1
|
Nader K, Shetta A, Saber S, Mamdouh W. The potential of carbon-based nanomaterials in hepatitis C virus treatment: a review of carbon nanotubes, dendrimers and fullerenes. DISCOVER NANO 2023; 18:116. [PMID: 37715929 PMCID: PMC10505122 DOI: 10.1186/s11671-023-03895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
HCV, hepatitis C virus, is a virus that causes damage to the liver. Both chronic infection or lack of treatment increase morbidity except if it is an acute infection, as the body clears the virus without any intervention. Also, the virus has many genotypes, and until now, there has yet to be a single treatment capable of affecting and treating all these genotypes at once. This review will discuss the main and most used old treatments, IFN-a, PEG IFN-a, Ribavirin, Celgosvir, and sofosbuvir alone and with the combination of other drugs and their drawbacks. They should be given in combination to improve the effect on the virus compared with being administrated independently, as in the case of sofosbuvir. For these reasons, the need for new treatments and diagnostic tools arises, and the rule of nanotechnology comes here. The role of carbon nanotubes, dendrimers, and fullerenes will be discussed. CNTs, carbon nanotubes, are one-dimensional structures composed of a cylindrical sheet of graphite and are mainly used for diagnostic purposes against HCV. Dendrimers, three-dimensional highly branched structures, are macromolecules that provide better drug delivery and treatment options due to their unique structure that can be modified, producing versatile types; each has unique properties. Fullerenes which are cage like structures derived and closely related to CNTs, and composed of carbon atoms that can be substituted by other atoms which in return open unlimited usage for these carbon based materials. Fullerenes rule is unique since it has two mechanisms that prevent the virus from binding and acting on the virus-replicating enzyme. However, their charge needs to be determined; otherwise, it will lead to cytotoxicity. Lastly, no review has been done on the role of nanotechnology against HCV yet.
Collapse
Affiliation(s)
- Karim Nader
- Department of Mechanical Engineering, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo, 11835, Egypt
| | - Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo, 11835, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), Cairo, 11835, Egypt.
| |
Collapse
|
2
|
Poletaeva DA, Kotelnikova RA, Faingold II, Kraevaya OA, Troshin PA, Kotelnikov AI. Electrostatic effects on water-soluble fullerene derivatives interaction with cytochrome c and cytochrome c oxidase. J Biol Phys 2023; 49:269-282. [PMID: 36932295 PMCID: PMC10160269 DOI: 10.1007/s10867-023-09631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
Water-soluble fullerene derivatives are good candidates for various biological applications such as anticancer or antimicrobial therapy, cytoprotection, enzyme inhibition, and many others. Their toxicity, both in tissue culture and in vivo, is a critical characteristic for the development and restriction of these applications. The effects of six water-soluble cationic and anionic polysubstituted fullerene derivatives on cytochrome c oxidase activity in rat brain mitochondria and the possibility of cytochrome c binding were studied. We found that the ability of these fullerene derivatives to bind with cytochrome c oxidase and charged molecules like eosin Y strongly depends on their electrostatic charge. As was shown, the cationic fullerene derivative inhibits cytochrome c oxidase that has the overall negative electrostatic potential completely, unlike anionic derivatives. Thus, it confirms the essential role of electrostatic interactions in the interaction of fullerene derivatives with the active site of enzymes. The results explore how cationic fullerene derivatives play a role in mitochondrial dysfunction, oxidative stress, and cytotoxicity.
Collapse
Affiliation(s)
- Darya A Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russian Federation.
| | - Raisa A Kotelnikova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russian Federation
| | - Irina I Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russian Federation
| | - Olga A Kraevaya
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russian Federation
| | - Pavel A Troshin
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russian Federation
- Silesian University of Technology, Gliwice, Poland
| | - Alexander I Kotelnikov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
3
|
Sinegubova EO, Kraevaya OA, Volobueva AS, Zhilenkov AV, Shestakov AF, Baykov SV, Troshin PA, Zarubaev VV. Water-Soluble Fullerene C 60 Derivatives Are Effective Inhibitors of Influenza Virus Replication. Microorganisms 2023; 11:microorganisms11030681. [PMID: 36985255 PMCID: PMC10053623 DOI: 10.3390/microorganisms11030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
The influenza virus genome features a very high mutation rate leading to the rapid selection of drug-resistant strains. Due to the emergence of drug-resistant strains, there is a need for the further development of new potent antivirals against influenza with a broad activity spectrum. Thus, the search for a novel, effective broad-spectrum antiviral agent is a top priority of medical science and healthcare systems. In this paper, derivatives based on fullerenes with broad virus inhibiting activities in vitro against a panel of influenza viruses were described. The antiviral properties of water-soluble fullerene derivatives were studied. It was demonstrated that the library of compounds based on fullerenes has cytoprotective activity. Maximum virus-inhibiting activity and minimum toxicity were found with compound 2, containing residues of salts of 2-amino-3-cyclopropylpropanoic acid (CC50 > 300 µg/mL, IC50 = 4.73 µg/mL, SI = 64). This study represents the initial stage in a study of fullerenes as anti-influenza drugs. The results of the study lead us conclude that five leading compounds (1-5) have pharmacological prospects.
Collapse
Affiliation(s)
| | - Olga A Kraevaya
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
| | | | - Alexander V Zhilenkov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
| | - Alexander F Shestakov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
- Faculty of Fundamental Physics & Chemical Engineering, Lomonosov Moscow State University, GSP 1, 1-51 Leninskie Gory, 119991 Moscow, Russia
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Pavel A Troshin
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
- Zhengzhou Research Institute, Harbin Institute of Technology, Longyuan East 7th 26, Jinshui District, Zhengzhou 450003, China
- Harbin Institute of Technology, No.92 West Dazhi Street, Nan Gang District, Harbin 150001, China
| | - Vladimir V Zarubaev
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 St. Petersburg, Russia
| |
Collapse
|
4
|
Paukov M, Kramberger C, Begichev I, Kharlamova M, Burdanova M. Functionalized Fullerenes and Their Applications in Electrochemistry, Solar Cells, and Nanoelectronics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1276. [PMID: 36770286 PMCID: PMC9919315 DOI: 10.3390/ma16031276] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Carbon-based nanomaterials have rapidly advanced over the last few decades. Fullerenes, carbon nanotubes, graphene and its derivatives, graphene oxide, nanodiamonds, and carbon-based quantum dots have been developed and intensively studied. Among them, fullerenes have attracted increasing research attention due to their unique chemical and physical properties, which have great potential in a wide range of applications. In this article, we offer a comprehensive review of recent progress in the synthesis and the chemical and physical properties of fullerenes and related composites. The review begins with the introduction of various methods for the synthesis of functionalized fullerenes. A discussion then follows on their chemical and physical properties. Thereafter, various intriguing applications, such as using carbon nanotubes as nanoreactors for fullerene chemical reactions, are highlighted. Finally, this review concludes with a summary of future research, major challenges to be met, and possible solutions.
Collapse
Affiliation(s)
- Maksim Paukov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| | - Ilia Begichev
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Marianna Kharlamova
- Centre for Advanced Material Application (CEMEA), Slovak Academy of Sciences, Dúbravská cesta 5807/9, 854 11 Bratislava, Slovakia
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9-BC-2, 1060 Vienna, Austria
- Laboratory of Nanobiotechnologies, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia
| | - Maria Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia
- Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| |
Collapse
|
5
|
Hussain FS, Abro NQ, Ahmed N, Memon SQ, Memon N. Nano-antivirals: A comprehensive review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1064615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles can be used as inhibitory agents against various microorganisms, including bacteria, algae, archaea, fungi, and a huge class of viruses. The mechanism of action includes inhibiting the function of the cell membrane/stopping the synthesis of the cell membrane, disturbing the transduction of energy, producing toxic reactive oxygen species (ROS), and inhibiting or reducing RNA and DNA production. Various nanomaterials, including different metallic, silicon, and carbon-based nanomaterials and nanoarchitectures, have been successfully used against different viruses. Recent research strongly agrees that these nanoarchitecture-based virucidal materials (nano-antivirals) have shown activity in the solid state. Therefore, they are very useful in the development of several products, such as fabric and high-touch surfaces. This review thoroughly and critically identifies recently developed nano-antivirals and their products, nano-antiviral deposition methods on various substrates, and possible mechanisms of action. By considering the commercial viability of nano-antivirals, recommendations are made to develop scalable and sustainable nano-antiviral products with contact-killing properties.
Collapse
|
6
|
Alavi SE, Raza A, Gholami M, Giles M, Al-Sammak R, Ibrahim A, Ebrahimi Shahmabadi H, Sharma LA. Advanced Drug Delivery Platforms for the Treatment of Oral Pathogens. Pharmaceutics 2022; 14:2293. [PMID: 36365112 PMCID: PMC9692332 DOI: 10.3390/pharmaceutics14112293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
The oral cavity is a complex ecosystem accommodating various microorganisms (e.g., bacteria and fungi). Various factors, such as diet change and poor oral hygiene, can change the composition of oral microbiota, resulting in the dysbiosis of the oral micro-environment and the emergence of pathogenic microorganisms, and consequently, oral infectious diseases. Systemic administration is frequently used for drug delivery in the treatment of diseases and is associated with the problems, such as drug resistance and dysbiosis. To overcome these challenges, oral drug delivery systems (DDS) have received considerable attention. In this literature review, the related articles are identified, and their findings, in terms of current therapeutic challenges and the applications of DDSs, especially nanoscopic DDSs, for the treatment of oral infectious diseases are highlighted. DDSs are also discussed in terms of structures and therapeutic agents (e.g., antibiotics, antifungals, antiviral, and ions) that they deliver. In addition, strategies (e.g., theranostics, hydrogel, microparticle, strips/fibers, and pH-sensitive nanoparticles), which can improve the treatment outcome of these diseases, are highlighted.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Michael Giles
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Rayan Al-Sammak
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Ali Ibrahim
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Lavanya A. Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| |
Collapse
|
7
|
Xu PY, Li XQ, Chen WG, Deng LL, Tan YZ, Zhang Q, Xie SY, Zheng LS. Progress in Antiviral Fullerene Research. NANOMATERIALS 2022; 12:nano12152547. [PMID: 35893515 PMCID: PMC9330071 DOI: 10.3390/nano12152547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Unlike traditional small molecule drugs, fullerene is an all-carbon nanomolecule with a spherical cage structure. Fullerene exhibits high levels of antiviral activity, inhibiting virus replication in vitro and in vivo. In this review, we systematically summarize the latest research regarding the different types of fullerenes investigated in antiviral studies. We discuss the unique structural advantage of fullerenes, present diverse modification strategies based on the addition of various functional groups, assess the effect of structural differences on antiviral activity, and describe the possible antiviral mechanism. Finally, we discuss the prospective development of fullerenes as antiviral drugs.
Collapse
Affiliation(s)
- Piao-Yang Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.-Y.X.); (Y.-Z.T.); (S.-Y.X.); (L.-S.Z.)
| | - Xiao-Qing Li
- Funano New Material Technology Company Ltd., Xiamen 361110, China; (X.-Q.L.); (W.-G.C.)
| | - Wei-Guang Chen
- Funano New Material Technology Company Ltd., Xiamen 361110, China; (X.-Q.L.); (W.-G.C.)
| | - Lin-Long Deng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China;
| | - Yuan-Zhi Tan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.-Y.X.); (Y.-Z.T.); (S.-Y.X.); (L.-S.Z.)
| | - Qianyan Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.-Y.X.); (Y.-Z.T.); (S.-Y.X.); (L.-S.Z.)
- Correspondence:
| | - Su-Yuan Xie
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.-Y.X.); (Y.-Z.T.); (S.-Y.X.); (L.-S.Z.)
| | - Lan-Sun Zheng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.-Y.X.); (Y.-Z.T.); (S.-Y.X.); (L.-S.Z.)
| |
Collapse
|
8
|
Marforio TD, Mattioli EJ, Zerbetto F, Calvaresi M. Fullerenes against COVID-19: Repurposing C 60 and C 70 to Clog the Active Site of SARS-CoV-2 Protease. Molecules 2022; 27:1916. [PMID: 35335283 PMCID: PMC8955646 DOI: 10.3390/molecules27061916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/28/2022] Open
Abstract
The persistency of COVID-19 in the world and the continuous rise of its variants demand new treatments to complement vaccines. Computational chemistry can assist in the identification of moieties able to lead to new drugs to fight the disease. Fullerenes and carbon nanomaterials can interact with proteins and are considered promising antiviral agents. Here, we propose the possibility to repurpose fullerenes to clog the active site of the SARS-CoV-2 protease, Mpro. Through the use of docking, molecular dynamics, and energy decomposition techniques, it is shown that C60 has a substantial binding energy to the main protease of the SARS-CoV-2 virus, Mpro, higher than masitinib, a known inhibitor of the protein. Furthermore, we suggest the use of C70 as an innovative scaffold for the inhibition of SARS-CoV-2 Mpro. At odds with masitinib, both C60 and C70 interact more strongly with SARS-CoV-2 Mpro when different protonation states of the catalytic dyad are considered. The binding of fullerenes to Mpro is due to shape complementarity, i.e., vdW interactions, and is aspecific. As such, it is not sensitive to mutations that can eliminate or invert the charges of the amino acids composing the binding pocket. Fullerenic cages should therefore be more effective against the SARS-CoV-2 virus than the available inhibitors such as masinitib, where the electrostatic term plays a crucial role in the binding.
Collapse
Affiliation(s)
- Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (E.J.M.); (F.Z.)
| | | | | | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (E.J.M.); (F.Z.)
| |
Collapse
|
9
|
Belik AY, Rybkin AY, Goryachev NS, Sadkov AP, Filatova NV, Buyanovskaya AG, Talanova VN, Klemenkova ZS, Romanova VS, Koifman MO, Terentiev AA, Kotelnikov AI. Nanoparticles of water-soluble dyads based on amino acid fullerene C 60 derivatives and pyropheophorbide: Synthesis, photophysical properties, and photodynamic activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119885. [PMID: 33993022 DOI: 10.1016/j.saa.2021.119885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Synthesis, spectral properties, and photodynamic activity of water-soluble amino acid fullerene C60 derivatives (AFD) and four original AFD-PPa dyads, obtained by covalent addition of dye pyropheophorbide (PPa) to AFD, were studied. In aqueous solution, these AFD-PPa dyads form nanoassociates as a result of self-assembly. In this case, a significant change in the absorption spectra and strong quenching of the dye fluorescence in the structure of the dyads were observed. A comparison of superoxide or singlet oxygen generation efficiency of the studied compounds in an aqueous solution showed the photodynamic mechanism switching from type II (singlet oxygen generation of the native dye) to I type (superoxide generation of dyads). All dyads have pronounced phototoxicity on cells Hela with IC50 9.2 µM, 9.2 µM, 12.2 µM for dyads Val-C60-PPa, Ala-C60-PPa and Pro-C60-PPa, respectively. Such facilitation of type I photodynamic mechanism could be perspective against hypoxic tumors.
Collapse
Affiliation(s)
- A Yu Belik
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia.
| | - A Yu Rybkin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia
| | - N S Goryachev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| | - A P Sadkov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia
| | - N V Filatova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia
| | - A G Buyanovskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 117813, Russia
| | - V N Talanova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 117813, Russia
| | - Z S Klemenkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 117813, Russia
| | - V S Romanova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 117813, Russia
| | - M O Koifman
- Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - A A Terentiev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| | - A I Kotelnikov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Oblast 142432, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
10
|
Kraevaya OA, Bolshakova VS, Peregudov AS, Chernyak AV, Slesarenko NA, Markov VY, Lukonina NS, Martynenko VM, Sinegubova EO, Shestakov AF, Zarubaev VV, Schols D, Troshin PA. Water-Promoted Reaction of C 60Ar 5Cl Compounds with Thiophenes Delivers a Family of Multifunctional Fullerene Derivatives with Selective Antiviral Properties. Org Lett 2021; 23:7226-7230. [PMID: 34468156 DOI: 10.1021/acs.orglett.1c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report a reaction of the fullerene derivatives C60Ar5Cl, which enables the substitution of Cl with thiophene residues and the formation of the novel family of C1-symmetrical C60 fullerene derivatives with six functional addends C60Ar5Th. The discovered reaction provided a straightforward approach to the synthesis of previously inaccessible multifunctional water-soluble fullerene derivatives, including the compounds with antiviral activity against human immunodeficiency and influenza viruses.
Collapse
Affiliation(s)
- Olga A Kraevaya
- Institute for Problems of Chemical Physics of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia
| | - Valeriya S Bolshakova
- Institute for Problems of Chemical Physics of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia.,Higher Chemical College of RAS, Mendeleev University of Chemical Technology of Russia, Miusskaya square 9, Moscow 125047, Russia
| | - Alexander S Peregudov
- A. N. Nesmeyanov Institute of Organoelement Compounds of RAS, Vavylova St. 28, B-334, Moscow 119991, Russia
| | - Alexander V Chernyak
- Institute for Problems of Chemical Physics of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia
| | - Nikita A Slesarenko
- Institute for Problems of Chemical Physics of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia
| | - Vitaliy Yu Markov
- Department of Physical Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, GSP 1,1-3 Leninskie Gory, Moscow 119991, Russia
| | - Natalia S Lukonina
- Department of Physical Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, GSP 1,1-3 Leninskie Gory, Moscow 119991, Russia
| | - Vyacheslav M Martynenko
- Institute for Problems of Chemical Physics of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia
| | - Ekaterina O Sinegubova
- Pasteur Institute of Epidemiology and Microbiology, Mira St. 14, Saint Petersburg 197101, Russian Federation
| | - Alexander F Shestakov
- Institute for Problems of Chemical Physics of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia.,Faculty of Fundamental Physics & Chemical Engineering, Lomonosov Moscow State University, GSP 1, 1-51 Leninskie Gory, Moscow 119991, Russia
| | - Vladimir V Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, Mira St. 14, Saint Petersburg 197101, Russian Federation
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Pavel A Troshin
- Silesian University of Technology, Akademicka St. 2A, Gliwice 44-100, Poland.,Institute for Problems of Chemical Physics of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia
| |
Collapse
|
11
|
Gharpure S, Ankamwar B. Use of nanotechnology in combating coronavirus. 3 Biotech 2021; 11:358. [PMID: 34221822 PMCID: PMC8238387 DOI: 10.1007/s13205-021-02905-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/19/2021] [Indexed: 10/25/2022] Open
Abstract
Recent COVID-19 pandemic situation caused due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affected global health as well as economics. There is global attention on prevention, diagnosis as well as treatment of COVID-19 infection which would help in easing the current situation. The use of nanotechnology and nanomedicine has been considered to be promising due to its excellent potential in managing various medical issues such as viruses which is a major threat. Nanoparticles have shown great potential in various biomedical applications and can prove to be of great use in antiviral therapy, especially over other conventional antiviral agents. This review focusses on the pathophysiology of SARS-CoV-2 and the progression of the COVID-19 disease followed by currently available treatments for the same. Use of nanotechnology has been elaborated by exploiting various nanoparticles like metal and metal oxide nanoparticles, carbon-based nanoparticles, quantum dots, polymeric nanoparticles as well as lipid-based nanoparticles along with its mechanism of action against viruses which can prove to be beneficial in COVID-19 therapeutics. However, it needs to be considered that use of these nanotechnology-based approaches in COVID-19 therapeutics only aids the human immunity in fighting the infection. The main function is performed by the immune system in combatting any infection.
Collapse
Affiliation(s)
- Saee Gharpure
- Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007 India
| | - Balaprasad Ankamwar
- Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007 India
| |
Collapse
|
12
|
Serrano-Aroca Á, Takayama K, Tuñón-Molina A, Seyran M, Hassan SS, Pal Choudhury P, Uversky VN, Lundstrom K, Adadi P, Palù G, Aljabali AAA, Chauhan G, Kandimalla R, Tambuwala MM, Lal A, Abd El-Aziz TM, Sherchan S, Barh D, Redwan EM, Bazan NG, Mishra YK, Uhal BD, Brufsky A. Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial-Resistant Era. ACS NANO 2021; 15:8069-8086. [PMID: 33826850 PMCID: PMC8043205 DOI: 10.1021/acsnano.1c00629] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 05/04/2023]
Abstract
Therapeutic options for the highly pathogenic human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the current pandemic coronavirus disease (COVID-19) are urgently needed. COVID-19 is associated with viral pneumonia and acute respiratory distress syndrome causing significant morbidity and mortality. The proposed treatments for COVID-19 have shown little or no effect in the clinic so far. Additionally, bacterial and fungal pathogens contribute to the SARS-CoV-2-mediated pneumonia disease complex. The antibiotic resistance in pneumonia treatment is increasing at an alarming rate. Therefore, carbon-based nanomaterials (CBNs), such as fullerene, carbon dots, graphene, and their derivatives constitute a promising alternative due to their wide-spectrum antimicrobial activity, biocompatibility, biodegradability, and capacity to induce tissue regeneration. Furthermore, the antimicrobial mode of action is mainly physical (e.g., membrane distortion), characterized by a low risk of antimicrobial resistance. In this Review, we evaluated the literature on the antiviral activity and broad-spectrum antimicrobial properties of CBNs. CBNs had antiviral activity against 13 enveloped positive-sense single-stranded RNA viruses, including SARS-CoV-2. CBNs with low or no toxicity to humans are promising therapeutics against the COVID-19 pneumonia complex with other viruses, bacteria, and fungi, including those that are multidrug-resistant.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de
Investigación Traslacional San Alberto Magno, Universidad
Católica de Valencia San Vicente Mártir, 46001 Valencia,
Spain
| | - Kazuo Takayama
- Center for iPS Cell Research and Application,
Kyoto University, Kyoto 606-8397,
Japan
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de
Investigación Traslacional San Alberto Magno, Universidad
Católica de Valencia San Vicente Mártir, 46001 Valencia,
Spain
| | - Murat Seyran
- Doctoral studies in natural and technical sciences (SPL
44), University of Vienna, Währinger Straße, A-1090
Vienna, Austria
| | - Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana
Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal,
India
| | - Pabitra Pal Choudhury
- Applied Statistics Unit, Indian
Statistical Institute, Kolkata 700108, West Bengal,
India
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of
Medicine, University of South Florida, Tampa, Florida 33612,
United States
| | | | - Parise Adadi
- Department of Food Science, University of
Otago, Dunedin 9054, New Zealand
| | - Giorgio Palù
- Department of Molecular Medicine,
University of Padova, Via Gabelli 63, 35121 Padova,
Italy
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and
Pharmaceutical Technology, Yarmouk University-Faculty of
Pharmacy, Irbid 21163, Jordan
| | - Gaurav Chauhan
- School of Engineering and Sciences,
Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501
Sur, 64849 Monterrey, NL, Mexico
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian
Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007,
India
- Department of Biochemistry,
Kakatiya Medical College, Warangal-506007, Telangana State,
India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical
Science, Ulster University, Coleraine BT52 1SA, Northern
Ireland, U.K.
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical
Care Medicine, Mayo Clinic, Rochester, Minnesota 55905,
United States
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science,
Minia University, El-Minia 61519,
Egypt
- Department of Cellular and Integrative
Physiology, University of Texas Health Science Center at San
Antonio, San Antonio, Texas 78229-3900, United
States
| | - Samendra Sherchan
- Department of Environmental Health Sciences,
School of Public Health and Tropical Medicine, Tulane University of
Louisiana, New Orleans, Louisiana 70112, United
States
| | - Debmalya Barh
- Institute of Integrative
Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur,
WB-721172, India
| | - Elrashdy M. Redwan
- Biological Sciences Department,
Faculty of Science, King Abdulaziz University, P.O. Box 80203,
Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins
Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research
Institute, City for Scientific Research and Technology
Applications, New Borg El-Arab, Alexandria 21934,
Egypt
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence,
School of Medicine, LSU Heath New Orleans, New Orleans,
Louisiana 70112, United States
| | - Yogendra Kumar Mishra
- University of Southern
Denmark, Mads Clausen Institute, NanoSYD, Alsion 2, 6400 Sønderborg,
Denmark
| | - Bruce D. Uhal
- Department of Physiology, Michigan State
University, East Lansing, Michigan 48824, United
States
| | - Adam Brufsky
- University of Pittsburgh
School of Medicine, Department of Medicine, Division of
Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232,
United States
| |
Collapse
|
13
|
Sengupta J, Hussain CM. Carbon nanomaterials to combat virus: A perspective in view of COVID-19. CARBON TRENDS 2021; 2:100019. [PMID: 38620887 PMCID: PMC7834913 DOI: 10.1016/j.cartre.2020.100019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 05/12/2023]
Abstract
The rapid outbreaks of lethal viruses necessitate the development of novel antiviral substance. Besides the conventional antiviral substances, biocompatible nanomaterials also have significant potential in combating the virus at various stages of infection. Carbon nanomaterials have an impressive record against viruses and can deal with many crucial healthcare issues. In accordance with the published literature, biocompatible carbon nanomaterials have a promising prospect as an antiviral substance. Subsequently, the antiviral properties of different carbon nanomaterials namely fullerene, carbon nanotube, carbon dot and graphene oxide have been reviewed.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science Jogesh Chandra Chaudhuri College (Affiliated to University of Calcutta), Kolkata 700033, West Bengal, India
| | | |
Collapse
|
14
|
Tamm NB, Markov VY, Goryunkov AA, Troyanov SI. Intermediate Products of C
60
High‐Temperature Chlorination – C
60
Cl
n
(
n
= 8, 10, 14, 20, 24). European J Org Chem 2020. [DOI: 10.1002/ejoc.202001260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nadezhda B. Tamm
- Chemistry Department Moscow State University Leninskie gory 119991 Moscow Russia
| | - Vitaliy Yu. Markov
- Chemistry Department Moscow State University Leninskie gory 119991 Moscow Russia
| | - Alexey A. Goryunkov
- Chemistry Department Moscow State University Leninskie gory 119991 Moscow Russia
| | - Sergey I. Troyanov
- Chemistry Department Moscow State University Leninskie gory 119991 Moscow Russia
| |
Collapse
|
15
|
Kraevaya OA, Peregudov AS, Fedorova NE, Klimova RR, Godovikov IA, Mishchenko DV, Shestakov AF, Schols D, Kushch AA, Troshin PA. Thiophene-based water-soluble fullerene derivatives as highly potent antiherpetic pharmaceuticals. Org Biomol Chem 2020; 18:8702-8708. [PMID: 33084716 DOI: 10.1039/d0ob01826k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the Friedel-Crafts arylation of chlorofullerenes C60Cl6 and C70Cl8 with thiophene-based methyl esters. While C60Cl6 formed expected Cs-C60R5Cl products, C70Cl8 demonstrated a tendency for both substitution of chlorine atoms and addition of an extra thiophene unit, thus forming Cs-C70R8 and C1-C70R9H compounds. The synthesized water-soluble C60 and C70 fullerene derivatives with thiophene-based addends demonstrated high activity against a broad range of viruses, including human immunodeficiency virus, influenza virus, cytomegalovirus, and herpes simplex virus. The record activity of C70 fullerene derivatives against herpes simplex virus together with low toxicity in mice makes them promising candidates for the development of novel non-nucleoside antiherpetic drugs.
Collapse
Affiliation(s)
- Olga A Kraevaya
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia. and IPCP RAS, Semenov Prospect 1, Chernogolovka, 142432, Russia
| | | | - Natalia E Fedorova
- Honored Academician N.F.Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Gamaleya St. 18, 123098, Moscow, Russia
| | - Regina R Klimova
- Honored Academician N.F.Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Gamaleya St. 18, 123098, Moscow, Russia
| | | | | | - Alexander F Shestakov
- IPCP RAS, Semenov Prospect 1, Chernogolovka, 142432, Russia and Faculty of Fundamental Physics & Chemical Engineering, Moscow Lomonosov State University, GSP 1, 1-51 Leninskie Gory, Moscow 119991, Russia
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Alla A Kushch
- Honored Academician N.F.Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Gamaleya St. 18, 123098, Moscow, Russia
| | - Pavel A Troshin
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia. and IPCP RAS, Semenov Prospect 1, Chernogolovka, 142432, Russia
| |
Collapse
|
16
|
Reina G, Peng S, Jacquemin L, Andrade AF, Bianco A. Hard Nanomaterials in Time of Viral Pandemics. ACS NANO 2020; 14:9364-9388. [PMID: 32667191 PMCID: PMC7376974 DOI: 10.1021/acsnano.0c04117] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
The SARS-Cov-2 pandemic has spread worldwide during 2020, setting up an uncertain start of this decade. The measures to contain infection taken by many governments have been extremely severe by imposing home lockdown and industrial production shutdown, making this the biggest crisis since the second world war. Additionally, the continuous colonization of wild natural lands may touch unknown virus reservoirs, causing the spread of epidemics. Apart from SARS-Cov-2, the recent history has seen the spread of several viral pandemics such as H2N2 and H3N3 flu, HIV, and SARS, while MERS and Ebola viruses are considered still in a prepandemic phase. Hard nanomaterials (HNMs) have been recently used as antimicrobial agents, potentially being next-generation drugs to fight viral infections. HNMs can block infection at early (disinfection, entrance inhibition) and middle (inside the host cells) stages and are also able to mitigate the immune response. This review is focused on the application of HNMs as antiviral agents. In particular, mechanisms of actions, biological outputs, and limitations for each HNM will be systematically presented and analyzed from a material chemistry point-of-view. The antiviral activity will be discussed in the context of the different pandemic viruses. We acknowledge that HNM antiviral research is still at its early stage, however, we believe that this field will rapidly blossom in the next period.
Collapse
Affiliation(s)
- Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Lucas Jacquemin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Andrés Felipe Andrade
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| |
Collapse
|
17
|
Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci 2020; 11:6606-6622. [PMID: 33033592 PMCID: PMC7499860 DOI: 10.1039/d0sc02658a] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022] Open
Abstract
The appearance of new and lethal viruses and their potential threat urgently requires innovative antiviral systems. In addition to the most common and proven pharmacological methods, nanomaterials can represent alternative resources to fight viruses at different stages of infection, by selective action or in a broad spectrum. A fundamental requirement is non-toxicity. However, biocompatible nanomaterials have very often little or no antiviral activity, preventing their practical use. Carbon-based nanomaterials have displayed encouraging results and can present the required mix of biocompatibility and antiviral properties. In the present review, the main candidates for future carbon nanometric antiviral systems, namely graphene, carbon dots and fullerenes, have been critically analysed. In general, different carbon nanostructures allow several strategies to be applied. Some of the materials have peculiar antiviral properties, such as singlet oxygen emission, or the capacity to interfere with virus enzymes. In other cases, nanomaterials have been used as a platform for functional molecules able to capture and inhibit viral activity. The use of carbon-based biocompatible nanomaterials as antivirals is still an almost unexplored field, while the published results show promising prospects.
Collapse
Affiliation(s)
- Plinio Innocenzi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| | - Luigi Stagi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| |
Collapse
|
18
|
Zhao Y, Jin B, Ding L, Xiao L, Peng R. Regioselective synthesis of 4,11,15,30-tetraalkoxyphenyl fullereno[1,2:2′,3′]dihydrobenzofurans and potential application as propellant stabilizer. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Huang HJ, Kraevaya OA, Voronov II, Troshin PA, Hsu SH. Fullerene Derivatives as Lung Cancer Cell Inhibitors: Investigation of Potential Descriptors Using QSAR Approaches. Int J Nanomedicine 2020; 15:2485-2499. [PMID: 32368036 PMCID: PMC7170710 DOI: 10.2147/ijn.s243463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background Nanotechnology-based strategies in the treatment of cancer have potential advantages because of the favorable delivery of nanoparticles into tumors through porous vasculature. Materials and Methods In the current study, we synthesized a series of water-soluble fullerene derivatives and observed their anti-tumor effects on human lung carcinoma A549 cell lines. The quantitative structure–activity relationship (QSAR) modeling was employed to investigate the relationship between anticancer effects and descriptors relevant to peculiarities of molecular structures of fullerene derivatives. Results In the QSAR regression model, the evaluation results revealed that the determination coefficient r2 and leave-one-out cross-validation q2 for the recommended QSAR model were 0.9966 and 0.9246, respectively, indicating the reliability of the results. The molecular modeling showed that the lack of chlorine atom and a lower number of aliphatic single bonds in saturated hydrocarbon chains may be positively correlated with the lung cancer cytotoxicity of fullerene derivatives. Synthesized water-soluble fullerene derivatives have potential functional groups to inhibit the proliferation of lung cancer cells. Conclusion The guidelines obtained from the QSAR model might strongly facilitate the rational design of potential fullerene-based drug candidates for lung cancer therapy in the future.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Olga A Kraevaya
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Institute for Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Ilya I Voronov
- Institute for Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Pavel A Troshin
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Institute for Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.,Research and Development Center for Medical Devices, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Voronov II, Martynenko VM, Chernyak AV, Godovikov I, Peregudov AS, Balzarini J, Shestakov AF, Schols D, Troshin PA. Synthesis, characterization and anti-HIV activity of polycarboxylic [60]fullerene derivatives obtained in the reaction of C60Cl6 with a hydroquinone ether. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Kraevaya OA, Peregudov AS, Godovikov IA, Shchurik EV, Martynenko VM, Shestakov AF, Balzarini J, Schols D, Troshin PA. Direct arylation of C 60Cl 6 and C 70Cl 8 with carboxylic acids: a synthetic avenue to water-soluble fullerene derivatives with promising antiviral activity. Chem Commun (Camb) 2020; 56:1179-1182. [PMID: 31868184 DOI: 10.1039/c9cc08400b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report unprecedented Friedel-Crafts arylation of chlorofullerenes C60Cl6 and C70Cl8 with unprotected carboxylic acids as an efficient single-step synthesis of the inherently stable water-soluble fullerene derivatives. Using this method, a series of previously unaccessible compounds was obtained without chromatographic purification in almost quantitative yields. Promising anti-HIV activity comparable to characteristics of commercial drugs was demonstrated for some of these compounds.
Collapse
Affiliation(s)
- Olga A Kraevaya
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ding L, Jin B, Guo Z, Zhao Y, Chen J, Peng R. Regioselective Synthesis and Crystallographic Characterization of Nontethered cis-1 and cis-2 Bis(benzofuro)[60]fullerene Derivatives. Org Lett 2019; 21:9924-9928. [DOI: 10.1021/acs.orglett.9b03862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ling Ding
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Bo Jin
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Zhicheng Guo
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yang Zhao
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Junjie Chen
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Rufang Peng
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| |
Collapse
|
23
|
Mironov AF. Chemical Transformations of Chlorophyll a and Possible Areas for Application of Its Derivatives. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219090354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bobylev AG, Kraevaya OA, Bobyleva LG, Khakina EA, Fadeev RS, Zhilenkov AV, Mishchenko DV, Penkov NV, Teplov IY, Yakupova EI, Vikhlyantsev IM, Troshin PA. Anti-amyloid activities of three different types of water-soluble fullerene derivatives. Colloids Surf B Biointerfaces 2019; 183:110426. [PMID: 31421408 DOI: 10.1016/j.colsurfb.2019.110426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/16/2019] [Accepted: 08/04/2019] [Indexed: 01/21/2023]
Abstract
Anti-amyloid activity, aggregation behaviour, cytotoxicity and acute toxicity were investigated for three water-soluble fullerene derivatives with different types of solubilizing addends. All investigated compounds showed a strong anti-amyloid effect in vitrocaused by interaction of the water-soluble fullerene derivatives with the Ab(1-42)-peptide and followed by destruction of the amyloid fibrils. Notably, all of the studied fullerene derivatives showed very low cytotoxicity and low acute toxicity in mice (most promising compound 3 was more than four times less toxic than aspirin). Strong anti-amyloid effect of the fullerene derivatives together with low toxicity reveals high potential of these compounds as drug candidates for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander G Bobylev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Kraevaya
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia; Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Liya G Bobyleva
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Ekaterina A Khakina
- Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Alexander V Zhilenkov
- Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Denis V Mishchenko
- Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, Pushchino, Moscow Region, 142290, Russia
| | - Ilia Y Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, Pushchino, Moscow Region, 142290, Russia
| | - Elmira I Yakupova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Ivan M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Pavel A Troshin
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia; Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia.
| |
Collapse
|
25
|
Kraevaya OA, Peregudov AS, Troyanov SI, Godovikov I, Fedorova NE, Klimova RR, Sergeeva VA, Kameneva LV, Ershova ES, Martynenko VM, Claes S, Kushch AA, Kostyuk SV, Schols D, Shestakov AF, Troshin PA. Diversion of the Arbuzov reaction: alkylation of C-Cl instead of phosphonic ester formation on the fullerene cage. Org Biomol Chem 2019; 17:7155-7160. [PMID: 31169856 DOI: 10.1039/c9ob00593e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report an "inversed" Arbuzov reaction of the fullerene derivatives C60Ar5Cl with trialkyl phosphites P(OR)3 producing alkylated fullerene derivatives C60Ar5R (R = Me, Et, iPr, nBu) with almost quantitative yields. This reaction provides a convenient synthetic route for the preparation of a large variety of functionalized fullerene derivatives with tailored properties, e.g. water-soluble compounds demonstrating promising antiviral activities against HCMV, HSV1, HIV and several influenza virus strains.
Collapse
Affiliation(s)
- Ol'ga A Kraevaya
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia. and IPCP RAS, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | | | - Sergey I Troyanov
- Department of Chemistry, Moscow Lomonosov State University, Leninskie gory, Moscow, 119991, Russia
| | - Ivan Godovikov
- INEOS RAS, Vavylova St. 28, B-334, Moscow, 119991, Russia
| | - Natalya E Fedorova
- Honored Academician N.F.Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Gamaleya st. 18, 123098, Moscow, Russia
| | - Regina R Klimova
- Honored Academician N.F.Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Gamaleya st. 18, 123098, Moscow, Russia
| | - Vasilina A Sergeeva
- Research Centre for Medical Genetics RAMS, Moskvorech'e St. 1, Moscow, 115478, Russia
| | - Larisa V Kameneva
- Research Centre for Medical Genetics RAMS, Moskvorech'e St. 1, Moscow, 115478, Russia
| | - Elizaveta S Ershova
- Research Centre for Medical Genetics RAMS, Moskvorech'e St. 1, Moscow, 115478, Russia
| | | | - Sandra Claes
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Alla A Kushch
- Honored Academician N.F.Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Gamaleya st. 18, 123098, Moscow, Russia
| | - Svetlana V Kostyuk
- Research Centre for Medical Genetics RAMS, Moskvorech'e St. 1, Moscow, 115478, Russia
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Alexander F Shestakov
- IPCP RAS, Semenov Prospect 1, Chernogolovka, 141432, Russia and Faculty of Fundamental Physics & Chemical Engineering, Moscow Lomonosov State University, GSP 1, 1-51 Leninskie Gory, Moscow, 119991, Russia
| | - Pavel A Troshin
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia. and IPCP RAS, Semenov Prospect 1, Chernogolovka, 141432, Russia
| |
Collapse
|
26
|
Avilova I, Khakina E, Kraevaya O, Kotelnikov A, Kotelnikova R, Troshin P, Volkov V. Self-diffusion of water-soluble fullerene derivatives in mouse erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1537-1543. [PMID: 29792833 DOI: 10.1016/j.bbamem.2018.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 02/02/2023]
Abstract
Self-diffusion of water-soluble fullerene derivative (WSFD) C60[S(CH2)3SO3Na]5H in mouse red blood cells (RBC) was characterized by 1H pulsed field gradient NMR technique. It was found that a fraction of fullerene molecules (~13% of the fullerene derivative added in aqueous RBC suspension) shows a self-diffusion coefficient of (5.5 ± 0.8)·10-12 m2/s, which is matching the coefficient of the lateral diffusion of lipids in the erythrocyte membrane (DL = (5.4 ± 0.8)·10-12 m2/s). This experimental finding evidences the absorption of the fullerene derivative by RBC. Fullerene derivative molecules are also absorbed by RBC ghosts and phosphatidylcholine liposomes as manifested in self-diffusion coefficients of (7.9 ± 1.2)·10-12 m2/s and (7.7 ± 1.2)·10-12 m2/s, which are also close to the lateral diffusion coefficients of (6.5 ± 1.0)·10-12 m2/s and (8.5 ± 1.3)·10-12 m2/s, respectively. The obtained results suggest that fullerene derivative molecules are, probably, fixed on the RBC surface. The average residence time of the fullerene derivative molecule on RBC was estimated as 440 ± 70 ms. Thus, the pulsed field gradient NMR was shown to be a versatile technique for investigation of the interactions of the fullerene derivatives with blood cells providing essential information, which can be projected on their behavior in-vivo after intravenous administration while screening as potential drug candidates.
Collapse
Affiliation(s)
- Irina Avilova
- Institute of Problems of Chemical Physics, RAS, Academician Semenov avenue 1, Chernogolovka 142432, Moscow Region, Russia
| | - Ekaterina Khakina
- Institute of Problems of Chemical Physics, RAS, Academician Semenov avenue 1, Chernogolovka 142432, Moscow Region, Russia
| | - Ol''ga Kraevaya
- Institute of Problems of Chemical Physics, RAS, Academician Semenov avenue 1, Chernogolovka 142432, Moscow Region, Russia; Higher Chemical College, Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology, Miusskaya 9, 125047 Moscow, Russia
| | - Alexander Kotelnikov
- Institute of Problems of Chemical Physics, RAS, Academician Semenov avenue 1, Chernogolovka 142432, Moscow Region, Russia
| | - Raisa Kotelnikova
- Institute of Problems of Chemical Physics, RAS, Academician Semenov avenue 1, Chernogolovka 142432, Moscow Region, Russia
| | - Pavel Troshin
- Skolkovo Institute of Science and Technology, Nobel st. 3, 143026 Moscow, Russia; Institute of Problems of Chemical Physics, RAS, Academician Semenov avenue 1, Chernogolovka 142432, Moscow Region, Russia
| | - Vitaliy Volkov
- Institute of Problems of Chemical Physics, RAS, Academician Semenov avenue 1, Chernogolovka 142432, Moscow Region, Russia; Science Center in Chernogolovka, RAS, Lesnaya str. 9, Chernogolovka 142432, Moscow Region, Russia.
| |
Collapse
|
27
|
Toward the identification of a reliable 3D-QSAR model for the protein tyrosine phosphatase 1B inhibitors. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Khakina EA, Kraevaya OA, Popova ML, Peregudov AS, Troyanov SI, Chernyak AV, Martynenko VM, Kulikov AV, Schols D, Troshin PA. Synthesis of different types of alkoxy fullerene derivatives from chlorofullerene C 60Cl 6. Org Biomol Chem 2018; 15:773-777. [PMID: 27830866 DOI: 10.1039/c6ob02251k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report novel synthetic routes for facile preparation of highly functionalized fullerene derivatives C60(OR)5X (X = H, Cl, Br), C60(OR)4O and C60(OR)2 from chlorofullerene C60Cl6. The first water-soluble fullerene compound bearing residues of 3-oxypropanoic acid demonstrated a potent anti-HIV activity.
Collapse
Affiliation(s)
| | - Ol'ga A Kraevaya
- IPCP RAS, Semenov Prospect 1, Chernogolovka, 142432, Russia. and HCC RAS, Miusskaya pl. 9, Moscow, 125047, Russia
| | - Maria L Popova
- IPCP RAS, Semenov Prospect 1, Chernogolovka, 142432, Russia. and HCC RAS, Miusskaya pl. 9, Moscow, 125047, Russia
| | | | - Sergey I Troyanov
- Department of Chemistry, Moscow State University, Leninskie gory, Moscow, 119991, Russia
| | | | | | | | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Pavel A Troshin
- IPCP RAS, Semenov Prospect 1, Chernogolovka, 142432, Russia. and Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russian Federation
| |
Collapse
|
29
|
Zhilenkov AV, Peregudov AS, Chernyak AV, Martynenko VM, Troshin PA. Synthesis of chlorinated fullerenes C 60 Cl n (n = 2, 4) from C 60 Cl 6 and their Arbuzov-type reaction with P(OEt) 3. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Kraevaya OA, Peregudov AS, Martynenko VM, Troshin PA. Facile synthesis of isomerically pure fullerenols C 60 (OH) 5 Br and 1,4-C 60 (OH) 2 from chlorofullerene C 60 Cl 6. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.10.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Belik AY, Mikhailov PA, Kraevaya OA, Rybkin AY, Khakina EA, Goryachev NS, Usol’tseva LI, Romanenko YV, Koifman OI, Gushchina OI, Mironov AF, Troshin PA, Kotel’nikov AI. Synthesis, photophysical properties, and photochemical activity of the water-soluble dyad based on fullerene С60 and chlorin e6 derivatives. DOKLADY PHYSICAL CHEMISTRY 2018. [DOI: 10.1134/s0012501617120065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Zhang Q, Jin B, Wang X, Lei S, Liu Q, Liang H, Chu S, Peng R. Chlorofullerene C60
Cl6
: A Precursor for Straightforward Preparation of Highly Water-Soluble Poly-hydroxypyridinone Fullerene Derivatives as Potential Radionuclide Chelators. ChemistrySelect 2017. [DOI: 10.1002/slct.201702049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingchun Zhang
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Bo Jin
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Xiaofang Wang
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 China
| | - Shan Lei
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 China
| | - Qiangqiang Liu
- Research Center of Laser Fusion; China Academy of Engineering Physics; Mianyang 621010 China
| | - Hua Liang
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Shijin Chu
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Rufang Peng
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| |
Collapse
|
33
|
|
34
|
Imran M, Waheed Y, Ghazal A, Ullah S, Safi SZ, Jamal M, Ali M, Atif M, Imran M, Ullah F. Modern biotechnology-based therapeutic approaches against HIV infection. Biomed Rep 2017; 7:504-507. [PMID: 29250325 PMCID: PMC5727756 DOI: 10.3892/br.2017.1006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023] Open
Abstract
The causative agent of acquired immune deficiency syndrome (AIDS) is human immunodeficiency virus (HIV). Since its discovery before 30 years, a number of drugs known as highly active antiretroviral therapy have been developed to suppress the life cycle of the virus at different stages. With the current therapeutic approaches, ending AIDS means providing treatment to 35 million individuals living with HIV for the rest of their lives or until a cure is developed. Additionally, therapy is associated with various other challenges such as potential of drug resistance, toxicity and presence of latent viral reservoir. Therefore, it is imperative to search for treatments and to identify new therapeutic approaches against HIV infection to avoid daily intake of drugs. The aim of the current review was to summarize different therapeutic strategies against HIV infection, including stem cell therapy, RNA interference, CRISPR/Cas9 pathways, antibodies, intrabodies and nanotechnology. Silencing RNA against chemokine receptor 5 and other HIV RNAs have been tested and found to elicit homology-based, post-transcriptional silencing. The CRISPR/Cas9 is a gene editing technology that produces a double-stranded nick in the virus DNA, which is repaired by the host machinery either by non-homology end joining mechanism or via homology recombination leading to insertion, deletion mutation which further leads to frame shift mutation and non-functional products. Intrabodies are intracellular-expressed antibodies that are directed towards the targets inside the cell unlike the naturally expressed antibodies which target outside the cell. Different nanotechnology-based therapeutic approaches are also in progress against HIV. HIV eradication is not feasible without deploying a cure or vaccine alongside the treatment.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore 54600, Pakistan
| | - Yasir Waheed
- Foundation University Medical College, Foundation University, Islamabad 44000, Pakistan
| | - Ayesha Ghazal
- Department of Microbiology, University of Health Sciences, Lahore 54600, Pakistan
| | - Sajjad Ullah
- Department of Medical Laboratory Sciences, Imperial College of Business Studies, Lahore 53720, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan 23200, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, University of Management Technology, Lahore 54600, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, Sakaka, Saudi Arabia
| | - Muhammad Imran
- Department of Diet and Nutrition, Imperial College of Business Studies, Lahore 54600, Pakistan
- Correspondence to: Dr Muhammad Imran, Department of Microbiology, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan, E-mail:
| | - Farman Ullah
- Department of Physiology, Shaheed Zulfiqar Ali Bhutto Medical university Islamabad, Islamabad 44000, Pakistan
| |
Collapse
|
35
|
Hsieh FY, Zhilenkov AV, Voronov II, Khakina EA, Mischenko DV, Troshin PA, Hsu SH. Water-Soluble Fullerene Derivatives as Brain Medicine: Surface Chemistry Determines If They Are Neuroprotective and Antitumor. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11482-11492. [PMID: 28263053 DOI: 10.1021/acsami.7b01077] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Delivering drugs to the central nervous system (CNS) is a major challenge in treating CNS-related diseases. Nanoparticles that can cross blood-brain barrier (BBB) are potential tools. In this study, water-soluble C60 fullerene derivatives with different types of linkages between the fullerene cage and the solubilizing addend were synthesized (compounds 1-3: C-C bonds, compounds 4-5: C-S bonds, compound 6: C-P bonds, and compounds 7-9: C-N bonds). Fullerene derivatives 1-6 were observed to induce neural stem cell (NSC) proliferation in vitro and rescue the function of injured CNS in zebrafish. Fullerene derivatives 7-9 were found to inhibit glioblastoma cell proliferation in vitro and reduce glioblastoma formation in zebrafish. These effects were correlated with the cell metabolic changes. Particularly, compound 3 bearing residues of phenylbutiryc acids significantly promoted NSC proliferation and neural repair without causing tumor growth. Meanwhile, compound 7 with phenylalanine appendages significantly inhibited glioblastoma growth without retarding the neural repair. We conclude that the surface functional group determines the properties as well as the interactions of C60 with NSCs and glioma cells, producing either a neuroprotective or antitumor effect for possible treatment of CNS-related diseases.
Collapse
Affiliation(s)
| | - A V Zhilenkov
- Institute for Problems of Chemical Physics of Russian Academy of Sciences , Semenov Prospect 1, Chernogolovka 142432, Russian Federation
| | - I I Voronov
- Institute for Problems of Chemical Physics of Russian Academy of Sciences , Semenov Prospect 1, Chernogolovka 142432, Russian Federation
| | - E A Khakina
- Institute for Problems of Chemical Physics of Russian Academy of Sciences , Semenov Prospect 1, Chernogolovka 142432, Russian Federation
| | - D V Mischenko
- Institute for Problems of Chemical Physics of Russian Academy of Sciences , Semenov Prospect 1, Chernogolovka 142432, Russian Federation
| | - Pavel A Troshin
- Institute for Problems of Chemical Physics of Russian Academy of Sciences , Semenov Prospect 1, Chernogolovka 142432, Russian Federation
- Skolkovo Institute of Science and Technology , Moscow 143005, Russian Federation
| | - Shan-Hui Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes , Zhunan 35053, Taiwan, R.O.C
| |
Collapse
|
36
|
Abstract
Hexachloro[60]fullerene, C60Cl6, was reacted with a mixture of ROH/H2O (R = Me, Et, n-Pr, (CH2)2C≡CH) to form both C60Cl(OH)(OR)4 and C60Cl(OR)5. Only the C60Cl(OH)(OR)4 were isolated with bulky alcohols, ROH (R = (CH2)3C≡CH, (CH2)4C≡CH). Tetrahydro[60]fullerene epoxides, C60(O)(OR)4, were prepared by treating C60Cl(OH)(OR)4 with CuI. The epoxy moiety could be hydrolyzed to the vicinal diol derivatives, C60(OH)2(OR)4, and then oxidized to form dicarbonyl open-cage fullerenes, C60O2(OR)4. CuI was found to convert the terminal alkynyl addends into iodoalkynyl addends on the C60 cage.
Collapse
Affiliation(s)
- Ning Lou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Liangbing Gan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
37
|
Verma M, Gupta SJ, Chaudhary A, Garg VK. Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents - A brief review. Bioorg Chem 2016; 70:267-283. [PMID: 28043717 DOI: 10.1016/j.bioorg.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 01/16/2023]
Abstract
Diabetes mellitus and obesity are one of the most common health issues spread throughout world and raised the medical attention to find the new effective agents to treat these disease state. Occurrence of the drug resistance to the insulin and leptin receptor is also challenging major issues. The molecules that can overcome this resistance problem could be effective for the treatment of both type II diabetes and obesity. Protein Tyrosine Phosphatase (PTP) has emerged as new promising targets for therapeutic purpose in recent years. Protein Tyrosine Phosphatase 1B (PTP 1B) act as a negative regulator of insulin and leptin receptor signalling pathways. Several approaches have been successfully applied to find out potent and selective inhibitors. This article reviews PTP 1B inhibitors; natural, synthetic and semi-synthetic that showed inhibition towards enzyme as a major target for the management of type II diabetes. These studies could be contributing the future development of PTP 1B inhibitors as drugs.
Collapse
Affiliation(s)
- Mansi Verma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Baghpat By-pass Crossing, NH-58, Delhi-Haridwar Highway, Meerut 250005, India.
| | - Shyam Ji Gupta
- Department of Chemistry, Indian Institute of Chemical Biology (CSIR), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, W.B., India
| | - Anurag Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Baghpat By-pass Crossing, NH-58, Delhi-Haridwar Highway, Meerut 250005, India
| | - Vipin K Garg
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Baghpat By-pass Crossing, NH-58, Delhi-Haridwar Highway, Meerut 250005, India
| |
Collapse
|
38
|
Khakina EA, Yamilova OR, Novikov AV, Godovikov IA, Peregudov AS, Troshin PA. Toward an understanding of the mechanism of the Arbuzov-type reaction of C60Cl6 with phosphites. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Functionalized Fullerene Increases NF-κB Activity and Blocks Genotoxic Effect of Oxidative Stress in Serum-Starving Human Embryo Lung Diploid Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9895245. [PMID: 27635190 PMCID: PMC5011234 DOI: 10.1155/2016/9895245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
Abstract
The influence of a water-soluble [60] fullerene derivative containing five residues of 3-phenylpropionic acid and a chlorine addend appended to the carbon cage (F-828) on serum-starving human embryo lung diploid fibroblasts (HELFs) was studied. Serum deprivation evokes oxidative stress in HELFs. Cultivation of serum-starving HELFs in the presence of 0.1–1 µM F-828 significantly decreases the level of free radicals, inhibits autophagy, and represses expression of NOX4 and NRF2 proteins. The activity of NF-κB substantially grows up in contrast to the suppressed NRF2 activity. In the presence of 0.2–0.25 µM F-828, the DSB rate and apoptosis level dramatically decrease. The maximum increase of proliferative activity of the HELFs and maximum activity of NF-κB are observed at these concentration values. Conclusion. Under the conditions of oxidative stress evoked by serum deprivation the water-soluble fullerene derivative F-828 used in concentrations of 0.1 to 1 µM strongly stimulates the NF-κB activity and represses the NRF2 activity in HELFs.
Collapse
|
40
|
Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 805:46-57. [PMID: 27402482 DOI: 10.1016/j.mrgentox.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Water-soluble fullerenes have been studied as potential nanovectors and therapeutic agents, but their possible toxicity is of concern. We have studied the effects of F-828, a soluble fullerene [C60] derivative, on diploid human embryonic lung fibroblasts (HELFs) in vitro. F-828 causes complex time-dependent changes in ROS levels. Inhibition of Nox4 activity by plumbagin blocks F-828-dependent ROS elevation. F-828 induces DNA breaks, as measured by the comet assay and γH2AX expression, and the activities of the transcription factors NF-kB and p53 increase. F-828 concentrations>25μM are cytotoxic; cell death occurs by necrosis. Expression levels of TGF-β, RHOA, RHOC, ROCK1, and SMAD2 increase following exposure to F-828. Our results raise the possibility that fullerene F-828 may induce pulmonary fibrosis in vivo.
Collapse
|
41
|
Lou N, Li Y, Cui C, Liu Y, Gan L. Preparation of Azafullerene C59NR5 and Fullerene Derivative C60NAr5 with a Pyridine Moiety on the Cage Skeleton. Org Lett 2016; 18:2236-9. [DOI: 10.1021/acs.orglett.6b00872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ning Lou
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of the Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanbang Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of the Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chengxing Cui
- Key
Laboratory of Theoretical and Computational Photochemistry Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yajun Liu
- Key
Laboratory of Theoretical and Computational Photochemistry Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Liangbing Gan
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of the Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
42
|
Khakina EA, Peregudov AS, Yurkova AA, Piven NP, Shestakov AF, Troshin PA. Unusual multistep reaction of C70Cl10 with thiols producing C70[SR]5H. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Influence of water-soluble derivatives of [60]fullerene on catalytic activity of monoaminе oxidase B and their membranotropic properties. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Analyses of the Binding between Water Soluble C60 Derivatives and Potential Drug Targets through a Molecular Docking Approach. PLoS One 2016; 11:e0147761. [PMID: 26829126 PMCID: PMC4735121 DOI: 10.1371/journal.pone.0147761] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022] Open
Abstract
Fullerene C60, a unique sphere-shaped molecule consisting of carbon, has been proved to have inhibitory effects on many diseases. However, the applications of C60 in medicine have been severely hindered by its complete insolubility in water and low solubility in almost all organic solvents. In this study, the water-soluble C60 derivatives and the C60 binding protein’s structures were collected from the literature. The selected proteins fall into several groups, including acetylcholinesterase, glutamate racemase, inosine monophosphate dehydrogenase, lumazine synthase, human estrogen receptor alpha, dihydrofolate reductase and N-myristoyltransferase. The C60 derivatives were docked into the binding sites in the proteins. The binding affinities of the C60 derivatives were calculated. The bindings between proteins and their known inhibitors or native ligands were also characterized in the same way. The results show that C60 derivatives form good interactions with the binding sites of different protein targets. In many cases, the binding affinities of C60 derivatives are better than those of known inhibitors and native ligands. This study demonstrates the interaction patterns of C60 derivatives and their binding partners, which will have good impact on the fullerene-based drug discovery.
Collapse
|
45
|
da Silva Gonçalves A, França TCC, Vital de Oliveira O. Computational studies of acetylcholinesterase complexed with fullerene derivatives: a new insight for Alzheimer disease treatment. J Biomol Struct Dyn 2015. [PMID: 26219766 DOI: 10.1080/07391102.2015.1077345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Here, we propose five fullerene (C60) derivatives as new drugs against Alzheimer's disease (AD). These compounds were designed to act as new human acetylcholinesterase (HssAChE) inhibitors by blocking its fasciculin II (FASII) binding site. Docking and molecular dynamic results show that our proposals bind to the HssAChE tunnel entrance, forming stable complex, and further binding free energy calculations suggest that three of the derivatives proposed here could be potent HssAChE inhibitors. We found a region formed by a set of residues (Tyr72, Asp74, Trp286, Gln291, Tyr341, and Pro344) which can be further exploited in the drug design of new inhibitors of HssAChE based on C60 derivatives. Results presented here report for the first time by a new class of molecules that can become effective drugs against AD.
Collapse
Affiliation(s)
- Arlan da Silva Gonçalves
- a Federal Institute of Education Science and Technology of Espirito Santo , unit Vila Velha, Avenida Ministro Salgado Filho, 1000, 29106-010 Soteco, Espírito Santo - ES , Brazil
| | - Tanos Celmar Costa França
- b Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD) , Military Institute of Engineering , Rio de Janeiro, RJ , Brazil.,c Faculty of Informatics and Management, Center for Basic and Applied Research , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Osmair Vital de Oliveira
- a Federal Institute of Education Science and Technology of Espirito Santo , unit Vila Velha, Avenida Ministro Salgado Filho, 1000, 29106-010 Soteco, Espírito Santo - ES , Brazil
| |
Collapse
|
46
|
Liang H, Cui B, Dai K, Peng R. Convenient Fullerene Derivatization: A Solvothermal Method for the Acquisition of Polyarylated Fullerenes with Aryl Group Number Above Five. J CLUST SCI 2015. [DOI: 10.1007/s10876-015-0914-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Kobzar OL, Trush VV, Tanchuk VY, Voronov II, Peregudov AS, Troshin PA, Vovk AI. Polycarboxylic fullerene derivatives as protein tyrosine phosphatase inhibitors. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Bobylev AG, Penkov NV, Troshin PA, Gudkov SV. The effect of dilution on the aggregation of polycarboxylated C60 fullerene nanoparticles. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915010078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Liang S, Xu L, Gan L. Synthesis and Chemical Reactivity of Tetrahydro[60]fullerene Epoxides with Both Amino and Aryl Addends. J Org Chem 2015; 80:3957-64. [DOI: 10.1021/acs.joc.5b00287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sisi Liang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of the Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Liang Xu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of the Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Liangbing Gan
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of the Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
50
|
Fullerene derivatives as a new class of inhibitors of protein tyrosine phosphatases. Bioorg Med Chem Lett 2014; 24:3175-9. [DOI: 10.1016/j.bmcl.2014.04.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 11/18/2022]
|