1
|
Li N, He J. Hydrogel-based therapeutic strategies for spinal cord injury repair: Recent advances and future prospects. Int J Biol Macromol 2024; 277:134591. [PMID: 39127289 DOI: 10.1016/j.ijbiomac.2024.134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Spinal cord injury (SCI) is a debilitating condition that can result in significant functional impairment and loss of quality of life. There is a growing interest in developing new therapies for SCI, and hydrogel-based multimodal therapeutic strategies have emerged as a promising approach. They offer several advantages for SCI repair, including biocompatibility, tunable mechanical properties, low immunogenicity, and the ability to deliver therapeutic agents. This article provides an overview of the recent advances in hydrogel-based therapy strategies for SCI repair, particularly within the past three years. We summarize the SCI hydrogels with varied characteristics such as phase-change hydrogels, self-healing hydrogel, oriented fibers hydrogel, and self-assembled microspheres hydrogel, as well as different functional hydrogels such as conductive hydrogels, stimuli-responsive hydrogels, adhesive hydrogel, antioxidant hydrogel, sustained-release hydrogel, etc. The composition, preparation, and therapeutic effect of these hydrogels are briefly discussed and comprehensively evaluated. In the end, the future development of hydrogels in SCI repair is prospected to inspire more researchers to invest in this promising field.
Collapse
Affiliation(s)
- Na Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Jintao He
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
2
|
Minaei E, Ranson M, Aghmesheh M, Sluyter R, Vine KL. Enhancing pancreatic cancer immunotherapy: Leveraging localized delivery strategies through the use of implantable devices and scaffolds. J Control Release 2024; 373:145-160. [PMID: 38996923 DOI: 10.1016/j.jconrel.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Pancreatic cancer (PC) remains the predominant type of upper gastrointestinal tract cancer, associated with heightened morbidity and a survival rate below 12%. While immunotherapy has brought about transformative changes in the standards of care for most solid tumors, its application in PC is hindered by the ''cold tumor'' microenvironment, marked by the presence of immunosuppressive cells. Modest response rates in PC are attributed, in part to, the fibrotic stroma that obstructs the delivery of systemic immunotherapy. Furthermore, the occurrence of immune-related adverse events (iRAEs) often necessitates the use of sub-therapeutic doses or treatment discontinuation. In the pursuit of innovative approaches to enhance the effectiveness of immunotherapy for PC, implantable drug delivery devices and scaffolds emerge as promising strategies. These technologies offer the potential for sustained drug delivery directly to the tumor site, overcoming stromal barriers, immunosuppression, T cell exclusion, immunotherapy resistance, optimizing drug dosage, and mitigating systemic toxicity. This review offers a comprehensive exploration of pancreatic ductal adenocarcinoma (PDAC), the most common and aggressive form of PC, accompanied by a critical analysis of the challenges the microenvironment presents to the development of successful combinational immunotherapy approaches. Despite efforts, these approaches have thus far fallen short in enhancing treatment outcomes for PDAC. The review will subsequently delve into the imperative need for refining delivery strategies, providing an examination of past and ongoing studies in the field of localized immunotherapy for PDAC. Addressing these issues will lay the groundwork for the development of effective new therapies, thereby enhancing treatment response, patient survival, and overall quality of life for individuals diagnosed with PDAC.
Collapse
Affiliation(s)
- E Minaei
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - M Ranson
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - M Aghmesheh
- Nelune Comprehensive Cancer Centre, Bright Building, Prince of Wales Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - R Sluyter
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - K L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
3
|
Acar M, Tatini D, Fidi A, Pacini L, Quagliata M, Nuti F, Papini AM, Lo Nostro P. A Promising Compound for Green Multiresponsive Materials Based on Acyl Carrier Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12381-12393. [PMID: 38836557 DOI: 10.1021/acs.langmuir.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A gel that exhibits intrinsically multiple-responsive behavior was prepared from an oligopeptide and studied. ACP(65-74) is an active decapeptide fragment of acyl carrier protein. We investigated 3% w/v ACP(65-74)-NH2 self-healing physical gels in water, glycerol carbonate (GC), and their mixtures. The morphology was investigated by optical, birefringence, and confocal laser scanning microscopy, circular dichroism, Fourier transform infrared, and fluorescence spectroscopy experiments. We found that all samples possess pH responsiveness with fully reversible sol-to-gel transitions. The rheological properties depend on the temperature and solvent composition. The temperature dependence of the gels in water shows a peculiar behavior that is similar to that of thermoresponsive polymer solutions. The results reveal the presence of several β-sheet structures and amyloid aggregates, offering valuable insights into the fibrillation mechanism of amyloids in different solvent media.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Duccio Tatini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alberto Fidi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Lorenzo Pacini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Michael Quagliata
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Francesca Nuti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Anna Maria Papini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
4
|
Liang X, Lin D, Zhang W, Chen S, Ding H, Zhong HJ. Progress in the Preparation and Application of Inulin-Based Hydrogels. Polymers (Basel) 2024; 16:1492. [PMID: 38891439 PMCID: PMC11174702 DOI: 10.3390/polym16111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Inulin, a natural polysaccharide, has emerged as a promising precursor for the preparation of hydrogels due to its biocompatibility, biodegradability, and structural versatility. This review provides a comprehensive overview of the recent progress in the preparation, characterization, and diverse applications of inulin-based hydrogels. Different synthesis strategies, including physical methods (thermal induction and non-thermal induction), chemical methods (free-radical polymerization and chemical crosslinking), and enzymatic approaches, are discussed in detail. The unique properties of inulin-based hydrogels, such as stimuli-responsiveness, antibacterial activity, and their potential as fat replacers, are highlighted. Special emphasis is given to their promising applications in drug delivery systems, especially for colon-targeted delivery, due to the selective degradation of inulin via colonic microflora. The ability to incorporate both hydrophilic and hydrophobic drugs further expands their therapeutic potential. In addition, the applications of inulin-based hydrogels in responsive materials, the food industry, wound dressings, and tissue engineering are discussed. While significant progress has been achieved, challenges and prospects in optimizing synthesis, improving mechanical properties, and exploring new functionalities are discussed. Overall, this review highlights the remarkable properties of inulin-based hydrogels as a promising class of biomaterials with immense potential in the biomedical, pharmaceutical, and materials science fields.
Collapse
Affiliation(s)
- Xiaoxu Liang
- Foundation Department, Guangzhou Maritime University, Guangzhou 510725, China;
| | - Danlei Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; (D.L.); (W.Z.); (S.C.)
| | - Wen Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; (D.L.); (W.Z.); (S.C.)
| | - Shiji Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; (D.L.); (W.Z.); (S.C.)
| | - Hongyao Ding
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Hai-Jing Zhong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; (D.L.); (W.Z.); (S.C.)
| |
Collapse
|
5
|
Wang J, Zhou H, Fan Y, Hou W, Zhao T, Hu Z, Shi E, Lv JA. Adaptive nanotube networks enabling omnidirectionally deformable electro-driven liquid crystal elastomers towards artificial muscles. MATERIALS HORIZONS 2024; 11:1877-1888. [PMID: 38516937 DOI: 10.1039/d4mh00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Artificial muscles that can convert electrical energy into mechanical energy promise broad scientific and technological applications. However, existing electro-driven artificial muscles have been plagued with problems that hinder their practical applications: large electro-mechanical attenuation during deformation, high-driving voltages, small actuation strain, and low power density. Here, we design and create novel electro-thermal-driven artificial muscles rationally composited by hierarchically structured carbon nanotube (HS-CNT) networks and liquid crystal elastomers (LCEs), which possess adaptive sandwiched nanotube networks with angulated-scissor-like microstructures, thus effectively addressing above problems. These HS-CNT/LCE artificial muscles demonstrate not only large strain (>40%), but also remarkable conductive robustness (R/R0 < 1.03 under actuation), excellent Joule heating efficiency (≈ 233 °C at 4 V), and high load-bearing capacity (R/R0 < 1.15 at 4000 times its weight loaded). In addition, our artificial muscles exhibit real-muscle-like morphing intelligence that enables preventing mechanical damage in response to excessively heavyweight loading. These high-performance artificial muscles uniquely combining omnidirectional stretchability, robust electrothermal actuation, low driving voltage, and powerful mechanical output would exert significant technological impacts on engineering applications such as soft robotics and wearable flexible electronics.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Hao Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| | - Yangyang Fan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Wenhao Hou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Tonghui Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhiming Hu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Enzheng Shi
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| | - Jiu-An Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
6
|
Gavrilov AA, Kramarenko EY. Effect of ion distribution on stress relaxation in polyelectrolyte complex gels. J Chem Phys 2024; 160:114901. [PMID: 38501478 DOI: 10.1063/5.0198332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Solutions of polyelectrolytes consisting of polycations and polyanions in equal proportions were studied in the present work. Due to the physical cross-links formed by the charged groups, physical gels were formed in such systems. The mechanical properties and structure of the obtained gels depending on the charge arrangement along the backbone and the dimensionless Bjerrum length λ were investigated. The response of the systems to a uniaxial affine deformation was studied first. It was found that the systems can be divided into three groups depending on the charge arrangement: showing an almost elastic response; showing a viscoelastic response with a very long relaxation time; and showing a weak viscoelastic response with a short relaxation time. Interestingly, no stable aggregates were formed in the systems with the charges located on spacers, probably because of the increased mobility of the charges in such systems. The obtained stress relaxation curves had different functional forms, indicating that the relaxation has at least two characteristic times, which are different for different systems. In order to understand the molecular nature of the observed mechanical response, the temporal evolution of the network structure of a system showing a viscoelastic response with a very long relaxation time was studied; the aggregates were found to be dynamic, which leads to the relaxation of the "subchains" conformation.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| | - Elena Yu Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences, 117393 Moscow, Russia
| |
Collapse
|
7
|
Kim J, Park J, Jung K, Kim EJ, Tan Z, Xu M, Lee YJ, Ku KH, Kim BJ. Light-Responsive Shape- and Color-Changing Block Copolymer Particles with Fast Switching Speed. ACS NANO 2024; 18:8180-8189. [PMID: 38450652 DOI: 10.1021/acsnano.3c12059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Polymer particles capable of dynamic shape changes in response to light have received substantial attention in the development of intelligent multifunctional materials. In this study, we develop a light-responsive block copolymer (BCP) particle system that exhibits fast and reversible shape and color transitions. The key molecular design is the integration of spiropyran photoacid (SPPA) molecules into the BCP particle system, which enables fast and dynamic transformations of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) particles in response to light. The SPPA photoisomerization, induced by 420 nm light irradiation, lowers the pH of the aqueous surroundings from 5.5 to 3.3. The protonated P4VP block substantially increases in domain size from 14 to 39 nm, resulting in significant elongation of the BCP particles (i.e., an increase in the aspect ratio (AR) of the particles from 1.8 to 3.4). Moreover, SPPA adsorbed onto the P4VP surface induces significant changes in the luminescent properties of the BCP particles via photoisomerization of SPPA. Notably, the BCP particles undergo fast, dynamic shape and color transitions within a period of 10 min, maintaining high reversibility over multiple light exposures. Functional dyes are selectively incorporated into different domains of the light-responsive BCP particles to achieve different ranges of color responses. Thus, this study showcases a light-responsive hydrogel display capable of reversible and multicolor photopatterning.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinseok Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyunghyun Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Ji Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Zhengping Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Meng Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Jun Lee
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeollabuk-do 55324, Republic of Korea
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Tian Y, Wang Z, Cao S, Liu D, Zhang Y, Chen C, Jiang Z, Ma J, Wang Y. Connective tissue inspired elastomer-based hydrogel for artificial skin via radiation-indued penetrating polymerization. Nat Commun 2024; 15:636. [PMID: 38245537 PMCID: PMC10799914 DOI: 10.1038/s41467-024-44949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Robust hydrogels offer a candidate for artificial skin of bionic robots, yet few hydrogels have a comprehensive performance comparable to real human skin. Here, we present a general method to convert traditional elastomers into tough hydrogels via a unique radiation-induced penetrating polymerization method. The hydrogel is composed of the original hydrophobic crosslinking network from elastomers and grafted hydrophilic chains, which act as elastic collagen fibers and water-rich substances. Therefore, it successfully combines the advantages of both elastomers and hydrogels and provides similar Young's modulus and friction coefficients to human skin, as well as better compression and puncture load capacities than double network and polyampholyte hydrogels. Additionally, responsive abilities can be introduced during the preparation process, granting the hybrid hydrogels shape adaptability. With these unique properties, the hybrid hydrogel can be a candidate for artificial skin, fluid flow controller, wound dressing layer and many other bionic application scenarios.
Collapse
Affiliation(s)
- Yuan Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Zhihao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Shuiyan Cao
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Dong Liu
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, Sichuan, China
| | - Yukun Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Chong Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Zhiwen Jiang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jun Ma
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China.
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Yunlong Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China.
| |
Collapse
|
9
|
Bhat B, Pahari S, Kwon JSI, Akbulut MES. Stimuli-responsive viscosity modifiers. Adv Colloid Interface Sci 2023; 321:103025. [PMID: 37871381 DOI: 10.1016/j.cis.2023.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Stimuli responsive viscosity modifiers entail an important class of materials which allow for smart material formation utilizing various stimuli for switching such as pH, temperature, light and salinity. They have seen applications in the biomedical space including tissue engineering and drug delivery, wherein stimuli responsive hydrogels and polymeric vessels have been extensively applied. Applications have also been seen in other domains like the energy sector and automobile industry, in technologies such as enhanced oil recovery. The chemistry and microstructural arrangements of the aqueous morphologies of dissolved materials are usually sensitive to the aforementioned stimuli which subsequently results in rheological sensitivity as well. Herein, we overview different structures capable of viscosity modification as well as go over the rheological theory associated with classical systems studied in literature. A detailed analysis allows us to explore correlations between commonly discussed models such as molecular packing parameter, tube reptation and stress relaxation with structural and rheological changes. We then present five primary mechanisms corresponding to stimuli responsive viscosity modification: (i) packing parameter modification via functional group conditioning and (ii) via dynamic bond formation, (iii) mesh formation by interlinking of network nodes, (iv) viscosity modification by chain conformation changes and (v) viscosity modification by particle jamming. We also overview several recent examples from literature that employ the concepts discussed to create novel classes of intriguing stimuli responsive structures and their corresponding rheological properties. Furthermore, we also explore systems that are responsive to multiple stimuli which can provide enhanced functionality and versatility by providing multi-level and precise actuation. Such systems have been used for programmed site-specific drug delivery.
Collapse
Affiliation(s)
- Bhargavi Bhat
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Silabrata Pahari
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joseph Sang-Il Kwon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Energy Institute, College Station, TX 77843, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Energy Institute, College Station, TX 77843, USA.
| |
Collapse
|
10
|
Park H, Lee Y, Kim J, Sim JY, Na Y, Yoon C. 3D printed swelling-driven shape-morphing pH-responsive hydrogel gripper. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082909 DOI: 10.1109/embc40787.2023.10340625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Stimuli-responsive soft robots have provided new directions for obtaining advanced biomedical healthcare systems, such as targeted drug delivery capsules, less-invasive biopsy tools, and untethered microsurgical robots. We designed, 3D printed, and tested diverse time-dependent shape changeable 3D pH-responsive soft grippers consisting of N-isopropylacrylamide (NIPAM) and N-isopropylacrylamide-co-acrylic acid (NIPAM-AAc) bilayer. We found that the swelling/deswelling-driven actuation of the pH-responsive NIPAM/NIPAM-AAc gripper is primarily affected by the volume percent (% v/v) of the acrylic acid (AAc) and intensity of UV light. We expect that this study can be applied to untethered pH-responsive soft grippers as smart drug delivery capsules or biopsy tools in biomedical healthcare systems.
Collapse
|
11
|
Yilmaz RB, Chaabane Y, Mansard V. Development of a Soft Actuator from Fast Swelling Macroporous PNIPAM Gels for Smart Braille Device Applications in Haptic Technology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7340-7352. [PMID: 36706224 DOI: 10.1021/acsami.2c17835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of a cost-efficient braille device is a crucial challenge in haptic technology to improve the integration of visually impaired people. Exclusion of any group threatens the proper functioning of society. Commercially available braille devices still utilize piezoelectric actuators, which are expensive and bulky. The challenge of a more adapted braille device lies in the integration of a high number of actuators─on a millimeter scale─in order to independently move a matrix of pins acting as tactile cues. Unfortunately, no actuation strategy has been adapted to tackle this challenge. In this study, we develop a soft actuator based on a thermosensitive poly(N-isopropylacrylamide) (PNIPAM) gel. We introduce macroporosity to the gel (pores of 10 to 100 μm). It overcomes the diffusion─which is the limiting kinetic factor─and accelerates the gel response time from hours for the bulk gel to seconds for the macroporous gel. We study the properties of porous gels with various porosities. We also compare a mechanically reinforced nanocomposite gel (made of PNIPAM and Laponite clay) to a "classic" gel. As a result, we develop a fast-actuating gel with high cyclic performance. We then develop a single-pin braille setup, where actuation is controlled thanks to a swift temperature control of a macroporous gel cylinder. This new strategy offers a very promising actuation technology. It offers a simple and cost-efficient alternative to the current braille devices.
Collapse
Affiliation(s)
- Refik Baris Yilmaz
- CNRS, LAAS-CNRS, 7, avenue du Colonel Roche, BP 54200 31031 Toulouse Cedex 4, France
| | - Yosr Chaabane
- CNRS, LAAS-CNRS, 7, avenue du Colonel Roche, BP 54200 31031 Toulouse Cedex 4, France
| | - Vincent Mansard
- CNRS, LAAS-CNRS, 7, avenue du Colonel Roche, BP 54200 31031 Toulouse Cedex 4, France
| |
Collapse
|
12
|
Wang H, Zhou X, Wang J, Zhang X, Zhu M, Wang H. Fabrication of channeled scaffolds through polyelectrolyte complex (PEC) printed sacrificial templates for tissue formation. Bioact Mater 2022; 17:261-275. [PMID: 35386455 PMCID: PMC8965085 DOI: 10.1016/j.bioactmat.2022.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
One of the pivotal factors that limit the clinical translation of tissue engineering is the inability to create large volume and complex three-dimensional (3D) tissues, mainly due to the lack of long-range mass transport with many current scaffolds. Here we present a simple yet robust sacrificial strategy to create hierarchical and perfusable microchannel networks within versatile scaffolds via the combination of embedded 3D printing (EB3DP), tunable polyelectrolyte complexes (PEC), and casting methods. The sacrificial templates of PEC filaments (diameter from 120 to 500 μm) with arbitrary 3D configurations were fabricated by EB3DP and then incorporated into various castable matrices (e.g., hydrogels, organic solutions, meltable polymers, etc.). Rapid dissolution of PEC templates within a 2.00 M potassium bromide aqueous solution led to the high fidelity formation of interconnected channels for free mass exchange. The efficacy of such channeled scaffolds for in vitro tissue formation was demonstrated with mouse fibroblasts, showing continuous cell proliferation and ECM deposition. Subcutaneous implantation of channeled silk fibroin (SF) scaffolds with a porosity of 76% could lead to tissue ingrowth as high as 53% in contrast to 5% for those non-channeled controls after 4 weeks. Both histological and immunofluorescence analyses demonstrated that such channeled scaffolds promoted cellularization, vascularization, and host integration along with immunoregulation.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Xiaqing Zhou
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Juan Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Xinping Zhang
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Meifeng Zhu
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
- College of Life Science, Key Laboratory of Bioactive Materials, State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, PR China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| |
Collapse
|
13
|
Kim J, Park H, Yoon C. Advances in Biodegradable Soft Robots. Polymers (Basel) 2022; 14:polym14214574. [PMID: 36365570 PMCID: PMC9658808 DOI: 10.3390/polym14214574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Biodegradable soft robots have been proposed for a variety of intelligent applications in soft robotics, flexible electronics, and bionics. Biodegradability offers an extraordinary functional advantage to soft robots for operations accompanying smart shape transformation in response to external stimuli such as heat, pH, and light. This review primarily surveyed the current advanced scientific and engineering strategies for integrating biodegradable materials within stimuli-responsive soft robots. It also focused on the fabrication methodologies of multiscale biodegradable soft robots, and highlighted the role of biodegradable soft robots in enhancing the multifunctional properties of drug delivery capsules, biopsy tools, smart actuators, and sensors. Lastly, the current challenges and perspectives on the future development of intelligent soft robots for operation in real environments were discussed.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Harim Park
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - ChangKyu Yoon
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence:
| |
Collapse
|
14
|
Son H, Park Y, Na Y, Yoon C. 4D Multiscale Origami Soft Robots: A Review. Polymers (Basel) 2022; 14:polym14194235. [PMID: 36236182 PMCID: PMC9571758 DOI: 10.3390/polym14194235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Time-dependent shape-transferable soft robots are important for various intelligent applications in flexible electronics and bionics. Four-dimensional (4D) shape changes can offer versatile functional advantages during operations to soft robots that respond to external environmental stimuli, including heat, pH, light, electric, or pneumatic triggers. This review investigates the current advances in multiscale soft robots that can display 4D shape transformations. This review first focuses on material selection to demonstrate 4D origami-driven shape transformations. Second, this review investigates versatile fabrication strategies to form the 4D mechanical structures of soft robots. Third, this review surveys the folding, rolling, bending, and wrinkling mechanisms of soft robots during operation. Fourth, this review highlights the diverse applications of 4D origami-driven soft robots in actuators, sensors, and bionics. Finally, perspectives on future directions and challenges in the development of intelligent soft robots in real operational environments are discussed.
Collapse
Affiliation(s)
- Hyegyo Son
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yunha Park
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Youngjin Na
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.N.); (C.Y.)
| | - ChangKyu Yoon
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.N.); (C.Y.)
| |
Collapse
|
15
|
Mehra A, Tharmatt A, Saini N, Singh G, Kaur K, Singh G, Bedi N. In situ Hydrogels for Effective Treatment of Cancer: Strategies and Polymers Used. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:RADDF-EPUB-126772. [PMID: 36200152 DOI: 10.2174/2667387816666221005102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a worldwide health ailment with no known boundaries in terms of mortality and occurrence rates, thus is one of the biggest threats to humankind. Hence, there is an absolute need to develop novel therapeutics to bridge the infirmities associated with chemotherapy and conventional surgical methodologies including impairment of normal tissue, compromised drug efficiency and an escalation in side effects. In lieu of this, there's been a surge in curiosity towards development of injectable hydrogels for cancer therapy because local administration of the active pharmaceutical agent offers encouraging advantages such as providing higher effective dose at target site, prolonged retention time of drug, ease of administration, mitigation of dose in vivo ,improved patient compliance. Furthermore, due to its biocompatible nature such systems can significantly reduce the side effects that occur on long-term exposure to chemotherapy. The present review details the most recent advancements in in-situ gel forming polymers (natural and synthetic), polymeric cross-linking methodologies and in-situ gelling mechanisms, focusing on their clinical benefits in cancer therapy.
Collapse
Affiliation(s)
- Anshula Mehra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Abhay Tharmatt
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan-333031, India
| | - Navdeep Saini
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Gurpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| |
Collapse
|
16
|
Liu Y, Zhang P, Zhang L, Wang Y, Li J, Liu Y, Ji L, Yu H. Controlled helicity inversion, selective enantiomer release, and methanol recognition in azobenzene gel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Digumarti KM, Gosden D, Le NH, Rossiter J. Toward Stimuli-Responsive Soft Robots with 3D Printed Self-Healing Konjac Glucomannan Gels. 3D PRINTING AND ADDITIVE MANUFACTURING 2022; 9:425-434. [PMID: 36660290 PMCID: PMC9831557 DOI: 10.1089/3dp.2020.0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Significant progress in fabricating new multifunctional soft materials and the advances of additive manufacturing technologies have given birth to a new generation of soft robots with complex capabilities, such as crawling, swimming, jumping, gripping, and releasing. Within this vast array of responsive soft materials, hydrogels receive considerable attention due to their fascinating properties, including biodegradable, self-healing, stimuli-responsive, and large volume transformation. Konjac glucomannan (KGM) is an edible polysaccharide that forms a pH-responsive, self-healing hydrogel when crosslinked with borax, and it is the focus of this study. A novel KGM-Borax ink for three-dimensional (3D) printing of free-form structures and soft robots at room temperature is presented. A complete process from ink preparation to the fabrication of a completely cross-linked part is demonstrated. Print setting parameters, rheological properties of the ink and crosslinked gels were characterized. Print quality was found to be consistent across a wide range of print settings. The minimum line width achieved is 650 μm. Tensile testing was carried out to validate the self-healing capability of the KGM-Borax gel. Results show that KGM-Borax has a high self-healing efficiency of 98%. Self-healing underwater was also demonstrated, a rarity for crosslinked gels. The means to form complex structures via 3D printing, reacting to environmental stimuli and the resilience against damage, make this new KGM-Borax gel a promising candidate for the fabrication of the next generation of soft robots.
Collapse
Affiliation(s)
| | - Daniel Gosden
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Nguyen Hao Le
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Jonathan Rossiter
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Mommer S, Wezenberg SJ. Anion-Induced Reversible Actuation of Squaramide-Crosslinked Polymer Gels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43711-43718. [PMID: 36099444 PMCID: PMC9523616 DOI: 10.1021/acsami.2c11136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Supramolecular anion binding to squaramide crosslinkers in poly(N,N-dimethylacrylamide) gel networks enhances swelling and allows reversible chemically driven actuation. The volume swelling ratio of the gels is shown to depend on both the type of anion and its concentration. 1H NMR and UV-vis titrations with the squaramide crosslinkers reveal a relationship between anion binding affinity and the concentration-dependent swelling behavior. Gel swelling is shown to be reversible, and by embedding a solid support into rod-shaped gels, soft actuators are fabricated that undergo forward and backward bending motion in response to changing anion concentration. The swelling and bending process, which is accompanied by intense green coloration of the gel, is achieved by using only low amounts of crosslinker. This macroscopic actuation achieved by anion binding to specific molecular entities in the polymer network will open new opportunities in the field of chemically responsive materials.
Collapse
|
19
|
Kim J, Lee YJ, Ku KH, Kim BJ. Effect of Molecular Structure of Photoswitchable Surfactant on Light-Responsive Shape Transition of Block Copolymer Particles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinwoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Jun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Salminen L, Karjalainen E, Aseyev V, Tenhu H. Phase Separation of Aqueous Poly(diisopropylaminoethyl methacrylate) upon Heating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5135-5148. [PMID: 34752116 PMCID: PMC9069861 DOI: 10.1021/acs.langmuir.1c02224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Poly(diisopropylaminoethyl methacrylate) (PDPA) is a pH- and thermally responsive water-soluble polymer. This study deepens the understanding of its phase separation behavior upon heating. Phase separation upon heating was investigated in salt solutions of varying pH and ionic strength. The effect of the counterion on the phase transition upon heating is clearly demonstrated for chloride-, phosphate-, and citrate-anions. Phase separation did not occur in pure water. The buffer solutions exhibited similar cloud points, but phase separation occurred in different pH ranges and with different mechanisms. The solution behavior of a block copolymer comprising poly(dimethylaminoethyl methacrylate) (PDMAEMA) and PDPA was investigated. Since the PDMAEMA and PDPA blocks phase separate within different pH- and temperature ranges, the block copolymer forms micelle-like structures at high temperature or pH.
Collapse
Affiliation(s)
- Linda Salminen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| | - Erno Karjalainen
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT Espoo, Finland
| | - Vladimir Aseyev
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| | - Heikki Tenhu
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| |
Collapse
|
21
|
Liao J, Hou B, Huang H. Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydr Polym 2022; 283:119177. [DOI: 10.1016/j.carbpol.2022.119177] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 02/08/2023]
|
22
|
Morsi SMM, Abd El-Aziz ME, Mohamed HA. Smart polymers as molecular imprinted polymers for recognition of target molecules. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2042287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Samir M. M. Morsi
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| | | | - Heba A. Mohamed
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
23
|
Baghbanbashi M, Kakkar A. Polymersomes: Soft Nanoparticles from Miktoarm Stars for Applications in Drug Delivery. Mol Pharm 2022; 19:1687-1703. [PMID: 35157463 DOI: 10.1021/acs.molpharmaceut.1c00928] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Self-assembly of amphiphilic macromolecules has provided an advantageous platform to address significant issues in a variety of areas, including biology. Such soft nanoparticles with a hydrophobic core and hydrophilic corona, referred to as micelles, have been extensively investigated for delivering lipophilic therapeutics by physical encapsulation. Polymeric vesicles or polymersomes with similarities in morphology to liposomes continue to play an essential role in understanding the behavior of cell membranes and, in addition, have offered opportunities in designing smart nanoformulations. With the evolution in synthetic methodologies to macromolecular precursors, the construction of such assemblies can now be modulated to tailor their properties to match desired needs. This review brings into focus the current state-of-the-art in the design of polymersomes using amphiphilic miktoarm star polymers through a detailed analysis of the synthesis of miktoarm star polymers with tuned lengths of varied polymeric arms, their self-assembly, and applications in drug delivery.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.,Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
24
|
Patterson C, Dietrich B, Wilson C, Mount AR, Adams DJ. Electrofabrication of large volume di- and tripeptide hydrogels via hydroquinone oxidation. SOFT MATTER 2022; 18:1064-1070. [PMID: 35022641 DOI: 10.1039/d1sm01626a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fabrication of protected peptide-based hydrogels on electrode surfaces can be achieved by employing the electrochemical oxidation of hydroquinone to benzoquinone, liberating protons at the electrode-solution interface. The localised reduction in pH below the dipeptide gelator molecules pKa initiates the neutralisation, self-assembly and formation of self-supporting hydrogels exclusively at the electrode surface. Previous examples have been on a nanometre to millimetre scale, using deposition times ranging from seconds to minutes. However, the maximum size to which these materials can grow and their subsequent mechanical properties have not yet been investigated. Here, we report the fabrication of the largest reported di- and tri-peptide based hydrogels using this electrochemical method, employing deposition times of two to five hours. To overcome the oxidation of hydroquinone in air, the fabrication process was performed under an inert nitrogen atmosphere. We show that this approach can be used to form multilayer gels, with the mechanical properties of each layer determined by gelator composition. We also describe examples where gel-to-crystal transitions and syneresis occur within the material.
Collapse
Affiliation(s)
| | - Bart Dietrich
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| | - Andrew R Mount
- EastCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
25
|
Ionic covalent organic framework based electrolyte for fast-response ultra-low voltage electrochemical actuators. Nat Commun 2022; 13:390. [PMID: 35046389 PMCID: PMC8770580 DOI: 10.1038/s41467-022-28023-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/16/2021] [Indexed: 01/01/2023] Open
Abstract
Electrically activated soft actuators with large deformability are important for soft robotics but enhancing durability and efficiency of electrochemical actuators is challenging. Herein, we demonstrate that the actuation performance of an ionic two-dimensional covalent-organic framework based electrochemical actuator is improved through the ordered pore structure of opening up efficient ion transport routes. Specifically, the actuator shows a large peak to peak displacement (9.3 mm, ±0.5 V, 1 Hz), a fast-response time to reach equilibrium-bending (~1 s), a correspondingly high bending strain difference (0.38%), a broad response frequency (0.1–20 Hz) and excellent durability (>99%) after 23,000 cycles. The present study ascertains the functionality of soft electrolyte as bionic artificial actuators while providing ideas for expanding the limits in applications for robots. Electrically activated soft actuators with large deformability are important for soft robotics but enhancing durability and efficiency of electrochemical actuators is challenging. Here the authors demonstrate that the actuation performance of an ionic two-dimensional covalent-organic framework based electrochemical actuator is improved through the ordered pore structure of opening up efficient ion transport routes
Collapse
|
26
|
Ito T, Endo S, Sugahara Y, Tamate R, Guégan R. Preparation of biocompatible hydrogels reinforced by different nanosheets. RSC Adv 2021; 12:753-761. [PMID: 35425126 PMCID: PMC8978654 DOI: 10.1039/d1ra07604c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
The impact of inorganic nanosheets with various chemical compositions and properties at different concentrations on the rheological properties and the gelation formation of a thermo-responsive hydrogel was investigated. F127 Pluronic triblock copolymers, with the structure (EO)99(PO)65(EO)99 (EO: ethylene oxide and PO propylene oxide respectively), functionalized by dimethacrylate (F127-DMA) at a concentration of 25% was used in this study. After careful characterization by complementary techniques: transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray diffraction of nanosheets derived from the peeling of layered materials (montmorillonite, organoclays and hexaniobate), the nanosheets were seen to be suitably dispersed in the hydrogels. The inclusion of hydrophobic nanosheets (i.e. those treated with the grafting of surfactants onto their surface: organoclays and hexaniobate) leads to a depression of the gelation temperature while the nanocomposites exhibit an enhancement of their elastic properties, as determined by rheological measurements. In contrast, the inclusion of hydrophilic nanosheet derived from raw montmorillonite engenders an opposite trend. The whole nanocomposites whose gelation temperature can be tuned by both the nature and concentration of the nanosheets were successfully photopolymerized allowing the formation of a 3D structure containing a large content of water. The results obtained in this study open new perspectives for possible uses of hydrogel-based nanocomposites as embedding matrixes for bio-organisms.
Collapse
Affiliation(s)
- Taiga Ito
- Department of Applied Chemistry, Waseda University Tokyo Japan
| | - Saki Endo
- Department of Applied Chemistry, Waseda University Tokyo Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, Waseda University Tokyo Japan.,Kagami Memorial Institute for Materials Science and Technology, Waseda University Tokyo Japan
| | - Ryota Tamate
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science Tsukuba Japan
| | - Régis Guégan
- Global Center for Science and Engineering, Waseda University Tokyo Japan
| |
Collapse
|
27
|
Mansard V. A macroporous smart gel based on a pH-sensitive polyacrylic polymer for the development of large size artificial muscles with linear contraction. SOFT MATTER 2021; 17:9644-9652. [PMID: 34622903 DOI: 10.1039/d1sm01078f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The physics of soft matter can contribute to the revolution in robotics and medical prostheses. These two fields require the development of artificial muscles with behavior close to biological muscles. Today, artificial muscles rely mostly on active materials, which can deform reversibly. Nevertheless transport kinetics is the major limit for all of these materials. These actuators are only made of a thin layer of active material and using a large thickness dramatically reduces the actuation time. In this article, we demonstrate that a porous material reduces the limit of transport and enables the use of a large volume of active material. We synthesize a new active material: a macroporous gel, which is based on polyacrylic acid. This gel shows very large swelling when we increase the pH and the macroporosity dramatically reduces the swelling time of centimetric samples from one day to 100 s. We characterize the mechanical properties and swelling kinetics of this new material. This material is well adapted for soft robotics because of its large swelling ratio (300%) and its capacity to apply a pressure of 150 mbar during swelling. We demonstrate finally that this material can be used in a McKibben muscle producing linear contraction, which is particularly adapted for robotics. The muscle contracts by 9% of its initial length within 100 s, which corresponds to the gel swelling time.
Collapse
Affiliation(s)
- Vincent Mansard
- CNRS, LAAS-CNRS, 7, avenue du Colonel Roche, BP 54200 31031, Toulouse Cedex 4, France.
| |
Collapse
|
28
|
Tasnim T, Adkins MD, Lim T, Feng H, Magda JJ, Shea JE, Agarwal J, Furse CM, Zhang H. Thermally tunable hydrogel crosslinking mediated by temperature sensitive liposome. Biomed Mater 2021; 16. [PMID: 34492645 DOI: 10.1088/1748-605x/ac246c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022]
Abstract
Hydrogel crosslinking by external stimuli is a versatile strategy to control and modulate hydrogel properties. Besides photonic energy, thermal energy is one of the most accessible external stimuli and widely applicable for many biomedical applications. However, conventional thermal crosslinking systems require a relatively high temperature (over 100 °C) to initiate covalent bond formation. To our knowledge, there has not been a thermally tunable hydrogel crosslinking system suitable for biological applications. This work demonstrates a unique approach to utilize temperature sensitive liposomes to control and modulate hydrogel crosslinking over mild temperature range (below 50 °C). Temperature sensitive liposomes were used to control the release of chemical crosslinkers by moderate temperature changes. The thermally controlled crosslinker release resulted in tunable mechanical and transport properties of the hydrogel. No significant inflammable response observed in the histology results ensured the biocompatibility of the liposome-mediated crosslinkable hydrogel. This work opens new opportunities to implement thermal energy system for control and modulate hydrogel properties.
Collapse
Affiliation(s)
- Tasmia Tasnim
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Michael D Adkins
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Taehwan Lim
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Haidong Feng
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Jules J Magda
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Jill E Shea
- Department of Surgery, The University of Utah, Salt Lake City, UT, United States of America
| | - Jayant Agarwal
- Department of Surgery, The University of Utah, Salt Lake City, UT, United States of America
| | - Cynthia M Furse
- Department of Electrical and Computer Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Huanan Zhang
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
29
|
Wanasingha N, Dorishetty P, Dutta NK, Choudhury NR. Polyelectrolyte Gels: Fundamentals, Fabrication and Applications. Gels 2021; 7:148. [PMID: 34563034 PMCID: PMC8482214 DOI: 10.3390/gels7030148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/07/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Polyelectrolyte gels are an important class of polymer gels and a versatile platform with charged polymer networks with ionisable groups. They have drawn significant recent attention as a class of smart material and have demonstrated potential for a variety of applications. This review begins with the fundamentals of polyelectrolyte gels, which encompass various classifications (i.e., origin, charge, shape) and crucial aspects (ionic conductivity and stimuli responsiveness). It further centralises recent developments of polyelectrolyte gels, emphasising their synthesis, structure-property relationships and responsive properties. Sequentially, this review demonstrates how polyelectrolyte gels' flourishing properties create attractiveness to a range of applications including tissue engineering, drug delivery, actuators and bioelectronics. Finally, the review outlines the indisputable appeal, further improvements and emerging trends in polyelectrolyte gels.
Collapse
Affiliation(s)
| | | | - Naba K. Dutta
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (N.W.); (P.D.)
| | - Namita Roy Choudhury
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (N.W.); (P.D.)
| |
Collapse
|
30
|
Zhang J, He B, Hu Y, Alam P, Zhang H, Lam JWY, Tang BZ. Stimuli-Responsive AIEgens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008071. [PMID: 34137087 DOI: 10.1002/adma.202008071] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The unique advantages and the exciting application prospects of AIEgens have triggered booming developments in this area in recent years. Among them, stimuli-responsive AIEgens have received particular attention and impressive progress, and they have been demonstrated to show tremendous potential in many fields from physical chemistry to materials science and to biology and medicine. Here, the recent achievements of stimuli-responsive AIEgens in terms of seven most representative types of stimuli including force, light, polarity, temperature, electricity, ion, and pH, are summarized. Based on typical examples, it is illustrated how each type of systems realize the desired stimuli-responsive performance for various applications. The key work principles behind them are ultimately deciphered and figured out to offer new insights and guidelines for the design and engineering of the next-generation stimuli-responsive luminescent materials for more broad applications.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Yubing Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Parvej Alam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu District, Hangzhou, 310027, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu District, Hangzhou, 310027, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou, 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| |
Collapse
|
31
|
Castellanos NI, Bharti B, Velev OD. Field-Driven Reversible Alignment and Gelation of Magneto-Responsive Soft Anisotropic Microbeads. J Phys Chem B 2021; 125:7900-7910. [PMID: 34253016 DOI: 10.1021/acs.jpcb.1c03158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnetic fields offer untethered control over the assembly, dynamics, and reconfiguration of colloidal particles. However, synthesizing "soft" colloidal particles with switchable magnetic dipole moment remains a challenge, primarily due to strong coupling of the dipoles of the adjacent nanoparticles. In this article, we present a way to overcome this fundamental challenge based on a strategy to synthesize soft microbeads with tunable residual dipole moment. The microbeads are composed of a polydimethylsiloxane (PDMS) matrix with internally embedded magnetic nanoparticles (MNPs). The distribution and orientation of the MNPs within the PDMS bead matrix is controlled by an external magnetic field during the synthesis process, thus allowing for the preparation of anisotropic PDMS microbeads with internal magnetically aligned nanoparticle chains. We study and present the differences in magnetic interactions between microbeads containing magnetically aligned MNPs and microbeads with randomly distributed MNPs. The interparticle interactions in a suspension of microbeads with embedded aligned MNP chains result in the spontaneous formation of percolated networks due to residual magnetization. We proved the tunability of the structure by applying magnetization, demagnetization, and remagnetization cycles that evoke formation, breakup, and reformation of 2D percolated networks. The mechanical response of the microbead suspension was quantified by oscillatory rheology and correlated to the propensity for network formation by the magnetic microbeads. We also experimentally correlated the 2D alignment of the microbeads to the direction of earth's magnetic field. Overall, the results prove that the soft magnetic microbeads enable a rich variety of structures and can serve as an experimental toolbox for modeling interactions in dipolar systems leading to various percolated networks, novel magneto-rheological materials, and smart gels.
Collapse
Affiliation(s)
- Natasha I Castellanos
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
32
|
Bustamante-Torres M, Pino-Ramos VH, Romero-Fierro D, Hidalgo-Bonilla SP, Magaña H, Bucio E. Synthesis and Antimicrobial Properties of Highly Cross-Linked pH-Sensitive Hydrogels through Gamma Radiation. Polymers (Basel) 2021; 13:polym13142223. [PMID: 34300980 PMCID: PMC8309246 DOI: 10.3390/polym13142223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/01/2021] [Accepted: 07/03/2021] [Indexed: 12/20/2022] Open
Abstract
The design of new polymeric systems for antimicrobial drug release focused on medical/surgical procedures is of great interest in the biomedical area due to the high prevalence of bacterial infections in patients with wounds or burns. For this reason, in this work, we present a new design of pH-sensitive hydrogels copolymerized by a graft polymerization method (gamma rays), intended for localized prophylactic release of ciprofloxacin and silver nanoparticles (AgNPs) for potential topical bacterial infections. The synthesized hydrogels were copolymerized from acrylic acid (AAc) and agar. Cross-linked hydrogel film formation depended on monomer concentrations and the degree of radiation used (Cobalt-60). The obtained hydrogel films were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mechanical testing. The swelling of the hydrogels was evidenced by the influence of their pH-sensitiveness. The hydrogel was loaded with antimicrobial agents (AgNPs or ciprofloxacin), and their related activity was evaluated. Finally, the antimicrobial activity of biocidal-loaded hydrogel was tested against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) on in vitro conditions.
Collapse
Affiliation(s)
- Moises Bustamante-Torres
- Departamento de Biología, Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Hacienda San José s/n y Proyecto Yachay (Ciudad del Conocimiento Yachay), Urcuquí 100650, Ecuador
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico;
- Correspondence: (M.B.-T.); (E.B.)
| | - Victor H. Pino-Ramos
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - David Romero-Fierro
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Hacienda San José s/n y Proyecto Yachay (Ciudad del Conocimiento Yachay), Urcuquí 100650, Ecuador; (D.R.-F.); (S.P.H.-B.)
| | - Sandra P. Hidalgo-Bonilla
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Hacienda San José s/n y Proyecto Yachay (Ciudad del Conocimiento Yachay), Urcuquí 100650, Ecuador; (D.R.-F.); (S.P.H.-B.)
| | - Héctor Magaña
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico;
- Correspondence: (M.B.-T.); (E.B.)
| |
Collapse
|
33
|
Active packaging technologies for clean label food products: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01024-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Pieklarz K, Galita G, Tylman M, Maniukiewicz W, Kucharska E, Majsterek I, Modrzejewska Z. Physico-Chemical Properties and Biocompatibility of Thermosensitive Chitosan Lactate and Chitosan Chloride Hydrogels Developed for Tissue Engineering Application. J Funct Biomater 2021; 12:37. [PMID: 34065271 PMCID: PMC8163008 DOI: 10.3390/jfb12020037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Recently, the modification of the initial structure of biopolymers, mainly chitosan, has been gaining importance with a view to obtain functional forms with increased practicality and specific properties enabling their use in tissue engineering. Therefore, in this article, the properties (structural and biological) of thermosensitive hydrogels obtained from chitosan lactate/chloride and two types of crosslinking agents (β-glycerol phosphate disodium salt pentahydrate and uridine 5'-monophosphate disodium salt) are discussed. The aim of the research is to identify changes in the structure of the biomaterials during conditioning in water. Structural investigations were carried out by FTIR spectroscopy. The crystallinity of gels was determined by X-ray diffraction analysis. The biocompatibility (evaluation of cytotoxicity and genotoxicity) of chitosan hydrogels was investigated by contact with human colon adenocarcinoma cell line for 48 h. The cytotoxicity was verified based on the colorimetric resazurin assay, and the genotoxicity was checked by the comet assay (percentage of DNA in the comet tail). The conducted research showed that the analyzed types of chitosan hydrogels are non-cytotoxic and non-genotoxic materials. The good biocompatibility of chitosan hydrogels surfaces makes them interesting scaffolds with clinical potential in tissue regeneration engineering.
Collapse
Affiliation(s)
- Katarzyna Pieklarz
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Street, 90-924 Lodz, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60 Street, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Michał Tylman
- PGE Gornictwo i Energetyka Konwencjonalna S.A., Weglowa 5 Street, 97-400 Belchatow, Poland;
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116 Street, 90-924 Lodz, Poland;
| | - Ewa Kucharska
- Department of Gerontology, Geriatrics and Social Work, Jesuit University Ignatianum in Krakow, Kopernika 26 Street, 31-501 Krakow, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60 Street, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Zofia Modrzejewska
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Street, 90-924 Lodz, Poland;
| |
Collapse
|
35
|
Zarket BC, Wang H, Subraveti SN, Raghavan SR. Multilayer tubes that constrict, dilate, and curl in response to stimuli. SOFT MATTER 2021; 17:4180-4190. [PMID: 33881039 DOI: 10.1039/d0sm01704c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tubular structures in nature have the ability to respond to their environment-for example, blood vessels can constrict or dilate, thereby regulating flow velocity and blood pressure. These tubes have multiple concentric layers, with each layer having a distinct composition and properties. Inspired by such natural structures, we have synthesized responsive multilayer tubes in the laboratory without resorting to complex equipment such as a 3-D printer. Each layer of our tubes is a polymer gel formed by free-radical polymerization of water-soluble monomers. We can precisely control the inner diameter of the tube, the number of layers in the tube wall, and the thickness and chemistry of each layer. Tubes synthesized in this manner are robust, flexible, and stretchable. Moreover, our technique allows us to incorporate stimuli-responsive polymers into distinct regions of these tubes, and the resulting tubes can change their shape in response to external stimuli such as pH or temperature. In the case of laterally patterned tubes, the tube can be made to constrict or dilate over a particular segment-a behavior that is reminiscent of blood vessels. In the case of longitudinally patterned tubes, a straight tube can be induced to systematically curl into a coil. The versatility of our technique is further shown by constructing complex tubular architectures, including branched networks. On the whole, the polymeric tubes shown in this paper exhibit remarkable properties that cannot be realized by other techniques. Such tubes could find utility in biomedical engineering to construct anatomically realistic mimics of various tissues.
Collapse
Affiliation(s)
- Brady C Zarket
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| | - Hanchu Wang
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| | - Sai N Subraveti
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
36
|
Khodeir M, Jia H, Vlad A, Gohy JF. Application of Redox-Responsive Hydrogels Based on 2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate and Oligo(Ethyleneglycol) Methacrylate in Controlled Release and Catalysis. Polymers (Basel) 2021; 13:1307. [PMID: 33923527 PMCID: PMC8073720 DOI: 10.3390/polym13081307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Hydrogels have reached momentum due to their potential application in a variety of fields including their ability to deliver active molecules upon application of a specific chemical or physical stimulus and to act as easily recyclable catalysts in a green chemistry approach. In this paper, we demonstrate that the same redox-responsive hydrogels based on polymer networks containing 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radicals and oligoethylene glycol methyl ether methacrylate (OEGMA) can be successfully used either for the electrochemically triggered release of aspirin or as catalysts for the oxidation of primary alcohols into aldehydes. For the first application, we take the opportunity of the positive charges present on the oxoammonium groups of oxidized TEMPO to encapsulate negatively charged aspirin molecules. The further electrochemical reduction of oxoammonium groups into nitroxide radicals triggers the release of aspirin molecules. For the second application, our hydrogels are swelled with benzylic alcohol and tert-butyl nitrite as co-catalyst and the temperature is raised to 50 °C to start the oxidation reaction. Interestingly enough, benzaldehyde is not miscible with our hydrogels and phase-separate on top of them allowing the easy recovery of the reaction product and the recyclability of the hydrogel catalyst.
Collapse
Affiliation(s)
| | | | | | - Jean-François Gohy
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1, B-1348 Louvain-la-Neuve, Belgium; (M.K.); (H.J.); (A.V.)
| |
Collapse
|
37
|
Abstract
Hydrogels are 3D crosslinked polymer matrices having a colossal tendency to imbibe water and exhibit swelling under physiological conditions without deformation in their hydrophilic network. Hydrogels being biodegradable and biocompatible, gained consideration due to some unique characteristics: responsiveness to external stimuli (pH, temperature) and swelling in aqueous solutions. Hydrogels offer a promising option for various pharmaceutical and biomedical applications, including tissue-specific drug delivery at a predetermined, controlled rate. This article presents a brief review of the recent and fundamental advances to design hydrogels, the swelling and deswelling mechanism, various crosslinking methods and their use as an intelligent carrier in the pharmaceutical field. Recent applications of hydrogels are also briefly discussed and exemplified.
Collapse
|
38
|
Nowak BP, Niehues M, Ravoo BJ. Magneto-responsive hydrogels by self-assembly of low molecular weight peptides and crosslinking with iron oxide nanoparticles. SOFT MATTER 2021; 17:2857-2864. [PMID: 33586750 DOI: 10.1039/d0sm02049d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogels that respond to non-invasive, external stimuli such as a magnetic field are of exceptional interest for the development of adaptive soft materials. To date magneto tuneable gels are predominantly based on macromolecular building blocks, while comparable low molecular weight systems are rarely found in the literature. Herein, we report a highly efficient peptide-based gelator (Nap GFYE), which can form hydrogels and incorporate Fe3O4 superparamagnetic nanoparticles in the gel matrix. The magnetic nanoparticles act as a physical crosslinker for the self-assembled peptide nanostructures and thus give rise to a fortified hybrid gel with distinctively improved mechanical properties. Furthermore, the particles provide the material with magnetic susceptibility and a gel to sol transition is observed upon application of a weak magnetic field. Magnetization of the inorganic-organic hybrid nanomaterial leads to on-demand release of an incorporated fluorescent dye into the supernatant.
Collapse
Affiliation(s)
- Benedikt P Nowak
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms Universität Münster, Busso Peus Straße 10, 48149 Münster, Germany.
| | - Maximilian Niehues
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms Universität Münster, Busso Peus Straße 10, 48149 Münster, Germany.
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms Universität Münster, Busso Peus Straße 10, 48149 Münster, Germany.
| |
Collapse
|
39
|
Shi YX, Wu Y, Wang SQ, Zhao YY, Li T, Yang XQ, Zhang T. Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal-Organic Framework Nanowire Array. J Am Chem Soc 2021; 143:4017-4023. [PMID: 33663217 DOI: 10.1021/jacs.1c00666] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal-organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (<19 s) at a 3 V DC input, large actuation displacement (12.1 mm), and a correspondingly high strain of 0.36% under a square-wave AC voltage of ±3 V. Specifically, the actuator achieved a broad-band frequency response (0.1-20 Hz) and long-term cyclability in air (10000 cycles) with a negligible degradation in actuation performance. Our work demonstrates new opportunities for bioinspired artificial actuators and overcomes current limitations in electrode materials for soft robotics and bionics.
Collapse
Affiliation(s)
- Yi-Xiang Shi
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yue Wu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Shu-Qi Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yang-Yong Zhao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Tie Li
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Xian-Qing Yang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Ting Zhang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| |
Collapse
|
40
|
Dyakonova MA, Li Y, Besiri IN, Di Z, Grillo I, Tsitsilianis C, Papadakis CM. Effect of cosolvent on the rheological properties and self-assembled structures from telechelic polyampholytes. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractA triblock copolymer with hydrophobic end blocks and a polyampholytic middle block is investigated in a mixture of water and acetone with a focus on the dependence of the rheological properties and of the micellar structure and correlation on the content of acetone. The polymer under study is PMMA86-b-P(DEA190-co-MAA96)-b-PMMA86, where PMMA stands for poly(methyl methacrylate) and P(DEA-co-MAA) for poly(2-(diethylamino) ethyl methacrylate-co-methacrylic acid). The pH is chosen at 3. Rheological measurements reveal a transition from a viscoelastic solid over a viscoelastic liquid to a freely flowing liquid upon addition of 5 or 10 wt% of acetone to a 3 wt% aqueous polymer solution, respectively. Using small-angle neutron scattering on 0.5 wt% polymer solutions in water/acetone with the content of the latter ranging between 0 and 30 wt%, significant structural changes are observed as well, such as a decrease of the distance between the PMMA cross-links and of the size of the network clusters upon increasing acetone constant. These changes are attributed to the reduction of the dielectric constant by the addition of the cosolvent acetone, enhancing the flexibility of the middle blocks and their tendency to backfolding, as well as to the decrease of the solvent selectivity, inducing significant exchange rate enhancement of the core-forming PMMA blocks.
Collapse
|
41
|
Okada S, Sato E. Thermo- and Photoresponsive Behaviors of Dual-Stimuli-Responsive Organogels Consisting of Homopolymers of Coumarin-Containing Methacrylate. Polymers (Basel) 2021; 13:polym13030329. [PMID: 33494152 PMCID: PMC7864332 DOI: 10.3390/polym13030329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Coumarin-containing vinyl homopolymers, such as poly(7-methacryloyloxycoumarin) (P1a) and poly(7-(2'-methacryloyloxyethoxy)coumarin) (P1b), show a lower critical solution temperature (LCST) in chloroform, which can be controlled by the [2 + 2] photochemical cycloaddition of the coumarin moiety, and they are recognized as monofunctional dual-stimuli-responsive polymers. A single functional group of monofunctional dual-stimuli-responsive polymers responds to dual stimuli and can be introduced more uniformly and densely than those of dual-functional dual-stimuli-responsive polymers. In this study, considering a wide range of applications, organogels consisting of P1a and P1b, i.e., P1a-gel and P1b-gel, respectively, were synthesized, and their thermo- and photoresponsive behaviors in chloroform were investigated in detail. P1a-gel and P1b-gel in a swollen state (transparent) exhibited phase separation (turbid) through a temperature jump and reached a shrunken state (transparent), i.e., an equilibrium state, over time. Moreover, the equilibrium degree of swelling decreased non-linearly with increasing temperature. Furthermore, different thermoresponsive sites were photopatterned on the organogel through the photodimerization of the coumarin unit. The organogels consisting of homopolymers of coumarin-containing methacrylate exhibited unique thermo- and photoresponsivities and behaved as monofunctional dual-stimuli-responsive organogels.
Collapse
Affiliation(s)
| | - Eriko Sato
- Correspondence: ; Tel./Fax: +81-6-6605-2982
| |
Collapse
|
42
|
Tatini D, Raudino M, Ambrosi M, Carretti E, Davidovich I, Talmon Y, Ninham BW, Lo Nostro P. Physicochemical characterization of green sodium oleate-based formulations. Part 1. Structure and rheology. J Colloid Interface Sci 2021; 590:238-248. [PMID: 33548607 DOI: 10.1016/j.jcis.2021.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS The structure, rheology and other physicochemical properties of dilute aqueous dispersions of sodium oleate (NaOL) are well known. This paper is the first report in which a moderately concentrated (13% w/w) dispersion of NaOL in water is investigated. In fact, at this concentration the phase and rheology behavior of the surfactant remarkably deviates from those of its dilute solutions in water and a significant effect is imparted by the addition of potassium chloride. EXPERIMENTAL The structural, thermal and rheological properties of a 13% w/w dispersion of NaOL in water were investigated by cryo-TEM, rheology, and DSC experiments with and without the addition of potassium chloride. The system is comprised of elongated wormlike micelles that turn into a gel-like more disordered viscous material upon addition of small amounts of KCl (4% w/w). FINDINGS This paper illustrates the multifaceted behavior of sodium oleate dispersions at intermediate concentrations that depends on the presence of other cosolutes (such as KCl). The results show that viscoelastic aqueous dispersions of NaOL are excellent candidates for the preparation of stimuli-responsive green materials to be used in a number of different applications. We also discuss the genesis of wormlike micelles (WLMs) in terms of the general theory of self-assembly.
Collapse
Affiliation(s)
- Duccio Tatini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Martina Raudino
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Moira Ambrosi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Emiliano Carretti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Barry W Ninham
- Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|
43
|
Lin N, Zheng H, Li Y, Wang R, Chen X, Zhang X. Self-Sensing Pneumatic Compressing Actuator. Front Neurorobot 2020; 14:572856. [PMID: 33362501 PMCID: PMC7759537 DOI: 10.3389/fnbot.2020.572856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022] Open
Abstract
Using soft pneumatic actuator is a feasible solution in the complex unstructured environment, owing to their inherent compliance, light weight, and safety. However, due to the limitations of soft actuators' materials and structures, they fall short of motion accuracy and load capacity, or need large-size, bulky compressors. Meanwhile, in order to gain better control, it is essential for them to sense the environments as well. This leads to high-price sensors or a complicated manufacture technique. Here, a self-sensing vacuum soft actuation structure is proposed, aiming at acquiring good balance among precision, output force, and actuation pressure. The actuator mainly comprises a flexible membrane and a compression spring. When actuated, the flexible membrane outside the actuator compresses the internal spring skeleton, realizing large contractile motion in axial direction. Its built-in force sensor can indirectly measure the absolute displacement of the actuator with certain accuracy (about 5% F.S.). Besides, it does not require high actuation pressure to generate enough output force. The actuator is quite easy to manufacture with low cost, and there are a variety of materials to choose from. We established quasi-static models for actuators built of two different kinds of membrane materials, and tested their accuracy and output force. In addition, to break through the limits of vacuum actuation, a method of positive-negative pressure combined actuation has been proposed, which lowers the requirements for air source equipments, increases actuation pressure, and reduces potential safety threats at the same time. This kind of soft actuators can also effectively resist and detect impacts. The design of a two-finger dexterous robot hand and robot joint based on this soft actuator illustrates its broad application prospects in the fields of mobile robots, wearable devices, and human–robot interaction.
Collapse
Affiliation(s)
- Nan Lin
- School of Data Science, University of Science and Technology of China, Hefei, China
| | - Hui Zheng
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yuxuan Li
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
| | - Ruolin Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiaoping Chen
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xinming Zhang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
44
|
Trachsel L, Romio M, Zenobi-Wong M, Benetti EM. Hydrogels Generated from Cyclic Poly(2-Oxazoline)s Display Unique Swelling and Mechanical Properties. Macromol Rapid Commun 2020; 42:e2000658. [PMID: 33326133 DOI: 10.1002/marc.202000658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Cyclic macromolecules do not feature chain ends and are characterized by a higher effective intramolecular repulsion between polymer segments, leading to a higher excluded-volume effect and greater hydration with respect to their linear counterparts. As a result of these unique properties, hydrogels composed of cross-linked cyclic polymers feature enhanced mechanical strength while simultaneously incorporating more solvent with respect to networks formed from their linear analogues with identical molar mass and chemical composition. The translation of topology effects by cyclic polymers into the properties of polymer networks provides hydrogels that ideally do not include defects, such as dangling chain ends, and display unprecedented physicochemical characteristics.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8093, Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland.,Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St., Gallen, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8093, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland.,Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St., Gallen, Switzerland
| |
Collapse
|
45
|
Takeuchi N, Nakajima S, Yoshida K, Kawano R, Hori Y, Onoe H. Microfiber-Shaped Programmable Materials with Stimuli-Responsive Hydrogel. Soft Robot 2020; 9:89-97. [PMID: 33275532 DOI: 10.1089/soro.2020.0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Programmable materials have artificially designed physical shapes responding to external stimuli, as well as high design capability and high flexibility. Here, we propose a microfiber-shaped programmable material with an axial pattern of stimuli-responsive (SR) and nonresponsive hydrogels. The SR pre-gel solution was mixed to sodium alginate pre-gel solution for instantaneous gelation with ionic crosslinking and solidified on a nonresponsive hydrogel microfiber with a valve-controlled microfluidic system. A design of microfiber-shaped programmable material (patterned position of SR regions) could be flexibly altered by changing a coded sequence program. We confirmed that the three-dimensional (3D) coil-like structures were self-folded at the patterned SR regions responding to the thermal stimulus and that the chirality of the self-folded 3D coil-like structures depends on the condition of the stimulus to the microfiber. Finally, interaction with objects using the programmable microfiber as a soft actuator was demonstrated. Our microfiber-shaped programmable materials expand possibilities of fiber-based materials in biomimetics and soft robotics fields.
Collapse
Affiliation(s)
- Nobuki Takeuchi
- Department of Mechanical Engineering and Faculty of Science, Technology, Keio University, Kanagawa, Japan
| | - Shunsuke Nakajima
- Department of Mechanical Engineering and Faculty of Science, Technology, Keio University, Kanagawa, Japan
| | - Koki Yoshida
- Department of Mechanical Engineering and Faculty of Science, Technology, Keio University, Kanagawa, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yutaka Hori
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering and Faculty of Science, Technology, Keio University, Kanagawa, Japan
| |
Collapse
|
46
|
Abstract
Hybrid stimuli-responsive soft robots have been extensively developed by incorporating multi-functional materials, such as carbon-based nanoparticles, nanowires, low-dimensional materials, and liquid crystals. In addition to the general functions of conventional soft robots, hybrid stimuli-responsive soft robots have displayed significantly advanced multi-mechanical, electrical, or/and optical properties accompanied with smart shape transformation in response to external stimuli, such as heat, light, and even biomaterials. This review surveys the current enhanced scientific methods to synthesize the integration of multi-functional materials within stimuli-responsive soft robots. Furthermore, this review focuses on the applications of hybrid stimuli-responsive soft robots in the forms of actuators and sensors that display multi-responsive and highly sensitive properties. Finally, it highlights the current challenges of stimuli-responsive soft robots and suggests perspectives on future directions for achieving intelligent hybrid stimuli-responsive soft robots applicable in real environments.
Collapse
|
47
|
Shah RA, Ostertag TW, Tang S, Dziubla TD, Hilt JZ. Development of biphenyl monomers and associated crosslinked polymers with intramolecular pi‐pi interactions. J Appl Polym Sci 2020; 138. [DOI: 10.1002/app.50257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rishabh A. Shah
- Superfund Research Center University of Kentucky Lexington Kentucky USA
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Thomas W. Ostertag
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Shuo Tang
- Superfund Research Center University of Kentucky Lexington Kentucky USA
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Thomas D. Dziubla
- Superfund Research Center University of Kentucky Lexington Kentucky USA
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - J. Zach Hilt
- Superfund Research Center University of Kentucky Lexington Kentucky USA
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
48
|
|
49
|
Kim YI, An S, Yarin AL, Yoon SS. Performance Enhancement of Soft Nanotextured Thermopneumatic Actuator by Incorporating Silver Nanowires into Elastomer Body. Soft Robot 2020; 8:711-719. [PMID: 33121380 DOI: 10.1089/soro.2020.0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To improve performance of thermopneumatic soft actuators, which have recently been developed for various industrial applications, we embedded different nanoscale materials into their elastomer bodies. This yields a significant enhancement in the actuator performance via improving the mechanical and thermal properties of the elastomer bodies. In addition, the use of nanoinclusions diminished losses of the working fluid from the actuators by decreasing vapor leaks through the elastomer body and thus improving longevity. Notably, when using different working fluids with low boiling temperatures, the operating temperature range of the actuators can be lowered and widened. The hybrid approach proposed in this study is expected to advance the industrial feasibility of thermopneumatic actuators.
Collapse
Affiliation(s)
- Yong Il Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Seongpil An
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Alexander L Yarin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sam S Yoon
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
50
|
|