1
|
Zhang Y, Wei G, Xue J, Xu J. CfSGR1 and CfSGR2 from Cryptomeria fortunei exhibit contrasting responses to hormones and abiotic stress in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109152. [PMID: 39423720 DOI: 10.1016/j.plaphy.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Stay-green (SGR) genes are pivotal regulatory genes in the context of plant chlorophyll metabolism, but few studies on SGR homologues in Cryptomeria fortunei have been previously reported. We cloned two CfSGR genes and overexpressed them in Arabidopsis to explore their functions. Full-length CfSGR1 and CfSGR2 are 1265 and 1197 bp, encompassing open reading frames (ORFs) encoding 274 and 276 amino acids, respectively. SGRs exhibited high conservation in higher plants, and phylogenetic analysis indicated that SGRs from monocots and gymnosperms cluster in a clade. The proteins localized to chloroplasts and showed no transcriptional activity in yeast cells. The CfSGR gene expressions were induced by abiotic stresses and hormones. Under conditions of darkness, abscisic acid (ABA), salt, drought, or freezing stress, CfSGR2-transgenic Arabidopsis exhibited a delay in leaf yellowing compared to the WT, which was attributed to increased chlorophyll content and enhanced photosynthetic capacity. These transgenic plants exhibited improved resistance to stress via upregulated expression of resistance-related genes, increased antioxidant enzyme activities, and reduced malondialdehyde content and electrolyte leakage rate. In contrast, CfSGR1-transgenic plants may accelerate leaf yellowing and exhibit reduced stress resistance. Our findings highlight potential divergence in the functions of CfSGR genes concerning plant growth and development and responses to abiotic stresses or hormones, providing a scientific foundation for future breeding of stress-resistant C. fortunei cultivars.
Collapse
Affiliation(s)
- Yingting Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China; National Forestry and Grassland Administration Engineering Research Center for Osmanthus Fragrans, Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Guangqian Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jinyu Xue
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jin Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Ramarui K, Zhong J, Li Y. Proteomic and phosphoproteomic analysis of a Haematococcus pluvialis (Chlorophyceae) mutant with a higher heterotrophic cell division rate reveals altered pathways involved in cell proliferation and nutrient partitioning. JOURNAL OF PHYCOLOGY 2024; 60:1173-1189. [PMID: 39129585 DOI: 10.1111/jpy.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
Haematococcus pluvialis has been used to produce the ketocarotenoid antioxidant, astaxanthin. Currently, heterotrophic cultivation of H. pluvialis is limited by slow growth rates. This work aimed to address this challenge by exploring the mechanisms of acetate metabolism in Haematococcus. Chemical mutagenesis and screening identified H. pluvialis strain KREMS 23D-3 that achieved up to a 34.9% higher cell density than the wild type when grown heterotrophically on acetate. An integrative proteomics and phosphoproteomics approach was employed to quantify 4955 proteins and 5099 phosphorylation sites from 2505 phosphoproteins in the wild-type and mutant strains of H. pluvialis. Among them, 12 proteins were significantly upregulated and 22 significantly downregulated in the mutant while phosphoproteomic analysis identified 143 significantly upregulated phosphorylation sites on 106 proteins and 130 downregulated phosphorylation sites on 114 proteins. Upregulation of anaphase-promoting complex phosphoproteins and downregulation of a putative cell cycle division 20 phosphoprotein in the mutant suggests rapid mitotic progression, coinciding with higher cell division rates. Upregulated coproporphyrinogen oxidase and phosphorylated magnesium chelatase in the mutant demonstrated altered nitrogen partitioning toward chlorophyll biosynthesis. The large proportion of differentially expressed phosphoproteins suggests phosphorylation is a key regulator for protein expression and activity in Haematococcus. Taken together, this study reveals the regulation of interrelated acetate metabolic pathways in H. pluvialis and provides protein targets that may guide future strain engineering work.
Collapse
Affiliation(s)
- Kyarii Ramarui
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Jun Zhong
- Delta Omics Inc., Rockville, Maryland, USA
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Gai S, Chen Y, Long Y, Luo Y, Yi X, Zhao Z, Li X, Zhou Z. Effects of LED polarized and vortex light on growth and photosynthetic characteristics of pepper (Capsicum annuum L.). JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154360. [PMID: 39348744 DOI: 10.1016/j.jplph.2024.154360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
Most studies currently focus on traditional illuminant regulating plant growth, while less attention has been given to the LED internal luminescence. This study examined how polarized and vortex light affect the growth and photosynthetic traits of pepper plants, with LED light used as the control. The findings indicated that circular polarized light significantly increased the aboveground biomass of pepper. Additionally, both polarized and vortex light treatment significantly influenced the root development of pepper. In comparison to the control group, the chlorophyll content was highest under circular polarized light, while the Pn, Sc, Tr, and Ci values were highest under linear polarized light, and the enzyme activity of Rubisco was increased. Circular polarized light notably increased the activities of POD, CAT, and SOD, the activity of SOD reached its peak under the left vortex light. Moreover, the content of MDA was observed to be the lowest under linear and right vortex light treatments. The expressions of key genes for chlorophyll synthesis (CaHEMA1 and CaCAO) and antioxidant enzyme synthesis (CaPOD, CaSOD, and CaMDHAR) were significantly altered under varying polarized light conditions, The latter genes, which play crucial roles in antioxidant enzyme activity, also showed significant variations in response to different polarized light treatments. In conclusion, polarized light significantly impacts the growth of pepper and is anticipated to be utilized for plant growth, setting the stage for future research in this area.
Collapse
Affiliation(s)
- Shujie Gai
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Changsha, 410128, China
| | - Yushuai Chen
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Changsha, 410128, China
| | - Yiyan Long
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Changsha, 410128, China
| | - Yichao Luo
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Changsha, 410128, China
| | - Xiaoni Yi
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Changsha, 410128, China
| | - Zixiang Zhao
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Changsha, 410128, China
| | - Xiaochun Li
- Shenzhen LUBON Technology Co., Ltd., Shenzhen, 518000, China
| | - Zhi Zhou
- Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Changsha, 410128, China.
| |
Collapse
|
4
|
Pesara P, Szafran K, Nguyen HC, Sirohiwal A, Pantazis DA, Gabruk M. Elucidating substrate binding in the light-dependent protochlorophyllide oxidoreductase. Chem Sci 2024; 15:7767-7780. [PMID: 38784751 PMCID: PMC11110527 DOI: 10.1039/d4sc00923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The Light-Dependent Protochlorophyllide Oxidoreductase (LPOR) catalyzes a crucial step in chlorophyll biosynthesis: the rare biological photocatalytic reduction of the double C[double bond, length as m-dash]C bond in the precursor, protochlorophyllide (Pchlide). Despite its fundamental significance, limited structural insights into the active complex have hindered understanding of its reaction mechanism. Recently, a high-resolution cryo-EM structure of LPOR in its active conformation challenged our view of pigment binding, residue interactions, and the catalytic process. Surprisingly, this structure contrasts markedly with previous assumptions, particularly regarding the orientation of the bound Pchlide. To gain insights into the substrate binding puzzle, we conducted molecular dynamics simulations, quantum-mechanics/molecular-mechanics (QM/MM) calculations, and site-directed mutagenesis. Two Pchlide binding modes were considered, one aligning with historical proposals (mode A) and another consistent with the recent experimental data (mode B). Binding energy calculations revealed that in contrast to the non-specific interactions found for mode A, mode B exhibits distinct stabilizing interactions that support more thermodynamically favorable binding. A comprehensive analysis incorporating QM/MM-based local energy decomposition unraveled a complex interaction network involving Y177, H319, and the C131 carboxy group, influencing the pigment's excited state energy and potentially contributing to substrate specificity. Importantly, our results uniformly favor mode B, challenging established interpretations and emphasizing the need for a comprehensive re-evaluation of the LPOR reaction mechanism in a way that incorporates accurate structural information on pigment interactions and substrate-cofactor positioning in the binding pocket. The results shed light on the intricacies of LPOR's catalytic mechanism and provide a solid foundation for further elucidating the secrets of chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Penelope Pesara
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Katarzyna Szafran
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 30-387 Cracow Poland
| | - Henry C Nguyen
- Department of Biochemistry & Biophysics, Quantitative Biosciences Institute, University of California San Francisco CA USA
| | - Abhishek Sirohiwal
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University 10691 Stockholm Sweden
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Michal Gabruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 30-387 Cracow Poland
| |
Collapse
|
5
|
Sun D, Wu S, Li X, Ge B, Zhou C, Yan X, Ruan R, Cheng P. The Structure, Functions and Potential Medicinal Effects of Chlorophylls Derived from Microalgae. Mar Drugs 2024; 22:65. [PMID: 38393036 PMCID: PMC10890356 DOI: 10.3390/md22020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Microalgae are considered to be natural producers of bioactive pigments, with the production of pigments from microalgae being a sustainable and economical strategy that promises to alleviate growing demand. Chlorophyll, as the main pigment of photosynthesis, has been widely studied, but its medicinal applications as an antioxidant, antibacterial, and antitumor reagent are still poorly understood. Chlorophyll is the most important pigment in plants and algae, which not only provides food for organisms throughout the biosphere, but also plays an important role in a variety of human and man-made applications. The biological activity of chlorophyll is closely related to its chemical structure; its specific structure offers the possibility for its medicinal applications. This paper reviews the structural and functional roles of microalgal chlorophylls, commonly used extraction methods, and recent advances in medicine, to provide a theoretical basis for the standardization and commercial production and application of chlorophylls.
Collapse
Affiliation(s)
- Danni Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Songlin Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China;
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Roger Ruan
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
6
|
Chen W, Tang L, Li Q, Cai Y, Ahmad S, Wang Y, Tang S, Guo N, Wei X, Tang S, Shao G, Jiao G, Xie L, Hu S, Sheng Z, Hu P. YGL3 Encoding an IPP and DMAPP Synthase Interacts with OsPIL11 to Regulate Chloroplast Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:8. [PMID: 38228921 DOI: 10.1186/s12284-024-00687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
As the source of isoprenoid precursors, the plastidial methylerythritol phosphate (MEP) pathway plays an essential role in plant development. Here, we report a novel rice (Oryza sativa L.) mutant ygl3 (yellow-green leaf3) that exhibits yellow-green leaves and lower photosynthetic efficiency compared to the wild type due to abnormal chloroplast ultrastructure and reduced chlorophyll content. Map-based cloning showed that YGL3, one of the major genes involved in the MEP pathway, encodes 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, which is localized in the thylakoid membrane. A single base substitution in ygl3 plants resulted in lower 4-hydroxy-3-methylbut-2-enyl diphosphate reductase activity and lower contents of isopentenyl diphosphate (IPP) compared to the wild type. The transcript levels of genes involved in the syntheses of chlorophyll and thylakoid membrane proteins were significantly reduced in the ygl3 mutant compared to the wild type. The phytochrome interacting factor-like gene OsPIL11 regulated chlorophyll synthesis during the de-etiolation process by directly binding to the promoter of YGL3 to activate its expression. The findings provides a theoretical basis for understanding the molecular mechanisms by which the MEP pathway regulate chloroplast development in rice.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, P. R. China
| | - Liqun Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Qianlong Li
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yicong Cai
- Key Labora tory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Ministry of Education/Collaboration Center for Double-season Rice Modernization Production, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yakun Wang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shengjia Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Naihui Guo
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Lihong Xie
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shikai Hu
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China.
| |
Collapse
|
7
|
Gan P, Luo X, Wei H, Hu Y, Li R, Luo J. Identification of hub genes that variate the qCSS12-mediated cold tolerance between indica and japonica rice using WGCNA. PLANT CELL REPORTS 2023; 43:24. [PMID: 38150036 DOI: 10.1007/s00299-023-03093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/05/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE Cold-tolerant QTL qCSS12-regulated 14 hub genes are involved in the chloroplastic biological processes and in the protein synthesis and degradation processes in japonica rice. Low temperature is a main constraint factor for rice growth and production. To better understand the regulatory mechanisms underlying the cold tolerance phenotype in rice, here, we selected a cold-sensitive nearly isogenic line (NIL) NIL(qcss12) as materials to identify hub genes that are mediated by the cold-tolerant locus qCSS12 through weighted gene co-expression network analysis (WGCNA). Fourteen cold-responsive genes were identified, of which, 6 are involved in regulating biological processes in chloroplasts, including the reported EF-Tu, Prk, and ChlD, and 8 are involved in the protein synthesis and degradation processes. Differential expression of these genes between NIL(qcss12) and its controls under cold stress may be responsible for qCSS12-mediated cold tolerance in japonica rice. Moreover, natural variations in 12 of these hub genes are highly correlated with the cold tolerance divergence in two rice subspecies. The results provide deep insights into a better understanding of the molecular basis of cold adaptation in rice and provide a theoretical basis for molecular breeding.
Collapse
Affiliation(s)
- Ping Gan
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Xianglan Luo
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Hanxing Wei
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Yunfei Hu
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Rongbai Li
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Jijing Luo
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Feng G, Xu X, Liu W, Hao F, Yang Z, Nie G, Huang L, Peng Y, Bushman S, He W, Zhang X. Transcriptome Profiling Provides Insights into the Early Development of Tiller Buds in High- and Low-Tillering Orchardgrass Genotypes. Int J Mol Sci 2023; 24:16370. [PMID: 38003564 PMCID: PMC10671593 DOI: 10.3390/ijms242216370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Orchardgrass (Dactylis glomerata L.) is among the most economically important perennial cool-season grasses, and is considered an excellent hay, pasture, and silage crop in temperate regions worldwide. Tillering is a vital feature that dominates orchardgrass regeneration and biomass yield. However, transcriptional dynamics underlying early-stage bud development in high- and low-tillering orchardgrass genotypes are unclear. Thus, this study assessed the photosynthetic parameters, the partially essential intermediate biomolecular substances, and the transcriptome to elaborate the early-stage profiles of tiller development. Photosynthetic efficiency and morphological development significantly differed between high- (AKZ-NRGR667) and low-tillering genotypes (D20170203) at the early stage after tiller formation. The 206.41 Gb of high-quality reads revealed stage-specific differentially expressed genes (DEGs), demonstrating that signal transduction and energy-related metabolism pathways, especially photosynthetic-related processes, influence tiller induction and development. Moreover, weighted correlation network analysis (WGCNA) and functional enrichment identified distinctively co-expressed gene clusters and four main regulatory pathways, including chlorophyll, lutein, nitrogen, and gibberellic acid (GA) metabolism pathways. Therefore, photosynthesis, carbohydrate synthesis, nitrogen efficient utilization, and phytohormone signaling pathways are closely and intrinsically linked at the transcriptional level. These findings enhance our understanding of tillering in orchardgrass and perennial grasses, providing a new breeding strategy for improving forage biomass yield.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Feigxiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaun Bushman
- Forage and Range Research Laboratory, United States Department of Agriculture, 695 North 1100 East, Logan, UT 84322-6300, USA
| | - Wei He
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Shvarev D, Scholz AI, Moeller A. Conformational variability of cyanobacterial ChlI, the AAA+ motor of magnesium chelatase involved in chlorophyll biosynthesis. mBio 2023; 14:e0189323. [PMID: 37737632 PMCID: PMC10653834 DOI: 10.1128/mbio.01893-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Photosynthesis is an essential life process that relies on chlorophyll. In photosynthetic organisms, chlorophyll synthesis involves multiple steps and depends on magnesium chelatase. This enzyme complex is responsible for inserting magnesium into the chlorophyll precursor, but the molecular mechanism of this process is not fully understood. By using cryogenic electron microscopy and conducting functional analyses, we have discovered that the motor subunit ChlI of magnesium chelatase undergoes conformational changes in the presence of ATP. Our findings offer new insights into how energy is transferred from ChlI to the other components of magnesium chelatase. This information significantly contributes to our understanding of the initial step in chlorophyll biosynthesis and lays the foundation for future studies on the entire process of chlorophyll production.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
| | - Alischa Ira Scholz
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
| | - Arne Moeller
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
10
|
Ahad A, Gul A, Batool TS, Huda NU, Naseeer F, Abdul Salam U, Abdul Salam M, Ilyas M, Turkyilmaz Unal B, Ozturk M. Molecular and genetic perspectives of cold tolerance in wheat. Mol Biol Rep 2023; 50:6997-7015. [PMID: 37378744 DOI: 10.1007/s11033-023-08584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Environmental variation is the most crucial problem as it is causing food insecurity and negatively impacts food availability, utilization, assessment, and stability. Wheat is the largest and extensively cultivated staple food crop for fulfilling global food requirements. Abiotic stresses including salinity, heavy metal toxicity, drought, extreme temperatures, and oxidative stresses being the primary cause of productivity loss are a serious threat to agronomy. Cold stress is a foremost ecological constraint that is extremely influencing plant development, and yield. It is extremely hampering the propagative development of plant life. The structure and function of plant cells depend on the cell's immune system. The stresses due to cold, affect fluid in the plasma membrane and change it into crystals or a solid gel phase. Plants being sessile in nature have evolved progressive systems that permit them to acclimatize the cold stress at the physiological as well as molecular levels. The phenomenon of acclimatisation of plants to cold stress has been investigated for the last 10 years. Studying cold tolerance is critical for extending the adaptability zones of perennial grasses. In the present review, we have elaborated the current improvement of cold tolerance in plants from molecular and physiological viewpoints, such as hormones, the role of the posttranscriptional gene, micro RNAs, ICE-CBF-COR signaling route in cold acclimatization and how they are stimulating the expression of underlying genes encoding osmoregulatory elements and strategies to improve cold tolerance in wheat.
Collapse
Affiliation(s)
- Arzoo Ahad
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Tuba Sharf Batool
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Noor-Ul Huda
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Faiza Naseeer
- Department of Industrial Biotechnology, ASAB, NUST, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, SCPS, STMU, Islamabad, Pakistan
| | - Uzma Abdul Salam
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maria Abdul Salam
- Department of Microbiology, Quaid-I-Azam University (QAU), Islamabad, Pakistan
| | - Mahnoor Ilyas
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Bengu Turkyilmaz Unal
- Department of Biotechnology, Faculty of Arts & Sciences, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| |
Collapse
|
11
|
Shim KC, Kang Y, Song JH, Kim YJ, Kim JK, Kim C, Tai TH, Park I, Ahn SN. A Frameshift Mutation in the Mg-Chelatase I Subunit Gene OsCHLI Is Associated with a Lethal Chlorophyll-Deficient, Yellow Seedling Phenotype in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2831. [PMID: 37570985 PMCID: PMC10420988 DOI: 10.3390/plants12152831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Chlorophyll biosynthesis is a crucial biological process in plants, and chlorophyll content is one of the most important traits in rice breeding programs. In this study, we identified a lethal, chlorophyll-deficient, yellow seedling (YS) phenotype segregating in progeny of CR5055-21, an F2 plant derived from a backcross between Korean japonica variety 'Hwaseong' (Oryza sativa) and CR5029, which is mostly Hwaseong with a small amount of Oryza grandiglumis chromosome segments. The segregation of the mutant phenotype was consistent with a single gene recessive mutation. Light microscopy of YS leaf cross-sections revealed loosely arranged mesophyll cells and sparse parenchyma in contrast to wildtype. In addition, transmission electron microscopy showed that chloroplasts did not develop in the mesophyll cells of the YS mutant. Quantitative trait loci (QTL)-seq analysis did not detect any significant QTL, however, examination of the individual delta-SNP index identified a 2-bp deletion (AG) in the OsCHLI gene, a magnesium (Mg)-chelatase subunit. A dCAPs marker was designed and genotyping of a segregating population (n = 275) showed that the mutant phenotype co-segregated with the marker. The 2-bp deletion was predicted to result in a frameshift mutation generating a premature termination. The truncated protein likely affects formation and function of Mg-chelatase, which consists of three different subunits that together catalyze the first committed step of chlorophyll biosynthesis. Transcriptome analysis showed that photosynthesis and carbohydrate metabolism pathways were significantly altered although expression of OsCHLI was not. Chlorophyll- and carotenoid-related genes were also differentially expressed in the YS mutant. Our findings demonstrated that OsCHLI plays an important role in leaf pigment biosynthesis and leaf structure development in rice.
Collapse
Affiliation(s)
- Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA;
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Yuna Kang
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| | - Jun-Ho Song
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.J.K.); (J.K.K.)
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.J.K.); (J.K.K.)
| | - Changsoo Kim
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| | - Thomas H. Tai
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA;
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Inkyu Park
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| |
Collapse
|
12
|
Li H, Zhang L, Wu B, Li Y, Wang H, Teng H, Wei D, Yuan Z, Yuan Z. Physiological and proteomic analyses reveal the important role of arbuscular mycorrhizal fungi on enhancing photosynthesis in wheat under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115105. [PMID: 37285679 DOI: 10.1016/j.ecoenv.2023.115105] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are important in the phytoremediation of cadmium (Cd). Improving photosynthesis under Cd stress helps to increase crop yields. However, the molecular regulatory mechanisms of AMF on photosynthetic processes in wheat (Triticum aestivum) under Cd stress remain unclear. This study utilized physiological and proteomic analyses to reveal the key processes and related genes of AMF that regulate photosynthesis under Cd stress. The results showed that AMF promoted the accumulation of Cd in the roots of wheat but significantly reduced the content of Cd in the shoots and grains. The photosynthetic rates, stomatal conductance, transpiration rates, chlorophyll content, and accumulation of carbohydrates under Cd stress were increased by AMF symbiosis. Proteomic analysis showed that AMF significantly induced the expression of two enzymes involved in the chlorophyll biosynthetic pathway (coproporphyrinogen oxidase and Mg-protoporphyrin IX chelatase), improved the expression of two proteins related to CO2 assimilation (ribulose-1,5-bisphosphate carboxylase and malic enzyme), and increased the expression of S-adenosylmethionine synthase, which positively regulates abiotic stress. Therefore, AMF may regulate photosynthesis under Cd stress by promoting chlorophyll biosynthesis, carbon assimilation, and S-adenosylmethionine metabolism.
Collapse
Affiliation(s)
- Hua Li
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Lele Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Baocun Wu
- Henan Province Rock & Mineral Testing Centre, Zhengzhou, China; Laboratory of Precious Metal Analysis and Exploration Technology, Ministry of Natural Resources, Zhengzhou, China
| | - Yang Li
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Huijuan Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Huixin Teng
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Dongwei Wei
- College of Life Science, Henan Agricultural University, Zhengzhou, China.
| | - Zhiliang Yuan
- College of Life Science, Henan Agricultural University, Zhengzhou, China.
| | - Zuli Yuan
- College of Life Science, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
13
|
Sun F, Ye W, Li S, Wang Z, Xie K, Wang W, Zhang C, Xi Y. Analysis of morphological traits and regulatory mechanism of a semi-dwarf, albino, and blue grain wheat line. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:35. [PMID: 37312751 PMCID: PMC10248668 DOI: 10.1007/s11032-023-01379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/15/2023]
Abstract
The plant height and leaf color are important traits in crops since they contribute to the production of grains and biomass. Progress has been made in mapping the genes that regulate plant height and leaf color in wheat (Triticum aestivum L.) and other crops. Wheat line DW-B (dwarfing, white leaves, and blue grains) with semi-dwarfing and albinism at the tillering stage and re-greening at the jointing stage was created using Lango and Indian Blue Grain. Transcriptomic analyses of the three wheat lines at the early jointing stages indicated that the genes of gibberellin (GA) signaling pathway and chlorophyll (Chl) biosynthesis were expressed differently in DW-B and its parents. Furthermore, the response to GA and Chl contents differed between DW-B and its parents. The dwarfing and albinism in DW-B were owing to defects in the GA signaling pathway and abnormal chloroplast development. This study can improve understanding of the regulation of plant height and leaf color. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01379-z.
Collapse
Affiliation(s)
- Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wenjie Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Song Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhulin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Kunliang Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
14
|
Lira BS, Gramegna G, Amaral P, Dos Reis Moreira J, Wu RTA, Vicente MH, Nogueira FTS, Freschi L, Rossi M. Phytol recycling: essential, yet not limiting for tomato fruit tocopherol accumulation under normal growing conditions. PLANT MOLECULAR BIOLOGY 2023; 111:365-378. [PMID: 36587296 DOI: 10.1007/s11103-022-01331-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Tocopherols are potent membrane-bound antioxidant molecules that are paramount for plant physiology and also important for human health. In the past years, chlorophyll catabolism was identified as the primary source of phytyl diphosphate for tocopherol synthesis by the action of two enzymes, PHYTOL KINASE (VTE5) and PHYTHYL PHOSPHATE KINASE (VTE6) that are able to recycle the chlorophyll-derived phytol. While VTE5 and VTE6 were proven essential for tocopherol metabolism in tomato fruits, it remains unknown whether they are rate-limiting steps in this pathway. To address this question, transgenic tomato plants expressing AtVTE5 and AtVTE6 in a fruit-specific manner were generated. Although ripe transgenic fruits exhibited higher amounts of tocopherol, phytol recycling revealed a more intimate association with chlorophyll than with tocopherol content. Interestingly, protein-protein interactions assays showed that VTE5 and VTE6 are complexed, channeling free phytol and phytyl-P, thus mitigating their cytotoxic nature. Moreover, the analysis of tocopherol accumulation dynamics in roots, a chlorophyll-devoid organ, revealed VTE5-dependent tocopherol accumulation, hinting at the occurrence of shoot-to-root phytol trafficking. Collectively, these results demonstrate that phytol recycling is essential for tocopherol biosynthesis, even in chlorophyll-devoid organs, yet it is not the rate-limiting step for this pathway under normal growth conditions.
Collapse
Affiliation(s)
- Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Giovanna Gramegna
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Paula Amaral
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Juliene Dos Reis Moreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Raquel Tsu Ay Wu
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Mateus Henrique Vicente
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-900, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-900, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil.
| |
Collapse
|
15
|
Zhu L, Wen J, Ma Q, Yan K, Du Y, Chen Z, Lu X, Ren J, Wang Y, Li S, Li Q. Transcriptome profiling provides insights into leaf color changes in two Acer palmatum genotypes. BMC PLANT BIOLOGY 2022; 22:589. [PMID: 36526968 PMCID: PMC9756493 DOI: 10.1186/s12870-022-03979-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ornamental trees with seasonally-dependent leaf color, such as Acer palmatum, have gained worldwide popularity. Leaf color is a main determinant of the ornamental and economic value of A. palmatum. However, the molecular mechanisms responsible for leaf color changes remain unclear. RESULTS We chose A. palmatum cultivars with yellow ('Jinling Huangfeng') and red ('Jinling Danfeng') leaves as the ideal material for studying the complex metabolic networks responsible for variations in leaf coloration. The 24 libraries obtained from four different time points in the growth of 'Jinling Huangfeng' and 'Jinling Danfeng' was subjected to Illumina high-throughput sequencing. We observed that the difference in cyanidin and delphinidin content is the primary reason behind the varying coloration of the leaves. Transcriptomic analyses revealed 225,684 unigenes, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes (DEGs) confirmed that they were involved in 'anthocyanin biosynthesis.' Eighteen structural genes involved in anthocyanin biosynthesis were thought to be related to anthocyanin accumulation, whereas 46 MYBs, 33 basic helix-loop-helixs (bHLHs), and 29 WD40s were presumed to be involved in regulating anthocyanin biosynthesis. Based on weighted gene co-expression network analysis (WGCNA), three candidate genes (ApRHOMBOID, ApMAPK, and ApUNE10) were screened in the significant association module with a correlation coefficient (r2) of 0.86. CONCLUSION In this study, the leaf color changes of two A. palmatum genotypes were analyzed. These findings provide novel insights into variations in leaf coloration and suggest pathways for targeted genetic improvements in A. palmatum.
Collapse
Affiliation(s)
- Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Jing Wen
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Kunyuan Yan
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Yiming Du
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongke South Road, 230031 Hefei, Anhui China
| | - Xiaoyu Lu
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongke South Road, 230031 Hefei, Anhui China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongke South Road, 230031 Hefei, Anhui China
| | - Yuelan Wang
- Chenshi Maples Nursery, 313308 Longba Village, Huzhou, Zhejiang China
| | - Shushun Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 210014 Nanjing, Jiangsu China
| |
Collapse
|
16
|
Zhang L, Zhang J, Mao Y, Yin Y, Shen X. Physiological analysis and transcriptome sequencing of a delayed-green leaf mutant 'Duojiao' of ornamental crabapple ( Malus sp.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1833-1848. [PMID: 36484024 PMCID: PMC9723064 DOI: 10.1007/s12298-022-01248-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Malus spectabilis 'Duojiao' is a spontaneous delayed-green leaf color mutant of M. spectabilis 'Riversii' and has chloroplasts with irregularly arranged vesicles and indistinct stromal lamellae. The yellow leaves of mutant have less chlorophyll (Chl), carotenoids, and flavonoids. Measurement of photosynthetic gas exchange indicated that the mutant has lower photosynthetic activity than 'Riversii' plants. Transcriptome sequencing with the Illumina platform was used to characterize differences in gene expression between the leaves of plants with yellow and green colors and elucidate the molecular mechanisms responsible for variation in leaf color in ornamental crabapple. In the comparison group of mutant yellow leaves and the maternal green leaves, 1848 differentially significant expressed genes (DEGs) were annotated by transcriptomic analysis. Many DEGs and transcription factors were identified related to chloroplast development, Chl synthesis and degradation, photosynthesis, carotenoid biosynthesis, flavonoid biosynthesis and other pathways related to plant leaf color formation. Among these, the Chl biosynthesis-related coproporphyrinogen gene, oxidative decarboxylase gene, and Chl a oxygenase gene were down-regulated, indicating that Chl biosynthesis was blocked. GLK1, which regulates chloroplast development, was down-regulated in yellow leaves. Parallel experiments showed that the content of the Chl synthesis precursors, protoporphyrinogen IX, chlorophyllide a, and chlorophyllide b and the activity of chlorophyllogen III oxidase and chlorophyllide a oxygenase in the yellow leaves of 'Duojiao' were lower than those in the green leaves of 'Riversii'. Thus, leaf color formation is greatly affected by Chl metabolism and chloroplast development. The reliability of the RNA-sequencing data was confirmed by quantitative real-time PCR analysis with 12 selected DEGs. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01248-7.
Collapse
Affiliation(s)
- Lulu Zhang
- State Key Laboratory for Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Junkang Zhang
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Yunfei Mao
- State Key Laboratory for Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yijun Yin
- State Key Laboratory for Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Xiang Shen
- State Key Laboratory for Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
17
|
Ye S, Yang J, Huang Y, Liu J, Ma X, Zhao L, Ma C, Tu J, Shen J, Fu T, Wen J. Bulk segregant analysis-sequencing and RNA-Seq analyses reveal candidate genes associated with albino phenotype in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:994616. [PMID: 36119587 PMCID: PMC9478516 DOI: 10.3389/fpls.2022.994616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Inheritable albino mutants are excellent models for exploring the mechanism of chloroplast biogenesis and development. However, only a few non-lethal albino mutations have been reported to date in Brassica species. Here, we describe a resynthesized Brassica napus mutant, whose leaf, stem, and silique tissues showed an inheritable albino phenotype under field conditions after the bud stage but green phenotype in the greenhouse during the whole growing season, indicating that the albino phenotype depends on environmental conditions. Compared with the green leaves of the field-grown wild-type (GL) and greenhouse-grown mutant (WGL) plants, white leaves of the field-grown mutant (WL) showed significantly lower chlorophyll contents and structural defects in chloroplasts. Genetic analysis revealed that the albino phenotype of WL is recessive and is controlled by multiple genes. Bulk segregant analysis-sequencing (BSA-Seq) indicated that the candidate regions responsible for the albino phenotype spanned a total physical distance of approximately 49.68 Mb on chromosomes A03, A07, A08, C03, C04, C06, and C07. To gain insights into the molecular mechanisms that control chloroplast development in B. napus, we performed transcriptome (RNA-Seq) analysis of GL, WGL, and WL samples. GO and KEGG enrichment analyses suggested that differentially expressed genes (DEGs) associated with leaf color were significantly enriched in photosynthesis, ribosome biogenesis and chlorophyll metabolism. Further analysis indicated that DEGs involved in chloroplast development and chlorophyll metabolism were likely the main factors responsible for the albino phenotype in B. napus. A total of 59 DEGs were screened in the candidate regions, and four DEGs (BnaC03G0522600NO, BnaC07G0481600NO, BnaC07G0497800NO, and BnaA08G0016300NO) were identified as the most likely candidates responsible for the albino phenotype. Altogether, this study provides clues for elucidating the molecular mechanisms underlying chloroplast development in B. napus.
Collapse
|
18
|
Comparative Transcriptomic and Metabolic Analyses Reveal the Coordinated Mechanisms in Pinus koraiensis under Different Light Stress Conditions. Int J Mol Sci 2022; 23:ijms23179556. [PMID: 36076949 PMCID: PMC9455776 DOI: 10.3390/ijms23179556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 01/07/2023] Open
Abstract
Light is one of the most important environmental cues that affects plant development and regulates its behavior. Light stress directly inhibits physiological responses and plant tissue development and even induces mortality in plants. Korean pine (Pinus koraiensis) is an evergreen conifer species widely planted in northeast China that has important economic and ecological value. However, the effects of light stress on the growth and development of Korean pine are still unclear. In this study, the effects of different shading conditions on physiological indices, molecular mechanisms and metabolites of Korean pine were explored. The results showed that auxin, gibberellin and abscisic acid were significantly increased under all shading conditions compared with the control. The contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid also increased as the shading degree increased. Moreover, a total of 8556, 3751 and 6990 differentially expressed genes (DEGs) were found between the control and HS (heavy shade), control and LS (light shade), LS vs. HS, respectively. Notably, most DEGs were assigned to pathways of phytohormone signaling, photosynthesis, carotenoid and flavonoid biosynthesis under light stress. The transcription factors MYB-related, AP2-ERF and bHLH specifically increased expression during light stress. A total of 911 metabolites were identified, and 243 differentially accumulated metabolites (DAMs) were detected, among which flavonoid biosynthesis (naringenin chalcone, dihydrokaempferol and kaempferol) metabolites were significantly different under light stress. These results will provide a theoretical basis for the response of P. koraiensis to different light stresses.
Collapse
|
19
|
Jiang Y, Zhu Q, Yang H, Zhi T, Ren C. Phenylalanine suppresses cell death caused by loss of fumarylacetoacetate hydrolase in Arabidopsis. Sci Rep 2022; 12:13546. [PMID: 35941360 PMCID: PMC9360007 DOI: 10.1038/s41598-022-17819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) catalyzes the final step of Tyrosine (Tyr) degradation pathway essential to animals and the deficiency of FAH causes an inborn lethal disease. In plants, a role of this pathway was unknown until we found that mutation of Short-day Sensitive Cell Death1 (SSCD1), encoding Arabidopsis FAH, results in cell death under short day. Phenylalanine (Phe) could be converted to Tyr and then degraded in both animals and plants. Phe ingestion in animals worsens the disease caused by FAH defect. However, in this study we found that Phe represses cell death caused by FAH defect in plants. Phe treatment promoted chlorophyll biosynthesis and suppressed the up-regulation of reactive oxygen species marker genes in the sscd1 mutant. Furthermore, the repression of sscd1 cell death by Phe could be reduced by α-aminooxi-β-phenylpropionic acid but increased by methyl jasmonate, which inhibits or activates Phe ammonia-lyase catalyzing the first step of phenylpropanoid pathway, respectively. In addition, we found that jasmonate signaling up-regulates Phe ammonia-lyase 1 and mediates the methyl jasmonate enhanced repression of sscd1 cell death by Phe. These results uncovered the relation between chlorophyll biosynthesis, phenylpropanoid pathway and jasmonate signaling in regulating the cell death resulting from loss of FAH in plants.
Collapse
Affiliation(s)
- Yihe Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qi Zhu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.,Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Tiantian Zhi
- Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Chunmei Ren
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China. .,Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
20
|
Wang R, Li Y, Gao M, Han M, Liu H. Genome-wide identification and characterization of the bHLH gene family and analysis of their potential relevance to chlorophyll metabolism in Raphanus sativus L. BMC Genomics 2022; 23:548. [PMID: 35915410 DOI: 10.1186/s12864-022-08782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Green-fleshed radish (Raphanus sativus L.) is an economically important root vegetable of the Brassicaceae family, and chlorophyll accumulates in its root tissues. It was reported that the basic helix-loop-helix (bHLH) transcription factors play vital roles in the process of chlorophyll metabolism. Nevertheless, a comprehensive study on the bHLH gene family has not been performed in Raphanus sativus L. RESULTS In this study, a total of 213 Raphanus sativus L. bHLH (RsbHLH) genes were screened in the radish genome, which were grouped into 22 subfamilies. 204 RsbHLH genes were unevenly distributed on nine chromosomes, and nine RsbHLH genes were located on the scaffolds. Gene structure analysis showed that 25 RsbHLH genes were intron-less. Collineation analysis revealed the syntenic orthologous bHLH gene pairs between radish and Arabidopsis thaliana/Brassica rapa/Brassica oleracea. 162 RsbHLH genes were duplicated and retained from the whole genome duplication event, indicating that the whole genome duplication contributed to the expansion of the RsbHLH gene family. RNA-seq results revealed that RsbHLH genes had a variety of expression patterns at five development stages of green-fleshed radish and white-fleshed radish. In addition, the weighted gene co-expression network analysis confirmed four RsbHLH genes closely related to chlorophyll content. CONCLUSIONS A total of 213 RsbHLH genes were identified, and we systematically analyzed their gene structure, evolutionary and collineation relationships, conserved motifs, gene duplication, cis-regulatory elements and expression patterns. Finally, four bHLH genes closely involved in chlorophyll content were identified, which may be associated with the photosynthesis of the green-fleshed radish. The current study would provide valuable information for further functional exploration of RsbHLH genes, and facilitate clarifying the molecular mechanism underlying photosynthesis process in green-fleshed radish.
Collapse
Affiliation(s)
- Ruihua Wang
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Yuanyuan Li
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China.
| | - Minggang Gao
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Min Han
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Huilian Liu
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| |
Collapse
|
21
|
Xue Y, Dong H, Huang H, Li S, Shan X, Li H, Liu H, Xia D, Su S, Yuan Y. Mutation in Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase Gene ZmCRD1 Causes Chlorophyll-Deficiency in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:912215. [PMID: 35873969 PMCID: PMC9301084 DOI: 10.3389/fpls.2022.912215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/23/2022] [Indexed: 06/01/2023]
Abstract
Chlorophyll molecules are non-covalently associated with chlorophyll-binding proteins to harvest light and perform charge separation vital for energy conservation during photosynthetic electron transfer in photosynthesis for photosynthetic organisms. The present study characterized a pale-green leaf (pgl) maize mutant controlled by a single recessive gene causing chlorophyll reduction throughout the whole life cycle. Through positional mapping and complementation allelic test, Zm00001d008230 (ZmCRD1) with two missense mutations (p.A44T and p.T326M) was identified as the causal gene encoding magnesium-protoporphyrin IX monomethyl ester cyclase (MgPEC). Phylogenetic analysis of ZmCRD1 within and among species revealed that the p.T326M mutation was more likely to be causal. Subcellular localization showed that ZmCRD1 was targeted to chloroplasts. The pgl mutant showed a malformed chloroplast morphology and reduced number of starch grains in bundle sheath cells. The ZmCRD1 gene was mainly expressed in WT and mutant leaves, but the expression was reduced in the mutant. Most of the genes involved in chlorophyll biosynthesis, chlorophyll degradation, chloroplast development and photosynthesis were down-regulated in pgl. The photosynthetic capacity was limited along with developmental retardation and production reduction in pgl. These results confirmed the crucial role of ZmCRD1 in chlorophyll biosynthesis, chloroplast development and photosynthesis in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shengzhong Su
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Yaping Yuan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
22
|
Jang YH, Park JR, Kim EG, Kim KM. OsbHLHq11, the Basic Helix-Loop-Helix Transcription Factor, Involved in Regulation of Chlorophyll Content in Rice. BIOLOGY 2022; 11:1000. [PMID: 36101381 PMCID: PMC9312294 DOI: 10.3390/biology11071000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022]
Abstract
Photosynthesis is an important factor in determining the yield of rice. In particular, the size and efficiency of the photosynthetic system after the heading has a great impact on the yield. Research related to high-efficiency photosynthesis is essential to meet the growing demands of crops for the growing population. Chlorophyll is a key molecule in photosynthesis, a pigment that acts as an antenna to absorb light energy. Improvement of chlorophyll content characteristics has been emphasized in rice breeding for several decades. It is expected that an increase in chlorophyll content may increase photosynthetic efficiency, and understanding the genetic basis involved is important. In this study, we measured leaf color (CIELAB), chlorophyll content (SPAD), and chlorophyll fluorescence, and quantitative trait loci (QTL) mapping was performed using 120 Cheongcheong/Nagdong double haploid (CNDH) line after the heading date. A major QTL related to chlorophyll content was detected in the RM26981-RM287 region of chromosome 11. OsbHLHq11 was finally selected through screening of genes related to chlorophyll content in the RM26981-RM287 region. The relative expression level of the gene of OsbHLHq11 was highly expressed in cultivars with low chlorophyll content, and is expected to have a similar function to BHLH62 of the Gramineae genus. OsbHLHq11 is expected to increase photosynthetic efficiency by being involved in the chlorophyll content, and is expected to be utilized as a new genetic resource for breeding high-yield rice.
Collapse
Affiliation(s)
- Yoon-Hee Jang
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| | - Jae-Ryoung Park
- Crop Breeding Division, Rural Development Administration, National Institute of Crop Science, Wanju 55365, Korea;
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| |
Collapse
|
23
|
Silva PJ, Cheng Q. An Alternative Proposal for the Reaction Mechanism of Light-Dependent Protochlorophyllide Oxidoreductase. ACS Catal 2022; 12:2589-2605. [PMID: 36568346 PMCID: PMC9778109 DOI: 10.1021/acscatal.1c05351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-dependent protochlorophyllide oxidoreductase is one of the few known enzymes that require a quantum of light to start their catalytic cycle. Upon excitation, it uses NADPH to reduce the C17-C18 in its substrate (protochlorophyllide) through a complex mechanism that has heretofore eluded precise determination. Isotopic labeling experiments have shown that the hydride-transfer step is very fast, with a small barrier close to 9 kcal mol-1, and is followed by a proton-transfer step, which has been postulated to be the protonation of the product by the strictly conserved Tyr189 residue. Since the structure of the enzyme-substrate complex has not yet been experimentally determined, we first used modeling techniques to discover the actual substrate binding mode. Two possible binding modes were found, both yielding stable binding (as ascertained through molecular dynamics simulations) but only one of which placed the critical C17=C18 bond consistently close to the NADPH pro-S hydrogen and to Tyr189. This binding pose was then used as a starting point for the testing of previous mechanistic proposals using time-dependent density functional theory. The quantum-chemical computations clearly showed that such mechanisms have prohibitively high activation energies. Instead, these computations showed the feasibility of an alternative mechanism initiated by excited-state electron transfer from the key Tyr189 to the substrate. This mechanism appears to agree with the extant experimental data and reinterprets the final protonation step as a proton transfer to the active site itself rather than to the product, aiming at regenerating it for another round of catalysis.
Collapse
Affiliation(s)
- Pedro J. Silva
- FP-I3ID/Fac.
de Ciências da Saúde, Universidade
Fernando Pessoa, 4200-150 Porto, Portugal,UCIBIO@REQUIMTE,
BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal,
| | - Qi Cheng
- Department
of Biochemistry, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China,State
Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071000, China,
| |
Collapse
|
24
|
Tanaka M, Tanaka A, Saga Y. Effects of peripheral substituents on epimerization kinetics of formylated chlorophylls. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
C132-[Formula: see text]-epimers of chlorophyll (Chl) molecules are important cofactors in the photosystem I reaction centers in oxygenic photosynthetic organisms; however, their production mechanism is still unclear. The reaction properties of Chl epimerization are helpful for a better understanding of the molecular mechanism of the in vivo formation of Chl C132-[Formula: see text]-epimers. We report herein the kinetic properties of the epimerization of formylated Chl molecules, Chl [Formula: see text] and Chl [Formula: see text], by use of triethylamine. Both Chl [Formula: see text] and Chl [Formula: see text] performed faster epimerization kinetics than Chl [Formula: see text], indicating that the electron-withdrawing ability of the formyl groups directly linked to the chlorin macrocycle is responsible for acceleration of the epimerization. Comparing the rate constants of the two mono-formylated Chl molecules indicated that the epimerization of Chl [Formula: see text] was faster than that of Chl [Formula: see text]. This difference is rationalized by invoking a combination of the inductive effects of the C3- and C7-substituents in Chls; the sums of Hammett [Formula: see text] parameters of the C3- and C7-substituents exhibited high correlations with the epimerization rate constants of Chls [Formula: see text], [Formula: see text], and [Formula: see text].
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Aiko Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
25
|
Wang Y, Jia B, Ren H, Feng Z. Ploidy level enhances the photosynthetic capacity of a tetraploid variety of Acer buergerianum Miq. PeerJ 2022; 9:e12620. [PMID: 35003928 PMCID: PMC8684723 DOI: 10.7717/peerj.12620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Background Polyploidy plays an important role in plant breeding and has widespread effects on photosynthetic capacity. To determine the photosynthetic capacity of the tetraploid variety Acer buergerianum Miq. ‘Xingwang’, we compared the gas exchange parameters, chloroplast structure, chlorophyll contents, and chlorophyll fluorescence parameters between the tetraploid Acer buergerianum ‘Xingwang’ and the diploid ‘S4’. To evaluate the effects of genome duplication on the photosynthetic capacity of Acer buergerianum ‘Xingwang’, the transcriptomes of the autotetraploid ‘Xingwang’ and the diploid ‘S4’ of A. buergerianum were compared. Methods The ploidy of Acer buergerianum ‘Xingwang’ was identified by flow cytometry and the chromosome counting method. An LI-6800 portable photosynthesis system analyzer was used to assess the gas exchange parameters of the tetraploid variety ‘Xingwang’ and diploid variety ‘S4’ of A. buergerianum. We used a BioMate 3S ultraviolet-visible spectrophotometer and portable modulated fluorometer to measure the chlorophyll contents and chlorophyll fluorescence parameters, respectively, of ‘Xingwang’ and ‘S4’. Illumina high-throughput sequencing technology was used to identify the differences in the genes involved in the photosynthetic differences and determine their expression characteristics. Results The single-cell DNA content and chromosome number of the tetraploid ‘Xingwang’ were twice those found in the normal diploid ‘S4’. In terms of gas exchange parameters, the change in stomatal conductance, change in intercellular CO2 concentration, transpiration rate and net photosynthetic rate of ‘Xingwang’ were higher than those of the diploid ‘S4’. The chlorophyll contents, the maximal photochemical efficiency of PSII and the potential photochemical efficiency of PSII in ‘Xingwang’ were higher than those of ‘S4’. The chloroplasts of ‘Xingwang’ contained thicker thylakoid lamellae. By the use of Illumina sequencing technology, a total of 51,807 unigenes were obtained; they had an average length of 1,487 nt, and the average N50 was 2,034 nt. The lengths of most of the unigenes obtained ranged from 200–300 bp, with an average value of 5,262, followed by those longer than 3,000 bp, with an average value of 4,791. The data revealed numerous differences in gene expression between the two transcriptomes. In total, 24,221 differentially expressed genes were screened, and the percentage of differentially expressed genes was as high as 46.75% (24,224/51,807), of which 10,474 genes were upregulated and 13,747 genes were downregulated. We analyzed the key genes in the photosynthesis pathway and the porphyrin and chlorophyll metabolism pathway; the upregulation of HemB may promote an increase in the chlorophyll contents of ‘Xingwang’, and the upregulation of related genes in PSII and PSI may enhance the light harvesting of ‘Xingwang’, increasing its light energy conversion efficiency.
Collapse
Affiliation(s)
- Yi Wang
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China.,Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Bingyu Jia
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China.,Forestry Bureau of Huguan County, Changzhi, Shanxi Province, China
| | - Hongjian Ren
- Forestry Protection and Development Center of Ningyang County, Ningyang, Tai'an, Shandong Province, China
| | - Zhen Feng
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China
| |
Collapse
|
26
|
Bhakta S, Negi S, Tak H, Singh S, Ganapathi TR. MusaATAF2 like protein, a stress-related transcription factor, induces leaf senescence by regulating chlorophyll catabolism and H 2 O 2 accumulation. PHYSIOLOGIA PLANTARUM 2022; 174:e13593. [PMID: 34761415 DOI: 10.1111/ppl.13593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
NAC transcription factors are known for their diverse role in plants. In this study, we have demonstrated the role of MusaATAF2, a banana NAC transcription factor, in leaf senescence. Its expression gets strongly up-regulated during the early stress responses of drought and high salinity exposure and down-regulated under ABA application, which suggests MusaATAF2 is a stress-related NAC transcription factor. To study the role of MusaATAF2 in banana, we have transformed the banana embryogenic cells with MusaATAF2 coding region and generated transgenic banana plants. Overexpression of MusaATAF2 in banana plants caused yellow leaf phenotype under control condition, suggesting its role as a senescence-associated transcription factor. Transgenic banana leaves exhibited low chlorophyll content and high H2 O2 accumulation. Hormone analysis of the leaves demonstrated a higher accumulation of ABA in the transgenic plants than the controls. Transgenic plants overexpressing MusaATAF2 have a higher transcript abundance of two chlorophyll catabolic pathway genes (PAO and HCAR) and lower transcript abundance of ROS scavenging enzymes (TDP, THIO, CAT, APX, and PRXDN) than control. Together, all these analyses indicate that MusaATAF2 induces senescence by inducing chlorophyll degradation and H2 O2 accumulation in banana plants and controls its own expression using an ABA-dependent feedback loop.
Collapse
Affiliation(s)
- Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudhir Singh
- Homi Bhabha National Institute, Mumbai, India
- Plant Biotechnology & Secondary Metabolites Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Thumbali R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
27
|
Sun Y, Wu Y, Wang Y, Wang S, Wang X, Li G, Zhang X, Liang Z, Li J, Gong L, Wendel JF, Wang D, Liu B. Homoploid F1 hybrids and segmental allotetraploids of japonica and indica rice subspecies show similar and enhanced tolerance to nitrogen deficiency than parental lines. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5612-5624. [PMID: 33909897 DOI: 10.1093/jxb/erab184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
It remains unclear whether the merger of two divergent genomes by hybridization at the homoploid level or coupled with whole-genome duplication (WGD; allopolyploidy) can result in plants having better tolerance to stress conditions. In this study, we compared phenotypic performance and gene expression in the two diploid subspecies of rice (Oryza sativa subsp. japonica and indica), their reciprocal F1 hybrids, and in segmental allotetraploids under normal and nitrogen (N)-deficient conditions. We found that F1 hybrids and tetraploids showed higher and similar levels of tolerance to N deficiency than either parent. In parallel, total expression levels of 18 relevant functional genes were less perturbed by N deficiency in the F1 hybrids and tetraploids than in the parents. This was consistent with stable intrinsic partitioning of allelic/homoeologous expression defined by parental legacy in the homoploid F1 hybrids/tetraploids between the two conditions. The results suggest that genetic additivity at both the homoploid and allopolyploidy level might lead to similar beneficial phenotypic responses to nitrogen stress compared with the parents. The lack of synergistic responses to N limitation concomitant with WGD, relative to that exhibited by F1 hybrids, adds new empirical evidence in support of the emerging hypothesis that hybridization by itself can play a significant role in plant adaptive evolution in times of stress.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Vegetation Ecology of Ministry of Education (MOE), Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yangzhi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Shengnan Wang
- Key Laboratory of Vegetation Ecology of Ministry of Education (MOE), Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Xue Zhang
- Key Laboratory of Vegetation Ecology of Ministry of Education (MOE), Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| | - Zidong Liang
- Key Laboratory of Vegetation Ecology of Ministry of Education (MOE), Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| | - Jiahao Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution & Organismal Biology, lowa State University, Ames, IA 50011, USA
| | - Deli Wang
- Key Laboratory of Vegetation Ecology of Ministry of Education (MOE), Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
28
|
Yu HW, Lu ZH, Wang X, Liu D, He JX, Jiang XL, Ke LJ, Guo WW, Deng XX, Xu Q. Identification of a delayed leaf greening gene from a mutation of pummelo. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1165-1173. [PMID: 33009992 DOI: 10.1007/s11427-020-1790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/01/2020] [Indexed: 05/11/2023]
Abstract
Delayed greening of young leaves is an unusual phenomenon of plants in nature. Citrus are mostly evergreen tree species. Here, a natural mutant of "Guanxi" pummelo (Citrus maxima), which shows yellow leaves at the young stage, was characterized to identify the genes underlying the trait of delayed leaf greening in plants. A segregating population with this mutant as the seed parent and a normal genotype as the pollen parent was generated. Two DNA pools respectively from the leaves of segregating seedlings with extreme phenotypes of normal leaf greening and delayed leaf greening were collected for sequencing. Bulked segregant analysis (BSA) and InDel marker analysis demonstrated that the delayed leaf greening trait is governed by a 0.3 Mb candidate region on chromosome 6. Gene expression analysis further identified a key candidate gene (Citrus Delayed Greening gene 1, CDG1) in the 0.3 Mb region, which showed significantly differential expression between the genotypes with delayed and normal leaf greening phenotypes. There was a 67 bp InDel region difference in the CDG1 promoter and the InDel region contains a TATA-box element. Confocal laser-scanning microscopy revealed that the CDG1-GFP fusion protein signals were co-localized with the chloroplast signals in the protoplasts. Overexpression of CDG1 in tobacco and Arabidopsis led to the phenotype of delayed leaf greening. These results suggest that the CDG1 gene is involved in controlling the delayed leaf greening phenotype with important functions in chloroplast development.
Collapse
Affiliation(s)
- Hui-Wen Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, Minnan Normal University, Zhangzhou, 363000, China
| | - Zhi-Hao Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Xian He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Lin Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling-Jun Ke
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, Minnan Normal University, Zhangzhou, 363000, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiu-Xin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
29
|
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia. Int J Mol Sci 2021; 22:ijms22126495. [PMID: 34204357 PMCID: PMC8233740 DOI: 10.3390/ijms22126495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022] Open
Abstract
Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway’s enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.
Collapse
|
30
|
Floris D, Kühlbrandt W. Molecular landscape of etioplast inner membranes in higher plants. NATURE PLANTS 2021; 7:514-523. [PMID: 33875833 PMCID: PMC8055535 DOI: 10.1038/s41477-021-00896-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/05/2021] [Indexed: 05/16/2023]
Abstract
Etioplasts are photosynthetically inactive plastids that accumulate when light levels are too low for chloroplast maturation. The etioplast inner membrane consists of a paracrystalline tubular lattice and peripheral, disk-shaped membranes, respectively known as the prolamellar body and prothylakoids. These distinct membrane regions are connected into one continuous compartment. To date, no structures of protein complexes in or at etioplast membranes have been reported. Here, we used electron cryo-tomography to explore the molecular membrane landscape of pea and maize etioplasts. Our tomographic reconstructions show that ATP synthase monomers are enriched in the prothylakoids, and plastid ribosomes in the tubular lattice. The entire tubular lattice is covered by regular helical arrays of a membrane-associated protein, which we identified as the 37-kDa enzyme, light-dependent protochlorophyllide oxidoreductase (LPOR). LPOR is the most abundant protein in the etioplast, where it is responsible for chlorophyll biosynthesis, photoprotection and defining the membrane geometry of the prolamellar body. Based on the 9-Å-resolution volume of the subtomogram average, we propose a structural model of membrane-associated LPOR.
Collapse
Affiliation(s)
- Davide Floris
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Fu H, Zeng T, Zhao Y, Luo T, Deng H, Meng C, Luo J, Wang C. Identification of Chlorophyll Metabolism- and Photosynthesis-Related Genes Regulating Green Flower Color in Chrysanthemum by Integrative Transcriptome and Weighted Correlation Network Analyses. Genes (Basel) 2021; 12:genes12030449. [PMID: 33801035 PMCID: PMC8004015 DOI: 10.3390/genes12030449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Green chrysanthemums are difficult to breed but have high commercial value. The molecular basis for the green petal color in chrysanthemum is not fully understood. This was investigated in the present study by RNA sequencing analysis of white and green ray florets collected at three stages of flower development from the F1 progeny of the cross between Chrysanthemum × morifolium “Lüdingdang” with green-petaled flowers and Chrysanthemum vistitum with white-petaled flowers. The chlorophyll content was higher and chloroplast degradation was slower in green pools than in white pools at each developmental stage. Transcriptome analysis revealed that genes that were differentially expressed between the two pools were enriched in pathways related to chlorophyll metabolism and photosynthesis. We identified the transcription factor genes CmCOLa, CmCOLb, CmERF, and CmbHLH as regulators of the green flower color in chrysanthemum by differential expression analysis and weighted gene co-expression network analysis. These findings can guide future efforts to improve the color palette of chrysanthemum flowers through genetic engineering.
Collapse
|
32
|
Heyes DJ, Zhang S, Taylor A, Johannissen LO, Hardman SJO, Hay S, Scrutton NS. Photocatalysis as the 'master switch' of photomorphogenesis in early plant development. NATURE PLANTS 2021; 7:268-276. [PMID: 33686224 DOI: 10.1038/s41477-021-00866-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Enzymatic photocatalysis is seldom used in biology. Photocatalysis by light-dependent protochlorophyllide oxidoreductase (LPOR)-one of only a few natural light-dependent enzymes-is an exception, and is responsible for the conversion of protochlorophyllide to chlorophyllide in chlorophyll biosynthesis. Photocatalysis by LPOR not only regulates the biosynthesis of the most abundant pigment on Earth but it is also a 'master switch' in photomorphogenesis in early plant development. Following illumination, LPOR promotes chlorophyll production, plastid membranes are transformed and the photosynthetic apparatus is established. Given these remarkable, light-induced pigment and morphological changes, the LPOR-catalysed reaction has been extensively studied from catalytic, physiological and plant development perspectives, highlighting vital, and multiple, cellular roles of this intriguing enzyme. Here, we offer a perspective in which the link between LPOR photocatalysis and plant photomorphogenesis is explored. Notable breakthroughs in LPOR structural biology have uncovered the structural-mechanistic basis of photocatalysis. These studies have clarified how photon absorption by the pigment protochlorophyllide-bound in a ternary LPOR-protochlorophyllide-NADPH complex-triggers photocatalysis and a cascade of complex molecular and cellular events that lead to plant morphological changes. Photocatalysis is therefore the master switch responsible for early-stage plant development and ultimately life on Earth.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Aoife Taylor
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
33
|
Chen Y, Xu H, He T, Gao R, Guo G, Lu R, Chen Z, Liu C. Comparative Analysis of Morphology, Photosynthetic Physiology, and Transcriptome Between Diploid and Tetraploid Barley Derived From Microspore Culture. FRONTIERS IN PLANT SCIENCE 2021; 12:626916. [PMID: 33747007 PMCID: PMC7970760 DOI: 10.3389/fpls.2021.626916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/05/2021] [Indexed: 06/01/2023]
Abstract
Polyploids play an important role in the breeding of plant for superior characteristics, and many reports have focused on the effects upon photosynthesis from polyploidization in some plant species recently, yet surprisingly little of this is known for barley. In this study, homozygous diploid and tetraploid plants, derived from microspore culturing of the barley cultivar "H30," were used to assess differences between them in their cellular, photosynthetic, and transcriptomic characteristics. Our results showed that tetraploid barley has the distinct characteristics of polyploids, namely thicker and heavier leaves, enlarged stomata size or stomatal guard cell size, and more photosynthetic pigments and improved photosynthesis (especially under high light intensity). This enhanced photosynthesis of tetraploid barley was confirmed by several photosynthetic parameters, including net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), maximum net photosynthetic rate (Pmax), light saturation point (LSP), maximum RuBP saturated rate carboxylation (Vcmax), and maximum rate of electron transport (Jmax). Transcriptomic analyses revealed that just ~2.3% of all detected genes exhibited differential expression patterns [i.e., differentially expressed genes (DEGs)], and that most of these - 580 of 793 DEGs in total - were upregulated in the tetraploid barley. The follow-up KEGG analysis indicated that the most enriched pathway was related to photosynthesis-antenna proteins, while the downregulation of DEGs was related mainly to the light-harvesting cholorophyII a/b-binding protein (Lhcb1) component, both validated by quantitative PCR (qPCR). Taken together, our integrated analysis of morphology, photosynthetic physiology, and transcriptome provides evidences for understanding of how polyploidization enhances the photosynthetic capacity in tetraploids of barley.
Collapse
Affiliation(s)
- Yunyun Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Hongwei Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Ting He
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Runhong Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Guimei Guo
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Ruiju Lu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Zhiwei Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| |
Collapse
|
34
|
Lu J, Guan P, Gu J, Yang X, Wang F, Qi M, Li T, Liu Y. Exogenous DA-6 Improves the Low Night Temperature Tolerance of Tomato Through Regulating Cytokinin. FRONTIERS IN PLANT SCIENCE 2021; 11:599111. [PMID: 33613581 PMCID: PMC7889814 DOI: 10.3389/fpls.2020.599111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/24/2020] [Indexed: 06/04/2023]
Abstract
Low night temperature (LNT) causes environmental stress and has a severe and negative impact on plant growth and productivity. Synthetic elicitors can regulate plant growth and induce defense mechanisms from this type of stress. Here, we evaluated the effect of the exogenous growth regulator diethyl aminoethyl hexanoate (DA-6) in tomato leaf response to LNT stress. Our results showed that exogenous DA-6 activates the expression of chlorophyll synthesis and photosystem-related genes, and results in higher photosynthetic activity and chlorophyll production. Furthermore, DA-6 can regulate the synthesis of endogenous cytokinin (CTK) and the expression of decomposition genes to stabilize chloroplast structure, reduce oxidative damage, and maintain the photochemical activity of tomato leaves under LNT stress. DA-6 maintains a high level of ABA content and induces the expression of CBF genes, indicating that DA-6 may participate in the cold response signaling pathway and induce the expression of downstream low temperature response genes and accumulation of compatible osmolytes. This study unravels a mode of action by which plant growth regulators can improve low temperature tolerance and provides important considerations for their application to alleviate the harmful effects of cold stress.
Collapse
Affiliation(s)
- Jiazhi Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Pengxiao Guan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Jiamao Gu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Xiaolong Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| |
Collapse
|
35
|
Shimizu T, Masuda T. The Role of Tetrapyrrole- and GUN1-Dependent Signaling on Chloroplast Biogenesis. PLANTS 2021; 10:plants10020196. [PMID: 33494334 PMCID: PMC7911674 DOI: 10.3390/plants10020196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Chloroplast biogenesis requires the coordinated expression of the chloroplast and nuclear genomes, which is achieved by communication between the developing chloroplasts and the nucleus. Signals emitted from the plastids, so-called retrograde signals, control nuclear gene expression depending on plastid development and functionality. Genetic analysis of this pathway identified a set of mutants defective in retrograde signaling and designated genomes uncoupled (gun) mutants. Subsequent research has pointed to a significant role of tetrapyrrole biosynthesis in retrograde signaling. Meanwhile, the molecular functions of GUN1, the proposed integrator of multiple retrograde signals, have not been identified yet. However, based on the interactions of GUN1, some working hypotheses have been proposed. Interestingly, GUN1 contributes to important biological processes, including plastid protein homeostasis, through transcription, translation, and protein import. Furthermore, the interactions of GUN1 with tetrapyrroles and their biosynthetic enzymes have been revealed. This review focuses on our current understanding of the function of tetrapyrrole retrograde signaling on chloroplast biogenesis.
Collapse
|
36
|
Li Z, Tang M, Hassan MJ, Zhang Y, Han L, Peng Y. Adaptability to High Temperature and Stay-Green Genotypes Associated With Variations in Antioxidant, Chlorophyll Metabolism, and γ-Aminobutyric Acid Accumulation in Creeping Bentgrass Species. FRONTIERS IN PLANT SCIENCE 2021; 12:750728. [PMID: 34777429 PMCID: PMC8581182 DOI: 10.3389/fpls.2021.750728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 05/20/2023]
Abstract
High temperature limits the cultivation and utilization of cool-season plants in many regions worldwide. Recently, extreme hot waves swept across the globe in summer, leading to enormous economic loss. The evaluation and identification of genotypic variation in thermotolerance within species are critical to breeding for environmental adaptation and also provide potential materials to explore thermo-resistant mechanism in plants. Forty-two accessions of creeping bentgrass (Agrostis stolonifera), which is a cool-season perennial grass for turf and ecological remediation, were collected from 15 different countries. Physiological traits, namely, chlorophyll (Chl) content, electrolyte leakage, photochemical efficiency, performance index on absorption basis, leaf relative water content, and osmotic potential were used to evaluate the heat tolerance of these materials in controlled growth chambers and field during summer. Stay-green and early-aging genotypes were selected to further reveal the potential mechanism of tolerance to senescence and heat damage associated with alterations in Chl metabolism, antioxidant and photosynthetic capacity, and endogenous γ-aminobutyric acid (GABA). Findings showed that there were significant genetic variations in physiological traits among 41 materials in response to high temperature stress. The 13M, PROVIDENCE, and LOFTS L-93 were the top three accessions with superior tolerance to heat and summer stress than other materials in terms of laboratory and field tests. In response to heat stress, the stay-green genotype PROVIDENCE exhibited significantly higher photochemical efficiency, net photosynthetic rate, transpiration rate, and water use efficiency than the heat-susceptible W6 6570. Delayed leaf senescence in relation to less Chl loss was detected in the PROVIDENCE associated with maintenance of significantly higher expression levels of Chl-anabolic genes (AsCHLH, AsPBGD, and AsPOR) and lower Chl-catabolic gene AsPPH under heat stress. Genetic attributes, such as better capacity to scavenge reactive oxygen species and higher endogenous GABA content could play positive roles in alleviating heat-induced senescence, oxidative damage, and metabolic disturbance in the PROVIDENCE.
Collapse
Affiliation(s)
- Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
- *Correspondence: Zhou Li
| | - Mingyan Tang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liebao Han
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Yan Peng
| |
Collapse
|
37
|
Loi M, Villani A, Paciolla F, Mulè G, Paciolla C. Challenges and Opportunities of Light-Emitting Diode (LED) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidants (Basel) 2020; 10:antiox10010042. [PMID: 33396461 PMCID: PMC7824119 DOI: 10.3390/antiox10010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023] Open
Abstract
Plant antioxidants are important compounds involved in plant defense, signaling, growth, and development. The quantity and quality of such compounds is genetically driven; nonetheless, light is one of the factors that strongly influence their synthesis and accumulation in plant tissues. Indeed, light quality affects the fitness of the plant, modulating its antioxidative profile, a key element to counteract the biotic and abiotic stresses. With this regard, light-emitting diodes (LEDs) are emerging as a powerful technology which allows the selection of specific wavelengths and intensities, and therefore the targeted accumulation of plant antioxidant compounds. Despite the unique advantages of such technology, LED application in the horticultural field is still at its early days and several aspects still need to be investigated. This review focused on the most recent outcomes of LED application to modulate the antioxidant compounds of plants, with particular regard to vitamin C, phenols, chlorophyll, carotenoids, and glucosinolates. Additionally, future challenges and opportunities in the use of LED technology in the growth and postharvest storage of fruits and vegetables were also addressed to give a comprehensive overview of the future applications and trends of research.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Francesco Paciolla
- Automation Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Costantino Paciolla
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
38
|
Protochlorophyllide synthesis by recombinant cyclases from eukaryotic oxygenic phototrophs and the dependence on Ycf54. Biochem J 2020; 477:2313-2325. [PMID: 32469391 PMCID: PMC7319587 DOI: 10.1042/bcj20200221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
The unique isocyclic E ring of chlorophylls contributes to their role as light-absorbing pigments in photosynthesis. The formation of the E ring is catalyzed by the Mg-protoporphyrin IX monomethyl ester cyclase, and the O2-dependent cyclase in prokaryotes consists of a diiron protein AcsF, augmented in cyanobacteria by an auxiliary subunit Ycf54. Here, we establish the composition of plant and algal cyclases, by demonstrating the in vivo heterologous activity of O2-dependent cyclases from the green alga Chlamydomonas reinhardtii and the model plant Arabidopsis thaliana in the anoxygenic photosynthetic bacterium Rubrivivax gelatinosus and in the non-photosynthetic bacterium Escherichia coli. In each case, an AcsF homolog is the core catalytic subunit, but there is an absolute requirement for an algal/plant counterpart of Ycf54, so the necessity for an auxiliary subunit is ubiquitous among oxygenic phototrophs. A C-terminal ∼40 aa extension, which is present specifically in green algal and plant Ycf54 proteins, may play an important role in the normal function of the protein as a cyclase subunit.
Collapse
|
39
|
Zhao X, Jia T, Hu X. HCAR Is a Limitation Factor for Chlorophyll Cycle and Chlorophyll b Degradation in Chlorophyll- b-Overproducing Plants. Biomolecules 2020; 10:E1639. [PMID: 33291365 PMCID: PMC7762049 DOI: 10.3390/biom10121639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022] Open
Abstract
The chlorophyll (Chl) cycle is the metabolic pathway for Chl a and Chl b inter-conversion. In this pathway, Chl b is synthesized from Chl a by the catalyzing action of chlorophyllide a oxygenase (CAO). In contrast, Chl b is firstly reduced to produce 7-hydroxymethyl Chl (HMChl) a, which is catalyzed by two isozymes of Chl b reductase (CBR), non-yellow coloring 1 (NYC1) and NYC1-like (NOL). Subsequently, HMChl a is reduced to Chl a by HMChl a reductase (HCAR). CAO plays a pivotal role in Chl a/b ratio regulation and plants over-accumulate Chl b in CAO-overexpressing plants. NYC1 is more accumulated in Chl-b-overproducing plants, while HCAR is not changed. To investigate the role of HCAR in Chl cycle regulation, the Chl metabolites of Chl-b-overproducing plants were analyzed. The results showed that HMChl a accumulated in these plants, and it decreased and the Chl a/b ratio increased by overexpressing HCAR, implying HCAR is insufficient for Chl cycle in Chl-b-overproducing plants. Furthermore, during dark-induced senescence, the non-programmed cell death symptoms (leaves dehydrated with green color retained) of Chl-b-overproducing plants were obviously alleviated, and the content of HM pheophorbide (HMPheide) a and Pheide b were sharply decreased by overexpressing HCAR. These results imply that HCAR is also insufficient for Chl degradation in Chl-b-overproducing plants during senescence, thus causing the accumulation of Chl metabolites and non-programmed cell death of leaves. With these results taken together, we conclude that HCAR is not well regulated and it is a limiting factor for Chl cycle and Chl b degradation in Chl-b-overproducing plants.
Collapse
Affiliation(s)
- Xuan Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (X.Z.); (T.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (X.Z.); (T.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (X.Z.); (T.J.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
40
|
In situ formation of photoactive B-ring reduced chlorophyll isomer in photosynthetic protein LH2. Sci Rep 2020; 10:19383. [PMID: 33168889 PMCID: PMC7652862 DOI: 10.1038/s41598-020-76540-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Natural chlorophylls have a D-ring reduced chlorin π-system; however, no naturally occurring photosynthetically active B-ring reduced chlorins have been reported. Here we report a B-ring reduced chlorin, 17,18-didehydro-bacteriochlorophyll (BChl) a, produced by in situ oxidation of B800 bacteriochlorophyll (BChl) a in a light-harvesting protein LH2 from a purple photosynthetic bacterium Phaeospirillum molischianum. The regioselective oxidation of the B-ring of B800 BChl a is rationalized by its molecular orientation in the protein matrix. The formation of 17,18-didehydro-BChl a produced no change in the local structures and circular arrangement of the LH2 protein. The B-ring reduced 17,18-didehydro-BChl a functions as an energy donor in the LH2 protein. The photoactive B-ring reduced Chl isomer in LH2 will be helpful for understanding the photofunction and evolution of photosynthetic cyclic tetrapyrrole pigments.
Collapse
|
41
|
Alkimin GDD, Santos J, Soares AMVM, Nunes B. Ecotoxicological effects of the azole antifungal agent clotrimazole on the macrophyte species Lemna minor and Lemna gibba. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108835. [PMID: 32585366 DOI: 10.1016/j.cbpc.2020.108835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Pharmaceuticals are a large and diverse group of compounds used to treat, prevent and diagnose disease. Among these, a group that has been recently detected in the aquatic environment is that of the azole compounds, commonly used as antifungals. Clotrimazole (CLO) is a nonbiodegradable persistent azole compound, with broad-spectrum antifungal activity for which virtually no toxicological data are available, especially towards aquatic plants. The few existent data point to a documented interference with cytochrome P450 system of exposed organisms. Therefore, the aim of this paper was to evaluate the ecotoxicological effects of the fungicide CLO on two aquatic macrophyte species, namely, Lemna minor and Lemna gibba. To attain this purpose, an acute assay (96 h) was performed with both species being exposed to CLO, in a concentration range of 0 to 5 μg L-1. The analyzed endpoints were levels of chlorophyll a and b, total, carotenoids, catalase (CAT) and glutathione -s-transferases activities (GSTs). In general, CLO exposure caused some minor alterations in L. minor and L. gibba pigment contents. Antioxidant enzymes exhibited a different pattern in both species, since the highest concentrations of CLO caused an increase on CAT activity, and a decrease on GSTs activity in L. minor, and the opposite in L. gibba, reflected by a decrease on CAT activity and an increase on GSTs activity in all tested concentrations. These results demonstrate that CLO exposure resulted in potential deleterious effects on macrophytes, namely with the involvement of the antioxidant defense mechanisms that were likely deployed to cope with pro-oxidative conditions established by CLO.
Collapse
Affiliation(s)
- Gilberto Dias de Alkimin
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - João Santos
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
42
|
Alkimin GD, Soares AMVM, Barata C, Nunes B. Can salicylic acid modulate biochemical, physiological and population alterations in a macrophyte species under chemical stress by diclofenac? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139715. [PMID: 32534307 DOI: 10.1016/j.scitotenv.2020.139715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Salicylic acid (SA) is a pharmaceutical drug that may exert toxic effects by its own; however, simultaneous exposure of plants to SA and to other substances, often results in the significant changes in the patterns of toxic response/resistance to these other sources of chemical stress. Thus, the aim of this work was to investigate the capacity of SA of modulating Lemna minor responses co-exposed to the pharmaceutical drug, diclofenac - DCF. To attain this objective, L. minor was exposed for 7 days, to DCF alone, and to combinations of DCF with SA. After exposure, biochemical, physiological and population endpoints were analyzed as follows: catalase (CAT) and glutathione S-transferases (GSTs) activities, pigments content (chlorophyll a (Chl a), b (Chl b) and total (TChl), carotenoids (Car) and [Chl a]/[Chl b] and [TChl]/[Car] ratios), and growth specific rate, fresh weight and root length. Single exposures to DCF were capable of causing effects in all analyzed endpoints. However, co-exposure of DCF with SA partially reverted these effects. Finally, we may suggest that SA is capable to prevent the toxicity of DCF in macrophytes, by modulating the toxic response of exposed plants.
Collapse
Affiliation(s)
- G D Alkimin
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - A M V M Soares
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - C Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - B Nunes
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
43
|
Islam S, Bhor SA, Tanaka K, Sakamoto H, Yaeno T, Kaya H, Kobayashi K. Transcriptome Analysis Shows Activation of Stress and Defense Responses by Silencing of Chlorophyll Biosynthetic Enzyme CHLI in Transgenic Tobacco. Int J Mol Sci 2020; 21:E7044. [PMID: 32987929 PMCID: PMC7582866 DOI: 10.3390/ijms21197044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
In the present study, we have shown the transcriptional changes in a chlorosis model transgenic tobacco plant, i-amiCHLI, in which an artificial micro RNA is expressed in a chemically inducible manner to silence the expression of CHLI genes encoding a subunit of a chlorophyll biosynthetic enzyme. Comparison to the inducer-treated and untreated control non-transformants and untreated i-amiCHLI revealed that 3568 and 3582 genes were up- and down-regulated, respectively, in the inducer-treated i-amiCHLI plants. Gene Ontology enrichment analysis of these differentially expressed genes indicated the upregulation of the genes related to innate immune responses, and cell death pathways, and the downregulation of genes for photosynthesis, plastid organization, and primary and secondary metabolic pathways in the inducer-treated i-amiCHLI plants. The cell death in the chlorotic tissues with a preceding H2O2 production was observed in the inducer-treated i-amiCHLI plants, confirming the activation of the immune response. The involvement of activated innate immune response in the chlorosis development was supported by the comparative expression analysis between the two transgenic chlorosis model systems, i-amiCHLI and i-hpHSP90C, in which nuclear genes encoding different chloroplast proteins were similarly silenced.
Collapse
Affiliation(s)
- Shaikhul Islam
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
| | - Sachin Ashok Bhor
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan;
| | - Hikaru Sakamoto
- Faculty of Bio-Industry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan;
| | - Takashi Yaeno
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Hidetaka Kaya
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Kappei Kobayashi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|
44
|
Zhang C, Zhang B, Mu B, Zheng X, Zhao F, Lan W, Fu A, Luan S. A Thylakoid Membrane Protein Functions Synergistically with GUN5 in Chlorophyll Biosynthesis. PLANT COMMUNICATIONS 2020; 1:100094. [PMID: 33367259 PMCID: PMC7747962 DOI: 10.1016/j.xplc.2020.100094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 05/21/2023]
Abstract
Chlorophyll (Chl) is essential for photosynthetic reactions and chloroplast development. While the enzymatic pathway for Chl biosynthesis is well established, the regulatory mechanism underlying the homeostasis of Chl levels remains largely unknown. In this study, we identified CBD1 (Chlorophyll Biosynthetic Defect1), which functions in the regulation of chlorophyll biosynthesis. The CBD1 gene was expressed specifically in green tissues and its protein product was embedded in the thylakoid membrane. Furthermore, CBD1 was precisely co-expressed and functionally correlated with GUN5 (Genome Uncoupled 5). Analysis of chlorophyll metabolic intermediates indicated that cbd1 and cbd1gun5 mutants over-accumulated magnesium protoporphyrin IX (Mg-Proto IX). In addition, the cbd1 mutant thylakoid contained less Mg than the wild type not only as a result of lower Chl content, but also implicating CBD1 in Mg transport. This was supported by the finding that CBD1 complemented a Mg2+ uptake-deficient Salmonella strain under low Mg conditions. Taken together, these results indicate that CBD1 functions synergistically with CHLH/GUN5 in Mg-Proto IX processing, and may serve as a Mg-transport protein to maintain Mg homeostasis in the chloroplast.
Collapse
Affiliation(s)
- Chi Zhang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Bin Zhang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Baicong Mu
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
- Temasek Life Sciences Laboratory, Singapore 117604, Republic of Singapore
| | - Xiaojiang Zheng
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Fugeng Zhao
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenzhi Lan
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
- Corresponding author
| | - Aigen Fu
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Corresponding author
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
45
|
Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. Proc Natl Acad Sci U S A 2020; 117:21747-21756. [PMID: 32817425 DOI: 10.1073/pnas.2012245117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis AINTEGUMENTA (ANT), an AP2 transcription factor, is known to control plant growth and floral organogenesis. In this study, our transcriptome analysis and in situ hybridization assays of maize embryonic leaves suggested that maize ANT1 (ZmANT1) regulates vascular development. To better understand ANT1 functions, we determined the binding motif of ZmANT1 and then showed that ZmANT1 binds the promoters of millet SCR1, GNC, and AN3, which are key regulators of Kranz anatomy, chloroplast development, and plant growth, respectively. We generated a mutant with a single-codon deletion and two frameshift mutants of the ANT1 ortholog in the C4 millet Setaria viridis by the CRISPR/Cas9 technique. The two frameshift mutants displayed reduced photosynthesis efficiency and growth rate, smaller leaves, and lower grain yields than wild-type (WT) plants. Moreover, their leaves sporadically exhibited distorted Kranz anatomy and vein spacing. Conducting transcriptomic analysis of developing leaves in the WT and the three mutants we identified differentially expressed genes (DEGs) in the two frameshift mutant lines and found many down-regulated DEGs enriched in photosynthesis, heme, tetrapyrrole binding, and antioxidant activity. In addition, we predicted many target genes of ZmANT1 and chose 13 of them to confirm binding of ZmANT1 to their promoters. Based on the above observations, we proposed a model for ANT1 regulation of cell proliferation and leaf growth, vascular and vein development, chloroplast development, and photosynthesis through its target genes. Our study revealed biological roles of ANT1 in several developmental processes beyond its known roles in plant growth and floral organogenesis.
Collapse
|
46
|
Yan Z, Shen Z, Gao ZF, Chao Q, Qian CR, Zheng H, Wang BC. A comprehensive analysis of the lysine acetylome reveals diverse functions of acetylated proteins during de-etiolation in Zea mays. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153158. [PMID: 32240968 DOI: 10.1016/j.jplph.2020.153158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 06/11/2023]
Abstract
Lysine acetylation is one of the most important post-translational modifications and is involved in multiple cellular processes in plants. There is evidence that acetylation may play an important role in light-induced de-etiolation, a key developmental switch from skotomorphogenesis to photomorphogenesis. During this transition, establishment of photosynthesis is of great significance. However, studies on acetylome dynamics during de-etiolation are limited. Here, we performed the first global lysine acetylome analysis for Zea mays seedlings undergoing de-etiolation, using nano liquid chromatography coupled to tandem mass spectrometry, and identified 814 lysine-acetylated sites on 462 proteins. Bioinformatics analysis of this acetylome showed that most of the lysine-acetylated proteins are predicted to be located in the cytoplasm, nucleus, chloroplast, and mitochondria. In addition, we detected ten lysine acetylation motifs and found that the accumulation of 482 lysine-acetylated peptides corresponding to 289 proteins changed significantly during de-etiolation. These proteins include transcription factors, histones, and proteins involved in chlorophyll synthesis, photosynthesis light reaction, carbon assimilation, glycolysis, the TCA cycle, amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our study provides an in-depth dataset that extends our knowledge of in vivo acetylome dynamics during de-etiolation in monocots. This dataset promotes our understanding of the functional consequences of lysine acetylation in diverse cellular metabolic regulatory processes, and will be a useful toolkit for further investigations of the lysine acetylome and de-etiolation in plants.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, New Jersey 08855, USA.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
47
|
Begum Y, Mondal SK. Comprehensive study of the genes involved in chlorophyll synthesis and degradation pathways in some monocot and dicot plant species. J Biomol Struct Dyn 2020; 39:2387-2414. [PMID: 32292132 DOI: 10.1080/07391102.2020.1748717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chlorophyll (Chl) biosynthesis is one of the most important cellular processes essential for plant photosynthesis. Chl degradation pathway is also important catabolic process occurs during leaf senescence, fruit ripening and under biotic or abiotic stress conditions. Here we have systematically investigated the molecular evolution, gene structure, compositional analysis along with ENc plot, correspondence analysis and codon usage bias of the proteins and encoded genes involved in Chl metabolism from monocots and dicots. The gene and species specific phylogenetic trees using amino acid sequences showed clear clustering formation of the selected species based on monocots and dicots but not supported by 18S rRNA. Nucleotide composition of the encoding genes showed that average GC%, GC1%, GC2% and GC3% were higher in monocots. RSCU analysis depicts that genes from monocots for both pathways and genes for synthesis pathway from dicots only biased to G/C-ending synonymous codons but in degradation pathway most optimal codons (except UUG) in dicots biased to A/U-ending synonymous codons. We found strong evidence of episodic diversifying selection at several amino acid sites in all genes investigated. Conserved domain and gene structures were observed for the genes with varying lengths of introns and exons, involved in Chl metabolism along with some intronless genes within synthesis pathway. ENc and correspondence analyses suggested the mutational or selection constraint on the genes to shape the codon usage. These comprehensive studies may be helpful in further research in molecular phylogenetics and genomics and to better understand the evolutionary dynamics of Chl metabolic pathway.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta, Kolkata, West Bengal, India
| | - Sunil Kanti Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
48
|
Liu D, Yang H, Yuan Y, Zhu H, Zhang M, Wei X, Sun D, Wang X, Yang S, Yang L. Comparative Transcriptome Analysis Provides Insights Into Yellow Rind Formation and Preliminary Mapping of the Clyr ( Yellow Rind) Gene in Watermelon. FRONTIERS IN PLANT SCIENCE 2020; 11:192. [PMID: 32218790 PMCID: PMC7078170 DOI: 10.3389/fpls.2020.00192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
As an important appearance trait, the rind color of watermelon fruit affects the commodity value and further determines consumption choices. In this study, a comparative transcriptome analysis was conducted to elucidate the genes and pathways involved in the formation of yellow rind fruit in watermelon using a yellow rind inbred line WT4 and a green rind inbred line WM102. A total of 2,362 differentially expressed genes (DEGs) between WT4 and WM102 at three different stages (0, 7, and 14 DAP) were identified and 9,770 DEGs were obtained by comparing the expression level at 7 DAP and 14 DAP with the former stages of WT4. The function enrichment of DEGs revealed a number of pathways and terms in biological processes, cellular components, and molecular functions that were related to plant pigment metabolism, suggesting that there may be a group of common core genes regulating rind color formation. In addition, next-generation sequencing aided bulked-segregant analysis (BSA-seq) of the yellow rind pool and green rind pool selected from an F2 population revealed that the yellow rind gene (Clyr) was mapped on the top end of chromosome 4. Based on the BSA-seq analysis result, Clyr was further confined to a region of 91.42 kb by linkage analysis using 1,106 F2 plants. These results will aid in identifying the key genes and pathways associated with yellow rind formation and elucidating the molecular mechanism of rind color formation in watermelon.
Collapse
Affiliation(s)
- Dongming Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huihui Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Minjuan Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dongling Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaojuan Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shichao Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
49
|
Yamamoto H, Kojima-Ando H, Ohki K, Fujita Y. Formation of prolamellar-body-like ultrastructures in etiolated cyanobacterial cells overexpressing light-dependent protochlorophyllide oxidoreductase in Leptolyngbya boryana. J GEN APPL MICROBIOL 2020; 66:129-139. [DOI: 10.2323/jgam.2020.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University
| | | | - Kaori Ohki
- Department of Marine Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
50
|
Vandenbrink JP, Herranz R, Poehlman WL, Alex Feltus F, Villacampa A, Ciska M, Javier Medina F, Kiss JZ. RNA-seq analyses of Arabidopsis thaliana seedlings after exposure to blue-light phototropic stimuli in microgravity. AMERICAN JOURNAL OF BOTANY 2019; 106:1466-1476. [PMID: 31709515 DOI: 10.1002/ajb2.1384] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/17/2019] [Indexed: 05/04/2023]
Abstract
PREMISE Plants synthesize information from multiple environmental stimuli when determining their direction of growth. Gravity, being ubiquitous on Earth, plays a major role in determining the direction of growth and overall architecture of the plant. Here, we utilized the microgravity environment on board the International Space Station (ISS) to identify genes involved influencing growth and development of phototropically stimulated seedlings of Arabidopsis thaliana. METHODS Seedlings were grown on the ISS, and RNA was extracted from 7 samples (pools of 10-15 plants) grown in microgravity (μg) or Earth gravity conditions (1-g). Transcriptomic analyses via RNA sequencing (RNA-seq) of differential gene expression was performed using the HISAT2-Stringtie-DESeq2 RNASeq pipeline. Differentially expressed genes were further characterized by using Pathway Analysis and enrichment for Gene Ontology classifications. RESULTS For 296 genes that were found significantly differentially expressed between plants in microgravity compared to 1-g controls, Pathway Analysis identified eight molecular pathways that were significantly affected by reduced gravity conditions. Specifically, light-associated pathways (e.g., photosynthesis-antenna proteins, photosynthesis, porphyrin, and chlorophyll metabolism) were significantly downregulated in microgravity. CONCLUSIONS Gene expression in A. thaliana seedlings grown in microgravity was significantly altered compared to that of the 1-g control. Understanding how plants grow in conditions of microgravity not only aids in our understanding of how plants grow and respond to the environment but will also help to efficiently grow plants during long-range space missions.
Collapse
Affiliation(s)
- Joshua P Vandenbrink
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), Madrid, E28040, Spain
| | - William L Poehlman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - F Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | | | - Malgorzata Ciska
- Centro de Investigaciones Biológicas (CSIC), Madrid, E28040, Spain
| | - F Javier Medina
- Centro de Investigaciones Biológicas (CSIC), Madrid, E28040, Spain
| | - John Z Kiss
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| |
Collapse
|