1
|
Rahane GK, Singh B, Roy A, Saykar NG, Mandal A, Afria D, Jadhav YA, Mali SS, Dzade NY, Rondiya SR. Tailoring Interface via Tuning the Phase and Morphology of TiO 2 for Efficient Mesoporous Perovskite Solar Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22526-22539. [PMID: 39404017 DOI: 10.1021/acs.langmuir.4c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The efficiency of mesoporous perovskite solar cells (mp-PSCs) is significantly influenced by favorable charge transport properties across their various interfaces. The interfaces involving compact-TiO2, mesoporous electron transport layer (ETL), and perovskite layer are particularly vital for high-performing devices. Our study presents a combined experimental and computational approach, specifically employing density functional theory, to explore the impact of mesoporous-ETL/perovskite interface properties on carrier transport. These properties are examined in relation to the phases and morphologies of the mesoporous layer. Different phases of TiO2, including anatase, rutile, and brookite, and various morphologies such as nanocubes, nanorods, and disks/clusters, were synthesized using a simple hydrothermal synthesis route. They constitute the mesoporous layer, and Cs0.05FA0.84MA0.14PbI2.55Br0.45 is used as the perovskite absorber in mp-PSCs. The performance of the resulting mesoporous-TiO2 (mp-TiO2) device was investigated in relation to the different phases and morphologies of mp-TiO2. The mp-PSCs with the anatase phase as the mesoporous ETL exhibited the highest device parameters, including power conversion efficiency of 19.15%, short-circuit current density of 22.55 mA/cm2, fill factor of 76.50%, and open-circuit voltage of 1.11 V. The superior performance of the anatase structure is attributed to its promising band edge alignment, which results from a small negative conduction band offset compared to other phases, thereby enhancing carrier transport. This study underscores the potential of interface optimization to improve device performance. By investigating the device performance across different phases and morphologies of the mp-TiO2 layer, we can pave the way for the design of next-generation energy devices.
Collapse
Affiliation(s)
- Ganesh K Rahane
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Balpartap Singh
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Anurag Roy
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Nilesh G Saykar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Animesh Mandal
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Dikshant Afria
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Yogesh A Jadhav
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115 Maharashtra, India
| | - Sawanta S Mali
- Polymer Energy Materials Laboratory, School of Chemical Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Nelson Y Dzade
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sachin R Rondiya
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Toh-Ae P, Timasart N, Tumnantong D, Bovornratanaraks T, Poompradub S. Utilization of waste tire derived activated carbon as CO 2 capture and photocatalyst for CO 2 conversion. Sci Rep 2024; 14:17100. [PMID: 39048643 PMCID: PMC11269617 DOI: 10.1038/s41598-024-67631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
The aims of this research were to prepare activated carbon (AC) impregnated with tetraethylenepentamine (TEPA) for use in carbon dioxide (CO2) capture and to then develop the AC-TEPA sorbent with titanium dioxide (TiO2) as a catalyst for photocatalytic reduction. The AC was impregnated with TEPA at three loading levels (2.5, 5, and 10% [w/w]) and then examined for its CO2 adsorption capacity under an ambient temperature and atmospheric pressure. The use of 5% (w/w) TEPA-impregnated AC (AC_5T) provided the highest CO2 adsorption capacity and long-term operation with a regeneration ability for up to 10 cycles. Then, AC_5T-doped TiO2 (AC_5T-TiO2) was prepared as a photocatalytic reduction catalyst, since the presence of carbon and nitrogen in AC_5T could reduce the band gap energy and so enhance the photocatalytic reduction. In addition, the CO2-saturated AC_5T was used as a CO2 source that could be directly converted to valuable chemicals using the AC_5T-TiO2 catalyst under photocatalytic reduction. Products were obtained in both the liquid (methanol) and gaseous (methane, carbon monoxide, and hydrogen) phases. Accordingly, the challenge of this research was to make valuable products from CO2 and to manage waste tires, following the circular economy concept.
Collapse
Affiliation(s)
- Pornsiri Toh-Ae
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Napatsorn Timasart
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dusadee Tumnantong
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thiti Bovornratanaraks
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Green Materials for Industrial Application, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence On Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Ghosalya MK, Talebi P, Singh H, Klyushin A, Kokkonen E, Alaoui Mansouri M, Huttula M, Cao W, Urpelainen S. Solar light driven atomic and electronic transformations in a plasmonic Ni@NiO/NiCO 3 photocatalyst revealed by ambient pressure X-ray photoelectron spectroscopy. Catal Sci Technol 2024; 14:3029-3040. [PMID: 38841155 PMCID: PMC11149490 DOI: 10.1039/d4cy00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/21/2024] [Indexed: 06/07/2024]
Abstract
This work employs ambient pressure X-ray photoelectron spectroscopy (APXPS) to delve into the atomic and electronic transformations of a core-shell Ni@NiO/NiCO3 photocatalyst - a model system for visible light active plasmonic photocatalysts used in water splitting for hydrogen production. This catalyst exhibits reversible structural and electronic changes in response to water vapor and solar simulator light. In this study, APXPS spectra were obtained under a 1 millibar water vapor pressure, employing a solar simulator with an AM 1.5 filter to measure spectral data under visible light illumination. The in situ APXPS spectra indicate that the metallic Ni core absorbs the light, exciting plasmons, and creates hot electrons that are subsequently utilized through hot electron injection in the hydrogen evolution reaction (HER) by NiCO3. Additionally, the data show that NiO undergoes reversible oxidation to NiOOH in the presence of water vapor and light. The present work also investigates the contribution of carbonate and its involvement in the photocatalytic reaction mechanism, shedding light on this seldom-explored aspect of photocatalysis. The APXPS results highlight the photochemical reduction of carbonates into -COOH, contributing to the deactivation of the photocatalyst. This work demonstrates the APXPS efficacy in examining photochemical reactions, charge transfer dynamics and intermediates in potential photocatalysts under near realistic conditions.
Collapse
Affiliation(s)
| | - Parisa Talebi
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | - Harishchandra Singh
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | | | - Esko Kokkonen
- MAX IV Laboratory, Lund University Box 118 Lund 22100 Sweden
| | | | - Marko Huttula
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | - Wei Cao
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | - Samuli Urpelainen
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| |
Collapse
|
4
|
Hernández-Rodríguez F, Garza-Hernández R, Alfaro-Cruz M, Torres-Martínez LM. Tunable structure of TiO 2 deposited by DC magnetron sputtering to adsorb Cr (VI) and Fe (III) from water. Heliyon 2024; 10:e27359. [PMID: 38501005 PMCID: PMC10945184 DOI: 10.1016/j.heliyon.2024.e27359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
TiO2 thin films with mixtures of the anatase, rutile, and brookite phases were deposited on glass substrates via magnetron sputtering. Based on XRD and Raman results, the TiO2-0.47 and TiO2-3.47 films principally contained the brookite phase, while the TiO2-1.27 and TiO2-2.13 films were primarily anatase. The capacities of the TiO2 films to adsorb heavy metals were tested with Cr(VI) and Fe(III) solutions, and the maximum Cr(VI) and Fe(III) adsorption capacities were realized with the TiO2-0.47 film (334.5 mg/g) and TiO2-3.47 film (271.3 mg/g), respectively. SEM‒EDS results revealed the presence of Cr and Fe on the surfaces of the films, thus corroborating the ability of the TiO2 films to adsorb and remove heavy metals. They are strong candidates for use in wastewater treatment plants.
Collapse
Affiliation(s)
- F.A. Hernández-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - R. Garza-Hernández
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Col. Lomas del Campestre León, Guanajuato, C.P. 37150, Mexico
| | - M.R. Alfaro-Cruz
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
- CONAHCYT-Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Leticia M. Torres-Martínez
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chih., CP, 31136, Mexico
| |
Collapse
|
5
|
Thirumalaisamy L, Wei Z, Davies KR, Allan MG, McGettrick J, Watson T, Kuehnel MF, Pitchaimuthu S. Dual Shield: Bifurcated Coating Analysis of Multilayered WO 3/BiVO 4/TiO 2/NiOOH Photoanodes for Sustainable Solar-to-Hydrogen Generation from Challenging Waters. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:3044-3060. [PMID: 38425834 PMCID: PMC10900524 DOI: 10.1021/acssuschemeng.3c06528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
The heterostructure WO3/BiVO4-based photoanodes have garnered significant interest for photoelectrochemical (PEC) solar-driven water splitting to produce hydrogen. However, challenges such as inadequate charge separation and photocorrosion significantly hinder their performance, limiting overall solar-to-hydrogen conversion efficiency. The incorporation of cocatalysts has shown promise in improving charge separation at the photoanode, yet mitigating photocorrosion remains a formidable challenge. Amorphous metal oxide-based passivation layers offer a potential solution to safeguard semiconductor catalysts. We examine the structural, surface morphological, and optical properties of two-step-integrated sputter and spray-coated TiO2 thin films and their integration onto WO3/BiVO4, both with and without NiOOH cocatalyst deposition. The J-V experiments reveal that the NiOOH cocatalyst enhances the photocurrent density of the WO3/BiVO4 photoanode in water splitting reactions from 2.81 to 3.87 mA/cm2. However, during prolonged operation, the photocurrent density degrades by 52%. In contrast, integrated sputter and spray-coated TiO2 passivation layer-coated WO3/BiVO4/NiOOH samples demonstrate a ∼88% enhancement in photocurrent density (5.3 mA/cm2) with minimal degradation, emphasizing the importance of a strategic coating protocol to sustain photocurrent generation. We further explore the feasibility of using natural mine wastewater as an electrolyte feedstock in PEC generation. Two-compartment PEC cells, utilizing both fresh water and metal mine wastewater feedstocks exhibit 66.6 and 74.2 μmol/h cm2 hydrogen generation, respectively. Intriguingly, the recovery of zinc (Zn2+) heavy metals on the cathode surface in the mine wastewater electrolyte is confirmed through surface morphology and elemental analysis. This work underscores the significance of passivation layer and cocatalyst coating methodologies in a sequential order to enhance charge separation and protect the photoanode from photocorrosion, contributing to sustainable hydrogen generation. Additionally, it suggests the potential of utilizing wastewater in electrolyzers as an alternative to freshwater resources.
Collapse
Affiliation(s)
- Logu Thirumalaisamy
- SPECIFIC,
Materials Research Centre, Faculty of Science and Engineering, Swansea University (Bay Campus), Swansea SA1 8EN, U.K.
- Department
of Physics, G T N Arts College, Dindigul, Tamil Nadu 624005, India
| | - Zhengfei Wei
- SPECIFIC,
Materials Research Centre, Faculty of Science and Engineering, Swansea University (Bay Campus), Swansea SA1 8EN, U.K.
| | - Katherine Rebecca Davies
- SPECIFIC,
Materials Research Centre, Faculty of Science and Engineering, Swansea University (Bay Campus), Swansea SA1 8EN, U.K.
| | - Michael G. Allan
- Department
of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, U.K.
| | - James McGettrick
- SPECIFIC,
Materials Research Centre, Faculty of Science and Engineering, Swansea University (Bay Campus), Swansea SA1 8EN, U.K.
| | - Trystan Watson
- SPECIFIC,
Materials Research Centre, Faculty of Science and Engineering, Swansea University (Bay Campus), Swansea SA1 8EN, U.K.
| | - Moritz F. Kuehnel
- Department
of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, U.K.
- Fraunhofer
Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Strasse 1, Halle 06120, Germany
| | - Sudhagar Pitchaimuthu
- SPECIFIC,
Materials Research Centre, Faculty of Science and Engineering, Swansea University (Bay Campus), Swansea SA1 8EN, U.K.
- Research
Centre for Carbon Solutions (RCCS), Institute of Mechanical, Processing
and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH144AS, U.K.
| |
Collapse
|
6
|
Oh H, Son B, Shanmugam S. Cerium-Based Perovskite Mixed Metal Oxide as the Radical Scavenger for PEM Fuel Cells Operating under Low Humidity Conditions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37276489 DOI: 10.1021/acsami.3c04216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When the polymer electrolyte membrane fuel cell (PEMFC) is operated under low humidity, the proton conductivity decreases due to membrane dehydration, causing adverse effects on fuel cell performance. Introducing appropriate additives to the membrane and catalyst layer to prevent membrane degradation at low humidity brings significant performance improvements to proton exchange membrane fuel cells. We developed a perovskite-structured multi-metal oxide Ce0.667Zr0.05Ti0.95O3-δ (CZTO) with high radical scavenging properties and good structural stability. The nanostructured ceramic CZTO is introduced into the membrane and cathode catalyst layer to improve the durability of the membrane electrode assembly. The Nafion-CZTO membrane exhibited maximum power densities of 1298 and 519 mW cm-2-2 at 100 and 20% relative humidity, respectively. The improved performance of Nafion-CZTO membranes over commercial Nafion membranes is due to the high proton conductivity and better radical scavenging properties of the CZTO additive. In addition, the expected positive effects of applying CZTO additives to the catalyst layer are verified by low charge transfer resistance and high electrochemical surface activity of the CZTO catalyst through electrochemical impedance spectroscopy and electrochemical surface area analyses.
Collapse
Affiliation(s)
- Hyunsik Oh
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Dalseong-Gun, Daegu 42988, The Republic of Korea
| | - Byungrak Son
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Dalseong-Gun, Daegu 42988, The Republic of Korea
| | - Sangaraju Shanmugam
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Dalseong-Gun, Daegu 42988, The Republic of Korea
| |
Collapse
|
7
|
Querebillo CJ. A Review on Nano Ti-Based Oxides for Dark and Photocatalysis: From Photoinduced Processes to Bioimplant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:982. [PMID: 36985872 PMCID: PMC10058723 DOI: 10.3390/nano13060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. Meanwhile, the increasing complexity of modern scientific challenges in disinfection and bioimplants requires a profound mechanistic understanding of both residual and dark catalysis. Here, an overview of the progress made in TiO2 catalysis is given both in the presence and absence of light. It begins with the mechanisms involving reactive oxygen species (ROS) in TiO2 photocatalysis. This is followed by improvements in their photocatalytic efficiency due to their nanomorphology and states by enhancing charge separation and increasing light harvesting. A subsection on black TiO2 nanomaterials and their interesting properties and physics is also included. Progress in residual catalysis and dark catalysis on TiO2 are then presented. Safety, microbicidal effect, and studies on Ti-oxides for bioimplants are also presented. Finally, conclusions and future perspectives in light of disinfection and bioimplant application are given.
Collapse
Affiliation(s)
- Christine Joy Querebillo
- Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| |
Collapse
|
8
|
Kumari P, Saha R, Saikia G, Bhujel A, Choudhury MG, Jagdale P, Paul S. Synthesis of Mixed-Phase TiO 2-ZrO 2 Nanocomposite for Photocatalytic Wastewater Treatment. TOXICS 2023; 11:234. [PMID: 36976999 PMCID: PMC10051327 DOI: 10.3390/toxics11030234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The use of TiO2 nanoparticles for photocatalysis for the degradation of organic dyes under UV light for wastewater treatment has been widely studied. However, the photocatalytic characteristics of TiO2 nanoparticles are inadequate due to their UV light response and higher band gap. In this work, three nanoparticles were synthesized: (i) TiO2 nanoparticle was synthesized by a sol-gel process. (ii) ZrO2 was prepared using a solution combustion process and (iii) mixed-phase TiO2-ZrO2 nanoparticles were synthesized by a sol-gel process to remove Eosin Yellow (EY) from aqueous solutions in the wastewater. XRD, FTIR, UV-VIS, TEM, and XPS analysis methods were used to examine the properties of the synthesized products. The XRD investigation supported the tetragonal and monoclinic crystal structures of the TiO2 and ZrO2 nanoparticles. TEM studies identified that mixed-phase TiO2-ZrO2 nanoparticles have the same tetragonal structure as pure mixed-phase. The degradation of Eosin Yellow (EY) was examined using TiO2, ZrO2, and mixed-phase TiO2-ZrO2 nanoparticles under visible light. The results confirmed that the mixed-phase TiO2-ZrO2nanoparticles show a higher level of photocatalytic activity, and the process is accomplished at a high degradation rate in lesser time and at a lower power intensity.
Collapse
Affiliation(s)
- Pooja Kumari
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Rajib Saha
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Gaurav Saikia
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Aditya Bhujel
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Mahua Gupta Choudhury
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Pravin Jagdale
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | - Samrat Paul
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
9
|
Krishnan S, Shriwastav A. Chlorophyll sensitized and salicylic acid functionalized TiO 2 nanoparticles as a stable and efficient catalyst for the photocatalytic degradation of ciprofloxacin with visible light. ENVIRONMENTAL RESEARCH 2023; 216:114568. [PMID: 36252840 DOI: 10.1016/j.envres.2022.114568] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Developing efficient and stable visible light active photocatalyst has significant environmental applications. Though dye sensitization of TiO2 nanoparticles with natural chlorophyll pigments can potentially impart visible light activity, their long-term stability is a major concern. We investigated the functionalization of TiO2 with salicylic acid, and subsequent sensitization with chlorophylls to improve the catalyst stability for the photocatalytic degradation of Ciprofloxacin (CPX) under visible light. A significant improvement in the degradation efficiency and catalyst stability was observed for five reuse cycles. Further, an optimum CPX degradation of ∼75% was achieved with 0.75 g L-1 catalyst dosage of 0.1 chl/0.1 SA-TiO2, initial pH of 6, and 10 ppm of initial CPX for a visible light exposure of 2 h. The degradation followed the pseudo-second-order kinetics. In addition, the ciprofloxacin degradation was reduced in the wastewater matrix system due to the presence of other scavenging species such as chlorides, sulphates, and alkalinity. Significant reduction in the toxicity of degradation compounds after the photocatalytic degradation was observed in comparison to parent CPX. Further, the degradation pathway and plausible mechanism of degradation of CPX were also proposed.
Collapse
Affiliation(s)
- Sukanya Krishnan
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | - Amritanshu Shriwastav
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400 076, India.
| |
Collapse
|
10
|
Zappia S, Perju E, Bejan A, Coroaba A, Bossola F, Zeng J, Sassone D, Marin L, Destri S, Porzio W. Microporous Polymelamine Framework Functionalized with Re(I) Tricarbonyl Complexes for CO 2 Absorption and Reduction. Polymers (Basel) 2022; 14:polym14245472. [PMID: 36559839 PMCID: PMC9782493 DOI: 10.3390/polym14245472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
A mixture of polymeric complexes based on the reaction between Re(CO)5Cl and the porous polymeric network coming from the coupling of melamine and benzene-1,3,5-tricarboxaldehyde was obtained and characterized by FTIR, NMR, SEM, XPS, ICP, XRD, and cyclic voltammetry (CV). The formed rhenium-based porous hybrid material reveals a noticeable capability of CO2 absorption. The gas absorption amount measured at 295 K was close to 44 cm3/g at 1 atm. An interesting catalytic activity for CO2 reduction reaction (CO2RR) is observed, resulting in a turn over-number (TON) close to 6.3 under 80 min of test at -1.8 V vs. Ag/AgCl in a TBAPF6 0.1 M ACN solution. A possible use as filler in membranes or columns can be envisaged.
Collapse
Affiliation(s)
- Stefania Zappia
- Institute of Chemical Sciences and Technologies “G. Natta” Consiglio Nazionale delle Ricerche (SCITEC-CNR) via A. Corti 12, 20133 Milano, Italy
- Correspondence: (S.Z.); (L.M.)
| | - Elena Perju
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Andrei Bejan
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Adina Coroaba
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Filippo Bossola
- Institute of Chemical Sciences and Technologies “G. Natta” Consiglio Nazionale delle Ricerche (SCITEC-CNR) via C. Golgi 19, 20133 Milano, Italy
| | - Juqin Zeng
- Center for Sustainable Future Technologies CSFT@PoliTo, Istituto Italiano di Tecnologia, IIT Via Livorno, 10144 Torino, Italy
| | - Daniele Sassone
- Center for Sustainable Future Technologies CSFT@PoliTo, Istituto Italiano di Tecnologia, IIT Via Livorno, 10144 Torino, Italy
| | - Luminita Marin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
- Correspondence: (S.Z.); (L.M.)
| | - Silvia Destri
- Institute of Chemical Sciences and Technologies “G. Natta” Consiglio Nazionale delle Ricerche (SCITEC-CNR) via A. Corti 12, 20133 Milano, Italy
| | - William Porzio
- Institute of Chemical Sciences and Technologies “G. Natta” Consiglio Nazionale delle Ricerche (SCITEC-CNR) via A. Corti 12, 20133 Milano, Italy
| |
Collapse
|
11
|
Kim YE, Byun MY, Lee KY, Lee MS. Hydrothermal synthesis of mesoporous TiO2 using β-diketonate stabilizing agents for photocatalytic degradation of methyl violet 2B under visible light. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Lo Porto C, Dell’Edera M, De Pasquale I, Milella A, Fracassi F, Curri ML, Comparelli R, Palumbo F. Photocatalytic Investigation of Aerosol-Assisted Atmospheric Pressure Plasma Deposited Hybrid TiO 2 Containing Nanocomposite Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3758. [PMID: 36364532 PMCID: PMC9653690 DOI: 10.3390/nano12213758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
We report on the aerosol-assisted atmospheric-pressure plasma deposition onto a stainless-steel woven mesh of a thin nanocomposite coating based on TiO2 nanoparticles hosted in a hybrid organic−inorganic matrix, starting from nanoparticles dispersed in a mixture of hexamethyldisiloxane and isopropyl alcohol. The stainless-steel mesh was selected as an effective support for the possible future technological application of the coating for photocatalytically assisted water depollution. The prepared coatings were thoroughly investigated from the chemical and morphological points of view and were demonstrated to be photocatalytically active in the degradation of an organic molecule, used as a pollutant model, in water upon UV light irradiation. In order to optimize the photocatalytic performance, different approaches were investigated for the coating’s realization, namely (i) the control of the deposition time and (ii) the application of a postdeposition O2 plasma treatment on the pristine coatings. Both strategies were found to be able to increase the photocatalytic activity, and, remarkably, their combination resulted in a further enhancement of the photoactivity. Indeed, the proposed combined approach allowed a three-fold increase in the kinetic constant of the degradation reaction of the model dye methylene blue with respect to the pristine coating. Interestingly, the chemical and morphological characterizations of all the prepared coatings were able to account for the enhancement of the photocatalytic performance. Indeed, the presence of the TiO2 nanoparticles on the outmost surface of the film confirmed the accessibility of the photocatalytic sites in the nanocomposite and reasonably explained the enhanced photocatalytic performance. In addition, the sustained photoactivity (>5 cycles of use) of the nanocomposites was demonstrated.
Collapse
Affiliation(s)
- Chiara Lo Porto
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S.S. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy
| | - Massimo Dell’Edera
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S.S. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy
| | - Ilaria De Pasquale
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S.S. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy
| | - Antonella Milella
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- CNR-NANOTEC, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy
| | - Francesco Fracassi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- CNR-NANOTEC, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy
| | - Maria Lucia Curri
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S.S. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Roberto Comparelli
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S.S. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy
| | - Fabio Palumbo
- CNR-NANOTEC, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
13
|
Chu P, Zhang Y, He J, Chen J, Zhuang J, Li Y, Ren X, Zhang P, Sun L, Yu B, Chen S. Defective Fe 3 O 4- x Few-Atom Clusters Anchored on Nitrogen-Doped Carbon as Efficient Oxygen Reduction Electrocatalysts for High-Performance Zinc-Air Batteries. SMALL METHODS 2022; 6:e2200207. [PMID: 35656764 DOI: 10.1002/smtd.202200207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/01/2022] [Indexed: 06/15/2023]
Abstract
It remains a challenge to develop cost-effective, high-performance oxygen electrocatalysts for rechargeable metal-air batteries. Herein, zinc-mediated zeolitic imidazolate frameworks are exploited as the template and nitrogen and carbon sources, onto which is deposited a Fe3 O4 layer by plasma-enhanced atomic layer deposition. Controlled pyrolysis at 1000 °C leads to the formation of high density of Fe3 O4- x few-atom clusters with abundant oxygen vacancies deposited on an N-doped graphitic carbon framework. The resulting nanocomposite (Fe3 O4- x /NC-1000) exhibits a markedly enhanced electrocatalytic performance toward oxygen reduction reaction in alkaline media, with a remarkable half-wave potential of +0.930 V versus reversible hydrogen electrode, long-term stability, and strong tolerance against methanol poisoning, in comparison to samples prepared at other temperatures and even commercial Pt/C. Notably, with Fe3 O4- x /NC-1000 as the cathode catalyst, a zinc-air battery delivers a high power density of 158 mW cm-2 and excellent durability at 5 mA cm-2 with stable 2000 charge-discharge cycles over 600 h. This is ascribed to the ready accessibility of the Fe3 O4- x catalytic active sites, and enhanced electrical conductivity, oxygen adsorption, and electron-transfer kinetics by surface oxygen vacancies. Further contributions may arise from the highly conductive and stable N-doped graphitic carbon frameworks.
Collapse
Affiliation(s)
- Panpan Chu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Yingmeng Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiajie He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jinhong Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jingjun Zhuang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Lingna Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Bingzhe Yu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
14
|
Manpetch P, Singhapong W, Jaroenworaluck A. A comparative study of TiO 2 nanoparticles and Cu(II)/TiO 2 nanocomposites on photodegradation of cinnamic acid (CA) under natural sunlight and artificial UV light. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2068568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Panlekha Manpetch
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Wadwan Singhapong
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Angkhana Jaroenworaluck
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
15
|
Wang Y, Cai N, Yang H, Wu C. Application of Carbon Nanotubes from Waste Plastics As Filler to Epoxy Resin Composite. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:2204-2213. [PMID: 35572496 PMCID: PMC9097581 DOI: 10.1021/acssuschemeng.1c07776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Indexed: 05/10/2023]
Abstract
Carbon nanotubes (CNTs) are promising nanofillers to enhance the mechanical performance of polymers. Through catalytic conversion, waste plastics can be converted into CNTs, which could be an alternative to commercial CNTs (cCNTs). Exploring a practical application of waste-plastic-derived CNTs will largely promote the technology development related to waste plastic management and CNT production. In this work, CNTs produced from plastics, named pCNTs, were applied as fillers to epoxy resin (EP), while commercial CNTs (cCNTs) were used as a reference. The carboxyl groups were effectively inserted on the CNT skeleton by a facile purification and modification. After ultrasonic dispersion, the modified pCNTs (M-pCNTs) were uniformly dispersed and loaded in the EP matrix. Better mechanical properties than EP were attained with a Young's modulus of 3776.9 MPa, a tensile strength of 37.3 MPa, a fracture strain of 6.32%, and a fracture strength of 111.7 MPa with 2 wt % M-pCNT loading. Thus, pCNTs enhanced the toughness of the EP composites and simultaneously retained the stiffness. It was suggested that CNT pull-out and bridging were predominant toughening mechanisms for pCNT/EP composites. Notably, the coated film developed between residual metal in M-pCNTs and EP built a strong interfacial interaction and reinforced the EP composites.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast, BT7 1NN, United Kingdom
| | - Ning Cai
- State
Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Haiping Yang
- State
Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- E-mail:
| | - Chunfei Wu
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast, BT7 1NN, United Kingdom
- E-mail:
| |
Collapse
|
16
|
Ogulu D, Bora PP, Bihani M, Sharma S, Ansari TN, Wilson AJ, Jasinski JB, Gallou F, Handa S. Phosphine Ligand-Free Bimetallic Ni(0)Pd(0) Nanoparticles as a Catalyst for Facile, General, Sustainable, and Highly Selective 1,4-Reductions in Aqueous Micelles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6754-6761. [PMID: 35089693 DOI: 10.1021/acsami.1c22282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphine ligand-free bimetallic nanoparticles (NPs) composed of Ni(0)Pd(0) catalyze highly selective 1,4-reductions of enones, enamides, enenitriles, and ketoamides under aqueous micellar conditions. A minimal amount of Pd (Ni/Pd = 25:1) is needed to prepare these NPs, which results in reductions without impacting N- and O-benzyl, aldehyde, nitrile, and nitro functional groups. A broad range of substrates has been studied, including a gram-scale reaction. The metal-micelle binding is supported by surface-enhanced Raman spectroscopy data on both the NPs and their individual components. Optical imaging, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy analyses reveal the formation of NP-containing micelles or vesicles, NP morphology, particle size distribution, and chemical composition. X-ray photoelectron spectroscopy measurements indicate the oxidation state of each metal within these bimetallic NPs.
Collapse
Affiliation(s)
- Deborah Ogulu
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, Kentucky 40292, United States
| | - Pranjal P Bora
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, Kentucky 40292, United States
| | - Manisha Bihani
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, Kentucky 40292, United States
| | - Sudripet Sharma
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, Kentucky 40292, United States
| | - Tharique N Ansari
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, Kentucky 40292, United States
| | - Andrew J Wilson
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, Kentucky 40292, United States
| | - Jacek B Jasinski
- Materials Characterization, Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | | | - Sachin Handa
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, Kentucky 40292, United States
| |
Collapse
|
17
|
Santoso SP, Angkawijaya AE, Bundjaja V, Hsieh CW, Go AW, Yuliana M, Hsu HY, Tran-Nguyen PL, Soetaredjo FE, Ismadji S. TiO 2/guar gum hydrogel composite for adsorption and photodegradation of methylene blue. Int J Biol Macromol 2021; 193:721-733. [PMID: 34655594 DOI: 10.1016/j.ijbiomac.2021.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022]
Abstract
The development of porous adsorbent materials from renewable resources for water and wastewater treatment has received considerable interest from academia and industry. This work aims to synthesize composite hydrogel from the combination of guar gum (a neutral galactomannan polysaccharide) and TiO2. The TiO2-embedded guar gum hydrogel (TiO2@GGH) was utilized to remove methylene blue through adsorption and photodegradation. The presence of TiO2 particles in the hydrogel matrix (TiO2@GGH) was confirmed by scanning electron microscopy-energy dispersive X-ray and X-ray photoelectron spectroscopy analysis. The mercury intrusion and N2 sorption isotherm indicate the macroporous structure of the TiO2@GGH composite, showing the presence of pore sizes ~420 μm. The dye removal efficiency of the GGH and TiO2@GGH was evaluated in batch mode at ambient temperature under varying pH. The effect of UV radiation on the dye removal efficiency was also assessed. The results demonstrated that the highest dye removal was recorded at pH 10, with the equilibrium condition achieved within 5 h. UV radiation was shown to enhance dye removal. The maximum adsorption capacity of TiO2@GGH is 198.61 mg g-1, while GGH sorbent is 188.53 mg g-1. The results imply that UV radiation gives rise to the photodegradation effect.
Collapse
Affiliation(s)
- Shella Permatasari Santoso
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Jl. Kalijudan No. 37, Surabaya 60114, East Java, Indonesia; Chemical Engineering Department, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan.
| | - Artik Elisa Angkawijaya
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan
| | - Vania Bundjaja
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Xingda Road, 402, South District, Taichung City, Taiwan
| | - Alchris Woo Go
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan
| | - Maria Yuliana
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Jl. Kalijudan No. 37, Surabaya 60114, East Java, Indonesia
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Phuong Lan Tran-Nguyen
- Mechanical Engineering Department, Can Tho University, 3/2 Street, Ninh Kieu Dist., Can Tho City, Viet Nam
| | - Felycia Edi Soetaredjo
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Jl. Kalijudan No. 37, Surabaya 60114, East Java, Indonesia; Chemical Engineering Department, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan
| | - Suryadi Ismadji
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Jl. Kalijudan No. 37, Surabaya 60114, East Java, Indonesia; Chemical Engineering Department, National Taiwan University of Science and Technology, #43 Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan
| |
Collapse
|
18
|
Rusmin R, Sarkar B, Mukhopadhyay R, Tsuzuki T, Liu Y, Naidu R. Facile one pot preparation of magnetic chitosan-palygorskite nanocomposite for efficient removal of lead from water. J Colloid Interface Sci 2021; 608:575-587. [PMID: 34628317 DOI: 10.1016/j.jcis.2021.09.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/31/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022]
Abstract
Development of polymeric magnetic adsorbents is a promising approach to obtain efficient treatment of contaminated water. However, the synthesis of magnetic composites involving multiple components frequently involves tedious preparation steps. In the present study, a magnetic chitosan-palygorskite (MCP) nanocomposite was prepared through a straight-forward one pot synthesis approach to evaluate its lead (Pb2+) removal capacity from aqueous solution. The nano-architectural and physicochemical properties of the newly-developed MCP composite were described via micro- and nano-morphological analyses, and crystallinity, surface porosity and magnetic susceptibility measurements. The MCP nanocomposite was capable to remove up to 58.5 mg Pb2+ g-1 of MCP from water with a good agreement of experimental data to the Langmuir isotherm model (R2 = 0.98). The Pb2+ adsorption process on MCP was a multistep diffusion-controlled phenomenon evidenced by the well-fitting of kinetic adsorption data to the intra-particle diffusion model (R2 = 0.96). Thermodynamic analysis suggested that the adsorption process at low Pb2+ concentration was controlled by chemisorption, whereas that at high Pb2+ concentration was dominated by physical adsorption. X-ray photoelectron and Fourier transform infrared spectroscopy results suggested that the Pb adsorption on MCP was governed by surface complexation and chemical reduction mechanisms. During regeneration, the MCP retained 82% Pb2+ adsorption capacity following four adsorption-desorption cycles with ease to recover the adsorbent using its strong magnetic property. These findings highlight the enhanced structural properties of the easily-prepared nanocomposite which holds outstanding potential to be used as an inexpensive and green adsorbent for remediating Pb2+ contaminated water.
Collapse
Affiliation(s)
- Ruhaida Rusmin
- Faculty of Applied Sciences, Universiti Teknologi MARA, Negeri Sembilan Branch, Kuala Pilah Campus, Kuala Pilah, Negeri Sembilan 72000, Malaysia; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Takuya Tsuzuki
- Research School of Engineering, College of Engineering and Computer Science, Australian National University, Acton, ACT 2601, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, Callaghan, NSW 2308, Australia
| |
Collapse
|
19
|
Zhang X, Li B, Lan M, Yang S, Xie Q, Xiao J, Xiao F, Wang S. Cation Modulation of Cobalt Sulfide Supported by Mesopore-Rich Hydrangea-Like Carbon Nanoflower for Oxygen Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18683-18692. [PMID: 33856760 DOI: 10.1021/acsami.1c00579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition-metal sulfide is pursued for replacing scare platinum-group metals for oxygen electrocatalysis and is of great importance in developing low-cost, high-performance rechargeable metal-air batteries. We report herein a facile cationic-doping strategy for preparing nickel-doped cobalt sulfide embedded into a mesopore-rich hydrangea-like carbon nanoflower. Nickel cations are introduced to induce the formation of Co3+-active species and more oxygen vacancies due to higher electronegativity and smaller ionic radius, thereby strengthening the intrinsic activity for oxygen electrocatalysis. Moreover, hydrangea-like superstructure composed of interconnected carbon cages provides abundant accessible active sites and hierarchical porosity. As a result, it shows excellent catalytic performance with a superior mass activity for the oxygen reduction reaction to the state-of-the-art Pt/C catalyst and a low overpotential of 314 mV at 10 mA cm-2 for the oxygen evolution reaction. When used as an air cathode for the rechargeable Zn-air battery, it delivers a peak power density of 96.3 mW cm-2 and stably operates over 214 h. This work highlights the importance of cationic doping in strengthening the electrocatalytic performance of 3d-transition-metal chalcogenides.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Bin Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Minqiu Lan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Shengxiong Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Qianru Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Junwu Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Shuai Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| |
Collapse
|
20
|
Jeong H, Lee J. Ag/AgCl nanoparticles embedded in porous TiO 2: defect formation triggered by light irradiation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01419f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photocatalytic activity of Ag/AgCl embedded in defective porous TiO2 was dependent on the changes of Ti3+ and the formation of AgCl crystals.
Collapse
Affiliation(s)
| | - Junhyung Lee
- ECA, Korea Advanced Nano Fab Center
- Suwon-si
- Korea
- Department of Materials Science and Engineering
- Seoul National University
| |
Collapse
|
21
|
Sulfated TiO2/SnO2 nanocomposite as a green heterogeneous catalyst for direct amide formation reaction. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Sharma N, Gupta M, Chowhan B, Frontera A. Magnetically separable nanocatalyst (IL@CuFe2O4-L-Tyr-TiO2/TiTCIL): Preparation, characterization and its applications in 1,2,3-triazole synthesis and in photodegradation of MB. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Dulski M, Balcerzak J, Simka W, Dudek K. Innovative Bioactive Ag-SiO 2/TiO 2 Coating on a NiTi-Shape Memory Alloy: Structure and Mechanism of Its Formation. MATERIALS (BASEL, SWITZERLAND) 2020; 14:E99. [PMID: 33383620 PMCID: PMC7794940 DOI: 10.3390/ma14010099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
In recent years, more and more emphasis has been placed on the development and functionalization of metallic substrates for medical applications to improve their properties and increase their applicability. Today, there are many different types of approaches and materials that are used for this purpose. Our idea was based on a combination of a chemically synthesized Ag-SiO2 nanocomposite and the electrophoretic deposition approach on a NiTi-shape memory substrate. As a result, silver-silica coating was developed on a previously passivated alloy, which was then subjected to sintering at 700 °C for 2 h. The micrometer-sized coat-forming material was composed of large agglomerates consisting of silica and a thin film of submicron- and nano- spherical-shaped particles built of silver, carbon, and oxygen. Structurally, the coatings consisted of a combination of nanometer-sized silver-carbonate that was embedded in thin amorphous silica and siloxy network. The temperature impact had forced morphological and structural changes such as the consolidation of the coat-forming material, and the partial coalescence of the silver and silica particles. As a result, a new continuous complex ceramic coating was formed and was analyzed in more detail using the XPS, XRD, and Raman methods. According to the structural and chemical analyses, the deposited Ag-SiO2 nanocomposite material's reorganization was due to its reaction with a passivated TiO2 layer, which formed an atypical glass-like composite that consisted of SiO2-TiO2 with silver particles that stabilized the network. Finally, the functionalization of the NiTi surface did not block the shape memory effect.
Collapse
Affiliation(s)
- Mateusz Dulski
- Institute of Materials Engineering, University of Silesia and Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Jacek Balcerzak
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland;
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland;
| | - Karolina Dudek
- Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Toszecka 99, 44-100 Gliwice, Poland
| |
Collapse
|
24
|
Carey IV PH, Hsu SM, Fares C, Kamenov G, Ren F, Esquivel-Upshaw J. The Galvanic Effect of Titanium and Amalgam in the Oral Environment. MATERIALS 2020; 13:ma13194425. [PMID: 33027910 PMCID: PMC7579048 DOI: 10.3390/ma13194425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/23/2022]
Abstract
The effects of the presence of amalgam on titanium (Ti) dissolution in the oral environment under acidic, neutral, and basic conditions was studied. The presence of amalgam was found to suppress Ti release under acidic conditions due to the redeposition of TiOx/SnOx on the surface of the Ti. The redeposition of SnOx was due to the amalgam releasing its components (Hg, Cu, Sn, Ag) and the thermodynamic preference of Sn to oxidize, which was confirmed using mass measurements, ICP-MS analyses, and X-ray Photoelectron Spectroscopy (XPS). XPS depth profiling was performed to characterize the composition and oxidation states of the redeposited SnOx/TiOx film. Under basic conditions, the amalgam hindered Ti dissolution, but no redeposition of amalgam components was observed for the Ti.
Collapse
Affiliation(s)
- Patrick H. Carey IV
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32608, USA; (P.H.C.IV); (C.F.); (F.R.)
| | - Shu-Min Hsu
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32608, USA;
| | - Chaker Fares
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32608, USA; (P.H.C.IV); (C.F.); (F.R.)
| | - George Kamenov
- Department of Geological Sciences, University of Florida, Gainesville, FL 32608, USA;
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32608, USA; (P.H.C.IV); (C.F.); (F.R.)
| | - Josephine Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32608, USA;
- Correspondence:
| |
Collapse
|
25
|
Sopha H, Mirza I, Turčičova H, Pavlinak D, Michalicka J, Krbal M, Rodriguez-Pereira J, Hromadko L, Novák O, Mužík J, Smrž M, Kolibalova E, Goodfriend N, Bulgakova NM, Mocek T, Macak JM. Laser-induced crystallization of anodic TiO 2 nanotube layers. RSC Adv 2020; 10:22137-22145. [PMID: 35516600 PMCID: PMC9054590 DOI: 10.1039/d0ra02929g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023] Open
Abstract
In this study, crystallization of amorphous TiO2 nanotube (TNT) layers upon optimized laser annealing is shown. The resulting anatase TNT layers do not show any signs of deformation or melting. The crystallinity of the laser annealed TNT layers was investigated using X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The study of the (photo-)electrochemical properties showed that the laser annealed TNT layers were more defective than conventional TNT layers annealed in a muffle oven at 400 °C, resulting in a higher charge recombination rate and lower photocurrent response. However, a lower overpotential for hydrogen evolution reaction was observed for the laser annealed TNT layer compared to the oven annealed TNT layer. Laser treatment of amorphous TiO2 nanotube layers leads to their crystallization without deformation or formation of the thermal oxide layer.![]()
Collapse
Affiliation(s)
- Hanna Sopha
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic .,Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Inam Mirza
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences Za Radnicí 828 2524 Dolní Břežany Czech Republic
| | - Hana Turčičova
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences Za Radnicí 828 2524 Dolní Břežany Czech Republic
| | - David Pavlinak
- Department of Physical Electronics, Masaryk University Kotlářská 267/2 611 37 Brno Czech Republic
| | - Jan Michalicka
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Milos Krbal
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic
| | - Jhonatan Rodriguez-Pereira
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic
| | - Ludek Hromadko
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic .,Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Ondřej Novák
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences Za Radnicí 828 2524 Dolní Břežany Czech Republic
| | - Jiří Mužík
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences Za Radnicí 828 2524 Dolní Břežany Czech Republic
| | - Martin Smrž
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences Za Radnicí 828 2524 Dolní Břežany Czech Republic
| | - Eva Kolibalova
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Nathan Goodfriend
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences Za Radnicí 828 2524 Dolní Břežany Czech Republic
| | - Nadezhda M Bulgakova
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences Za Radnicí 828 2524 Dolní Břežany Czech Republic
| | - Tomáš Mocek
- HiLASE Centre, Institute of Physics of the Czech Academy of Sciences Za Radnicí 828 2524 Dolní Břežany Czech Republic
| | - Jan M Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic .,Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| |
Collapse
|
26
|
Haselmann GM, Baumgartner B, Wang J, Wieland K, Gupta T, Herzig C, Limbeck A, Lendl B, Eder D. In Situ Pt Photodeposition and Methanol Photooxidation on Pt/TiO2: Pt-Loading-Dependent Photocatalytic Reaction Pathways Studied by Liquid-Phase Infrared Spectroscopy. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Greta M. Haselmann
- Technische Universität Wien, Institute of Materials Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Bettina Baumgartner
- Technische Universität Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9, 1060 Vienna, Austria
| | - Jia Wang
- Technische Universität Wien, Institute of Materials Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Karin Wieland
- Technische Universität Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9, 1060 Vienna, Austria
| | - Tushar Gupta
- Technische Universität Wien, Institute of Materials Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christopher Herzig
- Technische Universität Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas Limbeck
- Technische Universität Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9, 1060 Vienna, Austria
| | - Bernhard Lendl
- Technische Universität Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9, 1060 Vienna, Austria
| | - Dominik Eder
- Technische Universität Wien, Institute of Materials Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
27
|
Nechifor G, Totu EE, Nechifor AC, Constantin L, Constantin AM, Cărăuşu ME, Isildak I. Added value recyclability of glass fiber waste as photo-oxidation catalyst for toxic cytostatic micropollutants. Sci Rep 2020; 10:136. [PMID: 31924816 PMCID: PMC6954219 DOI: 10.1038/s41598-019-56836-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
There is an increased interest in recycling valuable waste materials for usage in procedures with high added values. Silica microparticles are involved in the processes of catalysis, separation, immobilization of complexants, biologically active compounds, and different nanospecies, responding to restrictive requirements for selectivity of various chemical and biochemical processes. This paper presents the surface modification of accessible and dimensionally controlled recycled silica microfiber with titanium dioxide. Strong base species in organic solvents: methoxide, ethoxide, propoxide, and potassium butoxide in corresponding alcohol, activated the glass microfibres with 12-13 µm diameter. In the photo-oxidation process of a toxic micro-pollutant, cyclophosphamide, the new composite material successfully proved photocatalytic effectiveness. The present work fulfills simultaneously two specific objectives related to the efforts directed towards a sustainable environment and circular economy: recycling of optical glass microfibers resulted as waste from the industry, and their usage for the photo-oxidation of highly toxic emerging micro-pollutants.
Collapse
Affiliation(s)
- Gheorghe Nechifor
- Faculty of Applied Chemistry and Material Science, Polytechnic University of Bucharest, 060042, Bucharest, Romania
| | - Eugenia Eftimie Totu
- Faculty of Applied Chemistry and Material Science, Polytechnic University of Bucharest, 060042, Bucharest, Romania.
| | - Aurelia Cristina Nechifor
- Faculty of Applied Chemistry and Material Science, Polytechnic University of Bucharest, 060042, Bucharest, Romania
| | - Lucian Constantin
- National Research and Development Institute for Industrial Ecology - ECOIND Bucharest, 71-73 Drumul Podul Dambovitei Str., 060652, Bucharest, Romania
| | - Alina Mirela Constantin
- National Research and Development Institute for Industrial Ecology - ECOIND Bucharest, 71-73 Drumul Podul Dambovitei Str., 060652, Bucharest, Romania
| | - Mihaela Elena Cărăuşu
- Department of Public Health and Management, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi, Romania
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210, Esenler-Istanbul, Turkey
| |
Collapse
|
28
|
Orlando F, Artiglia L, Yang H, Kong X, Roy K, Waldner A, Chen S, Bartels-Rausch T, Ammann M. Disordered Adsorbed Water Layers on TiO 2 Nanoparticles under Subsaturated Humidity Conditions at 235 K. J Phys Chem Lett 2019; 10:7433-7438. [PMID: 31725306 DOI: 10.1021/acs.jpclett.9b02779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interaction of water with TiO2 is of substantial scientific and technological interest as it determines the activity of TiO2 in photocatalytic and environmental applications in nanoparticle suspensions in water, in complex appliances, or in pure form interacting with water vapor. The influence of TiO2 nanoparticles on the hydrogen bonding structure of water molecules is an important factor that controls hydration of other species, reactions, or nucleation processes. We use a combination of ambient-pressure X-ray photoelectron spectroscopy and electron yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the oxygen K-edge to investigate the hydrogen bonding structure of adsorbed water on titania nanoparticles in equilibrium with nearly saturated water vapor at 235 K. The results clearly show that the net NEXAFS spectrum of adsorbed water resembles that of liquid, disordered water at 235 K, a temperature at which both homogeneous and heterogeneous freezing of bulk water is anticipated.
Collapse
Affiliation(s)
- Fabrizio Orlando
- Laboratory of Environmental Chemistry , Paul Scherrer Institut , 5232 Villigen , Switzerland
| | - Luca Artiglia
- Laboratory of Environmental Chemistry , Paul Scherrer Institut , 5232 Villigen , Switzerland
| | - Huanyu Yang
- Laboratory of Environmental Chemistry , Paul Scherrer Institut , 5232 Villigen , Switzerland
- Institute of Atmospheric and Climate Science , ETH Zürich , 8092 Zürich , Switzerland
| | - Xiangrui Kong
- Laboratory of Environmental Chemistry , Paul Scherrer Institut , 5232 Villigen , Switzerland
- Department of Chemistry and Molecular Biology , University of Gothenburg , 41296 Gothenburg , Sweden
| | - Kanak Roy
- Institute for Chemical and Bioengineering , ETH Zürich , 8093 Zürich , Switzerland
| | - Astrid Waldner
- Laboratory of Environmental Chemistry , Paul Scherrer Institut , 5232 Villigen , Switzerland
| | - Shuzhen Chen
- Laboratory of Environmental Chemistry , Paul Scherrer Institut , 5232 Villigen , Switzerland
| | - Thorsten Bartels-Rausch
- Laboratory of Environmental Chemistry , Paul Scherrer Institut , 5232 Villigen , Switzerland
| | - Markus Ammann
- Laboratory of Environmental Chemistry , Paul Scherrer Institut , 5232 Villigen , Switzerland
| |
Collapse
|
29
|
Wang J, Liu B, Nakata K. Effects of crystallinity, {001}/{101} ratio, and Au decoration on the photocatalytic activity of anatase TiO2 crystals. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(18)63174-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Ulyankina A, Avramenko M, Kusnetsov D, Firestein K, Zhigunov D, Smirnova N. Electrochemical Synthesis of TiO 2
under Pulse Alternating Current: Effect of Thermal Treatment on the Photocatalytic Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201803367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Ulyankina
- Technology Department; Platov South-Russian State Polytechnic University (NPI); Novocherkassk Russian Federation
| | - Marina Avramenko
- Department of Nanotechnology; Southern Federal University; Rostov-on-Don Russian Federation
| | - Denis Kusnetsov
- College of New Materials and Nanotechnologies; National University of Science and Technology MISIS; Moscow Russian Federation
| | - Konstantin Firestein
- Science and Engineering Faculty; Queensland University of Technology (QUT); Brisbane Australia
| | - Denis Zhigunov
- Center for Photonics and Quantum Materials; Skolkovo Institute of Science and Technology; Moscow Russian Federation
| | - Nina Smirnova
- Technology Department; Platov South-Russian State Polytechnic University (NPI); Novocherkassk Russian Federation
- College of New Materials and Nanotechnologies; National University of Science and Technology MISIS; Moscow Russian Federation
| |
Collapse
|
31
|
Lee MK, Park YC. Contact Angle Relaxation and Long-Lasting Hydrophilicity of Sputtered Anatase TiO 2 Thin Films by Novel Quantitative XPS Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2066-2077. [PMID: 30645937 DOI: 10.1021/acs.langmuir.8b03258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The contact angle relaxation of TiO2 surfaces is an important problem that must be understood, particularly for long-lasting hydrophilicity under dark conditions. The relaxation of sputtered anatase TiO2 thin films over a long time (∼22 days) in an atmospheric environment was observed using quantitative XPS analysis. A new peak was identified as H2O within a donor-acceptor complex at ∼2.57 eV above the lattice oxygen peak. This donor-acceptor complex turns out to be a key factor for long lasting hydrophilicity, and our model is presented. Adventitious carbon contamination was not the main cause of the contact angle relaxation. Instead, samples with lower amounts of donor-acceptor complexes ( IDAC/ Ibulk ≤ ∼5%) underwent contact angle relaxation over time, and samples with a high density of donor-acceptor complexes ( IDAC/ Ibulk ≥ ∼10%) showed good hydrophilicity (contact angle ≤20°) over 22 days. Larger amounts of basic Ti-OH relative to acidic OHbridge ( ITi-OH/ Ibridge ≥ 1) resulted in greater amounts of donor-acceptor complexes ( IDAC/ Ibulk ≥ ∼10%). Thus, basic Ti-OH groups interact with H2O by forming a strong electrostatic donor-acceptor complex, leading to long-lasting hydrophilicity. Indeed, TiO2 was transformed to show long lasting hydrophilicity by high-density oxygen plasma treatment by forming sufficient Ti-OH groups and H2O molecules in the donor-acceptor complexes. Contact angle relaxation is closely related to the interactions between water molecules and the TiO2 surface in the dark. It is suggested that the relaxation depends on the number of electrostatic donor-acceptor complexes. This study provides new insight by linking theoretical studies with the experimental contact angle at the TiO2 surface in an ambient environment and is the first study that provides the presented relaxation mechanism.
Collapse
Affiliation(s)
- Min-Kyo Lee
- School of Computer Science and Electrical Engineering , Handong Global University , Pohang 37554 , Republic of Korea
| | - Young-Chun Park
- School of Computer Science and Electrical Engineering , Handong Global University , Pohang 37554 , Republic of Korea
| |
Collapse
|
32
|
Wiesfeld JJ, Sommerdijk NAJM, Hensen EJM. Early Transition Metal Doped Tungstite as an Effective Catalyst for Glucose Upgrading to 5-Hydroxymethylfurfural. Catal Letters 2018. [DOI: 10.1007/s10562-018-2483-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Band Gap Implications on Nano-TiO₂ Surface Modification with Ascorbic Acid for Visible Light-Active Polypropylene Coated Photocatalyst. NANOMATERIALS 2018; 8:nano8080599. [PMID: 30087248 PMCID: PMC6116251 DOI: 10.3390/nano8080599] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 11/17/2022]
Abstract
The effect of surface modification using ascorbic acid as a surface modifier of nano-TiO2 heterogeneous photocatalyst was studied. The preparation of supported photocatalyst was made by a specific paste containing ascorbic acid modified TiO2 nanoparticles used to cover Polypropylene as a support material. The obtained heterogeneous photocatalyst was thoroughly characterized (scanning electron microscope (SEM), RAMAN, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and Diffuse Reflectance Spectra (DRS) and successfully applied in the visible light photodegradation of Alizarin Red S in water solutions. In particular, this new supported TiO2 photocatalyst showed a change in the adsorption mechanism of dye with respect to that of only TiO2 due to the surface properties. In addition, an improvement of photocatalytic performances in the visible light photodegration was obtained, showing a strict correlation between efficiency and energy band gap values, evidencing the favorable surface modification of TiO2 nanoparticles.
Collapse
|
34
|
Biocompatible properties of nano-drug carriers using TiO 2-Au embedded on multiwall carbon nanotubes for targeted drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:589-601. [PMID: 29853129 DOI: 10.1016/j.msec.2018.04.094] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 01/09/2023]
Abstract
Nanomaterial-based drug carriers have become a hot spot of research at the interface of nanotechnology and biomedicine because they allow efficient loading, targeted delivery, controlled release of drugs, and therefore are promising for biomedical applications. The current study made an attempt to decorate the multiwalled carbon nanotubes (MWCNT) with titanium dioxide‑gold nanoparticles in order to enhance the biocompatibility for doxorubicin (DOX) delivery. The successful synthesis of nano drug carrier (NDC) was confirmed by XRD, XPS and UV-Visible spectroscopy. FESEM and TEM revealed that the morphology of NDC can be controlled by manipulating the reaction duration, MWCNT concentration and TiO2-Au source concentration. Results showed that TiO2 and Au nanoparticles were well coated on MWCNT. NDC had finely tuned biocompatible properties, as elucidated by hemolytic and antimicrobial assays. NDC also showed a high antioxidant potential, 80.7% expressed as ascorbic acid equivalents. Commercial DOX drug was utilized to treat A549 and MCF7 cancer cell lines showing improved efficiency by formulating it with NDC, which selectively delivered at the pH 5.5 with drug loading capacity of 0.45 mg/mL. The drug releasing capacity achieved by NDC was 90.66% for 10 h, a performance that far encompasses a wide number of current literature reports.
Collapse
|
35
|
de Araujo WR, Frasson CMR, Ameku WA, Silva JR, Angnes L, Paixão TRLC. Single-Step Reagentless Laser Scribing Fabrication of Electrochemical Paper-Based Analytical Devices. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708527] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- William R. de Araujo
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - Carolina M. R. Frasson
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - Wilson A. Ameku
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - José R. Silva
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - Lúcio Angnes
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - Thiago R. L. C. Paixão
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| |
Collapse
|
36
|
de Araujo WR, Frasson CMR, Ameku WA, Silva JR, Angnes L, Paixão TRLC. Single-Step Reagentless Laser Scribing Fabrication of Electrochemical Paper-Based Analytical Devices. Angew Chem Int Ed Engl 2017; 56:15113-15117. [DOI: 10.1002/anie.201708527] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/30/2017] [Indexed: 11/08/2022]
Affiliation(s)
- William R. de Araujo
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - Carolina M. R. Frasson
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - Wilson A. Ameku
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - José R. Silva
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - Lúcio Angnes
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - Thiago R. L. C. Paixão
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| |
Collapse
|