1
|
Lopes MS, Silva MD, Azeredo J, Melo LDR. Coagulase-Negative Staphylococci phages panorama: Genomic diversity and in vitro studies for a therapeutic use. Microbiol Res 2025; 290:127944. [PMID: 39550872 DOI: 10.1016/j.micres.2024.127944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Coagulase-negative staphylococci (CoNS) are commensal bacteria of the human skin and mucosal membranes. The incidence of nosocomial infections caused by these species is on the rise, leading to a potential increase in antibiotic tolerance and resistance. Phages are emerging as a promising alternative to combat CoNS infections. Scientists are isolating phages infecting CoNS with a particular interest in S. epidermidis. This review compiles and analyses CoNS phages for several parameters including source, geographical location, host species, morphological diversity, and genomic diversity. Additionally, recent studies have highlighted the potential of these phages based on host range, in vitro evaluation of performance and stability, and interaction with biofilms. This comprehensive analysis enables a better understanding of the steps involved in using these phages for therapeutic purposes.
Collapse
Affiliation(s)
- Maria Sequeira Lopes
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - Maria Daniela Silva
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
2
|
Sánchez-Ortiz E, Blanco Gutiérrez MDM, Calvo-Fernandez C, Mencía-Gutiérrez A, Pastor Tiburón N, Alvarado Piqueras A, Pablos-Tanarro A, Martín-Maldonado B. Addressing Challenges in Wildlife Rehabilitation: Antimicrobial-Resistant Bacteria from Wounds and Fractures in Wild Birds. Animals (Basel) 2024; 14:1151. [PMID: 38672299 PMCID: PMC11047587 DOI: 10.3390/ani14081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Injuries and bone fractures are the most frequent causes of admission at wildlife rescue centers. Wild birds are more susceptible to open fractures due to their anatomical structure, which can lead to osteomyelitis and necrosis. Antibiotic therapy in these cases is indispensable, but the increase of antimicrobial-resistant isolates in wildlife has become a significant concern in recent years. In this context, the likelihood of antibiotic failure and death of animals with infectious issues is high. This study aimed to isolate, identify, and assess the antimicrobial resistance pattern of bacteria in wounds and open fractures in wild birds. To this end, injured birds admitted to a wildlife rescue center were sampled, and bacterial isolation and identification were performed. Then, antimicrobial susceptibility testing was assessed according to the disk diffusion method. In total, 36 isolates were obtained from 26 different birds. The genera detected were Staphylococcus spp. (63.8%), Escherichia (13.9%), Bacillus (11.1%), Streptococcus (8.3%), and Micrococcus (2.8%). Among Staphylococcus isolates, S. lentus and S. aureus were the most frequent species. Antimicrobial resistance was detected in 82.6% of the isolates, among which clindamycin resistance stood out, and 31.6% of resistant isolates were considered multidrug-resistant. Results from this study highlight the escalating scope of antimicrobial resistance in wildlife. This level of resistance poses a dual concern for wildlife: firstly, the risk of therapeutic failure in species of significant environmental value, and, secondly, the circulation of resistant bacteria in ecosystems.
Collapse
Affiliation(s)
- Esther Sánchez-Ortiz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Avenida de Puerta de Hierro s/n, 28040 Madrid, Spain; (E.S.-O.); (M.d.M.B.G.)
- Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat, Calle Monte del Pilar s/n, 28220 Majadahonda, Spain; (A.M.-G.); (N.P.T.); (A.A.P.)
| | - María del Mar Blanco Gutiérrez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Avenida de Puerta de Hierro s/n, 28040 Madrid, Spain; (E.S.-O.); (M.d.M.B.G.)
| | - Cristina Calvo-Fernandez
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Henrik Dams Allé, 204, 2800 Kongens Lyngby, Denmark;
- Research Group for Foodborne Pathogens and Epidemiology, National Food Institute, Technical University of Denmark, Henrik Dams Allé, 204, 2800 Kongens Lyngby, Denmark
| | - Aida Mencía-Gutiérrez
- Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat, Calle Monte del Pilar s/n, 28220 Majadahonda, Spain; (A.M.-G.); (N.P.T.); (A.A.P.)
| | - Natalia Pastor Tiburón
- Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat, Calle Monte del Pilar s/n, 28220 Majadahonda, Spain; (A.M.-G.); (N.P.T.); (A.A.P.)
| | - Alberto Alvarado Piqueras
- Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat, Calle Monte del Pilar s/n, 28220 Majadahonda, Spain; (A.M.-G.); (N.P.T.); (A.A.P.)
| | - Alba Pablos-Tanarro
- Departamento de Veterinaria, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Calle Tajo s/n, 28760 Villaviciosa de Odón, Spain;
| | - Bárbara Martín-Maldonado
- Departamento de Veterinaria, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Calle Tajo s/n, 28760 Villaviciosa de Odón, Spain;
| |
Collapse
|
3
|
Abebe AA, Birhanu AG. Methicillin Resistant Staphylococcus aureus: Molecular Mechanisms Underlying Drug Resistance Development and Novel Strategies to Combat. Infect Drug Resist 2023; 16:7641-7662. [PMID: 38111667 PMCID: PMC10726795 DOI: 10.2147/idr.s428103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Antimicrobial resistance (AMR) represents a major threat to global health. Infection caused by Methicillin-resistant Staphylococcus aureus (MRSA) is one of the well-recognized global public health problem globally. In some regions, as many as 90% of S. aureus infections are reported to be MRSA, which cannot be treated with standard antibiotics. WHO reports indicated that MRSA is circulating in every province worldwide, significantly increasing the risk of death by 64% compared to drug-sensitive forms of the infection which is attributed to its antibiotic resistance. The emergence and spread of antibiotic-resistant MRSA strains have contributed to its increased prevalence in both healthcare and community settings. The resistance of S. aureus to methicillin is due to expression of penicillin-binding protein 2a (PBP2a), which renders it impervious to the action of β-lactam antibiotics including methicillin. The other is through the production of beta-lactamases. Although the treatment options for MRSA are limited, there are promising alternatives to antibiotics to combat the infections. Innovative therapeutic strategies with wide range of activity and modes of action are yet to be explored. The review highlights the global challenges posed by MRSA, elucidates the mechanisms underlying its resistance development, and explores mitigation strategies. Furthermore, it focuses on alternative therapies such as bacteriophages, immunotherapy, nanobiotics, and antimicrobial peptides, emphasizing their synergistic effects and efficacy against MRSA. By examining these alternative approaches, this review provides insights into the potential strategies for tackling MRSA infections and combatting the escalating threat of AMR. Ultimately, a multifaceted approach encompassing both conventional and novel interventions is imperative to mitigate the impact of MRSA and ensure a sustainable future for global healthcare.
Collapse
Affiliation(s)
- Assefa Asnakew Abebe
- Department of Molecular Biology, Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical laboratory Sciences, Institute of Health, Bule Hora University, Bule Hora, Ethiopia
| | - Alemayehu Godana Birhanu
- Department of Molecular Biology, Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
5
|
Kovařovic V, Finstrlová A, Sedláček I, Petráš P, Švec P, Mašlaňová I, Neumann-Schaal M, Šedo O, Botka T, Staňková E, Doškař J, Pantůček R. Staphylococcus brunensis sp. nov. isolated from human clinical specimens with a staphylococcal cassette chromosome-related genomic island outside of the rlmH gene bearing the ccrDE recombinase gene complex. Microbiol Spectr 2023; 11:e0134223. [PMID: 37712674 PMCID: PMC10581047 DOI: 10.1128/spectrum.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
Novel species of coagulase-negative staphylococci, which could serve as reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens from the genus Staphylococcus, are recognized in human and animal specimens due to advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed numerous variable genomic elements, including staphylococcal cassette chromosome (SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has a cassette chromosome recombinase (ccr) gene complex with a typical structure found in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and the distinct integration site that differs from the canonical methyltransferase gene rlmH exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative genomic analysis of SbCIccrDE with related islands shows that they can accumulate virulence and antimicrobial resistance factors creating novel resistance elements, which reflects the evolution of SCC. The spread of these resistance islands into established pathogens such as Staphylococcus aureus would pose a great threat to the healthcare system. IMPORTANCE The coagulase-negative staphylococci are important opportunistic human pathogens, which cause bloodstream and foreign body infections, mainly in immunocompromised patients. The mobile elements, primarily the staphylococcal cassette chromosome mec, which confers resistance to methicillin, are the key to the successful dissemination of staphylococci into healthcare and community settings. Here, we present a novel species of the Staphylococcus genus isolated from human clinical material. The detailed analysis of its genome revealed a previously undescribed genomic island, which is closely related to the staphylococcal cassette chromosome and has the potential to accumulate and spread virulence and resistance determinants. The island harbors a set of conserved genes required for its mobilization, which we recognized as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed not only in the genomes of coagulase-negative staphylococci but also in S. aureus. The comparative genomic study contributes substantially to the understanding of the evolution and pathogenesis of staphylococci.
Collapse
Affiliation(s)
- Vojtěch Kovařovic
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adéla Finstrlová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Petráš
- Reference Laboratory for Staphylococci, National Institute of Public Health, Praha, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tibor Botka
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Doškař
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Sweet T, Sindi S, Sistrom M. Going through phages: a computational approach to revealing the role of prophage in Staphylococcus aureus. Access Microbiol 2023; 5:acmi000424. [PMID: 37424556 PMCID: PMC10323782 DOI: 10.1099/acmi.0.000424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/28/2023] [Indexed: 07/11/2023] Open
Abstract
Prophages have important roles in virulence, antibiotic resistance, and genome evolution in Staphylococcus aureus . Rapid growth in the number of sequenced S. aureus genomes allows for an investigation of prophage sequences at an unprecedented scale. We developed a novel computational pipeline for phage discovery and annotation. We combined PhiSpy, a phage discovery tool, with VGAS and PROKKA, genome annotation tools to detect and analyse prophage sequences in nearly 10 011 S . aureus genomes, discovering thousands of putative prophage sequences with genes encoding virulence factors and antibiotic resistance. To our knowledge, this is the first large-scale application of PhiSpy on a large-scale set of genomes (10 011 S . aureus ). Determining the presence of virulence and resistance encoding genes in prophage has implications for the potential transfer of these genes/functions to other bacteria via transduction and thus can provide insight into the evolution and spread of these genes/functions between bacterial strains. While the phage we have identified may be known, these phages were not necessarily known or characterized in S. aureus and the clustering and comparison we did for phage based on their gene content is novel. Moreover, the reporting of these genes with the S. aureus genomes is novel.
Collapse
Affiliation(s)
- Tyrome Sweet
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| | - Suzanne Sindi
- Department of Applied Mathematics, University of California, Merced, California, USA
| | - Mark Sistrom
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| |
Collapse
|
7
|
Burgold-Voigt S, Monecke S, Busch A, Bocklisch H, Braun SD, Diezel C, Hotzel H, Liebler-Tenorio EM, Müller E, Reinicke M, Reissig A, Ruppelt-Lorz A, Ehricht R. Characterisation of a Staphylococcus aureus Isolate Carrying Phage-Borne Enterotoxin E from a European Badger ( Meles meles). Pathogens 2023; 12:pathogens12050704. [PMID: 37242375 DOI: 10.3390/pathogens12050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Staphylococcus (S.) aureus colonizes up to 30% of all humans and can occasionally cause serious infections. It is not restricted to humans as it can also often be found in livestock and wildlife. Recent studies have shown that wildlife strains of S. aureus usually belong to other clonal complexes than human strains and that they might differ significantly with regard to the prevalence of genes encoding antimicrobial resistance properties and virulence factors. Here, we describe a strain of S. aureus isolated from a European badger (Meles meles). For molecular characterisation, DNA microarray-based technology was combined with various next-generation sequencing (NGS) methods. Bacteriophages from this isolate were induced with Mitomycin C and characterized in detail by transmission electron microscopy (TEM) and NGS. The S. aureus isolate belonged to ST425 and had a novel spa repeat sequence (t20845). It did not carry any resistance genes. The uncommon enterotoxin gene see was detected in one of its three temperate bacteriophages. It was possible to demonstrate the induction of all three prophages, although only one of them was expected to be capable of excision based on its carriage of the excisionase gene xis. All three bacteriophages belonged to the family Siphoviridae. Minor differences in size and shape of their heads were noted in TEM images. The results highlight the ability of S. aureus to colonize or infect different host species successfully, which can be attributed to a variety of virulence factors on mobile genetic elements, such as bacteriophages. As shown in the strain described herein, temperate bacteriophages not only contribute to the fitness of their staphylococcal host by transferring virulence factors, but also increase mobility among themselves by sharing genes for excision and mobilization with other prophages.
Collapse
Affiliation(s)
- Sindy Burgold-Voigt
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Anne Busch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, 07747 Jena, Germany
| | - Herbert Bocklisch
- Thuringian State Authority for Food-Safety and Consumer Protection (TLLV), 99947 Bad Langensalza, Germany
| | - Sascha D Braun
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, 07751 Jena, Germany
| | | | - Elke Müller
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Martin Reinicke
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Annett Reissig
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Antje Ruppelt-Lorz
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Ralf Ehricht
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
8
|
Abdullahi IN, Juárez-Fernández G, Höfle Ú, Cardona-Cabrera T, Mínguez D, Pineda-Pampliega J, Lozano C, Zarazaga M, Torres C. Nasotracheal Microbiota of Nestlings of Parent White storks with Different Foraging Habits in Spain. ECOHEALTH 2023; 20:105-121. [PMID: 37060390 DOI: 10.1007/s10393-023-01626-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/11/2023] [Indexed: 06/11/2023]
Abstract
Migratory storks could be vectors of transmission of bacteria of public health concern mediated by the colonization, persistence and excretion of such bacteria. This study aims to determine genera/species diversity, prevalence, and co-colonization indices of bacteria obtained from tracheal (T) and nasal (N) samples from storks in relation to exposure to point sources through foraging. One-hundred and thirty-six samples from 87 nestlings of colonies of parent white storks with different foraging habits (natural habitat and landfills) were obtained (84 T-samples and 52 N-samples) and processed. Morphologically distinct colonies (up to 12/sample) were randomly selected and identified by MALDI-TOF-MS. About 87.2% of the total 806 isolates recovered were identified: 398 from T-samples (56.6%) and 305 from N-samples (43.4%). Among identified isolates, 17 genera and 46 species of Gram-positive and Gram-negative bacteria were detected, Staphylococcus (58.0%) and Enterococcus (20.5%) being the most prevalent genera. S. sciuri was the most prevalent species from T (36.7%) and N (34.4%) cavities of total isolates, followed by E. faecalis (11.1% each from T and N), and S. aureus [T (6.5%), N (13.4%)]. Of N-samples, E. faecium was significantly associated with nestlings of parent storks foraging in landfills (p = 0.018). S. sciuri (p = 0.0034) and M. caseolyticus (p = 0.032) from T-samples were significantly higher among nestlings of parent storks foraging in natural habitats. More than 80% of bacterial species in the T and N cavities showed 1-10% co-colonization indices with one another, but few had ≥ 40% indices. S. sciuri and E. faecalis were the most frequent species identified in the stork nestlings. Moreover, they were highly colonized by other diverse and potentially pathogenic bacteria. Thus, storks could be sentinels of point sources and vehicles of bacterial transmission across the "One Health" ecosystems.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Guillermo Juárez-Fernández
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Úrsula Höfle
- SaBio (Health and Biotechnology) Research Group, Game and Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Teresa Cardona-Cabrera
- SaBio (Health and Biotechnology) Research Group, Game and Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - David Mínguez
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Javier Pineda-Pampliega
- Department of Biology, Lund University, Lund, Sweden
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Carmen Lozano
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain.
| |
Collapse
|
9
|
Staphylococcus aureus Prophage-Encoded Protein Causes Abortive Infection and Provides Population Immunity against Kayviruses. mBio 2023; 14:e0249022. [PMID: 36779718 PMCID: PMC10127798 DOI: 10.1128/mbio.02490-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Both temperate and obligately lytic phages have crucial roles in the biology of staphylococci. While superinfection exclusion among closely related temperate phages is a well-characterized phenomenon, the interactions between temperate and lytic phages in staphylococci are not understood. Here, we present a resistance mechanism toward lytic phages of the genus Kayvirus, mediated by the membrane-anchored protein designated PdpSau encoded by Staphylococcus aureus prophages, mostly of the Sa2 integrase type. The prophage accessory gene pdpSau is strongly linked to the lytic genes for holin and ami2-type amidase and typically replaces genes for the toxin Panton-Valentine leukocidin (PVL). The predicted PdpSau protein structure shows the presence of a membrane-binding α-helix in its N-terminal part and a cytoplasmic positively charged C terminus. We demonstrated that the mechanism of action of PdpSau does not prevent the infecting kayvirus from adsorbing onto the host cell and delivering its genome into the cell, but phage DNA replication is halted. Changes in the cell membrane polarity and permeability were observed from 10 min after the infection, which led to prophage-activated cell death. Furthermore, we describe a mechanism of overcoming this resistance in a host-range Kayvirus mutant, which was selected on an S. aureus strain harboring prophage 53 encoding PdpSau, and in which a chimeric gene product emerged via adaptive laboratory evolution. This first case of staphylococcal interfamily phage-phage competition is analogous to some other abortive infection defense systems and to systems based on membrane-destructive proteins. IMPORTANCE Prophages play an important role in virulence, pathogenesis, and host preference, as well as in horizontal gene transfer in staphylococci. In contrast, broad-host-range lytic staphylococcal kayviruses lyse most S. aureus strains, and scientists worldwide have come to believe that the use of such phages will be successful for treating and preventing bacterial diseases. The effectiveness of phage therapy is complicated by bacterial resistance, whose mechanisms related to therapeutic staphylococcal phages are not understood in detail. In this work, we describe a resistance mechanism targeting kayviruses that is encoded by a prophage. We conclude that the defense mechanism belongs to a broader group of abortive infections, which is characterized by suicidal behavior of infected cells that are unable to produce phage progeny, thus ensuring the survival of the host population. Since the majority of staphylococcal strains are lysogenic, our findings are relevant for the advancement of phage therapy.
Collapse
|
10
|
Detecting mecA in Faecal Samples: A Tool for Assessing Carriage of Meticillin-Resistant Staphylococci in Pets and Owners in the Microbiological ‘Fast Age’? MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sampling animals for carriage of meticillin-resistant, coagulase-positive staphylococci (MRCoPS), considered zoonotic pathogens, can be challenging and time-consuming. Developing methods to identify mecA from non-invasive samples, e.g., faeces, would benefit AMR surveillance and management of MRS carrier animals. This study aimed to distinguish MRS carriers from non-carriers from faecal samples using quantitative polymerase chain reaction (qPCR) for mecA. Paired faecal and nasal swab samples (n = 86) were obtained from 13 dogs and 20 humans as part of a longitudinal study. Nasal MRCoPS carriage (either MR-Staphylococcus aureus or MR-Staphylococcus pseudintermedius was confirmed by identification of species (nuc) and meticillin resistance (mecA) (PCR). Faecal DNA (n = 69) was extracted and a qPCR method was optimised to provide a robust detection method. The presence of faecal mecA was compared between MRS carriers and non-carriers (Kruskal–Wallis test). Nasal swabbing identified seven canine and four human MRCoPS carriers. mecA was detected in 13/69 faecal samples, including four MRCoPS carriers and nine non-carriers. For dogs, there was no significant association (p = 1.000) between carrier status and mecA detection; for humans, mecA was more commonly detected in MRCoPS carriers (p = 0.047). mecA was detected in faeces of MRCoPS carriers and non-carriers by qPCR, but larger sample sizes are required to determine assay sensitivity. This rapid method enables passive surveillance of mecA in individuals and the environment.
Collapse
|
11
|
Sacramento AG, Fuga B, Monte DFM, Cardoso B, Esposito F, Dolabella SS, Barbosa AAT, Zanella RC, Cortopassi SRG, da Silva LCBA, Lincopan N, Sellera FP. Genomic features of mecA-positive methicillin-resistant Mammaliicoccus sciuri causing fatal infections in pets admitted to a veterinary intensive care unit. Microb Pathog 2022; 171:105733. [PMID: 36002114 DOI: 10.1016/j.micpath.2022.105733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
Methicillin-resistant staphylococci have become leading cause of infectious diseases in humans and animals, being categorized as high priority pathogens by the World Health Organization. Although methicillin-resistant Staphylococcus sciuri (recently moved to Mammaliicoccus sciuri) has been widely reported in companion animals, there is scarce information regarding their clinical impact and genomic features. Herein, we reported the occurrence and genomic characteristics of methicillin-resistant M. sciuri recovered from fatal infections in pets admitted to an intensive care unit of a veterinary hospital, in Brazil. Two M. sciuri strains were isolated from bronchoalveolar lavage samples collected from dog (strain SS01) and cat (strain SS02) presenting with sepsis and acute respiratory distress syndrome. Both isolates displayed a multidrug-resistant profile, whereas whole-genome sequencing analysis confirmed the presence of the mecA gene, along to genetic determinant conferring resistance to macrolides, streptogramins, aminoglycosides, and trimethoprim. For both strains, the mec and crr gene complex shared high identity (≥97%) with analogue sequences from a M. sciuri isolated from a human wound infection, in the Czech Republic. Strains were assigned to the sequence type ST52 and the novel ST74. Phylogenomic analysis revealed a broad host range association of these strains with several hosts and sources, including humans, animals, food, and the environment through different years and geographic locations. Our findings demonstrate that infections caused by mecA-positive M. sciuri strains can be a serious threat for veterinary intensive care patients and the medical staff, with additional implications for One Health approaches.
Collapse
Affiliation(s)
- Andrey G Sacramento
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil.
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Daniel F M Monte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil; Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, São Paulo, Brazil
| | - Brenda Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Silvio S Dolabella
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Ana A T Barbosa
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Silvia R G Cortopassi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Luciano C B A da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil; Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Chen Q, Dharmaraj T, Cai PC, Burgener EB, Haddock NL, Spakowitz AJ, Bollyky PL. Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics. Pharmaceutics 2022; 14:1425. [PMID: 35890320 PMCID: PMC9318951 DOI: 10.3390/pharmaceutics14071425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, viruses that infect and replicate within bacteria, impact bacterial responses to antibiotics in complex ways. Recent studies using lytic bacteriophages to treat bacterial infections (phage therapy) demonstrate that phages can promote susceptibility to chemical antibiotics and that phage/antibiotic synergy is possible. However, both lytic and lysogenic bacteriophages can contribute to antimicrobial resistance. In particular, some phages mediate the horizontal transfer of antibiotic resistance genes between bacteria via transduction and other mechanisms. In addition, chronic infection filamentous phages can promote antimicrobial tolerance, the ability of bacteria to persist in the face of antibiotics. In particular, filamentous phages serve as structural elements in bacterial biofilms and prevent the penetration of antibiotics. Over time, these contributions to antibiotic tolerance favor the selection of resistance clones. Here, we review recent insights into bacteriophage contributions to antibiotic susceptibility, resistance, and tolerance. We discuss the mechanisms involved in these effects and address their impact on bacterial fitness.
Collapse
Affiliation(s)
- Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Pamela C. Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
| | - Elizabeth B. Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; (E.B.B.); (A.J.S.)
| | - Naomi L. Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Andy J. Spakowitz
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; (E.B.B.); (A.J.S.)
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| |
Collapse
|
13
|
Fungwithaya P, Boonchuay K, Narinthorn R, Sontigun N, Sansamur C, Petcharat Y, Thomrongsuwannakij T, Wongtawan T. First study on diversity and antimicrobial-resistant profile of staphylococci in sports animals of Southern Thailand. Vet World 2022; 15:765-774. [PMID: 35497942 PMCID: PMC9047138 DOI: 10.14202/vetworld.2022.765-774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background and Aim: Staphylococci are commensal bacteria and opportunistic pathogens found on the skin and mucosa. Sports animals are more prone to injury and illness, and we believe that antimicrobial agents might be extensively used for the treatment and cause the existence of antimicrobial-resistant (AMR) bacteria. This study aimed to investigate the diversity and AMR profile of staphylococci in sports animals (riding horses, fighting bulls, and fighting cocks) in South Thailand. Materials and Methods: Nasal (57 fighting bulls and 33 riding horses) and skin swabs (32 fighting cocks) were taken from 122 animals. Staphylococci were cultured in Mannitol Salt Agar and then identified species by biochemical tests using the VITEK® 2 card for Gram-positive organisms in conjunction with the VITEK® 2 COMPACT machine and genotypic identification by polymerase chain reaction (PCR). Antimicrobial susceptibility tests were performed with VITEK® 2 AST-GN80 test kit cards and VITEK® 2 COMPACT machine. Detection of AMR genes (mecA, mecC, and blaZ) and staphylococcal chromosomal mec (SCCmec) type was evaluated by PCR. Results: Forty-one colonies of staphylococci were isolated, and six species were identified, including Staphylococcus sciuri (61%), Staphylococcus pasteuri (15%), Staphylococcus cohnii (10%), Staphylococcus aureus (7%), Staphylococcus warneri (5%), and Staphylococcus haemolyticus (2%). Staphylococci were highly resistant to two drug classes, penicillin (93%) and cephalosporin (51%). About 56% of the isolates were methicillin-resistant staphylococci (MRS), and the majority was S. sciuri (82%), which is primarily found in horses. Most MRS (82%) were multidrug-resistant. Almost all (96%) of the mecA-positive MRS harbored the blaZ gene. Almost all MRS isolates possessed an unknown type of SCCmec. Interestingly, the AMR rate was notably lower in fighting bulls and cocks than in riding horses, which may be related to the owner’s preference for herbal therapy over antimicrobial drugs. Conclusion: This study presented many types of staphylococci displayed on bulls, cocks, and horses. However, we found a high prevalence of MRS in horses that could be transmitted to owners through close contact activities and might be a source of AMR genotype transmission to other staphylococci.
Collapse
Affiliation(s)
- Punpichaya Fungwithaya
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Kanpapat Boonchuay
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Ruethai Narinthorn
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Narin Sontigun
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Chalutwan Sansamur
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Yotsapat Petcharat
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Thotsapol Thomrongsuwannakij
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Tuempong Wongtawan
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| |
Collapse
|
14
|
Hatoum-Aslan A. The phages of staphylococci: critical catalysts in health and disease. Trends Microbiol 2021; 29:1117-1129. [PMID: 34030968 PMCID: PMC8578144 DOI: 10.1016/j.tim.2021.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/21/2023]
Abstract
The phages that infect Staphylococcus species are dominant residents of the skin microbiome that play critical roles in health and disease. While temperate phages, which can integrate into the host genome, have the potential to promote staphylococcal pathogenesis, the strictly lytic variety are powerful antimicrobials that are being exploited for therapeutic applications. This article reviews recent insights into the diversity of staphylococcal phages and newly described mechanisms by which they influence host pathogenicity. The latest efforts to harness these viruses to eradicate staphylococcal infections are also highlighted. Decades of research has focused on the temperate phages of Staphylococcus aureus as model systems, thus underscoring the need to broaden basic research efforts to include diverse phages that infect other clinically relevant Staphylococcus species.
Collapse
Affiliation(s)
- Asma Hatoum-Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Göller PC, Elsener T, Lorgé D, Radulovic N, Bernardi V, Naumann A, Amri N, Khatchatourova E, Coutinho FH, Loessner MJ, Gómez-Sanz E. Multi-species host range of staphylococcal phages isolated from wastewater. Nat Commun 2021; 12:6965. [PMID: 34845206 PMCID: PMC8629997 DOI: 10.1038/s41467-021-27037-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
The host range of bacteriophages defines their impact on bacterial communities and genome diversity. Here, we characterize 94 novel staphylococcal phages from wastewater and establish their host range on a diversified panel of 117 staphylococci from 29 species. Using this high-resolution phage-bacteria interaction matrix, we unveil a multi-species host range as a dominant trait of the isolated staphylococcal phages. Phage genome sequencing shows this pattern to prevail irrespective of taxonomy. Network analysis between phage-infected bacteria reveals that hosts from multiple species, ecosystems, and drug-resistance phenotypes share numerous phages. Lastly, we show that phages throughout this network can package foreign genetic material enclosing an antibiotic resistance marker at various frequencies. Our findings indicate a weak host specialism of the tested phages, and therefore their potential to promote horizontal gene transfer in this environment.
Collapse
Affiliation(s)
- Pauline C. Göller
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Tabea Elsener
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Dominic Lorgé
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Natasa Radulovic
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Viona Bernardi
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Annika Naumann
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Nesrine Amri
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Ekaterina Khatchatourova
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Felipe Hernandes Coutinho
- grid.26811.3c0000 0001 0586 4893Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J. Loessner
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Elena Gómez-Sanz
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland. .,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
16
|
The Resistome and Mobilome of Multidrug-Resistant Staphylococcus sciuri C2865 Unveil a Transferable Trimethoprim Resistance Gene, Designated dfrE, Spread Unnoticed. mSystems 2021; 6:e0051121. [PMID: 34374564 PMCID: PMC8407400 DOI: 10.1128/msystems.00511-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus sciuri (MRSS) strain C2865 from a stranded dog in Nigeria was trimethoprim (TMP) resistant but lacked formerly described staphylococcal TMP-resistant dihydrofolate reductase genes (dfr). Whole-genome sequencing, comparative genomics, and pan-genome analyses were pursued to unveil the molecular bases for TMP resistance via resistome and mobilome profiling. MRSS C2865 comprised a species subcluster and positioned just above the intraspecies boundary. Lack of species host tropism was observed. S. sciuri exhibited an open pan-genome, while MRSS C2865 harbored the highest number of unique genes (75% associated with mobilome). Within this fraction, we discovered a transferable TMP resistance gene, named dfrE, which confers high-level TMP resistance in Staphylococcus aureus and Escherichia coli. dfrE was located in a novel multidrug resistance mosaic plasmid (pUR2865-34) encompassing adaptive, mobilization, and segregational stability traits. dfrE was formerly denoted as dfr_like in Exiguobacterium spp. from fish farm sediment in China but escaped identification in one macrococcal and diverse staphylococcal genomes in different Asian countries. dfrE shares the highest identity with dfr of soil-related Paenibacillus anaericanus (68%). Data analysis discloses that dfrE has emerged from a single ancestor and places S. sciuri as a plausible donor. C2865 unique fraction additionally enclosed novel chromosomal mobile islands, including a multidrug-resistant pseudo-SCCmec cassette, three apparently functional prophages (Siphoviridae), and an SaPI4-related staphylococcal pathogenicity island. Since dfrE seems not yet common in staphylococcal clinical specimens, our data promote early surveillance and enable molecular diagnosis. We evidence the genome plasticity of S. sciuri and highlight its role as a resourceful reservoir for adaptive traits. IMPORTANCE The discovery and surveillance of antimicrobial resistance genes (AMRG) and their mobilization platforms are critical to understand the evolution of bacterial resistance and to restrain further expansion. Limited genomic data are available on Staphylococcus sciuri; regardless, it is considered a reservoir for critical AMRG and mobile elements. We uncover a transferable staphylococcal TMP resistance gene, named dfrE, in a novel mosaic plasmid harboring additional resistance, adaptive, and self-stabilization features. dfrE is present but evaded detection in diverse species from varied sources geographically distant. Our analyses evidence that the dfrE-carrying element has emerged from a single ancestor and position S. sciuri as the donor species for dfrE spread. We also identify novel mobilizable chromosomal islands encompassing AMRG and three unrelated prophages. We prove high intraspecies heterogenicity and genome plasticity for S. sciuri. This work highlights the importance of genome-wide ecological studies to facilitate identification, characterization, and evolution routes of bacteria adaptive features.
Collapse
|
17
|
Bonvegna M, Grego E, Sona B, Stella MC, Nebbia P, Mannelli A, Tomassone L. Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Antibiotics (Basel) 2021; 10:antibiotics10060676. [PMID: 34198805 PMCID: PMC8227741 DOI: 10.3390/antibiotics10060676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Swine farming as a source of methicillin-resistant Staphylococcus aureus (MRSA) has been well documented. Methicillin-resistant coagulase-negative staphylococci (MRCoNS) have been less studied, but their importance as pathogens is increasing. MRCoNS are indeed considered relevant nosocomial pathogens; identifying putative sources of MRCoNS is thus gaining importance to prevent human health hazards. In the present study, we investigated MRSA and MRCoNS in animals and environment in five pigsties in a high farm-density area of northwestern Italy. Farms were three intensive, one intensive with antibiotic-free finishing, and one organic. We tested nasal swabs from 195 animals and 26 environmental samples from three production phases: post-weaning, finishing and female breeders. Phenotypic tests, including MALDI-TOF MS, were used for the identification of Staphylococcus species; PCR and nucleotide sequencing confirmed resistance and bacterial species. MRCoNS were recovered in 64.5% of nasal swabs, in all farms and animal categories, while MRSA was detected only in one post-weaning sample in one farm. The lowest prevalence of MRCoNS was detected in pigs from the organic farm and in the finishing of the antibiotic-free farm. MRCoNS were mainly Staphylococcus sciuri, but we also recovered S. pasteuri, S. haemolyticus, S. cohnii, S. equorum and S. xylosus. Fifteen environmental samples were positive for MRCoNS, which were mainly S. sciuri; no MRSA was found in the farms’ environment. The analyses of the mecA gene and the PBP2-a protein highlighted the same mecA fragment in strains of S. aureus, S. sciuri and S. haemolyticus. Our results show the emergence of MRCoNS carrying the mecA gene in swine farms. Moreover, they suggest that this gene might be horizontally transferred from MRCoNS to bacterial species more relevant for human health, such as S. aureus.
Collapse
Affiliation(s)
- Miryam Bonvegna
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
- Correspondence:
| | - Elena Grego
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Bruno Sona
- Local Veterinary Service, Animal Health, ASL CN1, Via Torino, 137, 12038 Savigliano, Italy;
| | - Maria Cristina Stella
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Alessandro Mannelli
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| |
Collapse
|
18
|
Staphylococcus epidermidis Phages Transduce Antimicrobial Resistance Plasmids and Mobilize Chromosomal Islands. mSphere 2021; 6:6/3/e00223-21. [PMID: 33980677 PMCID: PMC8125051 DOI: 10.1128/msphere.00223-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. Staphylococcus epidermidis is a leading opportunistic pathogen causing nosocomial infections that is notable for its ability to form a biofilm and for its high rates of antibiotic resistance. It serves as a reservoir of multiple antimicrobial resistance genes that spread among the staphylococcal population by horizontal gene transfer such as transduction. While phage-mediated transduction is well studied in Staphylococcus aureus, S. epidermidis transducing phages have not been described in detail yet. Here, we report the characteristics of four phages, 27, 48, 456, and 459, previously used for S. epidermidis phage typing, and the newly isolated phage E72, from a clinical S. epidermidis strain. The phages, classified in the family Siphoviridae and genus Phietavirus, exhibited an S. epidermidis-specific host range, and together they infected 49% of the 35 strains tested. A whole-genome comparison revealed evolutionary relatedness to transducing S. aureus phietaviruses. In accordance with this, all the tested phages were capable of transduction with high frequencies up to 10−4 among S. epidermidis strains from different clonal complexes. Plasmids with sizes from 4 to 19 kb encoding resistance to streptomycin, tetracycline, and chloramphenicol were transferred. We provide here the first evidence of a phage-inducible chromosomal island transfer in S. epidermidis. Similarly to S. aureus pathogenicity islands, the transfer was accompanied by phage capsid remodeling; however, the interfering protein encoded by the island was distinct. Our findings underline the role of S. epidermidis temperate phages in the evolution of S. epidermidis strains by horizontal gene transfer, which can also be utilized for S. epidermidis genetic studies. IMPORTANCE Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. In this work, we provide a detailed description of transducing S. epidermidis phages. The high transduction frequencies of antimicrobial resistance plasmids and the first evidence of chromosomal island transfer emphasize the decisive role of S. epidermidis phages in attaining a higher pathogenic potential of host strains. To date, such importance has been attributed only to S. aureus phages, not to those of coagulase-negative staphylococci. This study also proved that the described transducing bacteriophages represent valuable genetic modification tools in S. epidermidis strains where other methods for gene transfer fail.
Collapse
|
19
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Cañas B, Rama JLR, Villa TG, Calo-Mata P. Proteomic Characterization of Bacteriophage Peptides from the Mastitis Producer Staphylococcus aureus by LC-ESI-MS/MS and the Bacteriophage Phylogenomic Analysis. Foods 2021; 10:799. [PMID: 33917943 PMCID: PMC8068337 DOI: 10.3390/foods10040799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The present work describes LC-ESI-MS/MS MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses of tryptic digestion peptides from phages that infect mastitis-causing Staphylococcus aureus isolated from dairy products. A total of 1933 nonredundant peptides belonging to 1282 proteins were identified and analyzed. Among them, 79 staphylococcal peptides from phages were confirmed. These peptides belong to proteins such as phage repressors, structural phage proteins, uncharacterized phage proteins and complement inhibitors. Moreover, eighteen of the phage origin peptides found were specific to S. aureus strains. These diagnostic peptides could be useful for the identification and characterization of S. aureus strains that cause mastitis. Furthermore, a study of bacteriophage phylogeny and the relationship among the identified phage peptides and the bacteria they infect was also performed. The results show the specific peptides that are present in closely related phages and the existing links between bacteriophage phylogeny and the respective Staphylococcus spp. infected.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain;
| | - José-Luis R. Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
20
|
Assafiri O, Song AAL, Tan GH, Hanish I, Hashim AM, Yusoff K. Klebsiella virus UPM2146 lyses multiple drug-resistant Klebsiella pneumoniae in vitro and in vivo. PLoS One 2021; 16:e0245354. [PMID: 33418559 PMCID: PMC7794032 DOI: 10.1371/journal.pone.0245354] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Klebsiella pneumoniae are opportunistic bacteria found in the gut. In recent years they have been associated with nosocomial infections. The increased incidence of multiple drug-resistant K. pneumoniae makes it necessary to find new alternatives to treat the disease. In this study, phage UPM2146 was isolated from a polluted lake which can lyse its host K. pneumoniae ATCC BAA-2146. Observation from TEM shows that UPM2146 belongs to Caudoviriales (Order) based on morphological appearance. Whole genome analysis of UPM2146 showed that its genome comprises 160,795 bp encoding for 214 putative open reading frames (ORFs). Phylogenetic analysis revealed that the phage belongs to Ackermannviridae (Family) under the Caudoviriales. UPM2146 produces clear plaques with high titers of 1010 PFU/ml. The phage has an adsorption period of 4 min, latent period of 20 min, rise period of 5 min, and releases approximately 20 PFU/ bacteria at Multiplicity of Infection (MOI) of 0.001. UPM2146 has a narrow host-range and can lyse 5 out of 22 K. pneumoniae isolates (22.72%) based on spot test and efficiency of plating (EOP). The zebrafish larvae model was used to test the efficacy of UPM2146 in lysing its host. Based on colony forming unit counts, UPM2146 was able to completely lyse its host at 10 hours onwards. Moreover, we show that the phage is safe to be used in the treatment against K. pneumoniae infections in the zebrafish model.
Collapse
Affiliation(s)
- Omar Assafiri
- Faculty of Biotechnology and Biomolecular Sciences, Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Faculty of Biotechnology and Biomolecular Sciences, Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Geok Hun Tan
- Faculty of Agriculture, Department of Agriculture Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Irwan Hanish
- Faculty of Biotechnology and Biomolecular Sciences, Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Faculty of Biotechnology and Biomolecular Sciences, Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Faculty of Biotechnology and Biomolecular Sciences, Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Talavera-González JM, Talavera-Rojas M, Soriano-Vargas E, Vázquez-Navarrete J, Salgado-Miranda C. In vitro transduction of antimicrobial resistance genes into Escherichia coli isolates from backyard poultry in Mexico. Can J Microbiol 2021; 67:415-425. [PMID: 33395360 DOI: 10.1139/cjm-2020-0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The transmission of multidrug-resistant pathogens and antimicrobial resistance genes is an emerging problem involving multiple factors (humans, domestic animals, wildlife). The aim of this study was to investigate the presence of Escherichia coli isolates with different antimicrobial resistance genes from backyard poultry and to demonstrate the in vitro transduction phenomenon of these genes between phages from migratory wild birds and poultry E. coli isolates. We collected 197 E. coli isolates from chickens, turkeys, and ducks in backyard production units (northern region of the State of Mexico). Isolates were resistant to ampicillin (80.7%), tetracycline (64.4%), carbenicillin (56.3%), and nalidixic acid and trimethoprim-sulfamethoxazole (both, 26.9%). Moreover, the genes blaTEM (56.3%), tetB (20.8%), tetA (19.2%), sulI (7.6%), sulII (10.1%), qnrA (9.6%), and qnrB (5.5%) were found. In vitro transduction using phages from migratory wild birds sampled in the wetland Chimaliapan (State of Mexico) was successfully achieved. It was possible to transduce qnrA, tetB, blaTEM, and sulII genes to E. coli isolates from poultry. This is the first report that describes the transduction of antimicrobial resistance genes from phages of migratory wild birds to poultry and suggests the possible transmission in backyard production units.
Collapse
Affiliation(s)
- Juan Martín Talavera-González
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca, Estado de México 50200, México
| | - Martín Talavera-Rojas
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca, Estado de México 50200, México
| | - Edgardo Soriano-Vargas
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca, Estado de México 50200, México
| | - Jesús Vázquez-Navarrete
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carretera México-Toluca Km. 15.5, Ciudad de México, México
| | - Celene Salgado-Miranda
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca, Estado de México 50200, México
| |
Collapse
|
22
|
Tardón A, Bataller E, Llobat L, Jiménez-Trigos E. Bacteria and antibiotic resistance detection in fractures of wild birds from wildlife rehabilitation centres in Spain. Comp Immunol Microbiol Infect Dis 2020; 74:101575. [PMID: 33260016 DOI: 10.1016/j.cimid.2020.101575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022]
Abstract
Anatomic adaptations make birds more prone to open fractures with exposed bone parts losing vascularization. As a result of this exposure, fractures are colonized by different microorganisms, including different types of bacteria, both aerobic and anaerobic, causing osteomyelitis in many cases. For this reason, antibiotic treatment is common. However, carrying out antibiotic treatment without carrying out a previous antibiogram may contribute to increased resistance against antibiotics, especially in migratory wild birds. In this paper, bacterial counts regarding fracture type, bacterial identification and antibiotic resistance have been analysed in wild birds from wildlife rehabilitation centres in Spain. The results obtained showed that open fractures had higher bacterial counts (CFU/mL) than closed ones. Bacteria in family Enterobacteriaceae, identified were Escherichia spp., Enterobacter spp., Shigella spp., Hafnia alvei, Proteus mirabilis, Leclercia adecarboxylata and Pantoea agglomerans. Other bacteria present in wild birds' fractures were Aeromonas spp., Enterococcus spp. Bacillus wiedmannii and Staphylococcus sciuri. All species found presented resistance to at least one of the antibiotics used. Wild birds can be implicated in the introduction, maintenance and global spreading of antibiotic resistant bacteria and represent an emerging public health concern. Results obtained in this paper support the idea that it is necessary to take this fact into account before antibiotic administration to wild animals, since it could increase the number of bacteria resistant to antibiotics.
Collapse
Affiliation(s)
- A Tardón
- CREW Foundation (Conservation and Research for Endangered Wildlife), Lleida, Spain
| | - E Bataller
- Research Group Microbiological Agents Associated With Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain
| | - L Llobat
- Research Group Microbiological Agents Associated With Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain.
| | - E Jiménez-Trigos
- Research Group Microbiological Agents Associated With Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain.
| |
Collapse
|
23
|
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol 2020; 46:578-599. [PMID: 32954887 DOI: 10.1080/1040841x.2020.1813687] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).
Collapse
Affiliation(s)
- Syeda Fatima Nadeem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Syed Fahad Tahir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | | | - Pikunthong Nukthamna
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,College of Research Methodology and Cognitive Science, Burapha University, Chonburi, Thailand
| | - Ali Muhammed Moula Ali
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Salvatore Massa
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
24
|
Van der Veken D, Benhachemi R, Charmpi C, Ockerman L, Poortmans M, Van Reckem E, Michiels C, Leroy F. Exploring the Ambiguous Status of Coagulase-Negative Staphylococci in the Biosafety of Fermented Meats: The Case of Antibacterial Activity Versus Biogenic Amine Formation. Microorganisms 2020; 8:microorganisms8020167. [PMID: 31991613 PMCID: PMC7074764 DOI: 10.3390/microorganisms8020167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 01/06/2023] Open
Abstract
A total of 332 staphylococcal strains, mainly isolated from meat, were screened for antibacterial activity. Eighteen strains exhibited antibacterial activity towards species within the same genus. These antibacterial strains were further screened against Clostridium botulinum, to assess their potential as anticlostridial starter cultures for the development of fermented meat products without added nitrate or nitrite. Only Staphylococcus sciuri IMDO-S72 had the ability to inhibit all clostridial strains tested, whilst displaying additional activity against Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus. Apart from their potential as bioprotective cultures, the staphylococcal collection was also screened for biogenic amine production, as these compounds may compromise food quality. To this end, ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was applied. A low incidence of biogenic amine production was found, with tyramine and β-phenylethylamine being the most prevalent ones. Concentrations remained relatively low (< 52 mg/L) after a prolonged incubation period, posing no or little threat towards food safety. Taken together, S. sciuri IMDO-S72 could serve as an interesting candidate for the bioprotection of fermented meats as it showed promising antibacterial activity as well as absence of biogenic amine production.
Collapse
Affiliation(s)
- David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (D.V.d.V.); (C.C.); (L.O.); (E.V.R.)
| | - Rafik Benhachemi
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, B-3001 Leuven, Belgium; (R.B.); (M.P.); (C.M.)
| | - Christina Charmpi
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (D.V.d.V.); (C.C.); (L.O.); (E.V.R.)
| | - Lore Ockerman
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (D.V.d.V.); (C.C.); (L.O.); (E.V.R.)
| | - Marijke Poortmans
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, B-3001 Leuven, Belgium; (R.B.); (M.P.); (C.M.)
| | - Emiel Van Reckem
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (D.V.d.V.); (C.C.); (L.O.); (E.V.R.)
| | - Chris Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, B-3001 Leuven, Belgium; (R.B.); (M.P.); (C.M.)
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (D.V.d.V.); (C.C.); (L.O.); (E.V.R.)
- Correspondence:
| |
Collapse
|
25
|
Sinha A, Eniyan K, Manohar P, Ramesh N, Bajpai U. Characterization and genome analysis of B1 sub-cluster mycobacteriophage PDRPxv. Virus Res 2020; 279:197884. [PMID: 31981773 DOI: 10.1016/j.virusres.2020.197884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
Mycobacteriophages are viruses specific to mycobacteria that have gained attention as alternative therapeutic strategies for treating antibiotic-resistant infections. Mycobacteriophages are highly diverse and have been grouped into 29 clusters, 71 sub-clusters and 10 singletons based on the genome sequence. Here, we annotate the genome of PDRPxv, a lytic mycobacteriophage isolated from New Delhi; it belongs to the Siphoviridae family as determined by transmission electron microscopy. This phage survives at higher temperatures (up to 55 °C) and in alkaline conditions (up to pH11). PDRPxv phage genome is 69,171 bp in length with 66.35 % GC content and encodes 107 putative open reading frames and belongs to the B1 sub-cluster. Genome annotation indicated that genes for DNA encapsidation, structural proteins, replication/transcription and lysis of the host are present in functional clusters. Structural proteins encoded by Gp10-Gp12, Gp18, Gp25 and Gp28-Gp33 were identified by mass spectrometry. Interestingly, no gene encoding a holin function was found. Single-step growth curve revealed that PDRPxv has an adsorption time of 45 min, a latency time of 135 min and an average burst size of 99 phage particles per infected cell. The short latency period and the large burst size mark the lytic nature of the PDRPxv phage, which could therefore be a promising therapeutic candidate against pathogenic Mycobacterium species.
Collapse
Affiliation(s)
- Avni Sinha
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi) Govindpuri, Kalkaji, New-Delhi, 110019, India
| | - Kandasamy Eniyan
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi) Govindpuri, Kalkaji, New-Delhi, 110019, India; Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Prasanth Manohar
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Nachimuthu Ramesh
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi) Govindpuri, Kalkaji, New-Delhi, 110019, India.
| |
Collapse
|
26
|
Yang Y, Xie X, Tang M, Liu J, Tuo H, Gu J, Tang Y, Lei C, Wang H, Zhang A. Exploring the profile of antimicrobial resistance genes harboring by bacteriophage in chicken feces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134446. [PMID: 31648121 DOI: 10.1016/j.scitotenv.2019.134446] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 05/04/2023]
Abstract
Bacteriophage may play an important role in antimicrobial resistance genes (ARGs) transmission. However, the contribution of bacteriophage to the spread of ARGs in environment, especially in poultry farm environment, is rarely known. In this study, the prevalence of ARGs in bacteriophage DNA was investigated in chicken feces from 30 different poultry farms in China. Then the abundance of the aac(6')-Ib-cr, blaCTX-M, ermB, floR, mcr-1, sul1, tetM and intI1 genes was determined by qPCR in bacteriophage and compared with certain representative plasmid DNA samples. The results showed that 12 ARGs (aac(6')-Ib-cr, aph(3')-IIIa, blaCTX-M, ermB, ermF, floR, mcr-1, qnrS, sul1, sul2, vanA, tetM genes) and class 1 integron gene intI1 were detected in bacteriophage DNA fraction. The sul1, tetM and aac(6')-Ib-cr genes were most prevalent with high detection rates of 77%, 61% and 55%, respectively. To our best knowledge, this study firstly reported the presence of the mcr-1 gene in bacteriophage DNA derived from farms environments. We found that the gene copy (GC) numbers of the aac(6')-Ib-cr, ermB and sul1 genes were as high as 5.47, 5.22 and 5.54 log10 GC/g, respectively. Both the prevalence and abundance of ARGs in broiler fecal wastes were also generally higher than in laying hens. In addition, although the GC numbers of the aac(6')-Ib-cr, floR and tetM genes in plasmid DNA was higher than that in phage DNA fraction by 4.68, 3.59 and 3.9 orders of magnitude, respectively, the absolute abundances of the blaCTX-M and mcr-1 genes in phage DNA were close to or even higher than that in plasmid DNA at farm SIL2, SIL4 and SIB1. As potential vessels for ARGs, bacteriophage could not be ignored due to their unique extracellular persistence in environments. Overall, this is the first comprehensive survey about bacteriophage carried ARGs from farms in different regions in China.
Collapse
Affiliation(s)
- Yanxian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xianjun Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Mengjun Tang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Jiangsu 225009, China
| | - Jinxin Liu
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, CA 95616, USA
| | - Hongmei Tuo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Ju Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Yizhi Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China.
| |
Collapse
|
27
|
Phage Transduction is Involved in the Intergeneric Spread of Antibiotic Resistance-Associated bla CTX-M, mel, and tetM Loci in Natural Populations of Some Human and Animal Bacterial Pathogens. Curr Microbiol 2019; 77:185-193. [PMID: 31754824 DOI: 10.1007/s00284-019-01817-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The horizontal genetic transfer (HGT) of antibiotic resistance genes (ARGs) mediated by species-specific bacteriophages contributes to the emergence of antibiotic-resistant strains in natural populations of human and animal bacterial pathogens posing a significant threat to global public health. However, it is unclear and needs to be determined whether polyvalent bacteriophages play any role in the intergeneric transmission of ARGs. In this study, we examined the genome sequences of 2239 bacteriophages from different sources for the presence of ARGs. The identified ARG-carrying bacteriophages were then analyzed by PHACTS, PHAST, and HostPhinder programs to determine their lifestyles, genes coding for bacterial cell lysis, recombinases, and a spectrum of their potential host species, respectively. We employed the SplitsTree, RDP4 and SimPlot software packages in recombination tests to identify HGT events of ARGs between these bacteriophages and bacteria. In our analyses, some ARG-carrying bacteriophages exhibited temperate and/or polyvalent patterns. The bootstrap values (97-100) for the SplitsTree-generated parallelograms, fit values (97-100) for splits networks, Phi P values (< 10-17 to 3.9 × 10-16), RDP4 P values (≤ 7.8 × 10-03), and the SimPlot results, provided strong statistical evidence for the phage transduction events of blaCTX-M, mel, and tetM loci on inter-species level. These events involved several host species such as Escherichia coli, Salmonella enterica, Shigella sonnei, Streptococcus pneumoniae and Bacillus coagulans. HGT of mel loci between Erysipelothrix and Streptococcus phages were also detected. These results firmly suggest that certain bacteriophages possibly with temperate properties induce the intergeneric dissemination of blaCTX-M, mel and tetM in the above species.
Collapse
|
28
|
Vrbovská V, Kovařovic V, Mašlaňová I, Indráková A, Petráš P, Šedo O, Švec P, Fišarová L, Šiborová M, Mikulášek K, Sedláček I, Doškař J, Pantůček R. Staphylococcus petrasii diagnostics and its pathogenic potential enhanced by mobile genetic elements. Int J Med Microbiol 2019; 309:151355. [PMID: 31563331 DOI: 10.1016/j.ijmm.2019.151355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus petrasii is recently described coagulase negative staphylococcal species and an opportunistic human pathogen, still often misidentified in clinical specimens. Four subspecies are distinguished in S. petrasii by polyphasic taxonomical analyses, however a comparative study has still not been done on the majority of isolates and their genome properties have not yet been thoroughly analysed. Here, we describe the phenotypic and genotypic characteristics of 65 isolates and the results of de novo sequencing, whole genome assembly and annotation of draft genomes of five strains. The strains were identified by MALDI-TOF mass spectrometry to the species level and the majority of the strains were identified to the subspecies level by fingerprinting methods, (GTG)5 repetitive PCR and ribotyping. Macrorestriction profiling by pulsed-field gel electrophoresis was confirmed to be a suitable strain typing method. Comparative genomics revealed the presence of new mobile genetic elements carrying antimicrobial resistance factors such as staphylococcal cassette chromosome (SCC) mec, transposones, phage-inducible genomic islands, and plasmids. Their mosaic structure and similarity across coagulase-negative staphylococci and Staphylococcus aureus suggest the possible exchange of these elements. Numerous putative virulence factors such as adhesins, autolysins, exoenzymes, capsule formation genes, immunomodulators, the phage-associated sasX gene, and SCC-associated spermidine N-acetyltransferase gene, pseudouridine and sorbitol utilization operons might explain clinical manifestations of S. petrasii isolates. The increasing recovery of S. petrasii isolates from human clinical material, the multi-drug resistance including methicillin resistance of S. petrasii subsp. jettensis strains, and virulence factors homologous to other pathogenic staphylococci demonstrate the importance of the species in human disease.
Collapse
Affiliation(s)
- Veronika Vrbovská
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Vojtěch Kovařovic
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Ivana Mašlaňová
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Adéla Indráková
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Petr Petráš
- Reference Laboratory for Staphylococci, National Institute of Public Health, Šrobárova 48, 100 42 Praha 10, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Švec
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lenka Fišarová
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Marta Šiborová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Kamil Mikulášek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivo Sedláček
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Doškař
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Roman Pantůček
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
29
|
Ingmer H, Gerlach D, Wolz C. Temperate Phages of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0058-2018. [PMID: 31562736 PMCID: PMC10921950 DOI: 10.1128/microbiolspec.gpp3-0058-2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
Most Staphylococcus aureus isolates carry multiple bacteriophages in their genome, which provide the pathogen with traits important for niche adaptation. Such temperate S. aureus phages often encode a variety of accessory factors that influence virulence, immune evasion and host preference of the bacterial lysogen. Moreover, transducing phages are primary vehicles for horizontal gene transfer. Wall teichoic acid (WTA) acts as a common phage receptor for staphylococcal phages and structural variations of WTA govern phage-host specificity thereby shaping gene transfer across clonal lineages and even species. Thus, bacteriophages are central for the success of S. aureus as a human pathogen.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Fišarová L, Pantůček R, Botka T, Doškař J. Variability of resistance plasmids in coagulase-negative staphylococci and their importance as a reservoir of antimicrobial resistance. Res Microbiol 2018; 170:105-111. [PMID: 30503569 DOI: 10.1016/j.resmic.2018.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/09/2018] [Accepted: 11/22/2018] [Indexed: 11/25/2022]
Abstract
Coagulase-negative staphylococci (CoNS) are an important cause of human and animal diseases. Treatment of these diseases is complicated by their common antimicrobial resistance, caused by overuse of antibiotics in hospital and veterinary environment. Therefore, they are assumed to serve as a reservoir of resistance genes often located on plasmids. In this study, we analyzed plasmid content in 62 strains belonging to 10 CoNS species of human and veterinary origin. In 48 (77%) strains analyzed, 107 different plasmids were detected, and only some of them showed similarities with plasmids found previously. In total, seven different antimicrobial-resistance genes carried by plasmids were identified. Five of the CoNS staphylococci carried plasmids identical with either those of other CoNS species tested, or a well characterized Staphylococcus aureus strain COL, suggesting plasmid dissemination through horizontal transfer. To demonstrate the possibility of horizontal transfer, we performed electroporation of four resistance plasmids among Staphylococcus epidermidis, Staphylococcus petrasii, and coagulase-positive S. aureus strains. Plasmids were transferred unchanged, were stably maintained in recipient strains, and expressed resistance genes. Our work demonstrates a great variability of plasmids in human and veterinary staphylococcal strains and their ability to maintain and express resistance plasmids from other staphylococcal species.
Collapse
Affiliation(s)
- Lenka Fišarová
- Masaryk University, Department of Experimental Biology, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Roman Pantůček
- Masaryk University, Department of Experimental Biology, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Tibor Botka
- Masaryk University, Department of Experimental Biology, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Jiří Doškař
- Masaryk University, Department of Experimental Biology, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
31
|
Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol 2018; 65:34-44. [PMID: 30248271 DOI: 10.1139/cjm-2018-0275] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A global medical crisis is unfolding as antibiotics lose effectiveness against a growing number of bacterial pathogens. Horizontal gene transfer (HGT) contributes significantly to the rapid spread of resistance, yet the transmission dynamics of genes that confer antibiotic resistance are poorly understood. Multiple mechanisms of HGT liberate genes from normal vertical inheritance. Conjugation by plasmids, transduction by bacteriophages, and natural transformation by extracellular DNA each allow genetic material to jump between strains and species. Thus, HGT adds an important dimension to infectious disease whereby an antibiotic resistance gene (ARG) can be the agent of an outbreak by transferring resistance to multiple unrelated pathogens. Here, we review the small number of cases where HGT has been detected in clinical environments. We discuss differences and synergies between the spread of plasmid-borne and chromosomal ARGs, with a special consideration of the difficulties of detecting transduction and transformation by routine genetic diagnostics. We highlight how 11 of the top 12 priority antibiotic-resistant pathogens are known or predicted to be naturally transformable, raising the possibility that this mechanism of HGT makes significant contributions to the spread of ARGs. HGT drives the evolution of untreatable "superbugs" by concentrating ARGs together in the same cell, thus HGT must be included in strategies to prevent the emergence of resistant organisms in hospitals and other clinical settings.
Collapse
Affiliation(s)
| | - Andrew D S Cameron
- a Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada.,b Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
32
|
Mašlaňová I, Wertheimer Z, Sedláček I, Švec P, Indráková A, Kovařovic V, Schumann P, Spröer C, Králová S, Šedo O, Krištofová L, Vrbovská V, Füzik T, Petráš P, Zdráhal Z, Ružičková V, Doškař J, Pantuček R. Description and Comparative Genomics of Macrococcus caseolyticus subsp. hominis subsp. nov., Macrococcus goetzii sp. nov., Macrococcus epidermidis sp. nov., and Macrococcus bohemicus sp. nov., Novel Macrococci From Human Clinical Material With Virulence Potential and Suspected Uptake of Foreign DNA by Natural Transformation. Front Microbiol 2018; 9:1178. [PMID: 29951040 PMCID: PMC6008420 DOI: 10.3389/fmicb.2018.01178] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022] Open
Abstract
The genus Macrococcus is a close relative of the genus Staphylococcus. Whilst staphylococci are widespread as human pathogens, macrococci have not yet been reported from human clinical specimens. Here we investigated Gram-positive and catalase-positive cocci recovered from human clinical material and identified as Macrococcus sp. by a polyphasic taxonomic approach and by comparative genomics. Relevant phenotypic, genotypic and chemotaxonomic methods divided the analyzed strains into two separate clusters within the genus Macrococcus. Comparative genomics of four representative strains revealed enormous genome structural plasticity among the studied isolates. We hypothesize that high genomic variability is due to the presence of a com operon, which plays a key role in the natural transformation of bacilli and streptococci. The possible uptake of exogenous DNA by macrococci can contribute to a different mechanism of evolution from staphylococci, where phage-mediated horizontal gene transfer predominates. The described macrococcal genomes harbor novel plasmids, genomic islands and islets, as well as prophages. Capsule gene clusters, intracellular protease, and a fibronectin-binding protein enabling opportunistic pathogenesis were found in all four strains. Furthermore, the presence of a CRISPR-Cas system with 90 spacers in one of the sequenced genomes corresponds with the need to limit the burden of foreign DNA. The highly dynamic genomes could serve as a platform for the exchange of virulence and resistance factors, as was described for the methicillin resistance gene, which was found on the novel composite SCCmec-like element containing a unique mec gene complex that is considered to be one of the missing links in SCC evolution. The phenotypic, genotypic, chemotaxonomic and genomic results demonstrated that the analyzed strains represent one novel subspecies and three novel species of the genus Macrococcus, for which the names Macrococcus caseolyticus subsp. hominis subsp. nov. (type strain CCM 7927T = DSM 103682T), Macrococcus goetzii sp. nov. (type strain CCM 4927T = DSM 103683T), Macrococcus epidermidis sp. nov. (type strain CCM 7099T = DSM 103681T), and Macrococcus bohemicus sp. nov. (type strain CCM 7100T = DSM 103680T) are proposed. Moreover, a formal description of Macrococcus caseolyticus subsp. caseolyticus subsp. nov. and an emended description of the genus Macrococcus are provided.
Collapse
Affiliation(s)
- Ivana Mašlaňová
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Zuzana Wertheimer
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Ivo Sedláček
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Švec
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Adéla Indráková
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtěch Kovařovic
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Peter Schumann
- Leibniz Institute Deutsche Sammlung von Mikroorganismen und Zellkulturen—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute Deutsche Sammlung von Mikroorganismen und Zellkulturen—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stanislava Králová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lucie Krištofová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Veronika Vrbovská
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petr Petráš
- Reference Laboratory for Staphylococci, National Institute of Public Health, Prague, Czechia
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vladislava Ružičková
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jiří Doškař
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Roman Pantuček
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
33
|
Górski A, Międzybrodzki R, Łobocka M, Głowacka-Rutkowska A, Bednarek A, Borysowski J, Jończyk-Matysiak E, Łusiak-Szelachowska M, Weber-Dąbrowska B, Bagińska N, Letkiewicz S, Dąbrowska K, Scheres J. Phage Therapy: What Have We Learned? Viruses 2018; 10:E288. [PMID: 29843391 PMCID: PMC6024844 DOI: 10.3390/v10060288] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
In this article we explain how current events in the field of phage therapy may positively influence its future development. We discuss the shift in position of the authorities, academia, media, non-governmental organizations, regulatory agencies, patients, and doctors which could enable further advances in the research and application of the therapy. In addition, we discuss methods to obtain optimal phage preparations and suggest the potential of novel applications of phage therapy extending beyond its anti-bacterial action.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Aleksandra Głowacka-Rutkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Agnieszka Bednarek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Medical Sciences Institute, Katowice School of Economics, Harcerzy Września Street 3, 40-659 Katowice, Poland.
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Research and Development Center, Regional Specialized Hospital, Kamieńskiego 73a, 51-124 Wrocław, Poland.
| | - Jacques Scheres
- National Institute of Public Health NIZP, Chocimska Street 24, 00-971 Warsaw, Poland.
| |
Collapse
|
34
|
Štveráková D, Šedo O, Benešík M, Zdráhal Z, Doškař J, Pantůček R. Rapid Identification of Intact Staphylococcal Bacteriophages Using Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry. Viruses 2018; 10:v10040176. [PMID: 29617332 PMCID: PMC5923470 DOI: 10.3390/v10040176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/01/2018] [Accepted: 04/02/2018] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a major causative agent of infections associated with hospital environments, where antibiotic-resistant strains have emerged as a significant threat. Phage therapy could offer a safe and effective alternative to antibiotics. Phage preparations should comply with quality and safety requirements; therefore, it is important to develop efficient production control technologies. This study was conducted to develop and evaluate a rapid and reliable method for identifying staphylococcal bacteriophages, based on detecting their specific proteins using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling that is among the suggested methods for meeting the regulations of pharmaceutical authorities. Five different phage purification techniques were tested in combination with two MALDI-TOF MS matrices. Phages, either purified by CsCl density gradient centrifugation or as resuspended phage pellets, yielded mass spectra with the highest information value if ferulic acid was used as the MALDI matrix. Phage tail and capsid proteins yielded the strongest signals whereas the culture conditions had no effect on mass spectral quality. Thirty-seven phages from Myoviridae, Siphoviridae or Podoviridae families were analysed, including 23 siphophages belonging to the International Typing Set for human strains of S. aureus, as well as phages in preparations produced by Microgen, Bohemia Pharmaceuticals and MB Pharma. The data obtained demonstrate that MALDI-TOF MS can be used to effectively distinguish between Staphylococcus-specific bacteriophages.
Collapse
Affiliation(s)
- Dana Štveráková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Martin Benešík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.
| |
Collapse
|