1
|
Yim J, Kim S, Lee HH, Chung JS, Park J. Fragment-based approaches to discover ligands for tumor-specific E3 ligases. Expert Opin Drug Discov 2024:1-14. [PMID: 39420586 DOI: 10.1080/17460441.2024.2415310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Targeted protein degradation (TPD) has emerged as an innovative therapeutic strategy through selective degradation of specific proteins by harnessing the cellular ubiquitin-proteasome system (UPS), which involves over 600 E3 ubiquitin ligases. Recent proteome profiling reported tumor-specific E3 ligases in human. Development of those tumor-specific E3 ligase ligands would provide a solution for tumor-specific TPD for effective cancer treatment. AREAS COVERED This review provides a comprehensive list of E3 ligases found only in specific types of tumor from public databases and highlights examples of their ligands discovered through fragment-based approaches. It details their discovery process and potential applications for precise TPD and effective cancer treatments. EXPERT OPINION Current TPD strategies using proteolysis-targeting chimeras (PROTACs) primarily utilize general E3 ligases, such as CRBN and VHL. Since these E3 ligases demonstrate effective protein degradation activity in most human cell types, CRBN and VHL-based PROTACs can exhibit undesired TPD in off-target tissues, which often leads to the side effects. Therefore, developing tumor-specific E3 ligase ligands can be crucial for effective cancer treatments. Fragment-based ligand discovery (FBLD) approaches would accelerate the identification of these tumor-specific E3 ligase ligands and associated PROTACs, thereby advancing the field of targeted cancer therapies.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of Chemistry, Kangwon National University, Chuncheon, Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Korea
| | - Solbi Kim
- Department of Chemistry, Kangwon National University, Chuncheon, Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Korea
| | - Hyung Ho Lee
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Jin Soo Chung
- Department of Urology, Urological Cancer Center, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon, Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
2
|
Ji Y, Wang L, Zhou R, Yang X, Li S, Cen S, Li Y. Design, synthesis, and antiviral activity of 1-aryl-4-arylmethylpiperazine derivatives as Zika virus inhibitors with broad antiviral spectrum. Bioorg Med Chem 2024; 103:117682. [PMID: 38493729 DOI: 10.1016/j.bmc.2024.117682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Zika virus (ZIKV) disease has been given attention due to the risk of congenital microcephaly and neurodevelopmental disorders after ZIKV infection in pregnancy, but no vaccine or antiviral drug is available. Based on a previously reported ZIKV inhibitor ZK22, a series of novel 1-aryl-4-arylmethylpiperazine derivatives was designed, synthesized, and investigated for antiviral activity by quantify cellular ZIKV RNA amount using RT-qPCR method in ZIKV-infected human venous endothelial cells (HUVECs) assay. Structure-activity relationship (SAR) analysis demonstrated that anti-ZIKV activity of 1-aryl-4-arylmethylpiperazine derivatives is not correlated with molecular hydrophobicity, multiple new derivatives with pyridine group to replace the benzonitrile moiety of ZK22 showed stronger antiviral activity, higher ligand lipophilicity efficiency as well as lower cytotoxicity. Two active compounds 13 and 33 were further identified as novel ZIKV entry inhibitors with the potential of oral available. Moreover, both ZK22 and newly active derivatives also possess of obvious inhibition on the viral replication of coronavirus and influenza A virus at low micromolar level. In summary, this work provided better candidates of ZIKV inhibitor for preclinical study and revealed the promise of 1-aryl-4-arylmethylpiperazine chemotype in the development of broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Yingjie Ji
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lidan Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Zhou
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaotang Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Siqi Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Yanping Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Baybekov S, Llompart P, Marcou G, Gizzi P, Galzi JL, Ramos P, Saurel O, Bourban C, Minoletti C, Varnek A. Kinetic solubility: Experimental and machine-learning modeling perspectives. Mol Inform 2024; 43:e202300216. [PMID: 38149685 DOI: 10.1002/minf.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
Kinetic aqueous or buffer solubility is important parameter measuring suitability of compounds for high throughput assays in early drug discovery while thermodynamic solubility is reserved for later stages of drug discovery and development. Kinetic solubility is also considered to have low inter-laboratory reproducibility because of its sensitivity to protocol parameters [1]. Presumably, this is why little efforts have been put to build QSPR models for kinetic in comparison to thermodynamic aqueous solubility. Here, we investigate the reproducibility and modelability of kinetic solubility assays. We first analyzed the relationship between kinetic and thermodynamic solubility data, and then examined the consistency of data from different kinetic assays. In this contribution, we report differences between kinetic and thermodynamic solubility data that are consistent with those reported by others [1, 2] and good agreement between data from different kinetic solubility campaigns in contrast to general expectations. The latter is confirmed by achieving high performing QSPR models trained on merged kinetic solubility datasets. The poor performance of QSPR model trained on thermodynamic solubility when applied to kinetic solubility dataset reinforces the conclusion that kinetic and thermodynamic solubilities do not correlate: one cannot be used as an ersatz for the other. This encourages for building predictive models for kinetic solubility. The kinetic solubility QSPR model developed in this study is freely accessible through the Predictor web service of the Laboratory of Chemoinformatics (https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi).
Collapse
Affiliation(s)
- Shamkhal Baybekov
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Pierre Llompart
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
- IDD/CADD, Sanofi, Vitry-Sur-Seine, France
| | - Gilles Marcou
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Patrick Gizzi
- Plateforme de Chimie Biologique Intégrative de Strasbourg UAR 3286 CNRS, University of Strasbourg, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Jean-Luc Galzi
- Biotechnologie et signalisation cellulaire UMR 7242 CNRS, École supérieure de biotechnologie de Strasbourg, University of Strasbourg, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
- ChemBioFrance - Chimiothèque Nationale UAR 3035, ENSCM - 240, Avenue du Prof. E. Jeanbrau, CS 60297-34296, Montpellier Cedex 5, France
| | - Pascal Ramos
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Olivier Saurel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Claire Bourban
- Plateforme de Chimie Biologique Intégrative de Strasbourg UAR 3286 CNRS, University of Strasbourg, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | | | - Alexandre Varnek
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| |
Collapse
|
4
|
Smith CR, Chen D, Christensen JG, Coulombe R, Féthière J, Gunn RJ, Hollander J, Jones B, Ketcham JM, Khare S, Kuehler J, Lawson JD, Marx MA, Olson P, Pearson KE, Ren C, Tsagris D, Ulaganathan T, Van’t Veer I, Wang X, Ivetac A. Discovery of Five SOS2 Fragment Hits with Binding Modes Determined by SOS2 X-Ray Cocrystallography. J Med Chem 2024; 67:774-781. [PMID: 38156904 PMCID: PMC10788894 DOI: 10.1021/acs.jmedchem.3c02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
SOS1 and SOS2 are guanine nucleotide exchange factors that mediate RTK-stimulated RAS activation. Selective SOS1:KRAS PPI inhibitors are currently under clinical investigation, whereas there are no reports to date of SOS2:KRAS PPI inhibitors. SOS2 activity is implicated in MAPK rebound when divergent SOS1 mutant cell lines are treated with the SOS1 inhibitor BI-3406; therefore, SOS2:KRAS inhibitors are of therapeutic interest. In this report, we detail a fragment-based screening strategy to identify X-ray cocrystal structures of five diverse fragment hits bound to SOS2.
Collapse
Affiliation(s)
| | - Dan Chen
- ZoBio
BV, J.H. Oortweg 19, Leiden 2333 CH, Netherlands
| | | | - René Coulombe
- Inixium, 3000-275 Armand Frappier, Laval, Quebec H7V 4A7, Canada
| | - James Féthière
- Inixium, 3000-275 Armand Frappier, Laval, Quebec H7V 4A7, Canada
| | - Robin J. Gunn
- Mirati
Therapeutics, San Diego, California 92130, United States
| | | | - Benjamin Jones
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - John M. Ketcham
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Shilpi Khare
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Jon Kuehler
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - J. David Lawson
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Matthew A. Marx
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Peter Olson
- Mirati
Therapeutics, San Diego, California 92130, United States
| | | | - Cynthia Ren
- Mirati
Therapeutics, San Diego, California 92130, United States
| | | | | | | | - Xiaolun Wang
- Mirati
Therapeutics, San Diego, California 92130, United States
| | - Anthony Ivetac
- Mirati
Therapeutics, San Diego, California 92130, United States
| |
Collapse
|
5
|
Soffer A, Viswas SJ, Alon S, Rozenberg N, Peled A, Piro D, Vilenchik D, Akabayov B. MolOptimizer: A Molecular Optimization Toolkit for Fragment-Based Drug Design. Molecules 2024; 29:276. [PMID: 38202859 PMCID: PMC10780997 DOI: 10.3390/molecules29010276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
MolOptimizer is a user-friendly computational toolkit designed to streamline the hit-to-lead optimization process in drug discovery. MolOptimizer extracts features and trains machine learning models using a user-provided, labeled, and small-molecule dataset to accurately predict the binding values of new small molecules that share similar scaffolds with the target in focus. Hosted on the Azure web-based server, MolOptimizer emerges as a vital resource, accelerating the discovery and development of novel drug candidates with improved binding properties.
Collapse
Affiliation(s)
- Adam Soffer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Data Science Research Centre, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Samuel Joshua Viswas
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Data Science Research Centre, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shahar Alon
- Department of Software Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Nofar Rozenberg
- Department of Software Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Amit Peled
- Department of Software Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Daniel Piro
- Department of Software Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Dan Vilenchik
- School of Computer and Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Data Science Research Centre, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
6
|
Jiang Y, Wu Y, Wang J, Ma Y, Yu H, Wang Z. Fragment-based Drug Discovery Strategy and its Application to the Design of SARS-CoV-2 Main Protease Inhibitor. Curr Med Chem 2024; 31:6204-6226. [PMID: 38529602 DOI: 10.2174/0109298673294251240229070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) emerged at the end of 2019, causing a highly infectious and pathogenic disease known as 2019 coronavirus disease. This disease poses a serious threat to human health and public safety. The SARS-CoV-2 main protease (Mpro) is a highly sought-after target for developing drugs against COVID-19 due to its exceptional specificity. Its crystal structure has been extensively documented. Numerous strategies have been employed in the investigation of Mpro inhibitors. This paper is primarily concerned with Fragment-based Drug Discovery (FBDD), which has emerged as an effective approach to drug design in recent times. Here, we summarize the research on the approach of FBDD and its application in developing inhibitors for SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Yu Jiang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yingnan Wu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jing Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Hui Yu
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
7
|
Vester K, Metz A, Huber S, Loll B, Wahl MC. Conformation-dependent ligand hot spots in the spliceosomal RNA helicase BRR2. Acta Crystallogr D Struct Biol 2023; 79:304-317. [PMID: 36974964 PMCID: PMC10071561 DOI: 10.1107/s2059798323001778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023] Open
Abstract
The conversion of hits to leads in drug discovery involves the elaboration of chemical core structures to increase their potency. In fragment-based drug discovery, low-molecular-weight compounds are tested for protein binding and are subsequently modified, with the tacit assumption that the binding mode of the original hit will be conserved among the derivatives. However, deviations from binding mode conservation are rather frequently observed, but potential causes of these alterations remain incompletely understood. Here, two crystal forms of the spliceosomal RNA helicase BRR2 were employed as a test case to explore the consequences of conformational changes in the target protein on the binding behaviour of fragment derivatives. The initial fragment, sulfaguanidine, bound at the interface between the two helicase cassettes of BRR2 in one crystal form. Second-generation compounds devised by structure-guided docking were probed for their binding to BRR2 in a second crystal form, in which the original fragment-binding site was altered due to a conformational change. While some of the second-generation compounds retained binding to parts of the original site, others changed to different binding pockets of the protein. A structural bioinformatics analysis revealed that the fragment-binding sites correspond to predicted binding hot spots, which strongly depend on the protein conformation. This case study offers an example of extensive binding-mode changes during hit derivatization, which are likely to occur as a consequence of multiple binding hot spots, some of which are sensitive to the flexibility of the protein.
Collapse
Affiliation(s)
- Karen Vester
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Alexander Metz
- Drug Design Group, Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Simon Huber
- Drug Design Group, Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Bernhard Loll
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Markus C. Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein Strasse 15, 12489 Berlin, Germany
| |
Collapse
|
8
|
Blicker L, González-Cano R, Laurini E, Nieto FR, Schmidt J, Schepmann D, Pricl S, Wünsch B. Conformationally Restricted σ 1 Receptor Antagonists from (-)-Isopulegol. J Med Chem 2023; 66:4999-5020. [PMID: 36946301 DOI: 10.1021/acs.jmedchem.2c02081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Antagonists at σ1 receptors have great potential for the treatment of neuropathic pain. Starting from monoterpene (-)-isopulegol (1), aminodiols 8-11 were obtained and transformed into bicyclic 13-16 and tricyclic ligands 19-22. Aminodiols 8-11 showed higher σ1 affinity than the corresponding bicyclic 13-16 and tricyclic derivatives 19-22. (R)-configuration in the side chain of aminodiols (8 and 10) led to higher σ1 affinity than (S)-configuration (9 and 11). 4-Benzylpiperidines (b-series) revealed higher σ1 affinity than 4-phenylbutylamines (a-series). Aminodiol 8b showed very high σ1 affinity (Ki = 1.2 nM), excellent selectivity over σ2 receptors, and promising logD7.4 (3.05) and lipophilic ligand efficiency (5.87) values. Molecular dynamics simulations were conducted to analyze the σ1 affinity and selectivity on an atomistic level. In the capsaicin assay, 8b exhibited similar antiallodynic activity to the prototypical σ1 antagonist S1RA. The antiallodynic activity of 8b was removed by co-application of the σ1 agonist PRE-084, proving σ1 antagonism being involved in the antiallodynic effect.
Collapse
Affiliation(s)
- Luca Blicker
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), Biosanitary Research Institute ibs. GRANADA, University of Granada, Avenida de la Investigación 11, Granada 18016, Spain
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), Biosanitary Research Institute ibs. GRANADA, University of Granada, Avenida de la Investigación 11, Granada 18016, Spain
| | - Judith Schmidt
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
9
|
Lv R, Wang X, Sun Y, Qin Q, Liu N, Wu T, Sun Y, Yin W, Zhao D, Cheng M. Design, synthesis, and biological evaluation of aminopyridine derivatives as novel tropomyosin receptor kinase inhibitors. Arch Pharm (Weinheim) 2023; 356:e2200438. [PMID: 36398500 DOI: 10.1002/ardp.202200438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
Tropomyosin receptor kinase (TRK) is a successful target for the treatment of various cancers caused by NTRK gene fusions. Herein, based on a rational drug design strategy, we designed and synthesized 35 aminopyrimidine derivatives that were shown to be TRKA inhibitors in the enzyme assay, among which compounds C3, C4, and C6 showed potent inhibitory activities against TRKA with IC50 values of 6.5, 5.0, and 7.0 nM, respectively. In vitro antiproliferative activity study showed that compound C3 significantly inhibited the proliferation of KM-12 cells but had weak inhibitory effect on MCF-7 cells and HUVEC cells. The preliminary druggability evaluation showed that compound C3 exhibited favorable liver microsomal and plasma stabilities and had weak or no inhibitory activity against cytochrome P450 isoforms at 10 µM. Compounds C3, C4, and C6 were also selected for ADME (absorption, distribution, metabolism, and elimination) properties prediction and molecular docking studies. Inhibition experiments showed that compound C3 was not selective for TRK subtypes. All results indicated that compound C3 was a useful candidate for the development of TRK inhibitors.
Collapse
Affiliation(s)
- Ruicheng Lv
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
10
|
Smith CR, Kulyk S, Ahmad MUD, Arkhipova V, Christensen JG, Gunn RJ, Ivetac A, Ketcham JM, Kuehler J, Lawson JD, Thomas NC, Wang X, Marx MA. Fragment optimization and elaboration strategies - the discovery of two lead series of PRMT5/MTA inhibitors from five fragment hits. RSC Med Chem 2022; 13:1549-1564. [PMID: 36545438 PMCID: PMC9749961 DOI: 10.1039/d2md00163b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/27/2022] [Indexed: 12/24/2022] Open
Abstract
Here we describe the early stages of a fragment-based lead discovery (FBLD) project for a recently elucidated synthetic lethal target, the PRMT5/MTA complex, for the treatment of MTAP-deleted cancers. Starting with five fragment/PRMT5/MTA X-ray co-crystal structures, we employed a two-phase fragment elaboration process encompassing optimization of fragment hits and subsequent fragment growth to increase potency, assess synthetic tractability, and enable structure-based drug design. Two lead series were identified, one of which led to the discovery of the clinical candidate MRTX1719.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jon Kuehler
- Mirati TherapeuticsSan DiegoCalifornia92121USA
| | | | | | | | | |
Collapse
|
11
|
Arif SM, Floto RA, Blundell TL. Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Front Mol Biosci 2022; 9:857000. [PMID: 35433835 PMCID: PMC9006449 DOI: 10.3389/fmolb.2022.857000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is progressive genetic disease that predisposes lungs and other organs to multiple long-lasting microbial infections. Pseudomonas aeruginosa is the most prevalent and deadly pathogen among these microbes. Lung function of CF patients worsens following chronic infections with P. aeruginosa and is associated with increased mortality and morbidity. Emergence of multidrug-resistant, extensively drug-resistant and pandrug-resistant strains of P. aeruginosa due to intrinsic and adaptive antibiotic resistance mechanisms has failed the current anti-pseudomonal antibiotics. Hence new antibacterials are urgently needed to treat P. aeruginosa infections. Structure-guided fragment-based drug discovery (FBDD) is a powerful approach in the field of drug development that has succeeded in delivering six FDA approved drugs over the past 20 years targeting a variety of biological molecules. However, FBDD has not been widely used in the development of anti-pseudomonal molecules. In this review, we first give a brief overview of our structure-guided FBDD pipeline and then give a detailed account of FBDD campaigns to combat P. aeruginosa infections by developing small molecules having either bactericidal or anti-virulence properties. We conclude with a brief overview of the FBDD efforts in our lab at the University of Cambridge towards targeting P. aeruginosa infections.
Collapse
Affiliation(s)
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Tom L. Blundell,
| |
Collapse
|
12
|
Balo T, Sapi A, Kiss A, Raimbaud E, Paysant J, Cattin ME, Berger S, Kotschy A, Faucher N. Synthesis of thieno[2,3-c]pyridine derived GRK2 inhibitors. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-021-02889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Thomas RP, Heap RE, Zappacosta F, Grant EK, Pogány P, Besley S, Fallon DJ, Hann MM, House D, Tomkinson NCO, Bush JT. A direct-to-biology high-throughput chemistry approach to reactive fragment screening. Chem Sci 2021; 12:12098-12106. [PMID: 34667575 PMCID: PMC8457371 DOI: 10.1039/d1sc03551g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of new medicines. Here, we report a screening platform that combines 'direct-to-biology' high-throughput chemistry (D2B-HTC) with photoreactive fragments. The platform enabled the rapid synthesis of >1000 PhotoAffinity Bits (HTC-PhABits) in 384-well plates in 24 h and their subsequent screening as crude reaction products with a protein target without purification. Screening the HTC-PhABit library with carbonic anhydrase I (CAI) afforded 7 hits (0.7% hit rate), which were found to covalently crosslink in the Zn2+ binding pocket. A powerful advantage of the D2B-HTC screening platform is the ability to rapidly perform iterative design-make-test cycles, accelerating the development and optimisation of chemical tools and medicinal chemistry starting points with little investment of resource.
Collapse
Affiliation(s)
- Ross P Thomas
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Rachel E Heap
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | | | - Emma K Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Peter Pogány
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Stephen Besley
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David J Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Michael M Hann
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David House
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Jacob T Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
14
|
Baybekov S, Marcou G, Ramos P, Saurel O, Galzi JL, Varnek A. DMSO Solubility Assessment for Fragment-Based Screening. Molecules 2021; 26:3950. [PMID: 34203441 PMCID: PMC8271413 DOI: 10.3390/molecules26133950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we report comprehensive experimental and chemoinformatics analyses of the solubility of small organic molecules ("fragments") in dimethyl sulfoxide (DMSO) in the context of their ability to be tested in screening experiments. Here, DMSO solubility of 939 fragments has been measured experimentally using an NMR technique. A Support Vector Classification model was built on the obtained data using the ISIDA fragment descriptors. The analysis revealed 34 outliers: experimental issues were retrospectively identified for 28 of them. The updated model performs well in 5-fold cross-validation (balanced accuracy = 0.78). The datasets are available on the Zenodo platform (DOI:10.5281/zenodo.4767511) and the model is available on the website of the Laboratory of Chemoinformatics.
Collapse
Affiliation(s)
- Shamkhal Baybekov
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France; (S.B.); (G.M.)
| | - Gilles Marcou
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France; (S.B.); (G.M.)
| | - Pascal Ramos
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse, France; (P.R.); (O.S.)
| | - Olivier Saurel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse, France; (P.R.); (O.S.)
| | - Jean-Luc Galzi
- Biotechnologie et Signalisation Cellulaire UMR 7242 CNRS, École Supérieure de Biotechnologie de Strasbourg, University of Strasbourg, 300 Boulevard Sébastien Brant, 67412 Illkirch, France;
- ChemBioFrance—Chimiothèque Nationale UAR3035, 8 Rue de L’école Normale, CEDEX 05, 34296 Montpellier, France
| | - Alexandre Varnek
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France; (S.B.); (G.M.)
| |
Collapse
|
15
|
Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:273-343. [PMID: 34147204 DOI: 10.1016/bs.pmch.2021.01.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Molecular docking has become an important component of the drug discovery process. Since first being developed in the 1980s, advancements in the power of computer hardware and the increasing number of and ease of access to small molecule and protein structures have contributed to the development of improved methods, making docking more popular in both industrial and academic settings. Over the years, the modalities by which docking is used to assist the different tasks of drug discovery have changed. Although initially developed and used as a standalone method, docking is now mostly employed in combination with other computational approaches within integrated workflows. Despite its invaluable contribution to the drug discovery process, molecular docking is still far from perfect. In this chapter we will provide an introduction to molecular docking and to the different docking procedures with a focus on several considerations and protocols, including protonation states, active site waters and consensus, that can greatly improve the docking results.
Collapse
Affiliation(s)
| | - Ilenia Giangreco
- Cambridge Crystallographic Data Centre, Cambridge, United Kingdom
| | - Jason C Cole
- Cambridge Crystallographic Data Centre, Cambridge, United Kingdom
| |
Collapse
|
16
|
Synthesis and structure-activity relationship of nitrile-based cruzain inhibitors incorporating a trifluoroethylamine-based P2 amide replacement. Bioorg Med Chem 2019; 27:115083. [PMID: 31561938 DOI: 10.1016/j.bmc.2019.115083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 02/02/2023]
Abstract
The structure-activity relationship for nitrile-based cruzain inhibitors incorporating a P2 amide replacement based on trifluoroethylamine was explored by deconstruction of a published series of inhibitors. It was demonstrated that the P3 biphenyl substituent present in the published inhibitor structures could be truncated to phenyl with only a small loss of affinity. The effects of inverting the configuration of the P2 amide replacement and linking a benzyl substituent at P1 were observed to be strongly nonadditive. We show that plotting affinity against molecular size provides a means to visualize both the molecular size efficiency of structural transformations and the nonadditivity in the structure-activity relationship. We also show how the relationship between affinity and lipophilicity, measured by high-performance liquid chromatography with an immobilized artificial membrane stationary phase, may be used to normalize affinity with respect to lipophilicity.
Collapse
|
17
|
Resnick E, Bradley A, Gan J, Douangamath A, Krojer T, Sethi R, Geurink PP, Aimon A, Amitai G, Bellini D, Bennett J, Fairhead M, Fedorov O, Gabizon R, Gan J, Guo J, Plotnikov A, Reznik N, Ruda GF, Díaz-Sáez L, Straub VM, Szommer T, Velupillai S, Zaidman D, Zhang Y, Coker AR, Dowson CG, Barr HM, Wang C, Huber KVM, Brennan PE, Ovaa H, von Delft F, London N. Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening. J Am Chem Soc 2019; 141:8951-8968. [PMID: 31060360 PMCID: PMC6556873 DOI: 10.1021/jacs.9b02822] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covalent probes can display unmatched potency, selectivity, and duration of action; however, their discovery is challenging. In principle, fragments that can irreversibly bind their target can overcome the low affinity that limits reversible fragment screening, but such electrophilic fragments were considered nonselective and were rarely screened. We hypothesized that mild electrophiles might overcome the selectivity challenge and constructed a library of 993 mildly electrophilic fragments. We characterized this library by a new high-throughput thiol-reactivity assay and screened them against 10 cysteine-containing proteins. Highly reactive and promiscuous fragments were rare and could be easily eliminated. In contrast, we found hits for most targets. Combining our approach with high-throughput crystallography allowed rapid progression to potent and selective probes for two enzymes, the deubiquitinase OTUB2 and the pyrophosphatase NUDT7. No inhibitors were previously known for either. This study highlights the potential of electrophile-fragment screening as a practical and efficient tool for covalent-ligand discovery.
Collapse
Affiliation(s)
| | - Anthony Bradley
- Department of Chemistry , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , U.K.,Diamond Light Source Ltd., Harwell Science and Innovation Campus , Didcot OX11 0QX , U.K
| | | | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus , Didcot OX11 0QX , U.K
| | | | - Ritika Sethi
- Structural Biology Research Center , VIB , Brussels , Belgium.,Structural Biology Brussels , Vrije Universiteit Brussel , Brussels , Belgium
| | - Paul P Geurink
- Oncode Institute and Department of Cell and Chemical Biology , Leiden University Medical Center , Einthovenweg 20 , 2333 ZC Leiden , The Netherlands
| | - Anthony Aimon
- Department of Chemistry , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , U.K.,Diamond Light Source Ltd., Harwell Science and Innovation Campus , Didcot OX11 0QX , U.K
| | | | - Dom Bellini
- School of Life Sciences , University of Warwick , Coventry , U.K
| | | | | | | | | | - Jin Gan
- Oncode Institute and Department of Cell and Chemical Biology , Leiden University Medical Center , Einthovenweg 20 , 2333 ZC Leiden , The Netherlands
| | - Jingxu Guo
- Division of Medicine , University College London , Gower Street , London WC1E 6BT , U.K
| | | | | | | | | | | | | | | | | | | | - Alun R Coker
- Division of Medicine , University College London , Gower Street , London WC1E 6BT , U.K
| | | | | | | | | | - Paul E Brennan
- School of Life Sciences , University of Warwick , Coventry , U.K.,Alzheimer's Research UK Oxford Drug Discovery Institute , University of Oxford , NDMRB, Roosevelt Drive , Oxford OX3 7FZ , U.K
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology , Leiden University Medical Center , Einthovenweg 20 , 2333 ZC Leiden , The Netherlands
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus , Didcot OX11 0QX , U.K.,Department of Biochemistry , University of Johannesburg , Auckland Park 2006 , South Africa
| | | |
Collapse
|
18
|
Grainger R, Heightman TD, Ley SV, Lima F, Johnson CN. Enabling synthesis in fragment-based drug discovery by reactivity mapping: photoredox-mediated cross-dehydrogenative heteroarylation of cyclic amines. Chem Sci 2019; 10:2264-2271. [PMID: 30881651 PMCID: PMC6385880 DOI: 10.1039/c8sc04789h] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
In fragment-based drug discovery (FBDD), a weakly binding fragment hit is elaborated into a potent ligand by bespoke functionalization along specific directions (growth vectors) from the fragment core in order to complement the 3D structure of the target protein. This structure-based design approach can present significant synthetic challenges, as growth vectors often originate on sp2 or sp3 ring carbons which are not the most synthetically accessible points on the fragment. To address this issue and expedite synthesis in FBDD, we established a nanogram-to-gram workflow for the development of enabling synthetic transformations, such as the direct C-H functionalization of heterocycles. This novel approach deploys high-throughput experimentation (HTE) in 1536-well microtiter plates (MTPs) facilitated by liquid handling robots to screen reaction conditions on the nanomolar scale; subsequently the reaction is upscaled in a continuous flow to generate gram-quantities of the material. In this paper, we disclose the use of this powerful workflow for the development of a photoredox-mediated cross-dehydrogenative coupling of fragments and medicinally relevant heterocyclic precursors via Minisci-type addition of α-amino radicals to electron-deficient heteroarenes. The optimized reaction conditions were employed on the milligram-scale on a diverse set of 112 substrates to map out structure-reactivity relationships (SRRs) of the transformation. The coupling exhibits excellent tolerance to a variety of functional groups and N-rich heteroarenes relevant to FBDD and was upscaled in a continuous flow to afford gram-quantities of pharmaceutically relevant sp2-sp3 privileged architectures.
Collapse
Affiliation(s)
- Rachel Grainger
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road , Cambridge , CB4 0QA , UK . ;
| | - Tom D Heightman
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road , Cambridge , CB4 0QA , UK . ;
| | - Steven V Ley
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
| | - Fabio Lima
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
- Novartis Pharma AG , Novartis Campus , 4002 Basel , Switzerland
| | - Christopher N Johnson
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road , Cambridge , CB4 0QA , UK . ;
| |
Collapse
|
19
|
Blaquiere N, Castanedo GM, Burch JD, Berezhkovskiy LM, Brightbill H, Brown S, Chan C, Chiang PC, Crawford JJ, Dong T, Fan P, Feng J, Ghilardi N, Godemann R, Gogol E, Grabbe A, Hole AJ, Hu B, Hymowitz SG, Alaoui Ismaili MH, Le H, Lee P, Lee W, Lin X, Liu N, McEwan PA, McKenzie B, Silvestre HL, Suto E, Sujatha-Bhaskar S, Wu G, Wu LC, Zhang Y, Zhong Z, Staben ST. Scaffold-Hopping Approach To Discover Potent, Selective, and Efficacious Inhibitors of NF-κB Inducing Kinase. J Med Chem 2018; 61:6801-6813. [PMID: 29940120 DOI: 10.1021/acs.jmedchem.8b00678] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
NF-κB-inducing kinase (NIK) is a protein kinase central to the noncanonical NF-κB pathway downstream from multiple TNF receptor family members, including BAFF, which has been associated with B cell survival and maturation, dendritic cell activation, secondary lymphoid organ development, and bone metabolism. We report herein the discovery of lead chemical series of NIK inhibitors that were identified through a scaffold-hopping strategy using structure-based design. Electronic and steric properties of lead compounds were modified to address glutathione conjugation and amide hydrolysis. These highly potent compounds exhibited selective inhibition of LTβR-dependent p52 translocation and transcription of NF-κB2 related genes. Compound 4f is shown to have a favorable pharmacokinetic profile across species and to inhibit BAFF-induced B cell survival in vitro and reduce splenic marginal zone B cells in vivo.
Collapse
Affiliation(s)
- Nicole Blaquiere
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Georgette M Castanedo
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Jason D Burch
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | | | - Hans Brightbill
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Suzanne Brown
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Connie Chan
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Po-Chang Chiang
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - James J Crawford
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Teresa Dong
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Peter Fan
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Jianwen Feng
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Nico Ghilardi
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Robert Godemann
- Evotec AG , Manfred Eigen Campus, Essener Bogen , Hamburg 22419 , Germany
| | - Emily Gogol
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Alice Grabbe
- Evotec AG , Manfred Eigen Campus, Essener Bogen , Hamburg 22419 , Germany
| | - Alison J Hole
- Evotec AG , Manfred Eigen Campus, Essener Bogen , Hamburg 22419 , Germany
| | - Baihua Hu
- Pharmaron Beijing Co., Ltd. , 6 Taihe Road, BDA , Beijing 100176 , P. R. China
| | - Sarah G Hymowitz
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | | | - Hoa Le
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Patrick Lee
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Wyne Lee
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Xingyu Lin
- Pharmaron Beijing Co., Ltd. , 6 Taihe Road, BDA , Beijing 100176 , P. R. China
| | - Ning Liu
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Paul A McEwan
- Evotec AG , Manfred Eigen Campus, Essener Bogen , Hamburg 22419 , Germany
| | - Brent McKenzie
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | | | - Eric Suto
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | | | - Guosheng Wu
- Pharmaron Beijing Co., Ltd. , 6 Taihe Road, BDA , Beijing 100176 , P. R. China
| | - Lawren C Wu
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Yamin Zhang
- Pharmaron Beijing Co., Ltd. , 6 Taihe Road, BDA , Beijing 100176 , P. R. China
| | - Zoe Zhong
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Steven T Staben
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| |
Collapse
|
20
|
New fluorescence-based high-throughput screening assay for small molecule inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2). Eur J Pharm Sci 2018; 118:67-79. [PMID: 29574079 DOI: 10.1016/j.ejps.2018.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/03/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs topoisomerase II (TOP2) mediated DNA damages and causes resistance to TOP2-targeted cancer therapy. Inhibiting TDP2 could sensitize cancer cells toward TOP2 inhibitors. However, potent TDP2 inhibitors with favorable physicochemical properties are not yet reported. Therefore, there is a need to search for novel molecular scaffolds capable of inhibiting TDP2. We report herein a new simple, robust, homogenous mix-and-read fluorescence biochemical assay based using humanized zebrafish TDP2 (14M_zTDP2), which provides biochemical and molecular structure basis for TDP2 inhibitor discovery. The assay was validated by screening a preselected library of 1600 compounds (Z' ≥ 0.72) in a 384-well format, and by running in parallel gel-based assays with fluorescent DNA substrates. This library was curated via virtual high throughput screening (vHTS) of 460,000 compounds from Chembridge Library, using the crystal structure of the novel surrogate protein 14M_zTDP2. From this primary screening, we selected the best 32 compounds (2% of the library) to further assess their TDP2 inhibition potential, leading to the IC50 determination of 10 compounds. Based on the dose-response curve profile, pan-assay interference compounds (PAINS) structure identification, physicochemical properties and efficiency parameters, two hit compounds, 11a and 19a, were tested using a novel secondary fluorescence gel-based assay. Preliminary structure-activity relationship (SAR) studies identified guanidine derivative 12a as an improved hit with a 6.4-fold increase in potency over the original HTS hit 11a. This study highlights the importance of the development of combination approaches (biochemistry, crystallography and high throughput screening) for the discovery of TDP2 inhibitors.
Collapse
|
21
|
Heikamp K, Zuccotto F, Kiczun M, Ray P, Gilbert IH. Exhaustive sampling of the fragment space associated to a molecule leading to the generation of conserved fragments. Chem Biol Drug Des 2018; 91:655-667. [PMID: 29063731 PMCID: PMC5836963 DOI: 10.1111/cbdd.13129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 11/28/2022]
Abstract
The first step in hit optimization is the identification of the pharmacophore, which is normally achieved by deconstruction of the hit molecule to generate "deletion analogues." In silico fragmentation approaches often focus on the generation of small fragments that do not describe properly the fragment space associated to the deletion analogues. We present significant modifications to the molecular fragmentation programme molBLOCKS, which allows the exhaustive sampling of the fragment space associated with a molecule to generate all possible molecular fragments. This generates larger fragments, by combining the smallest fragments. Additionally, it has been modified to deal with the problem of changing pharmacophoric properties through fragmentation, by highlighting bond cuts. The modified molBLOCKS programme was used on a set of drug compounds, where it generated more unique fragments than standard fragmentation approaches by increasing the number of fragments derived per compound. This fragment set was found to be more diverse than those generated by standard fragmentation programmes and was relevant to drug discovery as it contains the key fragments representing the pharmacophoric elements associated with ligand recognition. The use of dummy atoms to highlight bond cuts further increases the information content of fragments by visualizing their previous bonding pattern.
Collapse
Affiliation(s)
- Kathrin Heikamp
- Drug Discovery UnitDivision of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeDundeeScotland, UK
| | - Fabio Zuccotto
- Drug Discovery UnitDivision of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeDundeeScotland, UK
| | - Michael Kiczun
- Drug Discovery UnitDivision of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeDundeeScotland, UK
| | - Peter Ray
- Drug Discovery UnitDivision of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeDundeeScotland, UK
| | - Ian H. Gilbert
- Drug Discovery UnitDivision of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeDundeeScotland, UK
| |
Collapse
|
22
|
Crawford JJ, Johnson AR, Misner DL, Belmont LD, Castanedo G, Choy R, Coraggio M, Dong L, Eigenbrot C, Erickson R, Ghilardi N, Hau J, Katewa A, Kohli PB, Lee W, Lubach JW, McKenzie BS, Ortwine DF, Schutt L, Tay S, Wei B, Reif K, Liu L, Wong H, Young WB. Discovery of GDC-0853: A Potent, Selective, and Noncovalent Bruton's Tyrosine Kinase Inhibitor in Early Clinical Development. J Med Chem 2018; 61:2227-2245. [PMID: 29457982 DOI: 10.1021/acs.jmedchem.7b01712] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bruton's tyrosine kinase (Btk) is a nonreceptor cytoplasmic tyrosine kinase involved in B-cell and myeloid cell activation, downstream of B-cell and Fcγ receptors, respectively. Preclinical studies have indicated that inhibition of Btk activity might offer a potential therapy in autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. Here we disclose the discovery and preclinical characterization of a potent, selective, and noncovalent Btk inhibitor currently in clinical development. GDC-0853 (29) suppresses B cell- and myeloid cell-mediated components of disease and demonstrates dose-dependent activity in an in vivo rat model of inflammatory arthritis. It demonstrates highly favorable safety, pharmacokinetic (PK), and pharmacodynamic (PD) profiles in preclinical and Phase 2 studies ongoing in patients with rheumatoid arthritis, lupus, and chronic spontaneous urticaria. On the basis of its potency, selectivity, long target residence time, and noncovalent mode of inhibition, 29 has the potential to be a best-in-class Btk inhibitor for a wide range of immunological indications.
Collapse
Affiliation(s)
- James J Crawford
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Adam R Johnson
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Dinah L Misner
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Lisa D Belmont
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Georgette Castanedo
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Regina Choy
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Melis Coraggio
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Liming Dong
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Charles Eigenbrot
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Rebecca Erickson
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Nico Ghilardi
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Jonathan Hau
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Arna Katewa
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Pawan Bir Kohli
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Wendy Lee
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Joseph W Lubach
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Brent S McKenzie
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Daniel F Ortwine
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Leah Schutt
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Suzanne Tay
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - BinQing Wei
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Karin Reif
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Lichuan Liu
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Harvey Wong
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Wendy B Young
- Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| |
Collapse
|
23
|
Fragment-based drug discovery and its application to challenging drug targets. Essays Biochem 2017; 61:475-484. [PMID: 29118094 DOI: 10.1042/ebc20170029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 11/17/2022]
Abstract
Fragment-based drug discovery (FBDD) is a technique for identifying low molecular weight chemical starting points for drug discovery. Since its inception 20 years ago, FBDD has grown in popularity to the point where it is now an established technique in industry and academia. The approach involves the biophysical screening of proteins against collections of low molecular weight compounds (fragments). Although fragments bind to proteins with relatively low affinity, they form efficient, high quality binding interactions with the protein architecture as they have to overcome a significant entropy barrier to bind. Of the biophysical methods available for fragment screening, X-ray protein crystallography is one of the most sensitive and least prone to false positives. It also provides detailed structural information of the protein-fragment complex at the atomic level. Fragment-based screening using X-ray crystallography is therefore an efficient method for identifying binding hotspots on proteins, which can then be exploited by chemists and biologists for the discovery of new drugs. The use of FBDD is illustrated here with a recently published case study of a drug discovery programme targeting the challenging protein-protein interaction Kelch-like ECH-associated protein 1:nuclear factor erythroid 2-related factor 2.
Collapse
|
24
|
Dashti H, Westler WM, Markley JL, Eghbalnia HR. Unique identifiers for small molecules enable rigorous labeling of their atoms. Sci Data 2017; 4:170073. [PMID: 28534867 PMCID: PMC5441290 DOI: 10.1038/sdata.2017.73] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/28/2017] [Indexed: 11/09/2022] Open
Abstract
Rigorous characterization of small organic molecules in terms of their structural and biological properties is vital to biomedical research. The three-dimensional structure of a molecule, its 'photo ID', is inefficient for searching and matching tasks. Instead, identifiers play a key role in accessing compound data. Unique and reproducible molecule and atom identifiers are required to ensure the correct cross-referencing of properties associated with compounds archived in databases. The best approach to this requirement is the International Chemical Identifier (InChI). However, the current implementation of InChI fails to provide a complete standard for atom nomenclature, and incorrect use of the InChI standard has resulted in the proliferation of non-unique identifiers. We propose a methodology and associated software tools, named ALATIS, that overcomes these shortcomings. ALATIS is an adaptation of InChI, which operates fully within the InChI convention to provide unique and reproducible molecule and all atom identifiers. ALATIS includes an InChI extension for unique atom labeling of symmetric molecules. ALATIS forms the basis for improving reproducibility and unifying cross-referencing across databases.
Collapse
Affiliation(s)
- Hesam Dashti
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - William M Westler
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John L Markley
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Hamid R Eghbalnia
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
25
|
Kavanagh ME, Chenge J, Zoufir A, McLean KJ, Coyne AG, Bender A, Munro AW, Abell C. Fragment Profiling Approach to Inhibitors of the Orphan M. tuberculosis P450 CYP144A1. Biochemistry 2017; 56:1559-1572. [PMID: 28169518 DOI: 10.1021/acs.biochem.6b00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Similarity between the ligand binding profiles of enzymes may aid functional characterization and be of greater relevance to inhibitor development than sequence similarity or structural homology. Fragment screening is an efficient approach for characterization of the ligand binding profile of an enzyme and has been applied here to study the family of cytochrome P450 enzymes (P450s) expressed by Mycobacterium tuberculosis (Mtb). The Mtb P450s have important roles in bacterial virulence, survival, and pathogenicity. Comparing the fragment profiles of seven of these enzymes revealed that P450s which share a similar biological function have significantly similar fragment profiles, whereas functionally unrelated or orphan P450s exhibit distinct ligand binding properties, despite overall high structural homology. Chemical structures that exhibit promiscuous binding between enzymes have been identified, as have selective fragments that could provide leads for inhibitor development. The similarity between the fragment binding profiles of the orphan enzyme CYP144A1 and CYP121A1, a characterized enzyme that is important for Mtb viability, provides a case study illustrating the subsequent identification of novel CYP144A1 ligands. The different binding modes of these compounds to CYP144A1 provide insight into structural and dynamic aspects of the enzyme, possible biological function, and provide the opportunity to develop inhibitors. Expanding this fragment profiling approach to include a greater number of functionally characterized and orphan proteins may provide a valuable resource for understanding enzyme-ligand interactions.
Collapse
Affiliation(s)
- Madeline E Kavanagh
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jude Chenge
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Azedine Zoufir
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kirsty J McLean
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Anthony G Coyne
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andreas Bender
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew W Munro
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Chris Abell
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
26
|
Castanedo GM, Blaquiere N, Beresini M, Bravo B, Brightbill H, Chen J, Cui HF, Eigenbrot C, Everett C, Feng J, Godemann R, Gogol E, Hymowitz S, Johnson A, Kayagaki N, Kohli PB, Knüppel K, Kraemer J, Krüger S, Loke P, McEwan P, Montalbetti C, Roberts DA, Smith M, Steinbacher S, Sujatha-Bhaskar S, Takahashi R, Wang X, Wu LC, Zhang Y, Staben ST. Structure-Based Design of Tricyclic NF-κB Inducing Kinase (NIK) Inhibitors That Have High Selectivity over Phosphoinositide-3-kinase (PI3K). J Med Chem 2017; 60:627-640. [PMID: 28005357 DOI: 10.1021/acs.jmedchem.6b01363] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report here structure-guided optimization of a novel series of NF-κB inducing kinase (NIK) inhibitors. Starting from a modestly potent, low molecular weight lead, activity was improved by designing a type 11/2 binding mode that accessed a back pocket past the methionine-471 gatekeeper. Divergent binding modes in NIK and PI3K were exploited to dampen PI3K inhibition while maintaining NIK inhibition within these series. Potent compounds were discovered that selectively inhibit the nuclear translocation of NF-κB2 (p52/REL-B) but not canonical NF-κB1 (REL-A/p50).
Collapse
Affiliation(s)
| | - Nicole Blaquiere
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Maureen Beresini
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Brandon Bravo
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Hans Brightbill
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Jacob Chen
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Hai-Feng Cui
- Pharmaron Beijing Co., Ltd . 6 Taihe Road, BDA, Beijing 100176, P.R. China
| | - Charles Eigenbrot
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Christine Everett
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianwen Feng
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Godemann
- Manfred Eigen Campus, Evotec AG , Essener Bogen, 22419 Hamburg, Germany
| | - Emily Gogol
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Sarah Hymowitz
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Adam Johnson
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Nobuhiko Kayagaki
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Pawan Bir Kohli
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Kathleen Knüppel
- Manfred Eigen Campus, Evotec AG , Essener Bogen, 22419 Hamburg, Germany
| | - Joachim Kraemer
- Manfred Eigen Campus, Evotec AG , Essener Bogen, 22419 Hamburg, Germany
| | - Susan Krüger
- Manfred Eigen Campus, Evotec AG , Essener Bogen, 22419 Hamburg, Germany
| | - Pui Loke
- Evotec (U.K.) Ltd , 114 Innovation Drive, Milton Park, Abingdon OX14 4Rz, U.K
| | - Paul McEwan
- Evotec (U.K.) Ltd , 114 Innovation Drive, Milton Park, Abingdon OX14 4Rz, U.K
| | | | - David A Roberts
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Myron Smith
- Evotec (U.K.) Ltd , 114 Innovation Drive, Milton Park, Abingdon OX14 4Rz, U.K
| | - Stefan Steinbacher
- Proteros Biostructures GmbH , Bunsenstrasse 7a, D-82152 Martinsried, Germany
| | | | - Ryan Takahashi
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaolu Wang
- Manfred Eigen Campus, Evotec AG , Essener Bogen, 22419 Hamburg, Germany
| | - Lawren C Wu
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Yamin Zhang
- Pharmaron Beijing Co., Ltd . 6 Taihe Road, BDA, Beijing 100176, P.R. China
| | - Steven T Staben
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
27
|
Borges NM, Kenny PW, Montanari CA, Prokopczyk IM, Ribeiro JFR, Rocha JR, Sartori GR. The influence of hydrogen bonding on partition coefficients. J Comput Aided Mol Des 2017; 31:163-181. [PMID: 28054187 DOI: 10.1007/s10822-016-0002-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/16/2016] [Indexed: 11/28/2022]
Abstract
This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect 'frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.
Collapse
Affiliation(s)
- Nádia Melo Borges
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Peter W Kenny
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil.
| | - Carlos A Montanari
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Igor M Prokopczyk
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Jean F R Ribeiro
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Josmar R Rocha
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Geraldo Rodrigues Sartori
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| |
Collapse
|
28
|
Doak BC, Norton RS, Scanlon MJ. The ways and means of fragment-based drug design. Pharmacol Ther 2016; 167:28-37. [DOI: 10.1016/j.pharmthera.2016.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022]
|
29
|
Kavanagh ME, Gray JL, Gilbert SH, Coyne AG, McLean KJ, Davis HJ, Munro AW, Abell C. Substrate Fragmentation for the Design of M. tuberculosis CYP121 Inhibitors. ChemMedChem 2016; 11:1924-35. [PMID: 27432475 PMCID: PMC5026067 DOI: 10.1002/cmdc.201600248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Indexed: 11/11/2022]
Abstract
The cyclo-dipeptide substrates of the essential M. tuberculosis (Mtb) enzyme CYP121 were deconstructed into their component fragments and screened against the enzyme. A number of hits were identified, one of which exhibited an unexpected inhibitor-like binding mode. The inhibitory pharmacophore was elucidated, and fragment binding affinity was rapidly improved by synthetic elaboration guided by the structures of CYP121 substrates. The resulting inhibitors have low micromolar affinity, good predicted physicochemical properties and selectivity for CYP121 over other Mtb P450s. Spectroscopic characterisation of the inhibitors' binding mode provides insight into the effect of weak nitrogen-donor ligands on the P450 heme, an improved understanding of factors governing CYP121-ligand recognition and speculation into the biological role of the enzyme for Mtb.
Collapse
Affiliation(s)
- Madeline E Kavanagh
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Janine L Gray
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sophie H Gilbert
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Anthony G Coyne
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kirsty J McLean
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of LifeSciences, The University of Manchester, Manchester, M1 7DN, UK
| | - Holly J Davis
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Andrew W Munro
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of LifeSciences, The University of Manchester, Manchester, M1 7DN, UK
| | - Chris Abell
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
30
|
Colmenarejo G. Compound Prioritization in Single-Concentration Screening Data Using Ligand Efficiency Indexes. J Chem Inf Model 2016; 56:1705-13. [DOI: 10.1021/acs.jcim.6b00299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gonzalo Colmenarejo
- Department of Computational
Chemistry, Centro de Investigación Básica, GSK, Parque Tecnológico de Madrid, Tres Cantos 28760, Spain
| |
Collapse
|
31
|
Discovery of oxa-sultams as RORc inverse agonists showing reduced lipophilicity, improved selectivity and favorable ADME properties. Bioorg Med Chem Lett 2016; 26:4455-4461. [DOI: 10.1016/j.bmcl.2016.07.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 12/14/2022]
|
32
|
Keserű GM, Erlanson DA, Ferenczy GG, Hann MM, Murray CW, Pickett SD. Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia. J Med Chem 2016; 59:8189-206. [DOI: 10.1021/acs.jmedchem.6b00197] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- György M. Keserű
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
körútja 2, H-1117, Budapest, Hungary
| | - Daniel A. Erlanson
- Carmot Therapeutics, Inc. 409 Illinois Street, San Francisco, California 94158, United States
| | - György G. Ferenczy
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
körútja 2, H-1117, Budapest, Hungary
| | - Michael M. Hann
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Christopher W. Murray
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Stephen D. Pickett
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
33
|
Egieyeh SA, Syce J, Malan SF, Christoffels A. Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs. Malar J 2016; 15:50. [PMID: 26823078 PMCID: PMC4731946 DOI: 10.1186/s12936-016-1087-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 01/09/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND A large number of natural products have shown in vitro antiplasmodial activities. Early identification and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinetics and likelihood for development into drugs is advantageous. Chemo-informatic profiling of these natural products were conducted and compared to currently registered anti-malarial drugs (CRAD). METHODS Natural products with in vitro antiplasmodial activities (NAA) were compiled from various sources. These natural products were sub-divided into four groups based on inhibitory concentration (IC50). Key molecular descriptors and physicochemical properties were computed for these compounds and analysis of variance used to assess statistical significance amongst the sets of compounds. Molecular similarity analysis, estimation of drug-likeness, in silico pharmacokinetic profiling, and exploration of structure-activity landscape were also carried out on these sets of compounds. RESULTS A total of 1040 natural products were selected and a total of 13 molecular descriptors were analysed. Significant differences were observed among the sub-groups of NAA and CRAD for at least 11 of the molecular descriptors, including number of hydrogen bond donors and acceptors, molecular weight, polar and hydrophobic surface areas, chiral centres, oxygen and nitrogen atoms, and shape index. The remaining molecular descriptors, including clogP, number of rotatable bonds and number of aromatic rings, did not show any significant difference when comparing the two compound sets. Molecular similarity and chemical space analysis identified natural products that were structurally diverse from CRAD. Prediction of the pharmacokinetic properties and drug-likeness of these natural products identified over 50% with desirable drug-like properties. Nearly 70% of all natural products were identified as potentially promiscuous compounds. Structure-activity landscape analysis highlighted compound pairs that form 'activity cliffs'. In all, prioritization strategies for the NAA were proposed. CONCLUSIONS Chemo-informatic profiling of NAA and CRAD have produced a wealth of information that may guide decisions and facilitate anti-malarial drug development from natural products. Articulation of the information provided within an interactive data-mining environment led to a prioritized list of NAA.
Collapse
Affiliation(s)
- Samuel Ayodele Egieyeh
- South African Medial Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town, South Africa. .,School of Pharmacy, University of the Western Cape, Bellville, Cape Town, South Africa.
| | - James Syce
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town, South Africa.
| | - Sarel F Malan
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town, South Africa.
| | - Alan Christoffels
- South African Medial Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town, South Africa.
| |
Collapse
|
34
|
|
35
|
Fauber BP, Gobbi A, Savy P, Burton B, Deng Y, Everett C, La H, Johnson AR, Lockey P, Norman M, Wong H. Identification of N-sulfonyl-tetrahydroquinolines as RORc inverse agonists. Bioorg Med Chem Lett 2015; 25:4109-13. [DOI: 10.1016/j.bmcl.2015.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
|
36
|
Fauber BP, René O, Deng Y, DeVoss J, Eidenschenk C, Everett C, Ganguli A, Gobbi A, Hawkins J, Johnson AR, La H, Lesch J, Lockey P, Norman M, Ouyang W, Summerhill S, Wong H. Discovery of 1-{4-[3-fluoro-4-((3s,6r)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone (GNE-3500): a potent, selective, and orally bioavailable retinoic acid receptor-related orphan receptor C (RORc or RORγ) inverse agonist. J Med Chem 2015; 58:5308-22. [PMID: 26061388 DOI: 10.1021/acs.jmedchem.5b00597] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retinoic acid receptor-related orphan receptor C (RORc, RORγ, or NR1F3) is a nuclear receptor that plays a major role in the production of interleukin (IL)-17. Considerable efforts have been directed toward the discovery of selective RORc inverse agonists as potential treatments of inflammatory diseases such as psoriasis and rheumatoid arthritis. Using the previously reported tertiary sulfonamide 1 as a starting point, we engineered structural modifications that significantly improved human and rat metabolic stabilities while maintaining a potent and highly selective RORc inverse agonist profile. The most advanced δ-sultam compound, GNE-3500 (27, 1-{4-[3-fluoro-4-((3S,6R)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone), possessed favorable RORc cellular potency with 75-fold selectivity for RORc over other ROR family members and >200-fold selectivity over 25 additional nuclear receptors in a cell assay panel. The favorable potency, selectivity, in vitro ADME properties, in vivo PK, and dose-dependent inhibition of IL-17 in a PK/PD model support the evaluation of 27 in preclinical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arunima Ganguli
- ⊥Discovery Biology, Argenta, Units 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, U.K
| | | | - Julie Hawkins
- ⊥Discovery Biology, Argenta, Units 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, U.K
| | | | | | | | - Peter Lockey
- ⊥Discovery Biology, Argenta, Units 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, U.K
| | - Maxine Norman
- ⊥Discovery Biology, Argenta, Units 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, U.K
| | | | - Susan Summerhill
- ⊥Discovery Biology, Argenta, Units 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, U.K
| | | |
Collapse
|
37
|
Fauber BP, Gobbi A, Robarge K, Zhou A, Barnard A, Cao J, Deng Y, Eidenschenk C, Everett C, Ganguli A, Hawkins J, Johnson AR, La H, Norman M, Salmon G, Summerhill S, Ouyang W, Tang W, Wong H. Discovery of imidazo[1,5-a]pyridines and -pyrimidines as potent and selective RORc inverse agonists. Bioorg Med Chem Lett 2015; 25:2907-12. [PMID: 26048793 DOI: 10.1016/j.bmcl.2015.05.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
The nuclear receptor (NR) retinoic acid receptor-related orphan receptor gamma (RORγ, RORc, or NR1F3) is a promising target for the treatment of autoimmune diseases. RORc is a critical regulator in the production of the pro-inflammatory cytokine interleukin-17. We discovered a series of potent and selective imidazo[1,5-a]pyridine and -pyrimidine RORc inverse agonists. The most potent compounds displayed >300-fold selectivity for RORc over the other ROR family members, PPARγ, and NRs in our cellular selectivity panel. The favorable potency, selectivity, and physiochemical properties of GNE-0946 (9) and GNE-6468 (28), in addition to their potent suppression of IL-17 production in human primary cells, support their use as chemical biology tools to further explore the role of RORc in human biology.
Collapse
Affiliation(s)
| | - Alberto Gobbi
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kirk Robarge
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Aihe Zhou
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Adrian Barnard
- Argenta, Units 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, UK
| | - Jianhua Cao
- ChemPartner, No. 5 Building, 998 Halei Road, Zhangjiang Hi-Tech Park Pudong New Area, Shanghai 201203, China
| | - Yuzhong Deng
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | - Arunima Ganguli
- Argenta, Units 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, UK
| | - Julie Hawkins
- Argenta, Units 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, UK
| | - Adam R Johnson
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hank La
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Maxine Norman
- Argenta, Units 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, UK
| | - Gary Salmon
- Argenta, Units 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, UK
| | - Susan Summerhill
- Argenta, Units 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, UK
| | - Wenjun Ouyang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei Tang
- ChemPartner, No. 5 Building, 998 Halei Road, Zhangjiang Hi-Tech Park Pudong New Area, Shanghai 201203, China
| | - Harvey Wong
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
38
|
Beinat C, Reekie T, Banister SD, O'Brien-Brown J, Xie T, Olson TT, Xiao Y, Harvey A, O'Connor S, Coles C, Grishin A, Kolesik P, Tsanaktsidis J, Kassiou M. Structure-activity relationship studies of SEN12333 analogues: determination of the optimal requirements for binding affinities at α7 nAChRs through incorporation of known structural motifs. Eur J Med Chem 2015; 95:277-301. [PMID: 25827398 DOI: 10.1016/j.ejmech.2015.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/27/2022]
Abstract
Alpha7 nicotinic acetylcholine receptors (nAChRs) have implications in the regulation of cognitive processes such as memory and attention and have been identified as a promising therapeutic target for the treatment of the cognitive deficits associated with schizophrenia and Alzheimer's disease (AD). Structure affinity relationship studies of the previously described α7 agonist SEN12333 (8), have resulted in the identification of compound 45, a potent and selective agonist of the α7 nAChR with enhanced affinity and improved physicochemical properties over the parent compound (SEN12333, 8).
Collapse
Affiliation(s)
- Corinne Beinat
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tristan Reekie
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Samuel D Banister
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Teresa Xie
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Thao T Olson
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | - John Tsanaktsidis
- CSIRO Materials Science & Engineering, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
39
|
René O, Fauber B, Boenig GL, Burton B, Eidenschenk C, Everett C, Gobbi A, Hymowitz SG, Johnson AR, Kiefer JR, Liimatta M, Lockey P, Norman M, Ouyang W, Wallweber HA, Wong H. Minor Structural Change to Tertiary Sulfonamide RORc Ligands Led to Opposite Mechanisms of Action. ACS Med Chem Lett 2015; 6:276-81. [PMID: 25815138 PMCID: PMC4360161 DOI: 10.1021/ml500420y] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
A minor structural change to tertiary sulfonamide RORc ligands led to distinct mechanisms of action. Co-crystal structures of two compounds revealed mechanistically consistent protein conformational changes. Optimized phenylsulfonamides were identified as RORc agonists while benzylsulfonamides exhibited potent inverse agonist activity. Compounds behaving as agonists in our biochemical assay also gave rise to an increased production of IL-17 in human PBMCs whereas inverse agonists led to significant suppression of IL-17 under the same assay conditions. The most potent inverse agonist compound showed >180-fold selectivity over the ROR isoforms as well as all other nuclear receptors that were profiled.
Collapse
Affiliation(s)
- Olivier René
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Benjamin
P. Fauber
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | | | - Brenda Burton
- Argenta, Early
Discovery, Charles River, 7-9 Spire
Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, U.K.
| | - Céline Eidenschenk
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Christine Everett
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Alberto Gobbi
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Sarah G. Hymowitz
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Adam R. Johnson
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - James R. Kiefer
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Marya Liimatta
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Peter Lockey
- Argenta, Early
Discovery, Charles River, 7-9 Spire
Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, U.K.
| | - Maxine Norman
- Argenta, Early
Discovery, Charles River, 7-9 Spire
Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, U.K.
| | - Wenjun Ouyang
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Heidi A. Wallweber
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Harvey Wong
- Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| |
Collapse
|
40
|
Szőllősi E, Bobok A, Kiss L, Vass M, Kurkó D, Kolok S, Visegrády A, Keserű GM. Cell-based and virtual fragment screening for adrenergic α2C receptor agonists. Bioorg Med Chem 2015; 23:3991-9. [PMID: 25648685 DOI: 10.1016/j.bmc.2015.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/21/2014] [Accepted: 01/07/2015] [Indexed: 12/21/2022]
Abstract
Fragment-based drug discovery has emerged as an alternative to conventional lead identification and optimization strategies generally supported by biophysical detection techniques. Membrane targets like G protein-coupled receptors (GPCRs), however, offer challenges in lack of generic immobilization or stabilization methods for the dynamic, membrane-bound supramolecular complexes. Also modeling of different functional states of GPCRs proved to be a challenging task. Here we report a functional cell-based high concentration screening campaign for the identification of adrenergic α2C receptor agonists compared with the virtual screening of the same ligand set against an active-like homology model of the α2C receptor. The conventional calcium mobilization-based assay identified active fragments with a similar incidence to several other reported fragment screens on GPCRs. 16 out of 3071 screened fragments turned out as specific ligands of α2C, two of which were identified by virtual screening as well and several of the hits possessed surprisingly high affinity and ligand efficiency. Our results indicate that in vitro biological assays can be utilized in the fragment hit identification process for GPCR targets.
Collapse
Affiliation(s)
- Edit Szőllősi
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Amrita Bobok
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - László Kiss
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Márton Vass
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Dalma Kurkó
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Sándor Kolok
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | | | - György M Keserű
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| |
Collapse
|
41
|
Abstract
Fragment-based drug design has become an important strategy for drug design and development over the last decade. It has been used with particular success in the development of kinase inhibitors, which are one of the most widely explored classes of drug targets today. The application of fragment-based methods to discovering and optimizing kinase inhibitors can be a complicated and daunting task; however, a general process has emerged that has been highly fruitful. Here a practical outline of the fragment process used in kinase inhibitor design and development is laid out with specific examples. A guide to the overall process from initial discovery through fragment screening, including the difficulties in detection, to the computational methods available for use in optimization of the discovered fragments is reported.
Collapse
Affiliation(s)
- Jon A Erickson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA,
| |
Collapse
|
42
|
Chen H, Zhou X, Wang A, Zheng Y, Gao Y, Zhou J. Evolutions in fragment-based drug design: the deconstruction-reconstruction approach. Drug Discov Today 2015; 20:105-13. [PMID: 25263697 PMCID: PMC4305461 DOI: 10.1016/j.drudis.2014.09.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/18/2014] [Accepted: 09/17/2014] [Indexed: 12/21/2022]
Abstract
Recent advances in the understanding of molecular recognition and protein-ligand interactions have facilitated rapid development of potent and selective ligands for therapeutically relevant targets. Over the past two decades, a variety of useful approaches and emerging techniques have been developed to promote the identification and optimization of leads that have high potential for generating new therapeutic agents. Intriguingly, the innovation of a fragment-based drug design (FBDD) approach has enabled rapid and efficient progress in drug discovery. In this critical review, we focus on the construction of fragment libraries and the advantages and disadvantages of various fragment-based screening (FBS) for constructing such libraries. We also highlight the deconstruction-reconstruction strategy by utilizing privileged fragments of reported ligands.
Collapse
Affiliation(s)
- Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, PR China; Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaobin Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Ailan Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
43
|
Fauber BP, Dragovich PS, Chen J, Corson LB, Ding CZ, Eigenbrot C, Labadie S, Malek S, Peterson D, Purkey HE, Robarge K, Sideris S, Ultsch M, Wei B, Yen I, Yue Q, Zhou A. Identification of 3,6-disubstituted dihydropyrones as inhibitors of human lactate dehydrogenase. Bioorg Med Chem Lett 2014; 24:5683-5687. [DOI: 10.1016/j.bmcl.2014.10.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
44
|
Labadie S, Dragovich PS, Chen J, Fauber BP, Boggs J, Corson LB, Ding CZ, Eigenbrot C, Ge H, Ho Q, Lai KW, Ma S, Malek S, Peterson D, Purkey HE, Robarge K, Salphati L, Sideris S, Ultsch M, VanderPorten E, Wei B, Xu Q, Yen I, Yue Q, Zhang H, Zhang X, Zhou A. Optimization of 5-(2,6-dichlorophenyl)-3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase. Bioorg Med Chem Lett 2014; 25:75-82. [PMID: 25466195 DOI: 10.1016/j.bmcl.2014.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/22/2023]
Abstract
Optimization of 5-(2,6-dichlorophenyl)-3-hydroxy-2-mercaptocyclohex-2-enone using structure-based design strategies resulted in inhibitors with considerable improvement in biochemical potency against human lactate dehydrogenase A (LDHA). These potent inhibitors were typically selective for LDHA over LDHB isoform (4–10 fold) and other structurally related malate dehydrogenases, MDH1 and MDH2 (>500 fold). An X-ray crystal structure of enzymatically most potent molecule bound to LDHA revealed two additional interactions associated with enhanced biochemical potency.
Collapse
Affiliation(s)
- Sharada Labadie
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
van Niel MB, Fauber BP, Cartwright M, Gaines S, Killen JC, René O, Ward SI, de Leon Boenig G, Deng Y, Eidenschenk C, Everett C, Gancia E, Ganguli A, Gobbi A, Hawkins J, Johnson AR, Kiefer JR, La H, Lockey P, Norman M, Ouyang W, Qin A, Wakes N, Waszkowycz B, Wong H. A reversed sulfonamide series of selective RORc inverse agonists. Bioorg Med Chem Lett 2014; 24:5769-5776. [PMID: 25453817 DOI: 10.1016/j.bmcl.2014.10.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/09/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
The identification of a new series of RORc inverse agonists is described. Comprehensive structure-activity relationship studies of this reversed sulfonamide series identified potent RORc inverse agonists in biochemical and cellular assays which were also selective against a panel of nuclear receptors. Our work has contributed a compound that may serve as a useful in vitro tool to delineate the complex biological pathways involved in signalling through RORc. An X-ray co-crystal structure of an analogue with RORc has also provided useful insights into the binding interactions of the new series.
Collapse
Affiliation(s)
- Monique B van Niel
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom.
| | | | - Matthew Cartwright
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Simon Gaines
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Jonathan C Killen
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Olivier René
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stuart I Ward
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | - Yuzhong Deng
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | - Emanuela Gancia
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Arunima Ganguli
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Alberto Gobbi
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Julie Hawkins
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Adam R Johnson
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James R Kiefer
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hank La
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Peter Lockey
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Maxine Norman
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Wenjun Ouyang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ann Qin
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nicole Wakes
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Bohdan Waszkowycz
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Harvey Wong
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
46
|
Schweiker SS, Loughlin WA, Lohning AS, Petersson MJ, Jenkins ID. Synthesis, screening and docking of small heterocycles as Glycogen Phosphorylase inhibitors. Eur J Med Chem 2014; 84:584-94. [DOI: 10.1016/j.ejmech.2014.07.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 10/25/2022]
|
47
|
Fauber BP, René O, de Leon Boenig G, Burton B, Deng Y, Eidenschenk C, Everett C, Gobbi A, Hymowitz SG, Johnson AR, La H, Liimatta M, Lockey P, Norman M, Ouyang W, Wang W, Wong H. Reduction in lipophilicity improved the solubility, plasma–protein binding, and permeability of tertiary sulfonamide RORc inverse agonists. Bioorg Med Chem Lett 2014; 24:3891-7. [DOI: 10.1016/j.bmcl.2014.06.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
|
48
|
|
49
|
Nicolaou KC. Advancing the Drug Discovery and Development Process. Angew Chem Int Ed Engl 2014; 53:9128-40. [DOI: 10.1002/anie.201404761] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 11/05/2022]
|
50
|
Beinat C, Reekie T, Hibbs D, Xie T, Olson TT, Xiao Y, Harvey A, O'Connor S, Coles C, Tsanaktsidis J, Kassiou M. Investigations of amide bond variation and biaryl modification in analogues of α7 nAChR agonist SEN12333. Eur J Med Chem 2014; 84:200-5. [PMID: 25019477 DOI: 10.1016/j.ejmech.2014.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Several lines of experimental evidence support the involvement of the α7 nAChR in schizophrenia and Alzheimer's disease. Modulators of the α7 nAChR have been extensively reviewed for the treatment of the cognitive deficits associated with these pathologies. SEN12333 represents a novel α7 nAChR agonist chemotype with potential for reduced side effects but requiring further SAR exploration. The present work investigates the amide bond of SEN12333, specifically its connectivity and replacement with the tetrazole functionality, a known cis amide isostere. The results reveal the original amide bond connectivity of SEN12333 to be favorable for binding affinity and agonist activity at α7 nAChRs. The use of a tetrazole isostere completely abolishes affinity and functional activity and suggests that SEN12333 binds in a linear conformation. Results reported herein also suggest the pyridine nitrogen within the terminal aromatic ring of SEN12333 is not essential for binding affinity or functional activity. Further SAR investigations involving manipulation of other moieties contained within SEN12333 are warranted.
Collapse
Affiliation(s)
- Corinne Beinat
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tristan Reekie
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - David Hibbs
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Teresa Xie
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Thao T Olson
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | - John Tsanaktsidis
- CSIRO Materials Science & Engineering, Ian Wark Laboratory, Bayview Avenue, Clayton Victoria 3168, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Discipline of Medical Radiation Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Research Institute, Sydney, NSW 2050, Australia.
| |
Collapse
|