In order to correlate the viscosity values with membrane lipid composition, the detailed analysis of the corresponding membrane lipid composition of differentiated cells was performed by time-of-flight secondary ion mass spectrometry. Our results directly demonstrate for the first time that differentiation of MSCs results in distinct membrane viscosities, that reflect the change in lipidome of the cells following differentiation.
Collapse
Affiliation(s)
- Alena S Kashirina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950
| | - Ismael López-Duarte
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Markéta Kubánková
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Alexander A Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences (FRCCP RAS), Kosygin st. 4, Moscow, Russian Federation, 119991.,Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russian Federation, 119991
| | - Varvara V Dudenkova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950
| | - Svetlana A Rodimova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950.,Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Novgorod, Nizhny Novgorod, Russian Federation, 603950
| | - Hayk G Torgomyan
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950
| | - Elena V Zagaynova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950.,Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Novgorod, Nizhny Novgorod, Russian Federation, 603950
| | - Aleksandra V Meleshina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950.
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK.
| |
Collapse
|
48
|
Poncelet M, Driesschaert B. A
13
C‐Labeled Triarylmethyl Radical as an EPR Spin Probe Highly Sensitive to Molecular Tumbling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical SciencesSchool of PharmacyWest Virginia University Morgantown WV 26506 USA
- In Vivo Multifunctional Magnetic Resonance CenterRobert C. Byrd Health Sciences CenterWest Virginia University Morgantown WV 26506 USA
| | - Benoit Driesschaert
- Department of Pharmaceutical SciencesSchool of PharmacyWest Virginia University Morgantown WV 26506 USA
- In Vivo Multifunctional Magnetic Resonance CenterRobert C. Byrd Health Sciences CenterWest Virginia University Morgantown WV 26506 USA
| |
Collapse
|
49
|
Wu CH, Chen Y, Pyrshev KA, Chen YT, Zhang Z, Chang KH, Yesylevskyy SO, Demchenko AP, Chou PT. Fluorescence Probes Exhibit Photoinduced Structural Planarization: Sensing In Vitro and In Vivo Microscopic Dynamics of Viscosity Free from Polarity Interference. ACS Chem Biol 2020; 15:1862-1873. [PMID: 32543829 DOI: 10.1021/acschembio.0c00100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate the construction of wavelength λ-ratiometric images that allow visualizing the distribution of microscopic dynamics within living cells and tissues by using the newly developed principle of fluorescence response. The bent-to-planar motion in the excited state of incorporated fluorescence probes leads to elongation of the π-delocalization, resulting in microviscosity-dependent but polarity-insensitive interplay between well-separated blue and red bands in emission spectra. This allows constructing the exceptionally contrasted images of cellular dynamics. Moreover, the application of probes with increased affinity toward biological membranes allowed detecting the differences in dynamics between the plasma membrane and intracellular membrane structures. Such λ-ratiometric microviscosity imaging was extended for mapping the living tissues and observing their inflammation-dependent changes.
Collapse
Affiliation(s)
- Cheng-Ham Wu
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| | - Yi Chen
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Kyrylo A. Pyrshev
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv 01030, Ukraine
- Institute of Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Yi-Ting Chen
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| | - Zhiyun Zhang
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Kai-Hsin Chang
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| | - Semen O. Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Universite′ de Bourgogne Franche-Comte′, 16 route de Gray, 25030 Besançon Cedex, France
- Institute of Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Alexander P. Demchenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv 01030, Ukraine
- Yuriy Fedkovych National University, 58012 Chernivtsi, Ukraine
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| |
Collapse
|
50
|
Polita A, Toliautas S, Žvirblis R, Vyšniauskas A. The effect of solvent polarity and macromolecular crowding on the viscosity sensitivity of a molecular rotor BODIPY-C10. Phys Chem Chem Phys 2020; 22:8296-8303. [DOI: 10.1039/c9cp06865a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viscosity is the key parameter of many biological systems such as live cells. It can be conveniently measured with ‘molecular rotors’ – fluorescent sensors of microviscosity. Here, we investigate one of the most applied molecular rotors BODIPY-C10.
Collapse
Affiliation(s)
- Artūras Polita
- Center of Physical Sciences and Technology
- Vilnius
- Lithuania
| | - Stepas Toliautas
- Institute of Chemical Physics
- Faculty of Physics
- Vilnius University
- 10222 Vilnius
- Lithuania
| | - Rokas Žvirblis
- Center of Physical Sciences and Technology
- Vilnius
- Lithuania
| | | |
Collapse
|