1
|
Hao YA, Lee S, Roth RH, Natale S, Gomez L, Taxidis J, O'Neill PS, Villette V, Bradley J, Wang Z, Jiang D, Zhang G, Sheng M, Lu D, Boyden E, Delvendahl I, Golshani P, Wernig M, Feldman DE, Ji N, Ding J, Südhof TC, Clandinin TR, Lin MZ. A fast and responsive voltage indicator with enhanced sensitivity for unitary synaptic events. Neuron 2024:S0896-6273(24)00643-3. [PMID: 39305894 DOI: 10.1016/j.neuron.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
A remaining challenge for genetically encoded voltage indicators (GEVIs) is the reliable detection of excitatory postsynaptic potentials (EPSPs). Here, we developed ASAP5 as a GEVI with enhanced activation kinetics and responsivity near resting membrane potentials for improved detection of both spiking and subthreshold activity. ASAP5 reported action potentials (APs) in vivo with higher signal-to-noise ratios than previous GEVIs and successfully detected graded and subthreshold responses to sensory stimuli in single two-photon trials. In cultured rat or human neurons, somatic ASAP5 reported synaptic events propagating centripetally and could detect ∼1-mV EPSPs. By imaging spontaneous EPSPs throughout dendrites, we found that EPSP amplitudes decay exponentially during propagation and that amplitude at the initiation site generally increases with distance from the soma. These results extend the applications of voltage imaging to the quantal response domain, including in human neurons, opening up the possibility of high-throughput, high-content characterization of neuronal dysfunction in disease.
Collapse
Affiliation(s)
- Yukun A Hao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Sungmoo Lee
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Silvia Natale
- Department of Molecular & Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Laura Gomez
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California Berkeley, CA 94720, USA
| | - Jiannis Taxidis
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Philipp S O'Neill
- Department of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland; Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Zeguan Wang
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA
| | - Dongyun Jiang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Mengjun Sheng
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Di Lu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Edward Boyden
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland; Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Peyman Golshani
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Marius Wernig
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Daniel E Feldman
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Na Ji
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California Berkeley, CA 94720, USA
| | - Jun Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Department of Molecular & Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Morandell K, Yin A, Triana Del Rio R, Schneider DM. Movement-Related Modulation in Mouse Auditory Cortex Is Widespread Yet Locally Diverse. J Neurosci 2024; 44:e1227232024. [PMID: 38286628 PMCID: PMC10941236 DOI: 10.1523/jneurosci.1227-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Neurons in the mouse auditory cortex are strongly influenced by behavior, including both suppression and enhancement of sound-evoked responses during movement. The mouse auditory cortex comprises multiple fields with different roles in sound processing and distinct connectivity to movement-related centers of the brain. Here, we asked whether movement-related modulation in male mice might differ across auditory cortical fields, thereby contributing to the heterogeneity of movement-related modulation at the single-cell level. We used wide-field calcium imaging to identify distinct cortical fields and cellular-resolution two-photon calcium imaging to visualize the activity of layer 2/3 excitatory neurons within each field. We measured each neuron's responses to three sound categories (pure tones, chirps, and amplitude-modulated white noise) as mice rested and ran on a non-motorized treadmill. We found that individual neurons in each cortical field typically respond to just one sound category. Some neurons are only active during rest and others during locomotion, and those that are responsive across conditions retain their sound-category tuning. The effects of locomotion on sound-evoked responses vary at the single-cell level, with both suppression and enhancement of neural responses, and the net modulatory effect of locomotion is largely conserved across cortical fields. Movement-related modulation in auditory cortex also reflects more complex behavioral patterns, including instantaneous running speed and nonlocomotor movements such as grooming and postural adjustments, with similar patterns seen across all auditory cortical fields. Our findings underscore the complexity of movement-related modulation throughout the mouse auditory cortex and indicate that movement-related modulation is a widespread phenomenon.
Collapse
Affiliation(s)
- Karin Morandell
- Center for Neural Science, New York University, New York, New York 10012
| | - Audrey Yin
- Center for Neural Science, New York University, New York, New York 10012
| | | | - David M Schneider
- Center for Neural Science, New York University, New York, New York 10012
| |
Collapse
|
3
|
Morandell K, Yin A, Del Rio RT, Schneider DM. Movement-related modulation in mouse auditory cortex is widespread yet locally diverse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547560. [PMID: 37461568 PMCID: PMC10349927 DOI: 10.1101/2023.07.03.547560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Neurons in the mouse auditory cortex are strongly influenced by behavior, including both suppression and enhancement of sound-evoked responses during movement. The mouse auditory cortex comprises multiple fields with different roles in sound processing and distinct connectivity to movement-related centers of the brain. Here, we asked whether movement-related modulation might differ across auditory cortical fields, thereby contributing to the heterogeneity of movement-related modulation at the single-cell level. We used wide-field calcium imaging to identify distinct cortical fields followed by cellular-resolution two-photon calcium imaging to visualize the activity of layer 2/3 excitatory neurons within each field. We measured each neuron's responses to three sound categories (pure tones, chirps, and amplitude modulated white noise) as mice rested and ran on a non-motorized treadmill. We found that individual neurons in each cortical field typically respond to just one sound category. Some neurons are only active during rest and others during locomotion, and those that are responsive across conditions retain their sound-category tuning. The effects of locomotion on sound-evoked responses vary at the single-cell level, with both suppression and enhancement of neural responses, and the net modulatory effect of locomotion is largely conserved across cortical fields. Movement-related modulation in auditory cortex also reflects more complex behavioral patterns, including instantaneous running speed and non-locomotor movements such as grooming and postural adjustments, with similar patterns seen across all auditory cortical fields. Our findings underscore the complexity of movement-related modulation throughout the mouse auditory cortex and indicate that movement-related modulation is a widespread phenomenon.
Collapse
Affiliation(s)
- Karin Morandell
- Center for Neural Science, New York University, New York, NY 10012
| | - Audrey Yin
- Center for Neural Science, New York University, New York, NY 10012
| | | | | |
Collapse
|
4
|
Liu Z, Lu X, Villette V, Gou Y, Colbert KL, Lai S, Guan S, Land MA, Lee J, Assefa T, Zollinger DR, Korympidou MM, Vlasits AL, Pang MM, Su S, Cai C, Froudarakis E, Zhou N, Patel SS, Smith CL, Ayon A, Bizouard P, Bradley J, Franke K, Clandinin TR, Giovannucci A, Tolias AS, Reimer J, Dieudonné S, St-Pierre F. Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy. Cell 2022; 185:3408-3425.e29. [PMID: 35985322 PMCID: PMC9563101 DOI: 10.1016/j.cell.2022.07.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022]
Abstract
Genetically encoded voltage indicators are emerging tools for monitoring voltage dynamics with cell-type specificity. However, current indicators enable a narrow range of applications due to poor performance under two-photon microscopy, a method of choice for deep-tissue recording. To improve indicators, we developed a multiparameter high-throughput platform to optimize voltage indicators for two-photon microscopy. Using this system, we identified JEDI-2P, an indicator that is faster, brighter, and more sensitive and photostable than its predecessors. We demonstrate that JEDI-2P can report light-evoked responses in axonal termini of Drosophila interneurons and the dendrites and somata of amacrine cells of isolated mouse retina. JEDI-2P can also optically record the voltage dynamics of individual cortical neurons in awake behaving mice for more than 30 min using both resonant-scanning and ULoVE random-access microscopy. Finally, ULoVE recording of JEDI-2P can robustly detect spikes at depths exceeding 400 μm and report voltage correlations in pairs of neurons.
Collapse
Affiliation(s)
- Zhuohe Liu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA
| | - Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Yueyang Gou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin L Colbert
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shujuan Lai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sihui Guan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle A Land
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jihwan Lee
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tensae Assefa
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Daniel R Zollinger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg, 72076, Germany
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany
| | - Michelle M Pang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Sharon Su
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Changjia Cai
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Greece
| | - Na Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Saumil S Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cameron L Smith
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Annick Ayon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Pierre Bizouard
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg, 72076, Germany
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Andrea Giovannucci
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, Chapel Hill, NC 27599, USA
| | - Andreas S Tolias
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stéphane Dieudonné
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - François St-Pierre
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Kim CY, Kim SJ, Kloosterman F. Simultaneous Cellular Imaging, Electrical Recording and Stimulation of Hippocampal Activity in Freely Behaving Mice. Exp Neurobiol 2022; 31:208-220. [PMID: 35786642 PMCID: PMC9272116 DOI: 10.5607/en22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Hippocampal sharp-wave ripple activity (SWRs) and the associated replay of neural activity patterns are well-known for their role in memory consolidation. This activity has been studied using electrophysiological approaches, as high temporal resolution is required to recognize SWRs in the neuronal signals. However, it has been difficult to analyze the individual contribution of neurons to task-specific SWRs, because it is hard to track neurons across a long time with electrophysiological recording. In this study, we recorded local field potential (LFP) signals in the hippocampal CA1 of freely behaving mice and simultaneously imaged calcium signals in contralateral CA1 to leverage the advantages of both electrophysiological and imaging approaches. We manufactured a custom-designed microdrive array and targeted tetrodes to the left hippocampus CA1 for LFP recording and applied electrical stimulation in the ventral hippocampal commissure (VHC) for closed-loop disruption of SWRs. Neuronal population imaging in the right hippocampal CA1 was performed using a miniature fluorescent microscope (Miniscope) and a genetically encoded calcium indicator. As SWRs show highly synchronized bilateral occurrence, calcium signals of SWR-participating neurons could be identified and tracked in spontaneous or SWR-disrupted conditions. Using this approach, we identified a subpopulation of CA1 neurons showing synchronous calcium elevation to SWRs. Our results showed that SWR-related calcium transients are more disrupted by electrical stimulation than non-SWR-related calcium transients, validating the capability of the system to detect and disrupt SWRs. Our dual recording method can be used to uncover the dynamic participation of individual neurons in SWRs and replay over extended time windows.
Collapse
Affiliation(s)
- Chae Young Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,NERF, Leuven 3000, Belgium
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Fabian Kloosterman
- NERF, Leuven 3000, Belgium.,Brain & Cognition, KU Leuven, Leuven 3000, Belgium.,VIB, Leuven 3001, Belgium.,imec, Leuven 3001, Belgium
| |
Collapse
|
6
|
Yeon C, Im JM, Kim M, Kim YR, Chung E. Cranial and Spinal Window Preparation for in vivo Optical Neuroimaging in Rodents and Related Experimental Techniques. Exp Neurobiol 2022; 31:131-146. [PMID: 35786637 PMCID: PMC9272117 DOI: 10.5607/en22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Optical neuroimaging provides an effective neuroscience tool for multi-scale investigation of the neural structures and functions, ranging from molecular, cellular activities to the inter-regional connectivity assessment. Amongst experimental preparations, the implementation of an artificial window to the central nervous system (CNS) is primarily required for optical visualization of the CNS and associated brain activities through the opaque skin and bone. Either thinning down or removing portions of the skull or spine is necessary for unobstructed long-term in vivo observations, for which types of the cranial and spinal window and applied materials vary depending on the study objectives. As diversely useful, a window can be designed to accommodate other experimental methods such as electrophysiology or optogenetics. Moreover, auxiliary apparatuses would allow the recording in synchrony with behavior of large-scale brain connectivity signals across the CNS, such as olfactory bulb, cerebral cortex, cerebellum, and spinal cord. Such advancements in the cranial and spinal window have resulted in a paradigm shift in neuroscience, enabling in vivo investigation of the brain function and dysfunction at the microscopic, cellular level. This Review addresses the types and classifications of windows used in optical neuroimaging while describing how to perform in vivo studies using rodent models in combination with other experimental modalities during behavioral tests. The cranial and spinal window has enabled longitudinal examination of evolving neural mechanisms via in situ visualization of the brain. We expect transformable and multi-functional cranial and spinal windows to become commonplace in neuroscience laboratories, further facilitating advances in optical neuroimaging systems.
Collapse
Affiliation(s)
- Chanmi Yeon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jeong Myo Im
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Minsung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
7
|
GABAergic CA1 neurons are more stable following context changes than glutamatergic cells. Sci Rep 2022; 12:10310. [PMID: 35725588 PMCID: PMC9209472 DOI: 10.1038/s41598-022-13799-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 12/31/2022] Open
Abstract
The CA1 region of the hippocampus contains both glutamatergic pyramidal cells and GABAergic interneurons. Numerous reports have characterized glutamatergic CAMK2A cell activity, showing how these cells respond to environmental changes such as local cue rotation and context re-sizing. Additionally, the long-term stability of spatial encoding and turnover of these cells across days is also well-characterized. In contrast, these classic hippocampal experiments have never been conducted with CA1 GABAergic cells. Here, we use chronic calcium imaging of male and female mice to compare the neural activity of VGAT and CAMK2A cells during exploration of unaltered environments and also during exposure to contexts before and after rotating and changing the length of the context across multiple recording days. Intriguingly, compared to CAMK2A cells, VGAT cells showed decreased remapping induced by environmental changes, such as context rotations and contextual length resizing. However, GABAergic neurons were also less likely than glutamatergic neurons to remain active and exhibit consistent place coding across recording days. Interestingly, despite showing significant spatial remapping across days, GABAergic cells had stable speed encoding between days. Thus, compared to glutamatergic cells, spatial encoding of GABAergic cells is more stable during within-session environmental perturbations, but is less stable across days. These insights may be crucial in accurately modeling the features and constraints of hippocampal dynamics in spatial coding.
Collapse
|
8
|
Akemann W, Wolf S, Villette V, Mathieu B, Tangara A, Fodor J, Ventalon C, Léger JF, Dieudonné S, Bourdieu L. Fast optical recording of neuronal activity by three-dimensional custom-access serial holography. Nat Methods 2022; 19:100-110. [PMID: 34949810 DOI: 10.1038/s41592-021-01329-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 10/25/2021] [Indexed: 11/08/2022]
Abstract
Optical recording of neuronal activity in three-dimensional (3D) brain circuits at cellular and millisecond resolution in vivo is essential for probing information flow in the brain. While random-access multiphoton microscopy permits fast optical access to neuronal targets in three dimensions, the method is challenged by motion artifacts when recording from behaving animals. Therefore, we developed three-dimensional custom-access serial holography (3D-CASH). Built on a fast acousto-optic light modulator, 3D-CASH performs serial sampling at 40 kHz from neurons at freely selectable 3D locations. Motion artifacts are eliminated by targeting each neuron with a size-optimized pattern of excitation light covering the cell body and its anticipated displacement field. Spike rates inferred from GCaMP6f recordings in visual cortex of awake mice tracked the phase of a moving bar stimulus with higher spike correlation between intra compared to interlaminar neuron pairs. 3D-CASH offers access to the millisecond correlation structure of in vivo neuronal activity in 3D microcircuits.
Collapse
Affiliation(s)
- Walther Akemann
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sébastien Wolf
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Laboratoire de Physique de l'ENS (LPENS), École Normale Supérieure, CNRS, Université PSL, Paris, France
| | - Vincent Villette
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Benjamin Mathieu
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Astou Tangara
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Jozsua Fodor
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Jean-François Léger
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Stéphane Dieudonné
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | - Laurent Bourdieu
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
9
|
Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L, Mathieu B, Evans SW, Chamberland S, Shi D, Yang R, Kim BB, Ayon A, Jalil A, St-Pierre F, Schnitzer MJ, Bi G, Toth K, Ding J, Dieudonné S, Lin MZ. Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell 2020; 179:1590-1608.e23. [PMID: 31835034 DOI: 10.1016/j.cell.2019.11.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/08/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Optical interrogation of voltage in deep brain locations with cellular resolution would be immensely useful for understanding how neuronal circuits process information. Here, we report ASAP3, a genetically encoded voltage indicator with 51% fluorescence modulation by physiological voltages, submillisecond activation kinetics, and full responsivity under two-photon excitation. We also introduce an ultrafast local volume excitation (ULoVE) method for kilohertz-rate two-photon sampling in vivo with increased stability and sensitivity. Combining a soma-targeted ASAP3 variant and ULoVE, we show single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution and with repeated sampling over days. In the visual cortex, we use soma-targeted ASAP3 to illustrate cell-type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULoVE enable high-speed optical recording of electrical activity in genetically defined neurons at deep locations during awake behavior.
Collapse
Affiliation(s)
- Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Mariya Chavarha
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ivan K Dimov
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Lagnajeet Pradhan
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Mathieu
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Stephen W Evans
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Simon Chamberland
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Dongqing Shi
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renzhi Yang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Biology PhD Program, Stanford University, Stanford, CA 94305, USA
| | - Benjamin B Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Annick Ayon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Abdelali Jalil
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Paris F-75006, France
| | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark J Schnitzer
- CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Guoqiang Bi
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 20031, China
| | - Katalin Toth
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Jun Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Stéphane Dieudonné
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France.
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Luo X, Guet-McCreight A, Villette V, Francavilla R, Marino B, Chamberland S, Skinner FK, Topolnik L. Synaptic Mechanisms Underlying the Network State-Dependent Recruitment of VIP-Expressing Interneurons in the CA1 Hippocampus. Cereb Cortex 2020; 30:3667-3685. [PMID: 32080739 DOI: 10.1093/cercor/bhz334] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/13/2019] [Indexed: 11/14/2022] Open
Abstract
Disinhibition is a widespread circuit mechanism for information selection and transfer. In the hippocampus, disinhibition of principal cells is provided by the interneuron-specific interneurons that express the vasoactive intestinal polypeptide (VIP-IS) and innervate selectively inhibitory interneurons. By combining optophysiological experiments with computational models, we determined the impact of synaptic inputs onto the network state-dependent recruitment of VIP-IS cells. We found that VIP-IS cells fire spikes in response to both the Schaffer collateral and the temporoammonic pathway activation. Moreover, by integrating their intrinsic and synaptic properties into computational models, we predicted recruitment of these cells between the rising phase and peak of theta oscillation and during ripples. Two-photon Ca2+-imaging in awake mice supported in part the theoretical predictions, revealing a significant speed modulation of VIP-IS cells and their preferential albeit delayed recruitment during theta-run epochs, with estimated firing at the rising phase and peak of the theta cycle. However, it also uncovered that VIP-IS cells are not activated during ripples. Thus, given the preferential theta-modulated firing of VIP-IS cells in awake hippocampus, we postulate that these cells may be important for information gating during spatial navigation and memory encoding.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, PQ, Canada.,Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, PQ, Canada
| | - Alexandre Guet-McCreight
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Vincent Villette
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, PQ, Canada.,Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, PQ, Canada.,Institut de Biologie de l'ÉcoleNormale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Ruggiero Francavilla
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, PQ, Canada.,Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, PQ, Canada
| | - Beatrice Marino
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, PQ, Canada.,Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, PQ, Canada
| | - Simon Chamberland
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, PQ, Canada.,Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, PQ, Canada.,New York University Neuroscience Institute, New York, NY, USA
| | - Frances K Skinner
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, ON, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, PQ, Canada.,Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, PQ, Canada
| |
Collapse
|
11
|
Pastoll H, Garden DL, Papastathopoulos I, Sürmeli G, Nolan MF. Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex. eLife 2020; 9:52258. [PMID: 32039761 PMCID: PMC7067584 DOI: 10.7554/elife.52258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/04/2020] [Indexed: 01/28/2023] Open
Abstract
Distinctions between cell types underpin organizational principles for nervous system function. Functional variation also exists between neurons of the same type. This is exemplified by correspondence between grid cell spatial scales and the synaptic integrative properties of stellate cells (SCs) in the medial entorhinal cortex. However, we know little about how functional variability is structured either within or between individuals. Using ex-vivo patch-clamp recordings from up to 55 SCs per mouse, we found that integrative properties vary between mice and, in contrast to the modularity of grid cell spatial scales, have a continuous dorsoventral organization. Our results constrain mechanisms for modular grid firing and provide evidence for inter-animal phenotypic variability among neurons of the same type. We suggest that neuron type properties are tuned to circuit-level set points that vary within and between animals.
Collapse
Affiliation(s)
- Hugh Pastoll
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Derek L Garden
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioannis Papastathopoulos
- The Alan Turing Institute, London, United States.,School of Mathematics, Maxwell Institute and Centre for Statistics, University of Edinburgh, Edinburgh, United Kingdom
| | - Gülşen Sürmeli
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Francavilla R, Villette V, Martel O, Topolnik L. Calcium Dynamics in Dendrites of Hippocampal CA1 Interneurons in Awake Mice. Front Cell Neurosci 2019; 13:98. [PMID: 30930750 PMCID: PMC6428725 DOI: 10.3389/fncel.2019.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
Hippocampal inhibitory interneurons exhibit a large diversity of dendritic Ca2+ mechanisms that are involved in the induction of Hebbian and anti-Hebbian synaptic plasticity. High resolution imaging techniques allowed examining somatic Ca2+ signals and, accordingly, the recruitment of hippocampal interneurons in awake behaving animals. However, little is still known about dendritic Ca2+ activity in interneurons during different behavioral states. Here, we used two-photon Ca2+ imaging in mouse hippocampal CA1 interneurons to reveal Ca2+ signal patterns in interneuron dendrites during animal locomotion and immobility. Despite overall variability in dendritic Ca2+ transients (CaTs) across different cells and dendritic branches, we report consistent behavior state-dependent organization of Ca2+ signaling in interneurons. As such, spreading regenerative CaTs dominated in dendrites during locomotion, whereas both spreading and localized Ca2+ signals were seen during immobility. Thus, these data indicate that while animal locomotion is associated with widespread Ca2+ elevations in interneuron dendrites that may reflect regenerative activity, local CaTs that may be related to synaptic activity become apparent during animal quiet state.
Collapse
Affiliation(s)
- Ruggiero Francavilla
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| | - Vincent Villette
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| | - Olivier Martel
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| |
Collapse
|
13
|
Using computational models to predict in vivo synaptic inputs to interneuron specific 3 (IS3) cells of CA1 hippocampus that also allow their recruitment during rhythmic states. PLoS One 2019; 14:e0209429. [PMID: 30620732 PMCID: PMC6324795 DOI: 10.1371/journal.pone.0209429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/05/2018] [Indexed: 12/05/2022] Open
Abstract
Brain coding strategies are enabled by the balance of synaptic inputs that individual neurons receive as determined by the networks in which they reside. Inhibitory cell types contribute to brain function in distinct ways but recording from specific, inhibitory cell types during behaviour to determine their contributions is highly challenging. In particular, the in vivo activities of vasoactive intestinal peptide-expressing interneuron specific 3 (IS3) cells in the hippocampus that only target other inhibitory cells are unknown at present. We perform a massive, computational exploration of possible synaptic inputs to IS3 cells using multi-compartment models and optimized synaptic parameters. We find that asynchronous, in vivo-like states that are sensitive to additional theta-timed inputs (8 Hz) exist when excitatory and inhibitory synaptic conductances are approximately equally balanced and with low numbers of activated synapses receiving correlated inputs. Specifically, under these balanced conditions, the input resistance is larger with higher mean spike firing rates relative to other activated synaptic conditions investigated. Incoming theta-timed inputs result in strongly increased spectral power relative to baseline. Thus, using a generally applicable computational approach we predict the existence and features of background, balanced states in hippocampal circuits.
Collapse
|
14
|
Francavilla R, Villette V, Luo X, Chamberland S, Muñoz-Pino E, Camiré O, Wagner K, Kis V, Somogyi P, Topolnik L. Connectivity and network state-dependent recruitment of long-range VIP-GABAergic neurons in the mouse hippocampus. Nat Commun 2018; 9:5043. [PMID: 30487571 PMCID: PMC6261953 DOI: 10.1038/s41467-018-07162-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/18/2018] [Indexed: 11/21/2022] Open
Abstract
GABAergic interneurons in the hippocampus provide for local and long-distance coordination of neurons in functionally connected areas. Vasoactive intestinal peptide-expressing (VIP+) interneurons occupy a distinct niche in circuitry as many of them specialize in innervating GABAergic cells, thus providing network disinhibition. In the CA1 hippocampus, VIP+ interneuron-selective cells target local interneurons. Here, we discover a type of VIP+ neuron whose axon innervates CA1 and also projects to the subiculum (VIP-LRPs). VIP-LRPs show specific molecular properties and target interneurons within the CA1 area but both interneurons and pyramidal cells within subiculum. They are interconnected through gap junctions but demonstrate sparse spike coupling in vitro. In awake mice, VIP-LRPs decrease their activity during theta-run epochs and are more active during quiet wakefulness but not coupled to sharp-wave ripples. Together, the data provide evidence for VIP interneuron molecular diversity and functional specialization in controlling cell ensembles along the hippocampo-subicular axis.
Collapse
Affiliation(s)
- Ruggiero Francavilla
- Neuroscience Axis, CHU de Québec Research Center, Université Laval, Quebec, QC, G1V 4G2, Canada
- Department of Biochemistry, Microbiology and Bio-informatics, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Vincent Villette
- Neuroscience Axis, CHU de Québec Research Center, Université Laval, Quebec, QC, G1V 4G2, Canada
- Department of Biochemistry, Microbiology and Bio-informatics, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Xiao Luo
- Neuroscience Axis, CHU de Québec Research Center, Université Laval, Quebec, QC, G1V 4G2, Canada
- Department of Biochemistry, Microbiology and Bio-informatics, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Simon Chamberland
- Department of Biochemistry, Microbiology and Bio-informatics, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Einer Muñoz-Pino
- Neuroscience Axis, CHU de Québec Research Center, Université Laval, Quebec, QC, G1V 4G2, Canada
- Department of Biochemistry, Microbiology and Bio-informatics, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Olivier Camiré
- Neuroscience Axis, CHU de Québec Research Center, Université Laval, Quebec, QC, G1V 4G2, Canada
- Department of Biochemistry, Microbiology and Bio-informatics, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Kristina Wagner
- Department of Pharmacology, Oxford University, Oxford, OX1 3QT, UK
| | - Viktor Kis
- Department of Pharmacology, Oxford University, Oxford, OX1 3QT, UK
| | - Peter Somogyi
- Department of Pharmacology, Oxford University, Oxford, OX1 3QT, UK
| | - Lisa Topolnik
- Neuroscience Axis, CHU de Québec Research Center, Université Laval, Quebec, QC, G1V 4G2, Canada.
- Department of Biochemistry, Microbiology and Bio-informatics, Université Laval, Quebec, QC, G1V 0A6, Canada.
| |
Collapse
|