1
|
Fajardo-Hernández CA, Zavala-Sierra ÁG, Merlin-Lucas VI, Morales-Jiménez JI, Rivera-Chávez J. Roseoglobuloside A, a Novel Nonanolide, and Identification of Specialized Metabolites as hPTP1B1 - 400 Inhibitors from Mangrove-Dwelling Aspergillus spp. PLANTA MEDICA 2025. [PMID: 39870085 DOI: 10.1055/a-2515-9491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2025]
Abstract
An approach combining enzymatic inhibition and untargeted metabolomics through molecular networking was employed to search for human recombinant full-length protein tyrosine phosphatase 1B (hPTP1 B1 - 400) inhibitors from a collection of 66 mangrove-associated fungal taxa. This strategy prioritized two Aspergillus strains (IQ-1612, section Circumdati, and IQ-1620, section Nigri) for further studies. Chemical investigation of strain IQ-1612 resulted in the isolation of a new nonanolide derivative, roseoglobuloside A (1: ), along with two known metabolites (2: and 3: ), whereas strain IQ-1620 led to the isolation of four known naphtho-γ-pyrones and one known diketopiperazine (4: -8: ). Of all isolates, compounds 2, 3: , and 7: showed a marked inhibitory effect on hPTP1B1 - 400 with an IC50 value < 20 µM, while 6: showed moderate inhibition with IC50 of 65 µM. Compounds 1: and 8: were inactive at a concentration of 100 µM, whereas 4: and 5: demonstrated significant inhibition at 20 µM. The structure of 1: was established by comprehensive spectroscopic analysis, and its relative and absolute configuration was assigned based on NOE correlations and by comparison of calculated and experimental ECD curves. Molecular docking indicated that these molecules primarily bind to two different allosteric sites, thereby inducing conformational changes that impact enzymatic activity.
Collapse
Affiliation(s)
- Carlos A Fajardo-Hernández
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ángeles G Zavala-Sierra
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Verenice I Merlin-Lucas
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús I Morales-Jiménez
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - José Rivera-Chávez
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Surwase AJ, Thakur NL. Production of marine-derived bioactive peptide molecules for industrial applications: A reverse engineering approach. Biotechnol Adv 2024; 77:108449. [PMID: 39260778 DOI: 10.1016/j.biotechadv.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2023] [Revised: 06/28/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
This review examines a wide range of marine microbial-derived bioactive peptide molecules, emphasizing the significance of reverse engineering in their production. The discussion encompasses the advancements in Marine Natural Products (MNPs) bio-manufacturing through the integration of omics-driven microbial engineering and bioinformatics. The distinctive features of non-ribosomally synthesised peptides (NRPs), and ribosomally synthesised precursor peptides (RiPP) biosynthesis is elucidated and presented. Additionally, the article delves into the origins of common peptide modifications. It highlights various genome mining approaches for the targeted identification of Biosynthetic Gene Clusters (BGCs) and novel RiPP and NRPs-derived peptides. The review aims to demonstrate the advancements, prospects, and obstacles in engineering both RiPP and NRP biosynthetic pathways.
Collapse
Affiliation(s)
- Akash J Surwase
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Narsinh L Thakur
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Lacey AE, Minns SA, Chen R, Vuong D, Lacey E, Kalaitzis JA, Tan YP, Shivas RG, Butler MS, Piggott AM. Talcarpones A and B: bisnaphthazarin-derived metabolites from the Australian fungus Talaromyces johnpittii sp. nov. MST-FP2594. J Antibiot (Tokyo) 2024; 77:147-155. [PMID: 38110564 DOI: 10.1038/s41429-023-00688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023]
Abstract
Talcarpones A (1) and B (2) are rare bisnaphthazarin derivatives produced by Talaromyces johnpittii (ex-type strain MST-FP2594), a newly discovered Australian fungus, which is formally described and named herein. The talcarpones were isolated along with the previously reported monomeric naphthoquinone, aureoquinone (3), suggesting a biosynthetic link between these metabolites. Talcarpone A is a lower homologue of hybocarpone (4), which was first isolated from a mycobiont of the lichen Lecanora hybocarpa. The structures of 1 and 2 were elucidated by detailed spectroscopic analysis, molecular modelling and comparison with literature data. Talcarpones 1 and 2 exhibited moderate antifungal activity (MIC 0.78-3.1 µg ml-1) and weak activity against Gram-positive bacteria (MIC 13-25 µg ml-1). The talcarpones also demonstrated noteworthy chemical reactivities, with 2 converting rapidly to 1, which in turn converted slowly to the highly coloured 3. These post-biosynthetic reactions point to a potential ecological role for the talcarpones in providing ongoing (slow-release) physicochemical protection for T. johnpittii against solar irradiation.
Collapse
Affiliation(s)
- Alastair E Lacey
- Microbial Screening Technologies, Smithfield, NSW, 2164, Australia
| | - Scott A Minns
- Microbial Screening Technologies, Smithfield, NSW, 2164, Australia
| | - Rachel Chen
- Microbial Screening Technologies, Smithfield, NSW, 2164, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW, 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW, 2164, Australia
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - John A Kalaitzis
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - Yu Pei Tan
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Brisbane, QLD, 4102, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Roger G Shivas
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Brisbane, QLD, 4102, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | | | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia.
| |
Collapse
|
4
|
Combined Toxicity of the Most Common Indoor Aspergilli. Pathogens 2023; 12:pathogens12030459. [PMID: 36986381 PMCID: PMC10058518 DOI: 10.3390/pathogens12030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The most common Aspergilli isolated from indoor air samples from occupied buildings and a grain mill were extracted and analyzed for their combined (Flavi + Nigri, Versicolores + Nigri) cytotoxic, genotoxic and pro-inflammatory properties on human adenocarcinoma cells (A549) and monocytic leukemia cells induced in macrophages (THP-1 macrophages). Metabolite mixtures from the Aspergilli series Nigri increase the cytotoxic and genotoxic potency of Flavi extracts in A549 cells suggesting additive and/or synergistic effects, while antagonizing the cytotoxic potency of Versicolores extracts in THP-1 macrophages and genotoxicity in A549 cells. All tested combinations significantly decreased IL-5 and IL-17, while IL-1β, TNF-α and IL-6 relative concentrations were increased. Exploring the toxicity of extracted Aspergilli deepens the understanding of intersections and interspecies differences in events of chronic exposure to their inhalable mycoparticles.
Collapse
|
5
|
Wang X, Jarmusch SA, Frisvad JC, Larsen TO. Current status of secondary metabolite pathways linked to their related biosynthetic gene clusters in Aspergillus section Nigri. Nat Prod Rep 2023; 40:237-274. [PMID: 35587705 DOI: 10.1039/d1np00074h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
Covering: up to the end of 2021Aspergilli are biosynthetically 'talented' micro-organisms and therefore the natural products community has continually been interested in the wealth of biosynthetic gene clusters (BGCs) encoding numerous secondary metabolites related to these fungi. With the rapid increase in sequenced fungal genomes combined with the continuous development of bioinformatics tools such as antiSMASH, linking new structures to unknown BGCs has become much easier when taking retro-biosynthetic considerations into account. On the other hand, in most cases it is not as straightforward to prove proposed biosynthetic pathways due to the lack of implemented genetic tools in a given fungal species. As a result, very few secondary metabolite biosynthetic pathways have been characterized even amongst some of the most well studied Aspergillus spp., section Nigri (black aspergilli). This review will cover all known biosynthetic compound families and their structural diversity known from black aspergilli. We have logically divided this into sub-sections describing major biosynthetic classes (polyketides, non-ribosomal peptides, terpenoids, meroterpenoids and hybrid biosynthesis). Importantly, we will focus the review on metabolites which have been firmly linked to their corresponding BGCs.
Collapse
Affiliation(s)
- Xinhui Wang
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Jens C Frisvad
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Thomas O Larsen
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Abramczyk B, Pecio Ł, Kozachok S, Kowalczyk M, Marzec-Grządziel A, Król E, Gałązka A, Oleszek W. Pioneering Metabolomic Studies on Diaporthe eres Species Complex from Fruit Trees in the South-Eastern Poland. Molecules 2023; 28:molecules28031175. [PMID: 36770841 PMCID: PMC9920373 DOI: 10.3390/molecules28031175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Fungi from the genus Diaporthe have been reported as plant pathogens, endophytes, and saprophytes on a wide range of host plants worldwide. Their precise identification is problematic since many Diaporthe species can colonize a single host plant, whereas the same Diaporthe species can inhabit many hosts. Recently, Diaporthe has been proven to be a rich source of bioactive secondary metabolites. In our initial study, 40 Diaporthe isolates were analyzed for their metabolite production. A total of 153 compounds were identified based on their spectroscopic properties-Ultraviolet-visible and mass spectrometry. From these, 43 fungal metabolites were recognized as potential chemotaxonomic markers, mostly belonging to the drimane sesquiterpenoid-phthalide hybrid class. This group included mainly phytotoxic compounds such as cyclopaldic acid, altiloxin A, B, and their derivatives. To the best of our knowledge, this is the first report on the metabolomic studies on Diaporthe eres species complex from fruit trees in the South-Eastern Poland. The results from our study may provide the basis for the future research on the isolation of identified metabolites and on their bioactive potential for agricultural applications as biopesticides or biofertilizers.
Collapse
Affiliation(s)
- Barbara Abramczyk
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
- Correspondence:
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Anna Marzec-Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Ewa Król
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
7
|
Aris P, Wei Y, Mohamadzadeh M, Xia X. Griseofulvin: An Updated Overview of Old and Current Knowledge. Molecules 2022; 27:7034. [PMID: 36296627 PMCID: PMC9610072 DOI: 10.3390/molecules27207034] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Griseofulvin is an antifungal polyketide metabolite produced mainly by ascomycetes. Since it was commercially introduced in 1959, griseofulvin has been used in treating dermatophyte infections. This fungistatic has gained increasing interest for multifunctional applications in the last decades due to its potential to disrupt mitosis and cell division in human cancer cells and arrest hepatitis C virus replication. In addition to these inhibitory effects, we and others found griseofulvin may enhance ACE2 function, contribute to vascular vasodilation, and improve capillary blood flow. Furthermore, molecular docking analysis revealed that griseofulvin and its derivatives have good binding potential with SARS-CoV-2 main protease, RNA-dependent RNA polymerase (RdRp), and spike protein receptor-binding domain (RBD), suggesting its inhibitory effects on SARS-CoV-2 entry and viral replication. These findings imply the repurposing potentials of the FDA-approved drug griseofulvin in designing and developing novel therapeutic interventions. In this review, we have summarized the available information from its discovery to recent progress in this growing field. Additionally, explored is the possible mechanism leading to rare hepatitis induced by griseofulvin. We found that griseofulvin and its metabolites, including 6-desmethylgriseofulvin (6-DMG) and 4- desmethylgriseofulvin (4-DMG), have favorable interactions with cytokeratin intermediate filament proteins (K8 and K18), ranging from -3.34 to -5.61 kcal mol-1. Therefore, they could be responsible for liver injury and Mallory body (MB) formation in hepatocytes of human, mouse, and rat treated with griseofulvin. Moreover, the stronger binding of griseofulvin to K18 in rodents than in human may explain the observed difference in the severity of hepatitis between rodents and human.
Collapse
Affiliation(s)
- Parisa Aris
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, ON K1N 6N5, Canada
| | - Yulong Wei
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Masoud Mohamadzadeh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 71961, Iran
| | - Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, ON K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
8
|
Polyphasic Systematics of the Fungicolous Genus Cladobotryum Based on Morphological, Molecular and Metabolomics Data. J Fungi (Basel) 2022; 8:jof8080877. [PMID: 36012865 PMCID: PMC9409756 DOI: 10.3390/jof8080877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Species of the anamorphic genus Cladobotryum, are known for their fungicolous lifestyle, making them important mycopathogens in fungiculture. Many morphological, ecological, and molecular phylogenetic studies of the genus have been done to date, but taxonomic uncertainties and challenges still remain. Fungal secondary metabolites, being vastly diverse, are utilised as an extra tool in fungal systematics. Despite being studied for their potentially bioactive compounds, Cladobotryum species are insufficiently investigated regarding metabolomics. (2) Methods: The aim of this study is the identification of Greek strains of Cladobotryum by integrating morphological data, ITS-based phylogeny, and 1H NMR-based metabolomics into a polyphasic approach. (3) Results: Twenty-three strains, isolated from sporophores of macromycetes inhabiting diverse Greek ecosystems, were morphologically identified as Cladobotryum apiculatum, C. fungicola, C. mycophilum, C. varium, C. verticillatum, and Hypomyces rosellus (anamorph C. dendroides), whereas seven strains, which produced red-pigmented metabolites, presented an ambiguous taxonomic position at the species level. Molecular phylogenetics and metabolomics corroborated the morphological findings. (4) Conclusions: Thorough morphological study, ITS region-based phylogeny, and NMR-based metabolomics contribute complementarily to resolving the genus Cladobotryum systematics.
Collapse
|
9
|
Subba P, Saha P, Karthikkeyan G, Biswas M, Prasad TSK, Roy-Barman S. Metabolite profiling reveals overexpression of the global regulator, MoLAEA leads to increased synthesis of metabolites in Magnaporthe oryzae. J Appl Microbiol 2022; 132:3825-3838. [PMID: 35261134 DOI: 10.1111/jam.15518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
AIMS To study the altered metabolic pathways and metabolites produced in overexpression and knockdown mutants of a global regulator named MoLAEA, which was recently found to regulate the expression of the genes involved in secondary metabolism in one of the most destructive plant pathogens, Magnaporthe oryzae. METHODS AND RESULTS Mass spectrometry-based global untargeted metabolomic profiling was used to identify altered metabolites. Metabolites were extracted from the mutant strains of MoLAEA using two extraction methods viz., aqueous and organic extraction and data acquired using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive and negative polarities. Levels of metabolites involved in various biological pathways such as amino acid as well as polyamine biosynthesis, fatty acid and pyrimidine metabolism showed remarkable change in the mutant strains. Interestingly, metabolites involved in stress responses were produced in higher quantities in the overexpression strain whereas, certain overproduced metabolites were associated with distinctive phenotypic changes in the overexpression strain compared to the wild-type. Further, the expression of several genes involved in the stress responses was found to have higher expression in the overexpression strain. CONCLUSIONS The global regulator MoLAEA is involved in secondary metabolism in the plant pathogen M. oryzae such that the mutant strains showed altered level of several metabolites involved in the biosynthesis pathways compared to the wild-type. Also, metabolites involved in stress responses were overproduced in the overexpression strain and this can be seen in the higher growth in media amended with stress-inducing agents or higher expression of genes involved in stress response in the overexpression strain compared to the wild-type. SIGNIFICANCE AND IMPACT This is the first report of metabolite profiling relative to the global regulation of secondary metabolism in M. oryzae, where secondary metabolism is poorly understood. It opens up avenues for more relevant investigations on the genetic regulation of several of the metabolites found in the analysis, which have not been previously characterized in M. oryzae.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Pallabi Saha
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Mousumi Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | | | | |
Collapse
|
10
|
Aris P, Yan L, Wei Y, Chang Y, Shi B, Xia X. Conservation of griseofulvin genes in the gsf gene cluster among fungal genomes. G3 (BETHESDA, MD.) 2022; 12:jkab399. [PMID: 34792561 PMCID: PMC9210304 DOI: 10.1093/g3journal/jkab399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022]
Abstract
The polyketide griseofulvin is a natural antifungal compound and research in griseofulvin has been key in establishing our current understanding of polyketide biosynthesis. Nevertheless, the griseofulvin gsf biosynthetic gene cluster (BGC) remains poorly understood in most fungal species, including Penicillium griseofulvum where griseofulvin was first isolated. To elucidate essential genes involved in griseofulvin biosynthesis, we performed third-generation sequencing to obtain the genome of P. griseofulvum strain D-756. Furthermore, we gathered publicly available genome of 11 other fungal species in which gsf gene cluster was identified. In a comparative genome analysis, we annotated and compared the gsf BGC of all 12 fungal genomes. Our findings show no gene rearrangements at the gsf BGC. Furthermore, seven gsf genes are conserved by most genomes surveyed whereas the remaining six were poorly conserved. This study provides new insights into differences between gsf BGC and suggests that seven gsf genes are essential in griseofulvin production.
Collapse
Affiliation(s)
- Parisa Aris
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Lihong Yan
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yulong Wei
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Ying Chang
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Bihong Shi
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
11
|
Ding W, Tu J, Zhang H, Wei X, Ju J, Li Q. Genome Mining and Metabolic Profiling Uncover Polycyclic Tetramate Macrolactams from Streptomyces koyangensis SCSIO 5802. Mar Drugs 2021; 19:md19080440. [PMID: 34436279 PMCID: PMC8399814 DOI: 10.3390/md19080440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
We have previously shown deep-sea-derived Streptomyces koyangensis SCSIO 5802 to produce two types of active secondary metabolites, abyssomicins and candicidins. Here, we report the complete genome sequence of S. koyangensis SCSIO 5802 employing bioinformatics to highlight its potential to produce at least 21 categories of natural products. In order to mine novel natural products, the production of two polycyclic tetramate macrolactams (PTMs), the known 10-epi-HSAF (1) and a new compound, koyanamide A (2), was stimulated via inactivation of the abyssomicin and candicidin biosynthetic machineries. Detailed bioinformatics analyses revealed a PKS/NRPS gene cluster, containing 6 open reading frames (ORFs) and spanning ~16 kb of contiguous genomic DNA, as the putative PTM biosynthetic gene cluster (BGC) (termed herein sko). We furthermore demonstrate, via gene disruption experiments, that the sko cluster encodes the biosynthesis of 10-epi-HSAF and koyanamide A. Finally, we propose a plausible biosynthetic pathway to 10-epi-HSAF and koyanamide A. In total, this study demonstrates an effective approach to cryptic BGC activation enabling the discovery of new bioactive metabolites; genome mining and metabolic profiling methods play key roles in this strategy.
Collapse
Affiliation(s)
- Wenjuan Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- College of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
| | - Huaran Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- College of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- College of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
- Correspondence: (J.J.); (Q.L.); Tel.: +86-20-8902-3028 (J.J. & Q.L.)
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
- Correspondence: (J.J.); (Q.L.); Tel.: +86-20-8902-3028 (J.J. & Q.L.)
| |
Collapse
|
12
|
Adnan M, Siddiqui AJ, Hamadou WS, Snoussi M, Badraoui R, Ashraf SA, Jamal A, Awadelkareem AM, Sachidanandan M, Hadi S, Khan MA, Patel M. Deciphering the Molecular Mechanism Responsible for Efficiently Inhibiting Metastasis of Human Non-Small Cell Lung and Colorectal Cancer Cells Targeting the Matrix Metalloproteinases by Selaginella repanda. PLANTS (BASEL, SWITZERLAND) 2021; 10:979. [PMID: 34068885 PMCID: PMC8156211 DOI: 10.3390/plants10050979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/23/2022]
Abstract
Selaginella species are known to have antimicrobial, antioxidant, anti-inflammatory, anti-diabetic as well as anticancer effects. However, no study has examined the cytotoxic and anti-metastatic efficacy of Selaginella repanda (S. repanda) to date. Therefore, this study aimed to evaluate the potential anti-metastatic properties of ethanol crude extract of S. repanda in human non-small-cell lung (A-549) and colorectal cancer (HCT-116) cells with possible mechanisms. Effect of S. repanda crude extract on the growth, adhesion, migration and invasion of the A-549 and HCT-116 were investigated. We demonstrated that S. repanda crude extract inhibited cell growth of metastatic cells in a dose and time dependent manner. Incubation of A-549 and HCT-116 cells with 100-500 µg/mL of S. repanda crude extract significantly inhibited cell adhesion to gelatin coated surface. In the migration and invasion assay, S. repanda crude extract also significantly inhibited cellular migration and invasion in both A-549 and HCT-116 cells. Moreover, reverse transcription-polymerase chain reaction, and real-time PCR (RT-PCR) analysis revealed that the activity and mRNA level of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP) were inhibited. While the activity of tissue inhibitor matrix metalloproteinase 1 (TIMP-1); an inhibitor of MMPs was stimulated by S. repanda crude extract in a concentration-dependent manner. Therefore, the present study not only indicated the inhibition of motility and invasion of malignant cells by S. repanda, but also revealed that such effects were likely associated with the decrease in MMP-2/-9 expression of both A-549 and HCT-116 cells. This further suggests that S. repanda could be used as a potential source of anti-metastasis agent in pharmaceutical development for cancer therapy.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Mushtaq Ahmad Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain 17666, United Arab Emirates
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 394230, India
| |
Collapse
|
13
|
Richard-Forget F, Atanasova V, Chéreau S. Using metabolomics to guide strategies to tackle the issue of the contamination of food and feed with mycotoxins: A review of the literature with specific focus on Fusarium mycotoxins. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
|
14
|
Mohammed AE, Sonbol H, Alwakeel SS, Alotaibi MO, Alotaibi S, Alothman N, Suliman RS, Ahmedah HT, Ali R. Investigation of biological activity of soil fungal extracts and LC/MS-QTOF based metabolite profiling. Sci Rep 2021; 11:4760. [PMID: 33637771 PMCID: PMC7910297 DOI: 10.1038/s41598-021-83556-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Soil is considered an extensively explored ecological niche for microorganisms that produce useful biologically active natural products suitable for pharmaceutical applications. The current study aimed at investigating biological activities and metabolic profiles of three fungal strains identified from different desert sites in Saudi Arabia. Soil fungal isolates were collected from AlQasab, Tabuk, and Almuzahimiyah in Saudi Arabia and identified. Furthermore, their antibacterial activity was investigated against Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, and Escherichia coli in blood, nutrient, and Sabouraud dextrose agars. Moreover, fungal extracts were evaluated on cell viability/proliferation against human breast carcinoma and colorectal adenocarcinoma cells. To identify the biomolecules of the fungal extracts, High-performance liquid chromatography HPLC-DAD coupled to analytical LC-QTOF-MS method was employed for fungal ethyl acetate crude extract. Identified fungal isolates, Chaetomium sp. Bipolaris sp. and Fusarium venenatum showed varied inhibitory activity against tested microbes in relation to crude extract, microbial strain tested, and growth media. F. venenatum showed higher anticancer activity compared to Chaetomium sp. and Bipolaris sp. extracts against four of the tested cancer cell lines. Screening by HPLC and LC/MS-QTOF identified nine compounds from Chaetomium sp. and three from Bipolaris sp. however, for F. venenatum extracts compounds were not fully identified. In light of the present findings, some biological activities of fungal extracts were approved in vitro, suggesting that such extracts could be a useful starting point to find compounds that possess promising agents for medical applications. Further investigations to identify exact biomolecules from F. venenatum extracts are needed.
Collapse
Affiliation(s)
- Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia.
| | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia.
| | - Suaad Saleh Alwakeel
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia.
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia.
| | - Sohailah Alotaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Nouf Alothman
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Rasha Saad Suliman
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, City, Riyadh, Saudi Arabia
| | - Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabegh, Saudi Arabia
| | - Rizwan Ali
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Research, Riyadh, 11481, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Bioactive Secondary Metabolites from Psychrophilic Fungi and Their Industrial Importance. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
|
16
|
Detection of Chaetomium globosum, Ch. cochliodes and Ch. rectangulare during the Diversity Tracking of Mycotoxin-Producing Chaetomium-Like Isolates Obtained in Buildings in Finland. Toxins (Basel) 2020; 12:toxins12070443. [PMID: 32650391 PMCID: PMC7405012 DOI: 10.3390/toxins12070443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023] Open
Abstract
The diversity of Chaetomium-like isolates in buildings in Finland is poorly documented. This paper describes a set of methods for rapid diversity tracking of 42 indoor Chaetomium-like isolates. These isolates were categorized based on their fluorescence emission, ascomatal hair morphology, responses in three bioassays and resistance/sensitivity to the wetting agent Genapol X-080. Thirty-nine toxigenic isolates were identified [Ch. globosum (n = 35), Ch. cochliodes (n = 2) and Ch. rectangulare (n = 2)]. These isolates were identified down to the species level by tef1α gene sequencing. The major toxic substances in the ethanol extracts of the Ch. globosum and Ch. cochliodes strains were chaetoglobosin, chaetoviridin A and C, chaetomugilin D and chaetomin, identified based on HPLC-UV and mass spectrometry data (MS and MS/MS). Ethanol extracts from pure Ch. globosum cultures exhibited a toxicological profile in the boar sperm motility inhibition assay (BSMI), sperm membrane integrity damage assay (SMID) and inhibition of cell proliferation (ICP) assay, similar to that exhibited by pure chaetoglobosin A. Overall, differences in fluorescence, morphology, toxicity profile, mycotoxin production and sensitivity to chemicals were consistent with those in tef1α sequencing results for species identification. The results indicate the presence of Ch. cochliodes and Ch. rectangulare in Finnish buildings, representing a new finding.
Collapse
|
17
|
Barrett K, Jensen K, Meyer AS, Frisvad JC, Lange L. Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example Aspergillus and Penicillium. Sci Rep 2020; 10:5158. [PMID: 32198418 PMCID: PMC7083838 DOI: 10.1038/s41598-020-61907-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2019] [Accepted: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
Fungi secrete an array of carbohydrate-active enzymes (CAZymes), reflecting their specialized habitat-related substrate utilization. Despite its importance for fitness, enzyme secretome composition is not used in fungal classification, since an overarching relationship between CAZyme profiles and fungal phylogeny/taxonomy has not been established. For 465 Ascomycota and Basidiomycota genomes, we predicted CAZyme-secretomes, using a new peptide-based annotation method, Conserved-Unique-Peptide-Patterns, enabling functional prediction directly from sequence. We categorized each enzyme according to CAZy-family and predicted molecular function, hereby obtaining a list of "EC-Function;CAZy-Family" observations. These "Function;Family"-based secretome profiles were compared, using a Yule-dissimilarity scoring algorithm, giving equal consideration to the presence and absence of individual observations. Assessment of "Function;Family" enzyme profile relatedness (EPR) across 465 genomes partitioned Ascomycota from Basidiomycota placing Aspergillus and Penicillium among the Ascomycota. Analogously, we calculated CAZyme "Function;Family" profile-similarities among 95 Aspergillus and Penicillium species to form an alignment-free, EPR-based dendrogram. This revealed a stunning congruence between EPR categorization and phylogenetic/taxonomic grouping of the Aspergilli and Penicillia. Our analysis suggests EPR grouping of fungi to be defined both by "shared presence" and "shared absence" of CAZyme "Function;Family" observations. This finding indicates that CAZymes-secretome evolution is an integral part of fungal speciation, supporting integration of cladogenesis and anagenesis.
Collapse
Affiliation(s)
- Kristian Barrett
- Department for Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kristian Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Anne S Meyer
- Department for Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Jens C Frisvad
- Department for Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Lene Lange
- LLa Bioeconomy, Research & Advisory, Karensgade 5, DK-2500, Valby, Denmark
| |
Collapse
|
18
|
Montero-Vargas M, Escudero-Leyva E, Díaz-Valerio S, Chaverri P. Step-by-Step Pipeline for the Ecological Analysis of Endophytic Fungi using ITS nrDNA Data. ACTA ACUST UNITED AC 2020; 56:e96. [PMID: 31910332 DOI: 10.1002/cpmc.96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
The nuclear ribosomal DNA internal transcribed spacer (ITS) is accepted as the genetic marker or barcode of choice for the identification of fungal samples. Here, we present a protocol to analyze fungal ITS data, from quality preprocessing of raw sequences to identification of operational taxonomic units (OTUs), taxonomic classification, and assignment of functional traits. The pipeline relies on well-established and manually curated data collections, namely the UNITE database and the FUNGuild script. As an example, real ITS data from culturable endophytic fungi were analyzed, providing detailed descriptions for every step, parameter, and downstream analysis, and finishing with a phylogenetic analysis of the sequences and assigned ecological roles. This article constitutes a comprehensive guide for researchers that have little familiarity with bioinformatic analysis of essential steps required in further ecological studies of fungal communities. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Raw sequencing data processing Support Protocol: Building a BLAST database Basic Protocol 2: Obtaining information from databases Basic Protocol 3: Phylogenetic analysis.
Collapse
Affiliation(s)
- Maripaz Montero-Vargas
- Colaboratorio Nacional de Computación Avanzada (CNCA), CeNAT-CONARE, San José, Costa Rica
| | - Efraín Escudero-Leyva
- Escuela de Biología and Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica.,Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Stefani Díaz-Valerio
- Colaboratorio Nacional de Computación Avanzada (CNCA), CeNAT-CONARE, San José, Costa Rica
| | - Priscila Chaverri
- Escuela de Biología and Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica.,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland
| |
Collapse
|
19
|
Costa MS, Clark CM, Ómarsdóttir S, Sanchez LM, Murphy BT. Minimizing Taxonomic and Natural Product Redundancy in Microbial Libraries Using MALDI-TOF MS and the Bioinformatics Pipeline IDBac. JOURNAL OF NATURAL PRODUCTS 2019; 82:2167-2173. [PMID: 31335140 PMCID: PMC7197193 DOI: 10.1021/acs.jnatprod.9b00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/08/2023]
Abstract
Libraries of microorganisms have been a cornerstone of drug discovery efforts since the mid-1950s, but strain duplication in some libraries has resulted in unwanted natural product redundancy. In the current study, we implemented a workflow that minimizes both the natural product overlap and the total number of bacterial isolates in a library. Using a collection expedition to Iceland as an example, we purified every distinct bacterial colony off isolation plates derived from 86 environmental samples. We employed our mass spectrometry (MS)-based IDBac workflow on these isolates to form groups of taxa based on protein MS fingerprints (3-15 kDa) and further distinguished taxa subgroups based on their degree of overlap within corresponding natural product spectra (0.2-2 kDa). This informed the decision to create a library of 301 isolates spanning 54 genera. This process required only 25 h of data acquisition and 2 h of analysis. In a separate experiment, we reduced the size of an existing library based on the degree of metabolic overlap observed in natural product MS spectra of bacterial colonies (from 833 to 233 isolates, a 72.0% size reduction). Overall, our pipeline allows for a significant reduction in costs associated with library generation and minimizes natural product redundancy entering into downstream biological screening efforts.
Collapse
Affiliation(s)
- Maria S Costa
- Faculty of Pharmaceutical Sciences , University of Iceland , Hagi, Hofsvallagata 53 , IS-107 Reykjavík , Iceland
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Chase M Clark
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Sesselja Ómarsdóttir
- Faculty of Pharmaceutical Sciences , University of Iceland , Hagi, Hofsvallagata 53 , IS-107 Reykjavík , Iceland
| | - Laura M Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| |
Collapse
|
20
|
Hamed A, Ismail M, El-Metwally MM, Frese M, Ibrahim TMA, El-Haddad AF, Sewald N, Shaaban M. Diverse polyketides and alkaloids from Penicillium sp. KHMM: structural elucidation, biological and molecular docking studies. ACTA ACUST UNITED AC 2019; 74:131-137. [PMID: 30645191 DOI: 10.1515/znc-2018-0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2018] [Accepted: 12/15/2018] [Indexed: 11/15/2022]
Abstract
As a continuation of our earlier research concerning the investigation of microbial bioactive secondary metabolites from the terrestrial Penicillium sp.KH Link 1809 isolate KHMM, the fungus was re-cultivated on a large scale to explore its bioactive compounds intensively. Fifteen compounds, including seven alkaloids (1-7), one sesquiterpene (8), an acetylenic system (9), two sterols, and sphengolipid, were identified. Their structures were established on the bases of extensive one- and two-dimensional nuclear magnetic resonance and mass measurements, and by comparison with literature data. The antimicrobial activity of the fungal extract and the corresponding compounds were studied using a panel of pathogenic microorganisms, and their in vitro cytotoxicity against the human cervix carcinoma cell line (KB-3-1) was reported as well. The molecular docking of the isolated compounds showed promising affinities for the alkaloidal compounds 4-6 towards α, β tubulins.
Collapse
Affiliation(s)
- Abdelaaty Hamed
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33501 Bielefeld, Germany.,Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Mohamed Ismail
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33501 Bielefeld, Germany.,Microbiology Department, Faculty of Science, Helwan University, Helwan-Cairo, Egypt
| | - Mohammad M El-Metwally
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33501 Bielefeld, Germany
| | - Tarek M A Ibrahim
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Atef F El-Haddad
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33501 Bielefeld, Germany
| | - Mohamed Shaaban
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33501 Bielefeld, Germany.,Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El-Behoos St. 33, Dokki-Cairo 12622, Egypt
| |
Collapse
|
21
|
Romano JD, Tatonetti NP. Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Front Genet 2019; 10:368. [PMID: 31114606 PMCID: PMC6503039 DOI: 10.3389/fgene.2019.00368] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
The discovery of new pharmaceutical drugs is one of the preeminent tasks-scientifically, economically, and socially-in biomedical research. Advances in informatics and computational biology have increased productivity at many stages of the drug discovery pipeline. Nevertheless, drug discovery has slowed, largely due to the reliance on small molecules as the primary source of novel hypotheses. Natural products (such as plant metabolites, animal toxins, and immunological components) comprise a vast and diverse source of bioactive compounds, some of which are supported by thousands of years of traditional medicine, and are largely disjoint from the set of small molecules used commonly for discovery. However, natural products possess unique characteristics that distinguish them from traditional small molecule drug candidates, requiring new methods and approaches for assessing their therapeutic potential. In this review, we investigate a number of state-of-the-art techniques in bioinformatics, cheminformatics, and knowledge engineering for data-driven drug discovery from natural products. We focus on methods that aim to bridge the gap between traditional small-molecule drug candidates and different classes of natural products. We also explore the current informatics knowledge gaps and other barriers that need to be overcome to fully leverage these compounds for drug discovery. Finally, we conclude with a "road map" of research priorities that seeks to realize this goal.
Collapse
Affiliation(s)
- Joseph D. Romano
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| | - Nicholas P. Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| |
Collapse
|
22
|
Tan ZQ, Leow HY, Lee DCW, Karisnan K, Song AAL, Mai CW, Yap WS, Lim SHE, Lai KS. Co-Culture Systems for the Production of Secondary Metabolites: Current and Future Prospects. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874070701913010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
Microorganisms are the great sources of Natural Products (NPs); these are imperative to their survival apart from conferring competitiveness amongst each other within their environmental niches. Primary and secondary metabolites are the two major classes of NPs that help in cell development, where antimicrobial activity is closely linked with secondary metabolites. To capitalize on the effects of secondary metabolites, co-culture methods have been often used to develop an artificial microbial community that promotes the action of these metabolites. Different analytical techniques will subsequently be employed based on the metabolite specificity and sensitivity to further enhance the metabolite induction. Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography (GC)-MS are commonly used for metabolite separation while Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) have been used as tools to elucidate the structure of compounds. This review intends to discuss current systems in use for co-culture in addition to its advantages, with discourse into the investigation of specific techniques in use for the detailed study of secondary metabolites. Further advancements and focus on co-culture technologies are required to fully realize the massive potential in synthetic biological systems.
Collapse
|
23
|
Sashidhara KV, Rosaiah JN. Various Dereplication Strategies Using LC-MS for Rapid Natural Product Lead Identification and Drug Discovery. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700200218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
Natural products are the most consistently successful source of drug leads. The rapid identification of known compounds from natural product extracts, or ‘dereplication’, is an important step in an efficiently run drug discovery program. Modern spectroscopic methods have largely revolutionized compound identification and tremendously accelerated the pace at which isolated compounds can be identified. Dereplication strategies use analytical techniques and database searching to determine the identity of an active compound at the earliest possible stage in the discovery process. This prevents wasted effort on samples with no potential for development and allows resources to be focused on the most promising lead. In the past few years, advances in technology have allowed the development of tandem analytical techniques, such as HPLC-PDA, LC-MS, LC-MS-MS, LC-NMR, and LC-NMR-MS. This review describes the principles and performance of a number of hyphenated techniques involving LC-MS that can be used for dereplication of natural products for rapid lead identification.
Collapse
Affiliation(s)
- Koneni V Sashidhara
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Chatter Manzil Palace, Lucknow-226001, India
| | - Jammikuntla N Rosaiah
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Chatter Manzil Palace, Lucknow-226001, India
| |
Collapse
|
24
|
Adekoya I, Njobeh P, Obadina A, Landschoot S, Audenaert K, Okoth S, De Boevre M, De Saeger S. Investigation of the Metabolic Profile and Toxigenic Variability of Fungal Species Occurring in Fermented Foods and Beverage from Nigeria and South Africa Using UPLC-MS/MS. Toxins (Basel) 2019; 11:E85. [PMID: 30717215 PMCID: PMC6409632 DOI: 10.3390/toxins11020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 11/16/2022] Open
Abstract
Fungal species recovered from fermented foods and beverage from Nigeria and South Africa were studied to establish their toxigenic potential in producing an array of secondary metabolites including mycotoxins (n = 49) that could compromise human and animal safety. In total, 385 fungal isolates were grown on solidified yeast extract sucrose agar. Their metabolites were extracted and analyzed via ultra-performance liquid chromatography tandem mass spectrometry. To examine the grouping of isolates and co-occurrence of metabolites, hierarchal clustering and pairwise association analysis was performed. Of the 385 fungal strains tested, over 41% were toxigenic producing different mycotoxins. A. flavus and A. parasiticus strains were the principal producers of aflatoxin B₁ (27⁻7406 µg/kg). Aflatoxin B₁ and cyclopiazonic acid had a positive association. Ochratoxin A was produced by 67% of the A. niger strains in the range of 28⁻1302 µg/kg. The sterigmatocystin producers found were A. versicolor (n = 12), A. amstelodami (n = 4), and A. sydowii (n = 6). Apart from P. chrysogenum, none of the Penicillium spp. produced roquefortine C. Amongst the Fusarium strains tested, F. verticillioides produced fumonisin B₁ (range: 77⁻218 µg/kg) meanwhile low levels of deoxynivalenol were observed. The production of multiple metabolites by single fungal species was also evident.
Collapse
Affiliation(s)
- Ifeoluwa Adekoya
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2092, South Africa.
| | - Patrick Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2092, South Africa.
| | - Adewale Obadina
- Department of Food Science and Technology, Federal University of Agriculture, PMB, 2240 Abeokuta, Nigeria.
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium.
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, B-9000 Ghent, Belgium.
| | - Sheila Okoth
- Department of Botany, School of Biological Sciences, University of Nairobi, P.O. Box, Nairobi 30197, Kenya.
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000 Ghent, Belgium.
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
25
|
Secondary Metabolites of Endophytic Actinomycetes: Isolation, Synthesis, Biosynthesis, and Biological Activities. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 108 2019; 108:207-296. [DOI: 10.1007/978-3-030-01099-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
|
26
|
Frisvad JC, Møller LLH, Larsen TO, Kumar R, Arnau J. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 2018; 102:9481-9515. [PMID: 30293194 PMCID: PMC6208954 DOI: 10.1007/s00253-018-9354-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
This review presents an update on the current knowledge of the secondary metabolite potential of the major fungal species used in industrial biotechnology, i.e., Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. These species have a long history of safe use for enzyme production. Like most microorganisms that exist in a challenging environment in nature, these fungi can produce a large variety and number of secondary metabolites. Many of these compounds present several properties that make them attractive for different industrial and medical applications. A description of all known secondary metabolites produced by these species is presented here. Mycotoxins are a very limited group of secondary metabolites that can be produced by fungi and that pose health hazards in humans and other vertebrates when ingested in small amounts. Some mycotoxins are species-specific. Here, we present scientific basis for (1) the definition of mycotoxins including an update on their toxicity and (2) the clarity on misclassification of species and their mycotoxin potential reported in literature, e.g., A. oryzae has been wrongly reported as an aflatoxin producer, due to misclassification of Aspergillus flavus strains. It is therefore of paramount importance to accurately describe the mycotoxins that can potentially be produced by a fungal species that is to be used as a production organism and to ensure that production strains are not capable of producing mycotoxins during enzyme production. This review is intended as a reference paper for authorities, companies, and researchers dealing with secondary metabolite assessment, risk evaluation for food or feed enzyme production, or considerations on the use of these species as production hosts.
Collapse
Affiliation(s)
- Jens C Frisvad
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark.
| | - Lars L H Møller
- Department of Product Safety, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark
| | - Ravi Kumar
- Department of Genomics and Bioinformatics, Novozymes Inc., 1445 Drew Ave., Davis, CA, 95618, USA
| | - José Arnau
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| |
Collapse
|
27
|
Oppong-Danquah E, Parrot D, Blümel M, Labes A, Tasdemir D. Molecular Networking-Based Metabolome and Bioactivity Analyses of Marine-Adapted Fungi Co-cultivated With Phytopathogens. Front Microbiol 2018; 9:2072. [PMID: 30237790 PMCID: PMC6135897 DOI: 10.3389/fmicb.2018.02072] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
Fungi represent a rich source of bioactive metabolites and some are marketed as alternatives to synthetic agrochemicals against plant pathogens. However, the culturability of fungal strains in artificial laboratory conditions is still limited and the standard mono-cultures do not reflect their full spectrum chemical diversity. Phytopathogenic fungi and bacteria have successfully been used in the activation of cryptic biosynthetic pathways to promote the production of new secondary metabolites in co-culture experiments. The aim of this study was to map the fungal diversity of Windebyer Noor, a brackish lake connected to Baltic Sea (Germany), to induce the chemical space of the isolated marine-adapted fungi by co-culturing with phytopathogens, and to assess their inhibitory potential against six commercially important phytopathogens. Out of 123 marine-adapted fungal isolates obtained, 21 were selected based on their phylogenetic and metabolite diversity. They were challenged with two phytopathogenic bacteria (Pseudomonas syringae and Ralstonia solanacearum) and two phytopathogenic fungi (Magnaporthe oryzae and Botrytis cinerea) on solid agar. An in-depth untargeted metabolomics approach incorporating UPLC-QToF-HRMS/MS-based molecular networking (MN), in silico MS/MS databases, and manual dereplication was employed for comparative analysis of the extracts belonging to nine most bioactive co-cultures and their respective mono-cultures. The phytopathogens triggered interspecies chemical communications with marine-adapted fungi, leading to the production of new compounds and enhanced expression of known metabolites in co-cultures. MN successfully generated a detailed map of the chemical inventory of both mono- and co-cultures. We annotated overall 18 molecular clusters (belonging to terpenes, alkaloids, peptides, and polyketides), 9 of which were exclusively produced in co-cultures. Several clusters contained compounds, which could not be annotated to any known compounds, suggesting that they are putatively new metabolites. Direct antagonistic effects of the marine-adapted fungi on the phytopathogens were observed and anti-phytopathogenic activity was demonstrated.The untargeted metabolomics approach combined with bioactivity testing allowed prioritization of two co-cultures for purification and characterization of marine fungal metabolites with crop-protective activity. To our knowledge, this is the first study employing plant pathogens to challenge marine-adapted fungi.
Collapse
Affiliation(s)
- Ernest Oppong-Danquah
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Delphine Parrot
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Antje Labes
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Department of Energy and Biotechnology, Flensburg University of Applied Sciences, Flensburg, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Kiel University, Kiel, Germany
| |
Collapse
|
28
|
Khan RA. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm J 2018; 26:739-753. [PMID: 29991919 PMCID: PMC6036106 DOI: 10.1016/j.jsps.2018.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
The role and contributions of natural products chemistry in advancements of the physical and biological sciences, its interdisciplinary domains, and emerging of new avenues by providing novel applications, constructive inputs, thrust, comprehensive understanding, broad perspective, and a new vision for future is outlined. The developmental prospects in bio-medical, health, nutrition, and other interrelated sciences along with some of the emerging trends in the subject area are also discussed as part of the current review of the basic and core developments, innovation in techniques, advances in methodology, and possible applications with their effects on the sciences in general and natural products chemistry in particular. The overview of the progress and ongoing developments in broader areas of the natural products chemistry discipline, its role and concurrent economic and scientific implications, contemporary objectives, future prospects as well as impending goals are also outlined. A look at the natural products chemistry in providing scientific progress in various disciplines is deliberated upon.
Collapse
Affiliation(s)
- Riaz A. Khan
- Department of Medicinal Chemistry, Qassim University, Qassim 51452, Saudi Arabia
- Manav Rachna International University, National Capital Region, Faridabad, HR 121 004, India
| |
Collapse
|
29
|
Toghueo RMK, Sahal D, Zabalgogeazcoa Í, Baker B, Boyom FF. Conditioned media and organic elicitors underpin the production of potent antiplasmodial metabolites by endophytic fungi from Cameroonian medicinal plants. Parasitol Res 2018; 117:2473-2485. [PMID: 29797084 DOI: 10.1007/s00436-018-5936-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2018] [Accepted: 05/15/2018] [Indexed: 01/19/2023]
Abstract
Plasmodial resistance to artemisinin-based combination therapies emphasizes the need for new drug development to control malaria. This paper describes the antiplasmodial activity of metabolites produced by endophytic fungi of three Cameroonian plants. Ethyl acetate extracts of fungi cultivated on three different media were tested against Plasmodium falciparum chloroquine-sensitive (Pf3D7) and chloroquine-resistant (PfINDO) strains using the SYBR green florescence assay. Selected endophytes were further grown in potato dextrose broth supplemented with small organic elicitors and their extracts tested for activity. The effect of elicitors on de novo metabolite synthesis was assessed by reverse-phase HPLC. Activity screening of 81 extracts indicated that Aspergillus niger 58 (IC50 2.25-6.69 μg/mL, Pf3D7), Fusarium sp. N240 (IC50 1.62-4.38 μg/mL, Pf3D7), Phomopsis sp. N114 (IC50 0.34-7.26 μg/mL, Pf3D7), and Xylaria sp. N120 (IC50 2.69-6.77 μg/mL, Pf3D7) produced potent extracts when grown in all three media. Further culture of these endophytes in potato dextrose broth supplemented with each of the eight small organic elicitors and subsequent extracts screening indicated the extract of Phomopsis sp. N114 grown with 1% 1-butanol to be highly selective and extremely potent (IC50 0.20-0.33 μg/mL; SI > 666). RPHPLC profiles of extracts of Phomopsis sp. N114 grown with or without 1-butanol showed some peaks of enhanced intensities in the former without any qualitative change in the chromatograms. This study showed the ability of selected endophytes to produce potent and selective antiplasmodial metabolites in varied culture conditions. It also showed how the production of desired metabolites can be enhanced by use of small molecular weight elicitors.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaounde, Cameroon
| | - Dinkar Sahal
- Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Íñigo Zabalgogeazcoa
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Bill Baker
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620-9951, USA
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaounde, Cameroon.
| |
Collapse
|
30
|
Morshed MT, Vuong D, Crombie A, Lacey AE, Karuso P, Lacey E, Piggott AM. Expanding antibiotic chemical space around the nidulin pharmacophore. Org Biomol Chem 2018; 16:3038-3051. [DOI: 10.1039/c8ob00545a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Reinvestigating antibiotic scaffolds that were identified during the Golden Age of antibiotic discovery, but have long since been “forgotten”, has proven to be an effective strategy for delivering next-generation antibiotics capable of combatting multidrug-resistant superbugs.
Collapse
Affiliation(s)
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd
- Australia
| | | | | | - Peter Karuso
- Department of Molecular Sciences
- Macquarie University
- Australia
| | - Ernest Lacey
- Department of Molecular Sciences
- Macquarie University
- Australia
- Microbial Screening Technologies Pty. Ltd
- Australia
| | | |
Collapse
|
31
|
Caraballo-Rodríguez AM, Mayor CA, Chagas FO, Pupo MT. Amphotericin B as an inducer of griseofulvin-containing guttate in the endophytic fungus Xylaria cubensis FLe9. CHEMOECOLOGY 2017. [DOI: 10.1007/s00049-017-0243-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
|
32
|
Abstract
Various viral diseases, such as acquired immunodeficiency syndrome, influenza, and hepatitis, have emerged as leading causes of human death worldwide. Scientific endeavor since invention of DNA-dependent RNA polymerase of pox virus in 1967 resulted in better understanding of virus replication and development of various novel therapeutic strategies. Despite considerable advancement in every facet of drug discovery process, development of commercially viable, safe, and effective drugs for these viruses still remains a big challenge. Decades of intense research yielded a handful of natural and synthetic therapeutic options. But emergence of new viruses and drug-resistant viral strains had made new drug development process a never-ending battle. Small-molecule fungal metabolites due to their vast diversity, stereochemical complexity, and preapproved biocompatibility always remain an attractive source for new drug discovery. Though, exploration of therapeutic importance of fungal metabolites has started early with discovery of penicillin, recent prediction asserted that only a small percentage (5-10%) of fungal species have been identified and much less have been scientifically investigated. Therefore, exploration of new fungal metabolites, their bioassay, and subsequent mechanistic study bears huge importance in new drug discovery endeavors. Though no fungal metabolites so far approved for antiviral treatment, many of these exhibited high potential against various viral diseases. This review comprehensively discussed about antiviral activities of fungal metabolites of diverse origin against some important viral diseases. This also highlighted the mechanistic details of inhibition of viral replication along with structure-activity relationship of some common and important classes of fungal metabolites.
Collapse
Affiliation(s)
- Biswajit G Roy
- Department of Chemistry, Sikkim University, Gangtok, India
| |
Collapse
|
33
|
Ząbek A, Klimek-Ochab M, Jawień E, Młynarz P. Biodiversity in targeted metabolomics analysis of filamentous fungal pathogens by 1H NMR-based studies. World J Microbiol Biotechnol 2017; 33:132. [PMID: 28585165 PMCID: PMC5486612 DOI: 10.1007/s11274-017-2285-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2016] [Accepted: 05/16/2017] [Indexed: 11/28/2022]
Abstract
The taxonomical classification among fungi kingdom in the last decades was evolved. In this work the targeted metabolomics study based on 1H NMR spectroscopy combined with chemometrics tools was reported to be useful for differentiation of three model of fungal strains, which represent various genus of Ascomycota (Aspergillus pallidofulvus, Fusarium oxysporum, Geotrichum candidum) were selected in order to perform metabolomics studies. Each tested species, revealed specific metabolic profile of primary endo-metabolites. The species of A. pallidofulvus is represented by the highest concentration of glycerol, glucitol and Unk5. While, F. oxysporum species is characterised by increased level of propylene glycol, ethanol, 4-aminobutyrate, succinate, xylose, Unk1 and Unk4. In G. candidum, 3-methyl-2-oxovalerate, glutamate, pyruvate, glutamine and citrate were elevated. Additionally, a detailed analysis of metabolic changes among A. pallidofulvus, F. oxysporum and G. candidum showed that A. pallidofulvus seems to be the most pathogenic fungi. The obtained results demonstrated that targeted metabolomics analysis could be utilized in the future as a supporting taxonomical tool for currently methods.
Collapse
Affiliation(s)
- Adam Ząbek
- Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Magdalena Klimek-Ochab
- Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Ewa Jawień
- Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Piotr Młynarz
- Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
34
|
Aqueveque PM, Cespedes CL, Kubo I, Seigler DS, Sterner O. The impact of Andean Patagonian mycoflora in the search for new lead molecules. Ann N Y Acad Sci 2017. [PMID: 28640968 DOI: 10.1111/nyas.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Secondary metabolites from fungi have become a major source of chemical innovation in programs searching for lead molecules with bioactivities, especially over the last 50 years. In this review, we discuss the fundamental considerations in the discovery of molecules for agricultural and medicinal uses. This group of organisms possesses a strong potential for scientific and industrial communities. Recently, the incorporation of new technologies for the artificial cultivation of fungi and the use of better equipment to isolate and identify active metabolites has allowed the discovery of leading molecules for the design of new and safer drugs and pesticides. The geographical region including the Patagonian Andes mountains harbors a wide diversity of fungi, many of them still unknown and so far associated with Chilean-Argentinian Andean endemic forests. There have been very few chemical studies of the fungi located in this region. However, those few studies have allowed the discovery of new molecules. We argue that the richness of fungal biodiversity in this region offers an interesting source for the discovery of bioactive molecules for the basic and applied sciences.
Collapse
Affiliation(s)
- Pedro M Aqueveque
- Laboratory of Applied Microbiology and Mycology, Agroindustry Department, Faculty of Agricultural Engineering, University of Concepcion, Chillan, Chile
| | - Carlos L Cespedes
- Laboratory of Chemical-Ecology, Basic Science Department, Faculty of Sciences, Universidad del Bio Bio, Chillan, Chile
| | - Isao Kubo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
| | - David S Seigler
- Plant Biology Department, Herbarium ILL, University of Illinois, Urbana-Champaign, Illinois
| | - Olov Sterner
- Division of Organic and Bioorganic Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Kumar CG, Mongolla P, Pombala S, Bandi S, Babu KS, Ramakrishna KVS. Biological evaluation of 3-hydroxybenzyl alcohol, an extrolite produced by Aspergillus nidulans strain KZR-132. J Appl Microbiol 2017; 122:1518-1528. [PMID: 28314049 DOI: 10.1111/jam.13450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2016] [Revised: 02/16/2017] [Accepted: 03/08/2017] [Indexed: 11/28/2022]
Abstract
AIMS The aim of the study was to purify and characterize a bioactive compound from Aspergillus nidulans strain KZR-132 and its biological evaluation. METHODS AND RESULTS A bioactive extolite was purified from A. nidulans strain KZR-132, and its chemical structure was elucidated as 3-hydroxylbenzyl alcohol (3-HBA) based on 1 H and 13 C NMR, FT-IR and mass spectroscopic analysis. The antimicrobial efficacy of 3-HBA was established against Gram-positive, Gram-negative bacteria and different Candida strains. It also showed promising antibiofilm activity against various tested microbial strains. Reactive oxygen species induced by 3-HBA treatment on different Candida strains killed most of the cells and showed necrotic effect. It also exhibited dose-dependent antioxidant and anti-inflammatory activities. CONCLUSIONS This bioactive extrolite produced by A. nidulans isolated from a niche habitat was demonstrated to possess significant biotechnological and pharmacological potential since it exhibited broad-spectrum antimicrobial and antibiofilm activities which are reported for the first time. SIGNIFICANCE AND IMPACT OF THE STUDY The overall study demonstrates that 3-HBA produced by A. nidulansKZR-132 is a promising bioactive metabolite and possibly can function as a pharmacologically suitable broad-spectrum antimicrobial drug candidate against various dreaded human-related bacterial and fungal pathogens.
Collapse
Affiliation(s)
- C Ganesh Kumar
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - P Mongolla
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India.,Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - S Pombala
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - S Bandi
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - K S Babu
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - K V S Ramakrishna
- Nuclear Magnetic Resonance Centre, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| |
Collapse
|
36
|
Awaad AS, AL-Mudhayyif HA, Al-Othman MR, Zain ME, El-Meligy RM. Amhezole, A Novel Fungal Secondary Metabolite fromAspergillus terreusfor Treatment of Microbial Mouth Infection. Phytother Res 2017; 31:395-402. [DOI: 10.1002/ptr.5760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2016] [Revised: 11/20/2016] [Accepted: 11/28/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Amani S. Awaad
- Pharmacognosy Department, College of Pharmacy; Sattam Bin Abdulaziz University; Al-Kharj Saudi Arabia
| | - Hind A. AL-Mudhayyif
- Microbiology Department, Faculty of Science; King Saud University; Riyadh Saudi Arabia
| | - Monerah R. Al-Othman
- Microbiology Department, Faculty of Science; King Saud University; Riyadh Saudi Arabia
| | - Mohamed E. Zain
- Botany and Microbiology Department, Faculty of Science; Al-Azhar University; Cairo Egypt
| | - Reham M. El-Meligy
- Aromatic and Medicinal Plants Department; Desert Research Center; Cairo Egypt
| |
Collapse
|
37
|
The Fungal Endobiome of Medicinal Plants: A Prospective Source of Bioactive Metabolites. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
|
38
|
|
39
|
Lamboni Y, Nielsen KF, Linnemann AR, Gezgin Y, Hell K, Nout MJR, Smid EJ, Tamo M, van Boekel MAJS, Hoof JB, Frisvad JC. Diversity in Secondary Metabolites Including Mycotoxins from Strains of Aspergillus Section Nigri Isolated from Raw Cashew Nuts from Benin, West Africa. PLoS One 2016; 11:e0164310. [PMID: 27768708 PMCID: PMC5074577 DOI: 10.1371/journal.pone.0164310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2016] [Accepted: 09/22/2016] [Indexed: 12/17/2022] Open
Abstract
In a previous study, raw cashew kernels were assayed for the fungal contamination focusing on strains belonging to the genus Aspergillus and on aflatoxins producers. These samples showed high contamination with Aspergillus section Nigri species and absence of aflatoxins. To investigate the diversity of secondary metabolites, including mycotoxins, the species of A. section Nigri may produce and thus threaten to contaminate the raw cashew kernels, 150 strains were isolated from cashew samples and assayed for their production of secondary metabolites using liquid chromatography high resolution mass spectrometry (LC-HRMS). Seven species of black Aspergilli were isolated based on morphological and chemical identification: A. tubingensis (44%), A. niger (32%), A. brasiliensis (10%), A. carbonarius (8.7%), A. luchuensis (2.7%), A. aculeatus (2%) and A. aculeatinus (0.7%). From these, 45 metabolites and their isomers were identified. Aurasperone and pyranonigrin A, produced by all species excluding A. aculeatus and A. aculeatinus, were most prevalent and were encountered in 146 (97.3%) and 145 (95.7%) isolates, respectively. Three mycotoxins groups were detected: fumonisins (B2 and B4) (2.7%) ochratoxin A (13.3%), and secalonic acids (2%), indicating that these mycotoxins could occur in raw cashew nuts. Thirty strains of black Aspergilli were randomly sampled for verification of species identity based on sequences of β-tubulin and calmodulin genes. Among them, 27 isolates were positive to the primers used and 11 were identified as A. niger, 7 as A. tubingensis, 6 as A. carbonarius, 2 as A. luchuensis and 1 as A. welwitschiae confirming the species names as based on morphology and chemical features. These strains clustered in 5 clades in A. section Nigri. Chemical profile clustering also showed also 5 groups confirming the species specific metabolites production.
Collapse
Affiliation(s)
- Yendouban Lamboni
- International Institute of Tropical Agriculture, Cotonou, Benin
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Kristian F. Nielsen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| | - Anita R. Linnemann
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands
| | - Yüksel Gezgin
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Department of Bioengineering, Ege University, Izmir, Turkey
| | - Kerstin Hell
- International Institute of Tropical Agriculture, Cotonou, Benin
| | - Martinus J. R. Nout
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Eddy J. Smid
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Manuele Tamo
- International Institute of Tropical Agriculture, Cotonou, Benin
| | | | - Jakob Blæsbjerg Hoof
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Jens Christian Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
40
|
Shannon E, Abu-Ghannam N. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications. Mar Drugs 2016; 14:md14040081. [PMID: 27110798 PMCID: PMC4849085 DOI: 10.3390/md14040081] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022] Open
Abstract
The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds) and microalgae (diatoms) contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article.
Collapse
Affiliation(s)
- Emer Shannon
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin D01 HV58, Ireland.
| | - Nissreen Abu-Ghannam
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin D01 HV58, Ireland.
| |
Collapse
|
41
|
Kozlovskii AG, Antipova TV, Zhelifonova VP, Baskunov BP, Kochkina GA, Ozerskaya SM. Exometabolites of the fungal isolates (Genus Penicillium, Section Chrysogena) from low-temperature ecotopes. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022] Open
|
42
|
Smanski MJ, Schlatter DC, Kinkel LL. Leveraging ecological theory to guide natural product discovery. ACTA ACUST UNITED AC 2016; 43:115-28. [DOI: 10.1007/s10295-015-1683-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2015] [Accepted: 08/29/2015] [Indexed: 12/31/2022]
Abstract
Abstract
Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random ‘fishing expeditions’ for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.
Collapse
Affiliation(s)
- Michael J Smanski
- grid.17635.36 0000000419368657 Department of Biochemistry, Molecular Biology, and Biophysics University of Minnesota-Twin Cities 55108 Saint Paul MN USA
- grid.17635.36 0000000419368657 BioTechnology Institute University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| | - Daniel C Schlatter
- grid.17635.36 0000000419368657 Department of Plant Pathology University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| | - Linda L Kinkel
- grid.17635.36 0000000419368657 BioTechnology Institute University of Minnesota-Twin Cities 55108 Saint Paul MN USA
- grid.17635.36 0000000419368657 Department of Plant Pathology University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| |
Collapse
|
43
|
Frisvad JC, Larsen TO. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati. Front Microbiol 2016; 6:1485. [PMID: 26779142 PMCID: PMC4703822 DOI: 10.3389/fmicb.2015.01485] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2015] [Accepted: 12/09/2015] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is an important opportunistic human pathogen known for its production of a large array of extrolites. Up to 63 species have been described in Aspergillus section Fumigati, some of which have also been reliably reported to be pathogenic, including A. felis, A. fischeri, A. fumigatiaffinis, A. fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A. novofumigatus, A. parafelis, A. pseudofelis, A. pseudoviridinutans, A. spinosus, A. thermomutatus, and A. udagawae. These species share the production of hydrophobins, melanins, and siderophores and ability to grow well at 37°C, but they only share some small molecule extrolites, that could be important factors in pathogenicity. According to the literature gliotoxin and other exometabolites can be contributing factors to pathogenicity, but these exometabolites are apparently not produced by all pathogenic species. It is our hypothesis that species unable to produce some of these metabolites can produce proxy-exometabolites that may serve the same function. We tabulate all exometabolites reported from species in Aspergillus section Fumigati and by comparing the profile of those extrolites, suggest that those producing many different kinds of exometabolites are potential opportunistic pathogens. The exometabolite data also suggest that the profile of exometabolites are highly specific and can be used for identification of these closely related species.
Collapse
Affiliation(s)
- Jens C. Frisvad
- Section of Eukaryotic Biotechnology, Department of Systems Biology, Technical University of DenmarkKongens Lyngby, Denmark
| | | |
Collapse
|
44
|
Abstract
Fungi were among the first sources for antibiotics. The discovery and development of the penicillin-type and cephalosporin-type β-lactams and their synthetic versions were transformative in emergence of the modern pharmaceutical industry. They remain some of the most important antibiotics, even 70 years after their discovery. Meanwhile, thousands of fungal metabolites have been discovered, yet these metabolites have only contributed a few additional compounds that have entered clinical development. Substantial expansion in fungal biodiversity assessment along with the availability of modern "-OMICS" technology and revolutionary developments in fungal biotechnology have been made in the last 15 years subsequent to the exit of most of the big Pharma companies from the field of novel antibiotics discovery. Therefore, the timing seems opportune to revisit these fascinating chemically rich organisms as a reservoir of small-molecule templates for lead discovery. This review will describe ongoing interdisciplinary scenarios in which specialists in fungal biology collaborate with chemists, pharmacologists and biochemical and process engineers in order to reveal and make new antibiotics. The utility of a pre-selection process based on phylogenetic data and distribution of secondary metabolite encoding gene cluster will be highlighted. Examples of novel bioactive metabolites from fungi derived from special ecological groups and new phylogenetic lineages will also be discussed.
Collapse
|
45
|
Chávez R, Fierro F, García-Rico RO, Vaca I. Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front Microbiol 2015; 6:903. [PMID: 26441853 PMCID: PMC4563253 DOI: 10.3389/fmicb.2015.00903] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022] Open
Abstract
Natural product search is undergoing resurgence upon the discovery of a huge previously unknown potential for secondary metabolite (SM) production hidden in microbial genomes. This is also the case for filamentous fungi, since their genomes contain a high number of "orphan" SM gene clusters. Recent estimates indicate that only 5% of existing fungal species have been described, thus the potential for the discovery of novel metabolites in fungi is huge. In this context, fungi thriving in harsh environments are of particular interest since they are outstanding producers of unusual chemical structures. At present, there are around 16 genomes from extreme environment-isolated fungi in databases. In a preliminary analysis of three of these genomes we found that several of the predicted SM gene clusters are probably involved in the biosynthesis of compounds not yet described. Genome mining strategies allow the exploitation of the information in genome sequences for the discovery of new natural compounds. The synergy between genome mining strategies and the expected abundance of SMs in fungi from extreme environments is a promising path to discover new natural compounds as a source of medically useful drugs.
Collapse
Affiliation(s)
- Renato Chávez
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Francisco Fierro
- División de Ciencias Biológicas y de la Salud, Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa México D.F., Mexico
| | - Ramón O García-Rico
- Grupo GIMBIO, Facultad de Ciencias Básicas, Departamento de Microbiología, Universidad de Pamplona Pamplona, Colombia
| | - Inmaculada Vaca
- Facultad de Ciencias, Departamento de Química, Universidad de Chile Santiago, Chile
| |
Collapse
|
46
|
Sica V, Raja HA, El-Elimat T, Kertesz V, Van Berkel GJ, Pearce CJ, Oberlies NH. Dereplicating and Spatial Mapping of Secondary Metabolites from Fungal Cultures in Situ. JOURNAL OF NATURAL PRODUCTS 2015; 78:1926-36. [PMID: 26192135 PMCID: PMC4570219 DOI: 10.1021/acs.jnatprod.5b00268] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/07/2023]
Abstract
Ambient ionization mass spectrometry techniques have recently become prevalent in natural product research due to their ability to examine secondary metabolites in situ. These techniques retain invaluable spatial and temporal details that are lost through traditional extraction processes. However, most ambient ionization techniques do not collect mutually supportive data, such as chromatographic retention times and/or UV/vis spectra, and this can limit the ability to identify certain metabolites, such as differentiating isomers. To overcome this, the droplet-liquid microjunction-surface sampling probe (droplet-LMJ-SSP) was coupled with UPLC-PDA-HRMS-MS/MS, thus providing separation, retention times, MS data, and UV/vis data used in traditional dereplication protocols. By capturing these mutually supportive data, the identity of secondary metabolites can be confidently and rapidly assigned in situ. Using the droplet-LMJ-SSP, a protocol was constructed to analyze the secondary metabolite profile of fungal cultures without any sample preparation. The results demonstrate that fungal cultures can be dereplicated from the Petri dish, thus identifying secondary metabolites, including isomers, and confirming them against reference standards. Furthermore, heat maps, similar to mass spectrometry imaging, can be used to ascertain the location and relative concentration of secondary metabolites directly on the surface and/or surroundings of a fungal culture.
Collapse
Affiliation(s)
- Vincent
P. Sica
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Tamam El-Elimat
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Vilmos Kertesz
- Organic
and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gary J. Van Berkel
- Organic
and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., 505 Meadowlands
Drive, Suite 103, Hillsborough, North Carolina 27278, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Tel: 336-334-5474. E-mail:
| |
Collapse
|
47
|
Elkhayat ES, Ibrahim SRM, Mohamed GA, Ross SA. Terrenolide S, a new antileishmanial butenolide from the endophytic fungusAspergillus terreus. Nat Prod Res 2015; 30:814-20. [DOI: 10.1080/14786419.2015.1072711] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
|
48
|
Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbiol Biotechnol 2015; 99:7859-77. [DOI: 10.1007/s00253-015-6839-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
|
49
|
Gaudêncio SP, Pereira F. Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 2015; 32:779-810. [PMID: 25850681 DOI: 10.1039/c4np00134f] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Covering: 1993-2014 (July)To alleviate the dereplication holdup, which is a major bottleneck in natural products discovery, scientists have been conducting their research efforts to add tools to their "bag of tricks" aiming to achieve faster, more accurate and efficient ways to accelerate the pace of the drug discovery process. Consequently dereplication has become a hot topic presenting a huge publication boom since 2012, blending multidisciplinary fields in new ways that provide important conceptual and/or methodological advances, opening up pioneering research prospects in this field.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | |
Collapse
|
50
|
Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 2015; 20:5286-98. [PMID: 25812150 PMCID: PMC6272253 DOI: 10.3390/molecules20045286] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2015] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 12/26/2022] Open
Abstract
Bacterial resistance is a rapidly escalating threat to public health as our arsenal of effective antibiotics dwindles. Therefore, there is an urgent need for new antibiotics. Drug discovery has historically focused on bacteria growing in planktonic cultures. Many antibiotics were originally developed to target individual bacterial cells, being assessed in vitro against microorganisms in a planktonic mode of life. However, towards the end of the 20th century it became clear that many bacteria live as complex communities called biofilms in their natural habitat, and this includes habitats within a human host. The biofilm mode of life provides advantages to microorganisms, such as enhanced resistance towards environmental stresses, including antibiotic challenge. The community level resistance provided by biofilms is distinct from resistance mechanisms that operate at a cellular level, and cannot be overlooked in the development of novel strategies to combat infectious diseases. The review compares mechanisms of antibiotic resistance at cellular and community levels in the light of past and present antibiotic discovery efforts. Future perspectives on novel strategies for treatment of biofilm-related infectious diseases are explored.
Collapse
Affiliation(s)
- Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Michael Gillings
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|