1
|
Farag MA, Baky MH, Kühnhold H, Kriege EA, Kunzmann A, Alseekh S, Al-Hammady MA, Ezz S, Fernie AR, Westphal H, Stuhr M. Effects of thermal and UV stress on the polar and non-polar metabolome of photosymbiotic jellyfish and sea anemones. MARINE POLLUTION BULLETIN 2024; 208:116983. [PMID: 39357368 DOI: 10.1016/j.marpolbul.2024.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Recently, the impacts of climate change, notably ocean warming and solar ultraviolet radiation, have led to significant stress and mortality in cnidarians. The objective of this study is to decode the metabolic responses of sea anemones Entacmaea quadricolor and upside-down jellyfish Cassiopea andromeda upon exposure to thermal and ultraviolet stress. Gas chromatography-mass spectrometry and ultraperformance liquid chromatography coupled with high-resolution mass spectrometry targeting polar and non-polar metabolites were applied. In total, 72 polar and 242 lipophilic metabolites were detected in jellyfish and sea anemones, respectively. Amino acids are the major metabolite class in jellyfish, and triacylglycerides are the predominant lipids in jellyfish and anemones. Exposure to stressors led to metabolic alterations, marked by elevated amino acids in jellyfish and increased amino acids and sugar alcohols in sea anemones at 34 °C and after four days of ultraviolet radiation. Non-polar metabolome analysis indicated distinct responses to ultraviolet radiation and thermal stress in both species.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Kasr El Aini St., P.B. 11562, Egypt.
| | - Mostafa H Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Holger Kühnhold
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Elisa A Kriege
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | | | - Sara Ezz
- Pharmacuetical Biology Department, German University in Cairo, GUC, New Cairo, Egypt
| | | | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany; Department of Geosciences, University of Bremen, 28359 Bremen, Germany
| | - Marleen Stuhr
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| |
Collapse
|
2
|
Cruces E, Cubillos VM, Ramírez-Kushel E, Montory JA, Mardones DA, Chaparro OR, Paredes FJ, Echeverría-Pérez I, Salas-Yanquin LP, Büchner-Miranda JA. Photophysiological and Oxidative Responses of the Symbiotic Estuarine Anemone Anthopleura hermaphroditica to the Impact of UV Radiation and Salinity: Field and Laboratory Approaches. Antioxidants (Basel) 2024; 13:1239. [PMID: 39456492 PMCID: PMC11504032 DOI: 10.3390/antiox13101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The estuarine anemone Anthopleura hermaphroditica and its symbiont Philozoon anthopleurum are continuously exposed to intense fluctuations in solar radiation and salinity owing to tidal changes. The aim of this study was to evaluate the effects of the tidal cycle, solar radiation, and salinity fluctuations on the photosynthetic and cellular responses (lipid peroxidation, total phenolic compounds, and antioxidant activity) of the symbiont complex over a 24 h period in the Quempillén River Estuary. Additionally, laboratory experiments were conducted to determine the specific photobiological responses to photosynthetically active radiation (PAR), ultraviolet radiation (UVR), and salinity. Our field results showed that the photosynthetic parameters of the symbiont complex decreased with increasing ambient radiation; however, no relationship was observed with changes in salinity. Increased peroxidative damage, total phenolic compound levels, and antioxidant activity were mainly related to increased UVR and, to a lesser extent, PAR. During the dark period, only PAR-exposed organisms returned to the basal levels of photosynthesis and cell damage. Laboratory exposure confirmed the deleterious effects of UVR on the photosynthetic response. The present study suggests that the ability of A. hermaphroditica to acclimate to natural radiation stress is mediated by the concerted action of various physiological mechanisms that occur at different times of the day, under varying levels of environmental stress.
Collapse
Affiliation(s)
- Edgardo Cruces
- Centro de Investigaciones Costeras, Universidad de Atacama (CIC-UDA), Avenida Copayapu 485, Copiapó 1530000, Chile
| | - Víctor M. Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Eduardo Ramírez-Kushel
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Jaime A. Montory
- Centro I~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile
| | - Daniela A. Mardones
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Oscar R. Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Francisco J. Paredes
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ignacio Echeverría-Pérez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis P. Salas-Yanquin
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Joseline A. Büchner-Miranda
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
3
|
Ashraf N, Anas A, Sukumaran V, James J, Bilutheth MN, Chekkillam AR, Jasmin C, Raj K D, Babu I. Biofilm-forming bacteria associated with corals secrete melanin with UV-absorption properties. World J Microbiol Biotechnol 2024; 40:313. [PMID: 39210155 DOI: 10.1007/s11274-024-04120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Corals are colonized by a plethora of microorganisms, and their diversity plays a significant role in the health and resilience of corals when they face oxidative stress leading to bleaching. In the current study, we examined 238 bacteria isolated from five different coral species (Acropora hyacinthus, Pocillopora damicornis, Podabacea crustacea, Porites lobata, and Pavona venosa) collected from the coral reef ecosystems of Kavaratti, Lakshadweep Islands, India. We found that bacteria such as Psychrobacter sp., Halomonas sp., Kushneria sp., Staphylococcus sp., Bacillus sp., Brachybacterium sp., Citrobacter sp., and Salinicola sp. were commonly present in the corals. On the other hand, Qipengyuania sp., Faucicola sp., Marihabitans sp., Azomonas sp., Atlantibacter sp., Cedecea sp., Krasalinikoviella sp., and Aidingimonas sp. were not previously reported from the corals. Among the bacterial isolates, a significant number showed high levels of biofilm formation (118), UV absorption (119), and melanin production (127). Considering these properties, we have identified a combination of seven bacteria from the genera Halomonas sp., Psychrobacter sp., Krasalinikoviella sp., and Micrococcus sp. as a potential probiotic consortium for protecting corals from oxidative stress. Overall, this study provides valuable insights into the coral microbiome and opens up possibilities for microbiome-based interventions to protect these crucial ecosystems in the face of global environmental challenges.
Collapse
Affiliation(s)
- Nizam Ashraf
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Abdulaziz Anas
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India.
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| | - Vrinda Sukumaran
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, 682022, India
| | - Jibin James
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
| | | | | | - C Jasmin
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- ENFYS Lifesciences, Kochi, 683578, India
| | - Devika Raj K
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
| | - Idrees Babu
- Department of Science and Technology, Kavaratti, 682555, India
| |
Collapse
|
4
|
Bartels N, Matthews JL, Lawson CA, Possell M, Hughes DJ, Raina JB, Suggett DJ. Paired metabolomics and volatilomics provides insight into transient high light stress response mechanisms of the coral Montipora mollis. Metabolomics 2024; 20:66. [PMID: 38886248 PMCID: PMC11182861 DOI: 10.1007/s11306-024-02136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The coral holobiont is underpinned by complex metabolic exchanges between different symbiotic partners, which are impacted by environmental stressors. The chemical diversity of the compounds produced by the holobiont is high and includes primary and secondary metabolites, as well as volatiles. However, metabolites and volatiles have only been characterised in isolation so far. Here, we applied a paired metabolomic-volatilomic approach to characterise holistically the chemical response of the holobiont under stress. Montipora mollis fragments were subjected to high-light stress (8-fold higher than the controls) for 30 min. Photosystem II (PSII) photochemical efficiency values were 7-fold higher in control versus treatment corals immediately following high-light exposure, but returned to pre-stress levels after 30 min of recovery. Under high-light stress, we identified an increase in carbohydrates (> 5-fold increase in arabinose and fructose) and saturated fatty acids (7-fold increase in myristic and oleic acid), together with a decrease in fatty acid derivatives in both metabolites and volatiles (e.g., 80% decrease in oleamide and nonanal), and other antioxidants (~ 85% decrease in sorbitol and galactitol). These changes suggest short-term light stress induces oxidative stress. Correlation analysis between volatiles and metabolites identified positive links between sorbitol, galactitol, six other metabolites and 11 volatiles, with four of these compounds previously identified as antioxidants. This suggests that these 19 compounds may be related and share similar functions. Taken together, our findings demonstrate how paired metabolomics-volatilomics may illuminate broader metabolic shifts occurring under stress and identify linkages between uncharacterised compounds to putatively determine their functions.
Collapse
Affiliation(s)
- Natasha Bartels
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Jennifer L Matthews
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Caitlin A Lawson
- Heron Island Research Station, Faculty of Science, University of Queensland, Gladstone, 4680, Australia
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David J Hughes
- National Sea Simulator, Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - David J Suggett
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Downie AT, Cramp RL, Franklin CE. The interactive impacts of a constant reef stressor, ultraviolet radiation, with environmental stressors on coral physiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168066. [PMID: 37890630 DOI: 10.1016/j.scitotenv.2023.168066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Reef-building corals create one of the most biodiverse and economically important ecosystems on the planet. Unfortunately, global coral reef ecosystems experience threats from numerous natural stressors, which are amplified by human activities. One such threat is ultraviolet radiation (UVR) from the sun; a genotoxic stressor that is a double-edged sword for corals as they rely on sunlight for energy. More intense UVR has been shown to have greater direct impacts on animal physiology, and these may be exacerbated by co-occurring stressors. The aim of this systematic literature review was to examine if the same applies to corals; that is, if the co-exposure of a constant stressor (UVR) with other stressors has a greater impact on coral physiology than if these stressors occurred separately. We reviewed the biochemical and cellular processes impacted by UVR and the defenses corals have against UVR. The main stressors investigated with UVR were temperature, nitrate, nutrient, oil, water motion, and photosynthetically active radiation (PAR). UVR generally worsened the physiological impacts of other stressors (e.g., by decreasing zooxanthellae and chlorophyll densities). There were species-specific differences in their tolerance to UVR (differences in zooxanthellae populations, sunscreen production and depth) and environmental stress (e.g., resilience to some oils), and that ambient levels of UVR were often beneficial (i.e., nullifying impacts of nitrates). We highlight areas of future investigation including examining and assessing other interacting stressors and their impacts (e.g., ocean acidification, ocean deoxygenation, toxins and pollutants), investigating impacts of multiple stressors with UVR on the coral microbiome, and elucidating the effects of multi-stressors with UVR across early-life history stages (especially larvae). UVR is a pervasive stressor to corals and can interact with other environmental conditions to compromise the resilience of corals. This environmental driver needs to be more comprehensively examined alongside climate change stressors (e.g., temperature increases, ocean acidification and hypoxia) to better understand future climate scenarios on reefs.
Collapse
Affiliation(s)
- Adam T Downie
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Downie AT, Wu NC, Cramp RL, Franklin CE. Sublethal consequences of ultraviolet radiation exposure on vertebrates: Synthesis through meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:6620-6634. [PMID: 37366045 DOI: 10.1111/gcb.16848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Ultraviolet radiation (UVR) from the sun is a natural daytime stressor for vertebrates in both terrestrial and aquatic ecosystems. UVR effects on the physiology of vertebrates manifest at the cellular level, but have bottom-up effects at the tissue level and on whole-animal performance and behaviours. Climate change and habitat loss (i.e. loss of shelter from UVR) could interact with and exacerbate the genotoxic and cytotoxic impacts of UVR on vertebrates. Therefore, it is important to understand the range and magnitude of effects that UVR can have on a diversity of physiological metrics, and how these may be shaped by taxa, life stage or geographical range in the major vertebrate groups. Using a meta-analytical approach, we used 895 observations from 47 different vertebrate species (fish, amphibian, reptile and bird), and 51 physiological metrics (i.e. cellular, tissue and whole-animal metrics), across 73 independent studies, to elucidate the general patterns of UVR effects on vertebrate physiology. We found that while UVR's impacts on vertebrates are generally negative, fish and amphibians were the most susceptible taxa, adult and larvae were the most susceptible life stages, and animals inhabiting temperate and tropical latitudes were the most susceptible to UVR stress. This information is critical to further our understanding of the adaptive capacity of vulnerable taxon to UVR stress, and the wide-spread sublethal physiological effects of UVR on vertebrates, such as DNA damage and cellular stress, which may translate up to impaired growth and locomotor performance. These impairments to individual fitness highlighted by our study may potentially cause disruptions at the ecosystem scale, especially if the effects of this pervasive diurnal stressor are exacerbated by climate change and reduced refuge due to habitat loss and degradation. Therefore, conservation of habitats that provide refuge to UVR stress will be critical to mitigate stress from this pervasive daytime stressor.
Collapse
Affiliation(s)
- Adam T Downie
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
7
|
Sąsiadek-Andrzejczak E, Jaszczak M, Kozicki M. Capsule Dosimeters for Ultraviolet Radiation Measurements on Coral Reefs and in Seawater. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5734. [PMID: 37687427 PMCID: PMC10488686 DOI: 10.3390/ma16175734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
This work reports on the new chemical dosimeters for UV radiation dose measurements on coral reefs and in seawater. The proposed dosimeters can measure the actual dose of UV radiation, which consists of 95% UVA and 5% UVB radiation, unlike the currently-used radiometers in marine and ocean waters that measure the dose of UVA and UVB radiation separately. The dosimeters are composed of water, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127) as a gel matrix, and 2,3,5-triphenyltetrazolium chloride (TTC) as a UV radiation-sensitive compound. In the work, the dosimeters were characterised in terms of their response to the dose of UV radiation depending on the TTC concentration and the irradiation and storage conditions of the dosimeters. The stability of the dosimeters over time was also examined. The obtained results indicate that the TTC-Pluronic F-127 dosimeters can be used to measure absorbed doses of UV radiation in the saltwater environment. The developed dosimeters with a concentration of 0.1% TTC can be used up to 5 J/cm2, which predisposes them to UV radiation measurements at a depth of more than 10 m in sea and ocean waters in 10-min intervals during all months throughout the year.
Collapse
Affiliation(s)
- Elżbieta Sąsiadek-Andrzejczak
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-543 Lodz, Poland; (M.J.); (M.K.)
| | | | | |
Collapse
|
8
|
Amario M, Villela LB, Jardim-Messeder D, Silva-Lima AW, Rosado PM, de Moura RL, Sachetto-Martins G, Chaloub RM, Salomon PS. Physiological response of Symbiodiniaceae to thermal stress: Reactive oxygen species, photosynthesis, and relative cell size. PLoS One 2023; 18:e0284717. [PMID: 37535627 PMCID: PMC10399794 DOI: 10.1371/journal.pone.0284717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 04/06/2023] [Indexed: 08/05/2023] Open
Abstract
This study investigates the physiological response to heat stress of three genetically different Symbiodiniaceae strains isolated from the scleractinian coral Mussismilia braziliensis, endemic of the Abrolhos Bank, Brazil. Cultures of two Symbiodinium sp. and one Cladocopium sp. were exposed to a stepwise increase in temperature (2°C every second day) ranging from 26°C (modal temperature in Abrolhos) to 32°C (just above the maximum temperature registered in Abrolhos during the third global bleaching event-TGBE). After the cultures reached their final testing temperature, reactive oxygen species (ROS) production, single cell attributes (relative cell size and chlorophyll fluorescence), and photosynthetic efficiency (effective (Y(II)) and maximum (Fv/Fm) quantum yields) were measured within 4 h and 72 h. Non-photochemical coefficient (NPQ) was estimated based on fluorescence values. Population average ROS production was variable across strains and exposure times, reaching up a 2-fold increase at 32°C in one of the Symbiodinium sp. strains. A marked intrapopulation difference was observed in ROS production, with 5 to 25% of the cells producing up to 10 times more than the population average, highlighting the importance of single cell approaches to assess population physiology. Average cell size increases at higher temperatures, likely resulting from cell cycle arrest, whereas chlorophyll fluorescence decreased, especially in 4 h, indicating a photoacclimation response. The conditions tested do not seem to have elicited loss of photosynthetic efficiency nor the activation of non-photochemical mechanisms in the cells. Our results unveiled a generalized thermotolerance in three Symbiodiniaceae strains originated from Abrolhos' corals. Inter and intra-specific variability could be detected, likely reflecting the genetic differences among the strains.
Collapse
Affiliation(s)
- Michelle Amario
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Genética, Rio de Janeiro, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia Bonetti Villela
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Genética, Rio de Janeiro, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas Jardim-Messeder
- Laboratório de Genômica Funcional e Transdução de Sinal, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arthur Weiss Silva-Lima
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rodrigo Leão de Moura
- Laboratório de Monitoramento da Biodiversidade, Instituto de Biologia SAGE-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Sachetto-Martins
- Laboratório de Genômica Funcional e Transdução de Sinal, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Moreira Chaloub
- Laboratório de Estudos Aplicados em Fotossíntese, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Sergio Salomon
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Ashraf N, Anas A, Sukumaran V, Gopinath G, Idrees Babu KK, Dinesh Kumar PK. Recent advancements in coral health, microbiome interactions and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163085. [PMID: 36996987 DOI: 10.1016/j.scitotenv.2023.163085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
Corals are the visible indicators of the disasters induced by global climate change and anthropogenic activities and have become a highly vulnerable ecosystem on the verge of extinction. Multiple stressors could act individually or synergistically which results in small to large scale tissue degradation, reduced coral covers, and makes the corals vulnerable to various diseases. The coralline diseases are like the Chicken pox in humans because they spread hastily throughout the coral ecosystem and can devastate the coral cover formed over centuries in an abbreviated time. The extinction of the entire reef ecosystem will alter the ocean and earth's amalgam of biogeochemical cycles causing a threat to the entire planet. The current manuscript provides an overview of the recent advancement in coral health, microbiome interactions and climate change. Culture dependent and independent approaches in studying the microbiome of corals, the diseases caused by microorganisms, and the reservoirs of coral pathogens are also discussed. Finally, we discuss the possibilities of protecting the coral reefs from diseases through microbiome transplantation and the capabilities of remote sensing in monitoring their health status.
Collapse
Affiliation(s)
- Nizam Ashraf
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - Abdulaziz Anas
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India.
| | - Vrinda Sukumaran
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - Girish Gopinath
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Puduvypu Campus, Kochi 682 508, India
| | - K K Idrees Babu
- Department of Science and Technology, Kavaratti, Lakshadweep 682555, India
| | - P K Dinesh Kumar
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| |
Collapse
|
10
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
11
|
Solar radiation, temperature and the reproductive biology of the coral Lobactis scutaria in a changing climate. Sci Rep 2023; 13:246. [PMID: 36604569 PMCID: PMC9816315 DOI: 10.1038/s41598-022-27207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Coral reefs worldwide are at risk due to climate change. Coral bleaching is becoming increasingly common and corals that survive bleaching events can suffer from temporary reproductive failure for several years. While water temperature is a key driver in causing coral bleaching, other environmental factors are involved, such as solar radiation. We investigated the individual and combined effects of temperature, photosynthetically active radiation (PAR), and ultraviolet radiation (UVR) on the spawning patterns and reproductive physiology of the Hawaiian mushroom coral Lobactis scutaria, using long-term experiments in aquaria. We examined effects on spawning timing, fertilisation success, and gamete physiology. Both warmer temperatures and filtering UVR altered the timing of spawning. Warmer temperatures caused a drop in fertilisation success. Warmer temperatures and higher PAR both negatively affected sperm and egg physiology. These results are concerning for the mushroom coral L. scutaria and similar reproductive data are urgently needed to predict future reproductive trends in other species. Nonetheless, thermal stress from global climate change will need to be adequately addressed to ensure the survival of reef-building corals in their natural environment throughout the next century and beyond. Until then, reproduction is likely to be increasingly impaired in a growing number of coral species.
Collapse
|
12
|
Zhang S, Chen L, Xie J, Zhang Y, Huang F, Wang X, Li K, Zhai F, Yang Q, Chen L, Wang Y, Dai X, Chai Z, Wang S. Turn-up Luminescent Sensing of Ultraviolet Radiation by Lanthanide Metal-Organic Frameworks. Inorg Chem 2022; 61:4561-4565. [PMID: 35261233 DOI: 10.1021/acs.inorgchem.2c00250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here, we report a series of two-dimensional lanthanide metal-organic frameworks Ln-DBTPA (where DBTPA = 2,5-dibromoterephthalic acid and Ln = Tb (1), Eu (2), or Gd (3)) showing a unique turn-up responsiveness toward ultraviolet (UV) radiation. The luminescence enhancement was derived from the accumulated radicals that can promote the intersystem crossing process. The compound 1 shows an ultralow detection limit of 9.1 × 10-9 J toward UV radiation, representing a new type of luminescent UV detectors.
Collapse
Affiliation(s)
- Sida Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian Xie
- School of Life Science, School of Civil Engineering, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Feng Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xia Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fuwan Zhai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qian Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Gonzalez-Espinosa PC, Donner SD. Cloudiness reduces the bleaching response of coral reefs exposed to heat stress. GLOBAL CHANGE BIOLOGY 2021; 27:3474-3486. [PMID: 33964101 DOI: 10.1111/gcb.15676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Climate change and warming ocean temperatures are a threat to coral reef ecosystems. Since the 1980s, there has been an increase in mass coral bleaching and associated coral mortality due to more frequent and severe thermal stress. Although most research has focused on the role of temperature, coral bleaching is a product of the interacting effects of temperature and other environmental variables such as solar radiation. High light exacerbates the effects of thermal stress on corals, whereas reductions in light can reduce sensitivity to thermal stress. Here, we use an updated global dataset of coral bleaching observations (n = 35,769) from 1985 to 2017 and satellite-derived datasets of SST and clouds to examine for the first time at a global scale the influence of cloudiness on the likelihood of bleaching from thermal stress. We find that among coral reefs exposed to severe bleaching-level heat stress (Degree Heating Weeks >8°Cˑweek), bleaching severity is inversely correlated with the interaction of heat stress and cloud fraction anomalies (p < 0.05), such that higher cloudiness implies reduced bleaching response. A Random Forest model analysis employing different set of environmental variables shows that a model employing Degree Heating Weeks and the 30-day cloud fraction anomaly most accurately predicts bleaching severity (Accuracy = 0.834; Cohen's Kappa = 0.769). Based on these results and global warm-season cloudiness patterns, we develop a 'cloudy refugia' index which identifies the central equatorial Pacific and French Polynesia as regions where cloudiness is most likely to protect corals from bleaching. Our findings suggest that incorporating cloudiness into prediction models can help delineate bleaching responses and identify reefs which may be more resilient to climate change.
Collapse
Affiliation(s)
- Pedro C Gonzalez-Espinosa
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Simon D Donner
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Barve A, Galande AA, Ghaskadbi SS, Ghaskadbi S. DNA Repair Repertoire of the Enigmatic Hydra. Front Genet 2021; 12:670695. [PMID: 33995496 PMCID: PMC8117345 DOI: 10.3389/fgene.2021.670695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Since its discovery by Abraham Trembley in 1744, hydra has been a popular research organism. Features like spectacular regeneration capacity, peculiar tissue dynamics, continuous pattern formation, unique evolutionary position, and an apparent lack of organismal senescence make hydra an intriguing animal to study. While a large body of work has taken place, particularly in the domain of evolutionary developmental biology of hydra, in recent years, the focus has shifted to molecular mechanisms underlying various phenomena. DNA repair is a fundamental cellular process that helps to maintain integrity of the genome through multiple repair pathways found across taxa, from archaea to higher animals. DNA repair capacity and senescence are known to be closely associated, with mutations in several repair pathways leading to premature ageing phenotypes. Analysis of DNA repair in an animal like hydra could offer clues into several aspects including hydra’s purported lack of organismal ageing, evolution of DNA repair systems in metazoa, and alternative functions of repair proteins. We review here the different DNA repair mechanisms known so far in hydra. Hydra genes from various DNA repair pathways show very high similarity with their vertebrate orthologues, indicating conservation at the level of sequence, structure, and function. Notably, most hydra repair genes are more similar to deuterostome counterparts than to common model invertebrates, hinting at ancient evolutionary origins of repair pathways and further highlighting the relevance of organisms like hydra as model systems. It appears that hydra has the full repertoire of DNA repair pathways, which are employed in stress as well as normal physiological conditions and may have a link with its observed lack of senescence. The close correspondence of hydra repair genes with higher vertebrates further demonstrates the need for deeper studies of various repair components, their interconnections, and functions in this early metazoan.
Collapse
Affiliation(s)
- Apurva Barve
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India.,Centre of Excellence in Science and Mathematics Education, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Alisha A Galande
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| |
Collapse
|
15
|
Schalm G, Bruns K, Drachenberg N, Geyer N, Foulkes NS, Bertolucci C, Gerlach G. Finding Nemo's clock reveals switch from nocturnal to diurnal activity. Sci Rep 2021; 11:6801. [PMID: 33762724 PMCID: PMC7990958 DOI: 10.1038/s41598-021-86244-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/12/2021] [Indexed: 11/08/2022] Open
Abstract
Timing mechanisms play a key role in the biology of coral reef fish. Typically, fish larvae leave their reef after hatching, stay for a period in the open ocean before returning to the reef for settlement. During this dispersal, larvae use a time-compensated sun compass for orientation. However, the timing of settlement and how coral reef fish keep track of time via endogenous timing mechanisms is poorly understood. Here, we have studied the behavioural and genetic basis of diel rhythms in the clown anemonefish Amphiprion ocellaris. We document a behavioural shift from nocturnal larvae to diurnal adults, while juveniles show an intermediate pattern of activity which potentially indicates flexibility in the timing of settlement on a host anemone. qRTPCR analysis of six core circadian clock genes (bmal1, clocka, cry1b, per1b, per2, per3) reveals rhythmic gene expression patterns that are comparable in larvae and juveniles, and so do not reflect the corresponding activity changes. By establishing an embryonic cell line, we demonstrate that clown anemonefish possess an endogenous clock with similar properties to that of the zebrafish circadian clock. Furthermore, our study provides a first basis to study the multi-layered interaction of clocks from fish, anemones and their zooxanthellae endosymbionts.
Collapse
Affiliation(s)
- Gregor Schalm
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany.
| | - Kristina Bruns
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Nina Drachenberg
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Nathalie Geyer
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121, Naples, Italy
| | - Gabriele Gerlach
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Ammerländer Heerstr. 231, 26129, Oldenburg, Germany
- Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
16
|
Satoh N, Kinjo K, Shintaku K, Kezuka D, Ishimori H, Yokokura A, Hagiwara K, Hisata K, Kawamitsu M, Koizumi K, Shinzato C, Zayasu Y. Color morphs of the coral, Acropora tenuis, show different responses to environmental stress and different expression profiles of fluorescent-protein genes. G3 (BETHESDA, MD.) 2021; 11:jkab018. [PMID: 33621334 PMCID: PMC8022974 DOI: 10.1093/g3journal/jkab018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022]
Abstract
Corals of the family Acroporidae are key structural components of reefs that support the most diverse marine ecosystems. Due to increasing anthropogenic stresses, coral reefs are in decline. Along the coast of Okinawa, Japan, three different color morphs of Acropora tenuis have been recognized for decades. These include brown (N morph), yellow green (G), and purple (P) forms. The tips of axial polyps of each morph exhibit specific fluorescence spectra. This attribute is inherited asexually, and color morphs do not change seasonally. In Okinawa Prefecture, during the summer of 2017, N and P morphs experienced bleaching, in which many N morphs died. Dinoflagellates (Symbiodiniaceae) are essential partners of scleractinian corals, and photosynthetic activity of symbionts was reduced in N and P morphs. In contrast, G morphs successfully withstood the stress. Examination of the clade and type of Symbiodiniaceae indicated that the three color-morphs host similar sets of Clade-C symbionts, suggesting that beaching of N and P morphs is unlikely attributable to differences in the clade of Symbiodiniaceae the color morphs hosted. Fluorescent proteins play pivotal roles in physiological regulation of corals. Since the A. tenuis genome has been decoded, we identified five genes for green fluorescent proteins (GFPs), two for cyan fluorescent proteins (CFPs), three for red fluorescent proteins (RFPs), and seven genes for chromoprotein (ChrP). A summer survey of gene expression profiles under outdoor aquarium conditions demonstrated that (a) expression of CFP and REP was quite low during the summer in all three morphs, (b) P morphs expressed higher levels of ChrP than N and G morphs, (c) both N and G morphs expressed GFP more highly than P morphs, and (d) GFP expression in N morphs was reduced during summer whereas G morphs maintained high levels of GFP expression throughout the summer. Although further studies are required to understand the biological significance of these color morphs of A. tenuis, our results suggest that thermal stress resistance is modified by genetic mechanisms that coincidentally lead to diversification of color morphs of this coral.
Collapse
Affiliation(s)
- Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Koji Kinjo
- Umino-Tane Co. Ltd, Okinawa 905-0888, Japan
| | - Kohei Shintaku
- IDEA Consultants, Inc., Okinawa Branch Office, Okinawa 900-0003, Japan
| | - Daisuke Kezuka
- IDEA Consultants, Inc., Okinawa Branch Office, Okinawa 900-0003, Japan
| | - Hiroo Ishimori
- IDEA Consultants, Inc., Okinawa Branch Office, Okinawa 900-0003, Japan
| | - Atsushi Yokokura
- IDEA Consultants, Inc., Institute of Environmental Informatics, Kanagawa 224-0025, Japan
| | | | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Koji Koizumi
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
17
|
Nordborg FM, Jones RJ, Oelgemöller M, Negri AP. The effects of ultraviolet radiation and climate on oil toxicity to coral reef organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137486. [PMID: 32325569 DOI: 10.1016/j.scitotenv.2020.137486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 05/20/2023]
Abstract
Oil pollution remains a significant local threat to shallow tropical coral reef environments, but the environmental conditions typical of coral reefs are rarely considered in oil toxicity testing and risk assessments. Here we review the effects of three environmental co-factors on petroleum oil toxicity towards coral reef organisms, and show that the impacts of oil pollution on coral reef taxa can be exacerbated by environmental conditions commonly encountered in tropical reef environments. Shallow reefs are routinely exposed to high levels of ultraviolet radiation (UVR), which can substantially increase the toxicity of some oil components through phototoxicity. Exposure to UVR represents the most likely and harmful environmental co-factor reviewed here, leading to an average toxicity increase of 7.2-fold across all tests reviewed. The clear relevance of UVR co-exposure and its strong influence on tropical reef oil toxicity highlights the need to account for UVR as a standard practice in future oil toxicity studies. Indeed, quantifying the influence of UVR on toxic thresholds of oil to coral reef species is essential to develop credible oil spill risk models required for oil extraction developments, shipping management and spill responses in the tropics. The few studies available indicate that co-exposure to elevated temperature and low pH, both within the range of current daily and seasonal fluctuations and/or projected under continued climate change, can increase oil toxicity on average by 3.0- and 1.3-fold, respectively. While all three of the reviewed environmental co-factors have the potential to substantially increase the impacts of oil pollution in shallow reef environments, their simultaneous effects have not been investigated. Assessments of the combined effects of oil pollution, UVR, temperature and low pH will become increasingly important to identify realistic hazard thresholds suitable for future risk assessments over the coming century.
Collapse
Affiliation(s)
- F Mikaela Nordborg
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia.
| | - Ross J Jones
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| | - Michael Oelgemöller
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia
| | - Andrew P Negri
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
18
|
Mycosporine-Like Amino Acids: Making the Foundation for Organic Personalised Sunscreens. Mar Drugs 2019; 17:md17110638. [PMID: 31726795 PMCID: PMC6891770 DOI: 10.3390/md17110638] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023] Open
Abstract
The surface of the Earth is exposed to harmful ultraviolet radiation (UVR: 280-400 nm). Prolonged skin exposure to UVR results in DNA damage through oxidative stress due to the production of reactive oxygen species (ROS). Mycosporine-like amino acids (MAAs) are UV-absorbing compounds, found in many marine and freshwater organisms that have been of interest in use for skin protection. MAAs are involved in photoprotection from damaging UVR thanks to their ability to absorb light in both the UV-A (315-400 nm) and UV-B (280-315 nm) range without producing free radicals. In addition, by scavenging ROS, MAAs play an antioxidant role and suppress singlet oxygen-induced damage. Currently, there are over 30 different MAAs found in nature and they are characterised by different antioxidative and UV-absorbing capacities. Depending on the environmental conditions and UV level, up- or downregulation of genes from the MAA biosynthetic pathway results in seasonal fluctuation of the MAA content in aquatic species. This review will provide a summary of the MAA antioxidative and UV-absorbing features, including the genes involved in the MAA biosynthesis. Specifically, regulatory mechanisms involved in MAAs pathways will be evaluated for controlled MAA synthesis, advancing the potential use of MAAs in human skin protection.
Collapse
|
19
|
Flaspohler G, Preston V, Michel APM, Girdhar Y, Roy N. Information-Guided Robotic Maximum Seek-and-Sample in Partially Observable Continuous Environments. IEEE Robot Autom Lett 2019. [DOI: 10.1109/lra.2019.2929997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Water Column Optical Properties of Pacific Coral Reefs Across Geomorphic Zones and in Comparison to Offshore Waters. REMOTE SENSING 2019. [DOI: 10.3390/rs11151757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the traditional view of coral reefs occurring in oligotrophic tropical conditions, water optical properties over coral reefs differ substantially from nearby clear oceanic waters. Through an extensive set of optical measurements across the tropical Pacific, our results suggest that coral reefs themselves exert a high degree of influence over water column optics, primarily through release of colored dissolved organic matter (CDOM). The relative contributions of phytoplankton, non-algal particles, and CDOM were estimated from measurements of absorption and scattering across different geomorphic shallow-water reef zones (<10 m) in Hawaii, the Great Barrier Reef, Guam, and Palau (n = 172). Absorption was dominated at the majority of stations by CDOM, with mixtures of phytoplankton and CDOM more prevalent at the protected back reef and lagoon zones. Absorption could be dominated by sediments and phytoplankton at fringing reefs and terrestrially impacted sites where particulate backscattering was significantly higher than in the other zones. Scattering at three angles in the backward direction followed recent measurements of the particulate phase function. Optical properties derived from satellite imagery indicate that offshore waters are consistently lower in absorption and backscattering than reef waters. Therefore, the use of satellite-derived offshore parameters in modeling reef optics could lead to significant underestimation of absorption and scattering, and overestimation of benthic light availability. If local measurements are not available, average optical properties based on the general reef zone could provide a more accurate means of assessing light conditions on coral reefs than using offshore water as a proxy.
Collapse
|
21
|
Abstract
Ensuring the clarity of the ocular surface of fish species with which we interact is of great importance. There is still much more to learn about the ocular surface of fish species. A better understanding of the anatomy, physiology, and pathology of the ocular surface is thus vital for fish welfare, as well as being a fascinating subject in its own right.
Collapse
Affiliation(s)
- David L Williams
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
22
|
The Large Jellyfish Rhizostoma luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications. Mar Drugs 2018; 16:md16100396. [PMID: 30347869 PMCID: PMC6213208 DOI: 10.3390/md16100396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/04/2023] Open
Abstract
Jellyfish is a compartment in the marine food web that often achieves high increases of biomass and that it is starting to be explored for several human potential uses. In this paper, a recently rediscovered large jellyfish, Rhizostoma luteum, is studied for the first time to describe its organic compounds for the isolation and production of bioactive compounds in several fields of food, cosmetics, or biomedical industries. The biogeochemical composition (Carbon, Nitrogen and Sulfur content), protein and phenols content, together with their antioxidant activity, and the analysis of lipid content (identifying each of the fatty acids presented) was analyzed. The results presented here suggested this jellyfish has the highest antioxidant activity ever measured in a jellyfish, but also with high content in polyunsaturated fatty acids (PUFAs), including the essential fatty acid linoleic. The large natural biomass of Rhizostoma luteum in nature, the wide geographical spread, the fact that already its life cycle has been completed in captivity, establishes a promising positive association of this giant jellyfish species and the isolation of bioactive compounds for future use in marine biotechnology.
Collapse
|
23
|
Núñez-Pons L, Avila C, Romano G, Verde C, Giordano D. UV-Protective Compounds in Marine Organisms from the Southern Ocean. Mar Drugs 2018; 16:E336. [PMID: 30223486 PMCID: PMC6165330 DOI: 10.3390/md16090336] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
Solar radiation represents a key abiotic factor in the evolution of life in the oceans. In general, marine, biota-particularly in euphotic and dysphotic zones-depends directly or indirectly on light, but ultraviolet radiation (UV-R) can damage vital molecular machineries. UV-R induces the formation of reactive oxygen species (ROS) and impairs intracellular structures and enzymatic reactions. It can also affect organismal physiologies and eventually alter trophic chains at the ecosystem level. In Antarctica, physical drivers, such as sunlight, sea-ice, seasonality and low temperature are particularly influencing as compared to other regions. The springtime ozone depletion over the Southern Ocean makes organisms be more vulnerable to UV-R. Nonetheless, Antarctic species seem to possess analogous UV photoprotection and repair mechanisms as those found in organisms from other latitudes. The lack of data on species-specific responses towards increased UV-B still limits the understanding about the ecological impact and the tolerance levels related to ozone depletion in this region. The photobiology of Antarctic biota is largely unknown, in spite of representing a highly promising reservoir in the discovery of novel cosmeceutical products. This review compiles the most relevant information on photoprotection and UV-repair processes described in organisms from the Southern Ocean, in the context of this unique marine polar environment.
Collapse
Affiliation(s)
- Laura Núñez-Pons
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Giovanna Romano
- Department of Marine Biotechnology (Biotech), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italia.
| | - Cinzia Verde
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Daniela Giordano
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
24
|
Briani B, Sissini MN, Lucena LA, Batista MB, Costa IO, Nunes JMC, Schmitz C, Ramlov F, Maraschin M, Korbee N, Rörig L, Horta PA, Figueroa FL, Barufi JB. The influence of environmental features in the content of mycosporine-like amino acids in red marine algae along the Brazilian coast. JOURNAL OF PHYCOLOGY 2018; 54:380-390. [PMID: 29505096 DOI: 10.1111/jpy.12640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Mycosporine-like amino acids (MAA) are ultraviolet screen substances synthesized by marine algae. The physiological function of these substances is related to cellular protection against UV radiation and as a protective mechanism against oxidative stress. These substances can be found mainly in the ocean, among red seaweeds. Its concentration in organisms has been related to ultraviolet radiation and availability of inorganic nitrogen in the environment. We start our study of MAA content in different species to understand if environmental conditions influence the concentration of MAAs in red seaweeds. The Brazilian coast presents abiotic factors that interact to create different physical-chemical features in the environment. We collected 441 samples from 39 species of red seaweed easily found in the intertidal zone, in low tide, during the summer of 2015. The sampling encompassed a latitudinal gradient (3° S to 28°5' S) at 23 points along the coast. We quantified and identified the content of MAAs in species through the method of high performance liquid chromatography. We detected for the first time the occurrence of MAAs in certain species of red algae that have not been reported to contain MAAs before. We confirmed that some environmental factors influenced the content of MAAs. Enhanced MAA contents, for example, were found in environments with a basic pH, a high ultraviolet index, and high concentrations of phosphate and nitrate. Salinity, dissolved oxygen and variations of sea surface temperature also influenced, in a secondary way, MAA content in algae in their natural environments.
Collapse
Affiliation(s)
- Bruno Briani
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Marina N Sissini
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Leidson A Lucena
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Manuela B Batista
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Iara O Costa
- Departamento de Botânica, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil
| | - José M C Nunes
- Departamento de Botânica, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil
| | - Caroline Schmitz
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Fernanda Ramlov
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Marcelo Maraschin
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Nathalie Korbee
- Departamento de Ecología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - Leonardo Rörig
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Paulo A Horta
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Félix L Figueroa
- Departamento de Ecología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - José B Barufi
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| |
Collapse
|
25
|
How Does the Coral Microbiome Cause, Respond to, or Modulate the Bleaching Process? ECOLOGICAL STUDIES 2018. [DOI: 10.1007/978-3-319-75393-5_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Lawrence SA, Floge SA, Davy JE, Davy SK, Wilson WH. Exploratory analysis of
Symbiodinium
transcriptomes reveals potential latent infection by large dsDNA viruses. Environ Microbiol 2017; 19:3909-3919. [DOI: 10.1111/1462-2920.13782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 04/24/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Scott A. Lawrence
- School of Biological SciencesVictoria University of WellingtonWellington6140 New Zealand
| | - Sheri A. Floge
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, PO Box 380East Boothbay Maine USA
| | - Joanne E. Davy
- School of Biological SciencesVictoria University of WellingtonWellington6140 New Zealand
| | - Simon K. Davy
- School of Biological SciencesVictoria University of WellingtonWellington6140 New Zealand
| | - William H. Wilson
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, PO Box 380East Boothbay Maine USA
| |
Collapse
|
27
|
The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells. Sci Rep 2017; 7:45713. [PMID: 28374828 PMCID: PMC5379690 DOI: 10.1038/srep45713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Coral reefs are of major ecological and socio-economic interest. They are threatened by global warming and natural pressures such as solar ultraviolet radiation. While great efforts have been made to understand the physiological response of corals to these stresses, the signalling pathways involved in the immediate cellular response exhibited by corals remain largely unknown. Here, we demonstrate that c-Jun N-terminal kinase (JNK) activation is involved in the early response of corals to thermal and UV stress. Furthermore, we found that JNK activity is required to repress stress-induced reactive oxygen species (ROS) accumulation in both the coral Stylophora pistillata and human skin cells. We also show that inhibiting JNK activation under stress conditions leads to ROS accumulation, subsequent coral bleaching and cell death. Taken together, our results suggest that an ancestral response, involving the JNK pathway, is remarkably conserved from corals to human, protecting cells from the adverse environmental effects.
Collapse
|
28
|
Bhattacharya D, Agrawal S, Aranda M, Baumgarten S, Belcaid M, Drake JL, Erwin D, Foret S, Gates RD, Gruber DF, Kamel B, Lesser MP, Levy O, Liew YJ, MacManes M, Mass T, Medina M, Mehr S, Meyer E, Price DC, Putnam HM, Qiu H, Shinzato C, Shoguchi E, Stokes AJ, Tambutté S, Tchernov D, Voolstra CR, Wagner N, Walker CW, Weber AP, Weis V, Zelzion E, Zoccola D, Falkowski PG. Comparative genomics explains the evolutionary success of reef-forming corals. eLife 2016; 5. [PMID: 27218454 PMCID: PMC4878875 DOI: 10.7554/elife.13288] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/20/2016] [Indexed: 12/30/2022] Open
Abstract
Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years. DOI:http://dx.doi.org/10.7554/eLife.13288.001 For millions of years, reef-building stony corals have created extensive habitats for numerous marine plants and animals in shallow tropical seas. Stony corals consist of many small, tentacled animals called polyps. These polyps secrete a mineral called aragonite to create the reef – an external ‘skeleton’ that supports and protects the corals. Photosynthesizing algae live inside the cells of stony corals, and each species depends on the other to survive. The algae produce the coral’s main source of food, although they also produce some waste products that can harm the coral if they build up inside cells. If the oceans become warmer and more acidic, the coral are more likely to become stressed and expel the algae from their cells in a process known as coral bleaching. This makes the coral more likely to die or become diseased. Corals have survived previous periods of ocean warming, although it is not known how they evolved to do so. The evolutionary history of an organism can be traced by studying its genome – its complete set of DNA – and the RNA molecules encoded by these genes. Bhattacharya et al. performed this analysis for twenty stony coral species, and compared the resulting genome and RNA sequences with the genomes of other related marine organisms, such as sea anemones and sponges. In particular, Bhattacharya et al. examined “ortholog” groups of genes, which are present in different species and evolved from a common ancestral gene. This analysis identified the genes in the corals that encode the proteins responsible for constructing the aragonite skeleton. The coral genome also encodes a network of environmental sensors that coordinate how the polyps respond to temperature, light and acidity. Bhattacharya et al. also uncovered a variety of stress-related pathways, including those that detoxify the polyps of the damaging molecules generated by algae, and the pathways that enable the polyps to adapt to environmental stress. Many of these genes were recruited from other species in a process known as horizontal gene transfer. The oceans are expected to become warmer and more acidic in the coming centuries. Provided that humans do not physically destroy the corals’ habitats, the evidence found by Bhattacharya et al. suggests that the genome of the corals contains the diversity that will allow them to adapt to these new conditions. DOI:http://dx.doi.org/10.7554/eLife.13288.002
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States.,Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States
| | - Shobhit Agrawal
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manuel Aranda
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sebastian Baumgarten
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mahdi Belcaid
- Hawaii Institute of Marine Biology, Kaneohe, United States
| | - Jeana L Drake
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States
| | - Douglas Erwin
- Smithsonian Institution, National Museum of Natural History, Washington, United States
| | - Sylvian Foret
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia.,Research School of Biology, Australian National University, Canberra, Australia
| | - Ruth D Gates
- Hawaii Institute of Marine Biology, Kaneohe, United States
| | - David F Gruber
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, United States.,Department of Natural Sciences, City University of New York, Baruch College and The Graduate Center, New York, United States
| | - Bishoy Kamel
- Department of Biology, Mueller Lab, Penn State University, University Park, United States
| | - Michael P Lesser
- School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, United States
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gam, Israel
| | - Yi Jin Liew
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matthew MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Tali Mass
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States.,Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Israel
| | - Monica Medina
- Department of Biology, Mueller Lab, Penn State University, University Park, United States
| | - Shaadi Mehr
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, United States.,Biological Science Department, State University of New York, College at Old Westbury, New York, United States
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Dana C Price
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, United States
| | | | - Huan Qiu
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Alexander J Stokes
- Laboratory of Experimental Medicine and Department of Cell and Molecular Biology, John A. Burns School of Medicine, Honolulu, United States.,Chaminade University, Honolulu, United States
| | | | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Israel
| | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nicole Wagner
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States
| | - Charles W Walker
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Andreas Pm Weber
- Institute of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Virginia Weis
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Ehud Zelzion
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States
| | | | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States.,Department of Earth and Planetary Sciences, Rutgers University, New Jersey, United States
| |
Collapse
|
29
|
Braun C, Reef R, Siebeck UE. Ultraviolet absorbing compounds provide a rapid response mechanism for UV protection in some reef fish. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:400-7. [PMID: 27162066 DOI: 10.1016/j.jphotobiol.2016.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/05/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
The external mucus surface of reef fish contains ultraviolet absorbing compounds (UVAC), most prominently Mycosporine-like Amino Acids (MAAs). MAAs in the external mucus of reef fish are thought to act as sunscreens by preventing the damaging effects of ultraviolet radiation (UVR), however, direct evidence for their protective role has been missing. We tested the protective function of UVAC's by exposing fish with naturally low, Pomacentrus amboinensis, and high, Thalassoma lunare, mucus absorption properties to a high dose of UVR (UVB: 13.4W∗m(-2), UVA: 6.1W∗m(-2)) and measuring the resulting DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). For both species, the amount of UV induced DNA damage sustained following the exposure to a 1h pulse of high UVR was negatively correlated with mucus absorbance, a proxy for MAA concentration. Furthermore, a rapid and significant increase in UVAC concentration was observed in P. amboinensis following UV exposure, directly after capture and after ten days in captivity. No such increase was observed in T. lunare, which maintained relatively high levels of UV absorbance at all times. P. amboinensis, in contrast to T. lunare, uses UV communication and thus must maintain UV transparent mucus to be able to display its UV patterns. The ability to rapidly alter the transparency of mucus could be an important adaptation in the trade off between protection from harmful UVR and UV communication.
Collapse
Affiliation(s)
- C Braun
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.
| | - R Reef
- Cambridge Coastal Research Unit, Department of Geography, University of Cambridge, United Kingdom.
| | - U E Siebeck
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
30
|
Jones R, Ricardo GF, Negri AP. Effects of sediments on the reproductive cycle of corals. MARINE POLLUTION BULLETIN 2015; 100:13-33. [PMID: 26384866 DOI: 10.1016/j.marpolbul.2015.08.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 05/07/2023]
Abstract
Dredging, river plumes and natural resuspension events can release sediments into the water column where they exert a range of effects on underlying communities. In this review we examine possible cause-effect pathways whereby light reduction, elevated suspended sediments and sediment deposition could affect the reproductive cycle and early life histories of corals. The majority of reported or likely effects (30+) were negative, including a suite of previously unrecognized effects on gametes. The length of each phase of the life-cycle was also examined together with analysis of water quality conditions that can occur during a dredging project over equivalent durations, providing a range of environmentally relevant exposure scenarios for future testing. The review emphasizes the need to: (a) accurately quantify exposure conditions, (b) identify the mechanism of any effects in future studies, and (c) recognize the close interlinking of proximate factors which could confound interpretation of studies.
Collapse
Affiliation(s)
- R Jones
- Australian Institute of Marine Science (AIMS), Perth, Australia; Western Australian Marine Science Institution (WAMSI), Perth, Australia; Oceans Institute, University of Western Australia, Perth, Australia.
| | - G F Ricardo
- Australian Institute of Marine Science (AIMS), Perth, Australia; Western Australian Marine Science Institution (WAMSI), Perth, Australia; Centre of Microscopy, Charaterisation and Analysis, The University of Western Australia, Perth, Australia.
| | - A P Negri
- Australian Institute of Marine Science (AIMS), Perth, Australia; Western Australian Marine Science Institution (WAMSI), Perth, Australia.
| |
Collapse
|
31
|
Roth MS. The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol 2014; 5:422. [PMID: 25202301 PMCID: PMC4141621 DOI: 10.3389/fmicb.2014.00422] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/25/2014] [Indexed: 01/09/2023] Open
Abstract
Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing "omics" fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.
Collapse
Affiliation(s)
- Melissa S. Roth
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|
32
|
Cardini U, Bednarz VN, Foster RA, Wild C. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecol Evol 2014; 4:1706-27. [PMID: 24967086 PMCID: PMC4063469 DOI: 10.1002/ece3.1050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/07/2022] Open
Abstract
Tropical coral reefs are among the most productive and diverse ecosystems, despite being surrounded by ocean waters where nutrients are in short supply. Benthic dinitrogen (N2) fixation is a significant internal source of "new" nitrogen (N) in reef ecosystems, but related information appears to be sparse. Here, we review the current state (and gaps) of knowledge on N2 fixation associated with coral reef organisms and their ecosystems. By summarizing the existing literature, we show that benthic N2 fixation is an omnipresent process in tropical reef environments. Highest N2 fixation rates are detected in reef-associated cyanobacterial mats and sea grass meadows, clearly showing the significance of these functional groups, if present, to the input of new N in reef ecosystems. Nonetheless, key benthic organisms such as hard corals also importantly contribute to benthic N2 fixation in the reef. Given the usually high coral coverage of healthy reef systems, these results indicate that benthic symbiotic associations may be more important than previously thought. In fact, mutualisms between carbon (C) and N2 fixers have likely evolved that may enable reef communities to mitigate N limitation. We then explore the potential effects of the increasing human interferences on the process of benthic reef N2 fixation via changes in diazotrophic populations, enzymatic activities, or availability of benthic substrates favorable to these microorganisms. Current knowledge indicates positive effects of ocean acidification, warming, and deoxygenation and negative effects of increased ultraviolet radiation on the amount of N fixed in coral reefs. Eutrophication may either boost or suppress N2 fixation, depending on the nutrient becoming limiting. As N2 fixation appears to play a fundamental role in nutrient-limited reef ecosystems, these assumptions need to be expanded and confirmed by future research efforts addressing the knowledge gaps identified in this review.
Collapse
Affiliation(s)
- Ulisse Cardini
- Coral Reef Ecology Group (CORE), Leibniz Center for Tropical Marine Ecology (ZMT)Fahrenheitstr. 6, Bremen, 28359, Germany
| | - Vanessa N Bednarz
- Coral Reef Ecology Group (CORE), Leibniz Center for Tropical Marine Ecology (ZMT)Fahrenheitstr. 6, Bremen, 28359, Germany
| | - Rachel A Foster
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1, Bremen, 28359, Germany
| | - Christian Wild
- Coral Reef Ecology Group (CORE), Leibniz Center for Tropical Marine Ecology (ZMT)Fahrenheitstr. 6, Bremen, 28359, Germany
- Faculty of Biology and Chemistry (FB 2), University of BremenBremen, Germany
| |
Collapse
|
33
|
Parmesan C, Burrows MT, Duarte CM, Poloczanska ES, Richardson AJ, Schoeman DS, Singer MC. Beyond climate change attribution in conservation and ecological research. Ecol Lett 2014; 16 Suppl 1:58-71. [PMID: 23679010 DOI: 10.1111/ele.12098] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/14/2012] [Accepted: 01/31/2013] [Indexed: 12/23/2022]
Abstract
There is increasing pressure from policymakers for ecologists to generate more detailed 'attribution' analyses aimed at quantitatively estimating relative contributions of different driving forces, including anthropogenic climate change (ACC), to observed biological changes. Here, we argue that this approach is not productive for ecological studies. Global meta-analyses of diverse species, regions and ecosystems have already given us 'very high confidence' [sensu Intergovernmental Panel on Climate Change (IPCC)] that ACC has impacted wild species in a general sense. Further, for well-studied species or systems, synthesis of experiments and models with long-term observations has given us similarly high confidence that they have been impacted by regional climate change (regardless of its cause). However, the role of greenhouse gases in driving these impacts has not been estimated quantitatively. Should this be an ecological research priority? We argue that development of quantitative ecological models for this purpose faces several impediments, particularly the existence of strong, non-additive interactions among different external factors. However, even with current understanding of impacts of global warming, there are myriad climate change adaptation options already developed in the literature that could be, and in fact are being, implemented now.
Collapse
Affiliation(s)
- Camille Parmesan
- Marine Institute, Level 3 Marine Bldg., Plymouth University, Drakes Circus Plymouth, Devon, PL4 8AA, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Zamzow JP, Siebeck UE, Eckes MJ, Grutter AS. Ultraviolet-B wavelengths regulate changes in UV absorption of cleaner fish Labroides dimidiatus mucus. PLoS One 2013; 8:e78527. [PMID: 24143264 PMCID: PMC3797052 DOI: 10.1371/journal.pone.0078527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
High-energy wavelengths in the ultraviolet-B (UVB, 280-315 nm) and the UVA (315-400-nm) portion of the spectrum are harmful to terrestrial and aquatic organisms. Interestingly, UVA is also involved in the repair of UV induced damage. Organisms living in shallow coral reef environments possess UV absorbing compounds, such as mycosporine-like amino acids, to protect them from UV radiation. While it has been demonstrated that exposure to UV (280-400 nm) affects the UV absorbance of fish mucus, whether the effects of UV exposure vary between UVB and UVA wavelengths is not known. Therefore, we investigated whether the UVB, UVA, or photosynthetically active radiation (PAR, 400-700 nm) portions of the spectrum affected the UV absorbance of epithelial mucus and Fulton’s body condition index of the cleaner fish Labroides dimidiatus. We also compared field-measured UV absorbance with laboratory based high-performance liquid chromatography measurements of mycosporine-like amino acid concentrations. After 1 week, we found that the UV absorbance of epithelial mucus was higher in the UVB+UVA+PAR treatment compared with the UVA+PAR and PAR only treatments; after 2 and 3 weeks, however, differences between treatments were not detected. After 3 weeks, Fulton’s body condition index was lower for fish in the UVB+UVA+PAR compared with PAR and UVA+PAR treatments; furthermore, all experimentally treated fish had a lower Fulton’s body condition index than did freshly caught fish. Finally, we found a decrease with depth in the UV absorbance of mucus of wild-caught fish. This study suggests that the increase in UV absorbance of fish mucus in response to increased overall UV levels is a function of the UVB portion of the spectrum. This has important implications for the ability of cleaner fish and other fishes to adjust their mucus UV protection in response to variations in environmental UV exposure.
Collapse
Affiliation(s)
- Jill P. Zamzow
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ulrike E. Siebeck
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| | - Maxi J. Eckes
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Alexandra S. Grutter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Downs NJ, Schouten PW, Parisi AV. Seasonal variations in the subsurface ultraviolet-B on an inshore Pacific coral reef ecosystem. Photochem Photobiol 2013; 89:1234-43. [PMID: 23701175 DOI: 10.1111/php.12101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/17/2013] [Indexed: 11/30/2022]
Abstract
Fringing coral reefs provide a unique opportunity to study shallow aquatic ecosystems. A fringing coral reef system located in close proximity to a developed region was considered in this study. In such an environment, the rate of decay of dissolved organic matter is high and the penetration of higher energy ultraviolet-B (UVB) extends a greater influence on species diversity, particularly upon shallow benthic communities. Results from a 9 month subsurface UVB exposure measurement campaign performed at a site located on the southern Queensland coast (Hervey Bay, 25°S) are presented in this research. For this, a novel dosimetric technique was utilized to measure long-term subsurface UVB exposures. The resultant data set includes exposure measurements made during the significant La Niña event of late 2010 which resulted in unprecedented high sea surface temperatures and severe flooding across eastern Australia, impacting upon the lagoon regions of the Great Barrier Reef and Queensland's southern estuaries, including the study site. The influence of season, diurnal tidal variation, cloud cover and solar zenith angle were analyzed over the campaign period. Mean minimum daylight water depth was found to be the most significant factor influencing subsurface UVB.
Collapse
Affiliation(s)
- Nathan J Downs
- Faculty of Sciences, University of Southern Queensland, Toowoomba, Qld, Australia
| | | | | |
Collapse
|
36
|
Welker AF, Moreira DC, Campos ÉG, Hermes-Lima M. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:384-404. [PMID: 23587877 DOI: 10.1016/j.cbpa.2013.04.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 12/14/2022]
Abstract
Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by animals with aquatic respiration. Therefore, animals living in marine, estuarine and freshwater environments have developed efficient antioxidant defenses to minimize oxidative stress and to regulate the cellular actions of ROS. Changes in oxygen levels may lead to bursts of ROS generation that can be particularly harmful. This situation is commonly experienced by aquatic animals during abrupt transitions from periods of hypoxia/anoxia back to oxygenated conditions (e.g. intertidal cycles). The strategies developed differ significantly among aquatic species and are (i) improvement of their endogenous antioxidant system under hyperoxia (that leads to increased ROS formation) or other similar ROS-related stresses, (ii) increase in antioxidant levels when displaying higher metabolic rates, (iii) presence of constitutively high levels of antioxidants, that attenuates oxidative stress derived from fluctuations in oxygen availability, or (iv) increase in the activity of antioxidant enzymes (and/or the levels of their mRNAs) during hypometabolic states associated with anoxia/hypoxia. This enhancement of the antioxidant system - coined over a decade ago as "preparation for oxidative stress" - controls the possible harmful effects of increased ROS formation during hypoxia/reoxygenation. The present article proposes a novel explanation for the biochemical and molecular mechanisms involved in this phenomenon that could be triggered by hypoxia-induced ROS formation. We also discuss the connections among oxygen sensing, oxidative damage and regulation of the endogenous antioxidant defense apparatus in animals adapted to many natural or man-made challenges of the aquatic environment.
Collapse
Affiliation(s)
- Alexis F Welker
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900 DF, Brazil
| | | | | | | |
Collapse
|
37
|
Abstract
Coral reefs are one of the most important marine ecosystems, providing habitat for approximately a quarter of all marine organisms. Within the foundation of this ecosystem, reef-building corals form mutualistic symbioses with unicellular photosynthetic dinoflagellates of the genus Symbiodinium. Exposure to UV radiation (UVR) (280 to 400 nm) especially when combined with thermal stress has been recognized as an important abiotic factor leading to the loss of algal symbionts from coral tissue and/or a reduction in their pigment concentration and coral bleaching. UVR may damage biological macromolecules, increase the level of mutagenesis in cells, and destabilize the symbiosis between the coral host and their dinoflagellate symbionts. In nature, corals and other marine organisms are protected from harmful UVR through several important photoprotective mechanisms that include the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). MAAs are small (<400-Da), colorless, water-soluble compounds made of a cyclohexenone or cyclohexenimine chromophore that is bound to an amino acid residue or its imino alcohol. These secondary metabolites are natural biological sunscreens characterized by a maximum absorbance in the UVA and UVB ranges of 310 to 362 nm. In addition to their photoprotective role, MAAs act as antioxidants scavenging reactive oxygen species (ROS) and suppressing singlet oxygen-induced damage. It has been proposed that MAAs are synthesized during the first part of the shikimate pathway, and recently, it has been suggested that they are synthesized in the pentose phosphate pathway. The shikimate pathway is not found in animals, but in plants and microbes, it connects the metabolism of carbohydrates to the biosynthesis of aromatic compounds. However, both the complete enzymatic pathway of MAA synthesis and the extent of their regulation by environmental conditions are not known. This minireview discusses the current knowledge of MAA synthesis, illustrates the diversity of MAA functions, and opens new perspectives for future applications of MAAs in biotechnology.
Collapse
|
38
|
Tauchman E, Pomory C. Effect of ultraviolet radiation on growth and percent settlement of larvalLytechinus variegatus(Echinodermata: Echinoidea). INVERTEBR REPROD DEV 2011. [DOI: 10.1080/07924259.2011.573329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Aranda M, Banaszak AT, Bayer T, Luyten JR, Medina M, Voolstra CR. Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence. Mol Ecol 2011; 20:2955-72. [PMID: 21689186 DOI: 10.1111/j.1365-294x.2011.05153.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
40
|
Häder DP, Helbling EW, Williamson CE, Worrest RC. Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 2011; 10:242-60. [PMID: 21253662 DOI: 10.1039/c0pp90036b] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The health of freshwater and marine ecosystems is critical to life on Earth. The impact of solar UV-B radiation is one potential stress factor that can have a negative impact on the health of certain species within these ecosystems. Although there is a paucity of data and information regarding the effect of UV-B radiation on total ecosystem structure and function, several recent studies have addressed the effects on various species within each trophic level. Climate change, acid deposition, and changes in other anthropogenic stressors such as pollutants alter UV exposure levels in inland and coastal marine waters. These factors potentially have important consequences for a variety of aquatic organisms including waterborne human pathogens. Recent results have demonstrated the negative impacts of exposure to UV-B radiation on primary producers, including effects on cyanobacteria, phytoplankton, macroalgae and aquatic plants. UV-B radiation is an environmental stressor for many aquatic consumers, including zooplankton, crustaceans, amphibians, fish, and corals. Many aquatic producers and consumers rely on avoidance strategies, repair mechanisms and the synthesis of UV-absorbing substances for protection. However, there has been relatively little information generated regarding the impact of solar UV-B radiation on species composition within natural ecosystems or on the interaction of organisms between trophic levels within those ecosystems. There remains the question as to whether a decrease in population size of the more sensitive primary producers would be compensated for by an increase in the population size of more tolerant species, and therefore whether there would be a net negative impact on the absorption of atmospheric carbon dioxide by these ecosystems. Another question is whether there would be a significant impact on the quantity and quality of nutrients cycling through the food web, including the generation of food proteins for humans. Interactive effects of UV radiation with changes in other stressors, including climate change and pollutants, are likely to be particularly important.
Collapse
|
41
|
Echinoderms as Blueprints for Biocalcification: Regulation of Skeletogenic Genes and Matrices. MOLECULAR BIOMINERALIZATION 2011; 52:225-48. [DOI: 10.1007/978-3-642-21230-7_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Zepp RG, Erickson III DJ, Paul ND, Sulzberger B. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem Photobiol Sci 2011; 10:261-79. [DOI: 10.1039/c0pp90037k] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Russo R, Zito F, Costa C, Bonaventura R, Matranga V. Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B. Cell Stress Chaperones 2010; 15:993-1001. [PMID: 20607471 PMCID: PMC3024062 DOI: 10.1007/s12192-010-0210-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/15/2010] [Accepted: 06/17/2010] [Indexed: 12/19/2022] Open
Abstract
Members of the 14-3-3 protein family are involved in many important cellular events, including stress response, survival and apoptosis. Genes of the 14-3-3 family are conserved from plants to humans, and some members are responsive to UV radiation. Here, we report the isolation of the complete cDNA encoding the 14-3-3 epsilon isoform from Paracentrotus lividus sea urchin embryos, referred to as Pl14-3-3ε, and the phylogenetic relationship with other homologues described in different phyla. Pl14-3-3ε mRNA levels were measured by QPCR during development and found to increase from the mesenchyme blastula to the prism stage. In response to UV-B (312 nm) exposure, early stage embryos collected 2 h later showed a 2.3-fold (at 400 J/m(2)) and a 2.7-fold (at 800 J/m(2)) increase in Pl14-3-3ε transcript levels compared with controls. The spatial expression of Pl14-3-3ε mRNA, detected by whole mount in situ hybridization in both control and UV-B exposed embryos, harvested at late developmental stages, showed transcripts to be located in the archenteron of gastrula stage and widely distributed in all germ layers, respectively. The Pl14-3-3ε mRNA delocalization parallels the failure in archenteron elongation observed morphologically, as well as the lack of specific endoderm markers, investigated by indirect immuno-fluorescence on whole mount embryos. Results confirm the involvement of 14-3-3ε in the stress response elicited by UV-B and demonstrate, for the first time, its contribution at the transcriptional level in the sea urchin embryo.
Collapse
Affiliation(s)
- Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
44
|
Higuchi T, Fujimura H, Hitomi Y, Arakaki T, Oomori T, Suzuki Y. Photochemical Formation of Hydroxyl Radicals in Tissue Extracts of the Coral Galaxea fascicularis. Photochem Photobiol 2010; 86:1421-6. [DOI: 10.1111/j.1751-1097.2010.00802.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Rastogi RP, Sinha RP, Singh SP, Häder DP. Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 2010; 37:537-58. [PMID: 20401734 DOI: 10.1007/s10295-010-0718-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 03/26/2010] [Indexed: 12/19/2022]
Abstract
The substantial loss in the stratospheric ozone layer and consequent increase in solar ultraviolet radiation on the earth's surface have augmented the interest in searching for natural photoprotective compounds in organisms of marine as well as freshwater ecosystems. A number of photoprotective compounds such as mycosporine-like amino acids (MAAs), scytonemin, carotenoids and several other UV-absorbing substances of unknown chemical structure have been identified from different organisms. MAAs form the most common class of UV-absorbing compounds known to occur widely in various marine organisms; however, several compounds having UV-screening properties still need to be identified. The synthesis of scytonemin, a predominant UV-A-photoprotective pigment, is exclusively reported in cyanobacteria. Carotenoids are important components of the photosynthetic apparatus that serve both light-harvesting and photoprotective functions, either by direct quenching of the singlet oxygen or other toxic reactive oxygen species or by dissipating the excess energy in the photosynthetic apparatus. The production of photoprotective compounds is affected by several environmental factors such as different wavelengths of UVR, desiccation, nutrients, salt concentration, light as well as dark period, and still there is controversy about the biosynthesis of various photoprotective compounds. Recent studies have focused on marine organisms as a source of natural bioactive molecules having a photoprotective role, their biosynthesis and commercial application. However, there is a need for extensive work to explore the photoprotective role of various UV-absorbing compounds from marine habitats so that a range of biotechnological and pharmaceutical applications can be found.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | |
Collapse
|
46
|
Lesser MP. Depth-dependent Effects of Ultraviolet Radiation on Survivorship, Oxidative Stress and DNA Damage in Sea Urchin (Strongylocentrotus droebachiensis) Embryos from the Gulf of Maine. Photochem Photobiol 2010; 86:382-8. [DOI: 10.1111/j.1751-1097.2009.00671.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|