1
|
Elayan IA, Brown A. Non-Degenerate Two-Photon Absorption of Fluorescent Protein Chromophores. J Phys Chem A 2024; 128:7511-7523. [PMID: 39192559 DOI: 10.1021/acs.jpca.3c08402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Two-photon absorption (2PA), where a pair of photons are absorbed simultaneously, is recognized as a potent bioimaging technique, which depends on the quantified 2PA probability, defined as cross-section (σ2PA). The absorbed photons either have equivalent (ω1 = ω2) or different frequencies (ω1 ≠ ω2), where the former is degenerate 2PA (D-2PA) and the latter is nondegenerate 2PA (ND-2PA). ND-2PA is of particular interest since it is a promising imaging technology with flexibility of photon frequencies and enhanced cross sections, however, it remains a relatively unexplored area compared to D-2PA. This work utilizes time-dependent density functional theory (TD-DFT) and second-order approximate coupled-cluster with the resolution-of-identity approximation (RI-CC2), for the excitation from S0 to S1, to investigate σD-2PA and σND-2PA of FP chromophore models. Interestingly, comparing CAM-B3LYP with the RI-CC2 computations shows qualitative and, in fact, near quantitative agreement in the computed improvements of σND-2PA for comparable (relative) frequency detunings, despite the known underestimations of 2PA cross sections, for TD-DFT results relative to RI-CC2 values. As expected from the 2-state model, the computed values of σND-2PA are quantitatively larger than σD-2PA, where chromophores with the largest values of σD-2PA show greater potential for σND-2PA improvement. Anionic chromophores demonstrated improvements up to 14%, while substantial enhancements were observed in neutral chromophores with some achieving a 30% increase. This work investigates the ND-2PA photophysical characteristics of FP chromophores and identifies qualitative patterns in the computed properties of ND-2PA relative to D-2PA.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
2
|
Zhang Y, Miao R, Sha H, Ma W, Huang Y, Chen H. A universal strategy for constructing high-performance silica-based AIE materials for biomedical application. J Colloid Interface Sci 2024; 669:419-429. [PMID: 38723531 DOI: 10.1016/j.jcis.2024.04.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
As an emerging fluorophore, aggregation-induced emission luminogens (AIEgens) have received widespread attention in recent years, but the inherent drawbacks of AIEgens, such as the poor water-solubility and insufficient fluorescence stability in complex environments, restrict their performance in practical applications. Herein, we report a universal strategy based on hydrophobic dendritic mesoporous silica (HMSN) that can integrate different AIE molecules to construct multi-color fluorescent AIE materials. Specifically, HMSN with central radial pores was used as a powerful carrier for direct loading AIE molecules and restricting their intramolecular motions. Due to the pore-domain restriction effect and hydrophobic interaction, the obtained silica-based AIE materials have bright fluorescence with a maximum quantum yield of 68.38%, high colloidal/fluorescence stability, and excellent biosafety. Further, these silica-based AIE materials can be conjugated with functional antibodies to obtain probes with different targetability. After integration with immunomagnetic beads, the prepared detection probes achieved the quantitative detection of cardiac troponin I with the limit of detection (LOD) of 0.508 ng/mL. Overall, the targeting probes stemming from silica-based AIE materials can not only achieve cell-specific imaging, but quantify the number of Jurkat cells (LOD = 270 cells/mL) to further determine the specific etiology of the disease.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Runjie Miao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Haifeng Sha
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China
| | - Wenyan Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Yuefeng Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| |
Collapse
|
3
|
Zhou B, Yang X, Liu J, Lan L, Lu H, Wang Y, Wei Z, Zhang X. Jellyfish-Inspired Self-Healing Luminescent Elastomers Based on Borate Nanoassemblies for Dual-Model Encryption. NANO LETTERS 2024; 24:8198-8207. [PMID: 38904269 DOI: 10.1021/acs.nanolett.4c02512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Responsive luminescent materials that reversibly react to external stimuli have emerged as prospective platforms for information encryption applications. Despite brilliant achievements, the existing fluorescent materials usually have low information density and experience inevitable information loss when subjected to mechanical damage. Here, inspired by the hierarchical nanostructure of fluorescent proteins in jellyfish, we propose a self-healable, photoresponsive luminescent elastomer based on dynamic interface-anchored borate nanoassemblies for smart dual-model encryption. The rigid cyclodextrin molecule restricts the movement of the guest fluorescent molecules, enabling long room-temperature phosphorescence (0.37 s) and excitation wavelength-responsive fluorescence. The building of reversible interfacial bonding between nanoassemblies and polymer matrix together with their nanoconfinement effect endows the nanocomposites with excellent mechanical performances (tensile strength of 15.8 MPa) and superior mechanical and functional recovery capacities after damage. Such supramolecular nanoassemblies with dynamic nanoconfinement and interfaces enable simultaneous material functionalization and self-healing, paving the way for the development of advanced functional materials.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Lidan Lan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Hao Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yuyan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Zhenbo Wei
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Amaral DT, Kaplan RA, Takishita TKE, de Souza DR, Oliveira AG, Rosa SP. Glowing wonders: exploring the diversity and ecological significance of bioluminescent organisms in Brazil. Photochem Photobiol Sci 2024; 23:1373-1392. [PMID: 38733516 DOI: 10.1007/s43630-024-00590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Bioluminescence, the emission of light by living organisms, is a captivating and widespread phenomenon with diverse ecological functions. This comprehensive review explores the biodiversity, mechanisms, ecological roles, and conservation challenges of bioluminescent organisms in Brazil, a country known for its vast and diverse ecosystems. From the enchanting glow of fireflies and glow-in-the-dark mushrooms to the mesmerizing displays of marine dinoflagellates and cnidarians, Brazil showcases a remarkable array of bioluminescent species. Understanding the biochemical mechanisms and enzymes involved in bioluminescence enhances our knowledge of their evolutionary adaptations and ecological functions. However, habitat loss, climate change, and photopollution pose significant threats to these bioluminescent organisms. Conservation measures, interdisciplinary collaborations, and responsible lighting practices are crucial for their survival. Future research should focus on identifying endemic species, studying environmental factors influencing bioluminescence, and developing effective conservation strategies. Through interdisciplinary collaborations, advanced technologies, and increased funding, Brazil can unravel the mysteries of its bioluminescent biodiversity, drive scientific advancements, and ensure the long-term preservation of these captivating organisms.
Collapse
Affiliation(s)
- Danilo T Amaral
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC (UFABC), Santo André, São Paulo, Brazil.
- Programa de Pós Graduação Em Biotecnociência, Universidade Federal Do ABC (UFABC), Avenida Dos Estados, Bloco A, Room 504-3. ZIP 09210-580, Santo André, São Paulo, 5001, Brazil.
| | - Rachel A Kaplan
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | | | - Daniel R de Souza
- Laboratório de Estudos Avançados Em Jornalismo, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Anderson G Oliveira
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | - Simone Policena Rosa
- Instituto de Recursos Naturais (IRN), Universidade Federal de Itajubá (UNIFEI), Itajubá, MG, Brazil
| |
Collapse
|
5
|
Martin A, Rivera-Fuentes P. Fluorogenic polymethine dyes by intramolecular cyclization. Curr Opin Chem Biol 2024; 80:102444. [PMID: 38520774 DOI: 10.1016/j.cbpa.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Fluorescence imaging plays a pivotal role in the study of biological processes, and cell-permeable fluorogenic dyes are crucial to visualize intracellular structures with high specificity. Polymethine dyes are vitally important fluorophores in single-molecule localization microscopy and in vivo imaging, but their use in live cells has been limited by high background fluorescence and low membrane permeability. In this review, we summarize recent advances in the development of fluorogenic polymethine dyes via intramolecular cyclization. Finally, we offer an outlook on the prospects of fluorogenic polymethine dyes for bioimaging.
Collapse
Affiliation(s)
- Annabell Martin
- Department of Chemistry, University of Zurich, Zurich, Switzerland; École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | | |
Collapse
|
6
|
Wang G, Tang BZ, Gu X. Manipulation of Nonradiative Process Based on the Aggregation Microenvironment to Customize Excited-State Energy Conversion. Acc Chem Res 2024; 57:1360-1371. [PMID: 38669148 DOI: 10.1021/acs.accounts.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
ConspectusNonradiative processes with the determined role in excited-state energy conversion, such as internal conversion (IC), vibrational relaxation (VR), intersystem crossing (ISC), and energy or electron transfer (ET or eT), have exerted a crucial effect on biological functions in nature. Inspired by these, nonradiative process manipulation has been extensively utilized to develop organic functional materials in the fields of energy and biomedicine. Therefore, comprehensive knowledge and effective manipulation of sophisticated nonradiative processes for achieving high-efficiency excited-state energy conversion are quintessential. So far, many strategies focused on molecular engineering have demonstrated tremendous potential in manipulating nonradiative processes to tailor excited-state energy conversion. Besides, molecular aggregation considerably affects nonradiative processes due to their ultrasensitivity, thus providing us with another essential approach to manipulating nonradiative processes, such as the famous aggregation-induced emission. However, the weak interactions established upon aggregation, namely, the aggregation microenvironment (AME), possess hierarchical, dynamic, and systemic characteristics and are extremely complicated to elucidate. Revealing the relationship between the AME and nonradiative process and employing it to customize excited-state energy conversion would greatly promote advanced materials in energy utilization, biomedicine, etc., but remain a huge challenge. Our group has devoted much effort to achieving this goal.In this Account, we focus on our recent developments in nonradiative process manipulation based on AME. First, we provide insight into the effect of the AME on nonradiative process in terms of its steric effect and electronic regulation, illustrating the possibility of nonradiative process manipulation through AME modulation. Second, the distinct enhanced steric effect is established by crystallization and heterogeneous polymerization to conduct crystallization-induced reversal from dark to bright excited states and dynamic hardening-triggered nonradiative process suppression for highly efficient luminescence. Meanwhile, promoting the ISC process and stabilizing the triplet state are also manipulated by the crystal and polymer matrix to induce room-temperature phosphorescence. Furthermore, the strategies employed to exploit nonradiative processes for photothermy and photosensitization are reviewed. For photothermal conversion, besides the weakened steric effect with promoted molecular motions, a new strategy involving the introduction of diradicals upon aggregation to narrow the energy band gap and enhance intermolecular interactions is put forward to facilitate IC and VR for high-efficiency photothermal conversion. For photosensitization, both the enhanced steric effect from the rigid matrix and the effective electronic regulation from the electron-rich microenvironment are demonstrated to facilitate ISC, ET, and eT for superior photosensitization. Finally, we explore the existing challenges and future directions of nonradiative process manipulation by AME modulation for customized excited-state energy conversion. We hope that this Account will be of wide interest to readers from different disciplines.
Collapse
Affiliation(s)
- Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Luo Y, Pi S, Liu YJ. Mechanistic Insights into the Bacterial Luciferase-based Bioluminescence Resonance Energy Transfer Luminescence: The Role of Protein Complex Dimer. Chemphyschem 2024; 25:e202300973. [PMID: 38345139 DOI: 10.1002/cphc.202300973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/11/2024] [Indexed: 02/29/2024]
Abstract
Bacterial bioluminescence holds significant potential in the realm of optical imaging due to the inherent advantages of bioluminescence and ease of operation. However, its practical utility is hindered by its low light intensity. The fusion of bacterial luciferase with a highly fluorescent protein has been demonstrated to significantly enhance autonomous luminescence. Nevertheless, the underlying mechanism behind this enhancement remains unclear, and there is a dearth of research investigating the mechanistic aspects of bioluminescence resonance energy transfer (BRET) luminescence, whether it occurs naturally or can be achieved through experimental means. In this study, we investigated the phenomenon of bacterial luciferase-based BRET luminescence employing a range of computational techniques, including structural modeling, molecular docking, molecular dynamics simulations, as well as combined quantum mechanics and molecular mechanics calculations. The theoretical findings suggest that the BRET luminescence occurs through resonance energy transfer between the excited bioluminophore and the ground chromophore within the protein complex dimer. The proposed mechanism of the protein complex dimer offers a microscopic understanding of the intriguing BRET phenomenon and has the potential to inspire further practical applications in the field of optical imaging.
Collapse
Affiliation(s)
- Yanling Luo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangqi Pi
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai, China
| |
Collapse
|
8
|
Feng W, Qian Y. Water-soluble red fluorescent protein dimers for hypoxic two-photon photodynamic therapy. J Mater Chem B 2024; 12:2413-2424. [PMID: 38354026 DOI: 10.1039/d3tb02621c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
In this study, two water-soluble red fluorescent protein (RFP) dimers, FP2R' and FP2R'', were synthesized by linking two phenothiazine-based RFP chromophore analogues through alkyl chains or alkoxy chains for hypoxic two-photon photodynamic therapy. RFP dimers are heavy-atom-free two-photon photosensitizers in which the intersystem crossing process is boosted by S and N heteroatoms. In terms of the aqueous solubility, the saturation concentration of FP2R'' was 3.5 mM, the emission wavelength was 677 nm, the singlet oxygen yield was 18%, and the two-photon absorption coefficient (β) was 2.1 × 10-11 cm W-1. Further, the RFP dimer FP2R'' showed excellent biocompatibility, negligible dark toxicity, and could produce 1O2 and O2˙- simultaneously. Under 460 nm illumination, the photosensitizer FP2R'' showed high phototoxicity with an IC50 value of 4.08 μM in an hypoxia environment, indicating that the photosensitizer FP2R'' has an excellent anti-hypoxia ability. In addition, the photosensitizer FP2R'' demonstrated a precise localization ability to lysosomes and its Pearson's colocalization coefficient was 0.94, which could guide the aggregation of photosensitizers in the lysosomes of tumor cells to effectively improve its photodynamic therapy (PDT) effect. In particular, when exposed to 800 nm two-photon excitation, FP2R'' effectively produced 1O2 and O2˙- in zebrafish and exhibited a bright two-photon fluorescence imaging capability. At the same time, the efficacy of two-photon photodynamic therapy mediated by the photosensitizer FP2R'' was verified in the tumor zebrafish model, and the growth of tumor cells in zebrafish was significantly inhibited under a two-photon laser irradiation. The water-soluble two-photon photosensitizer FP2R'' that was reasonably constructed in this study can be used as a high-efficiency hypoxic two-photon photosensitizer to inhibit deep tumor tissues.
Collapse
Affiliation(s)
- Wan Feng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
9
|
Yabushita A, Cheng CY, Ko YK, Kobayashi T, Iwakura I, Jimenez R. Excited State Vibrational Dynamics Reveals a Photocycle That Enhances the Photostability of the TagRFP-T Fluorescent Protein. J Phys Chem B 2024; 128:1188-1193. [PMID: 38282329 PMCID: PMC10860143 DOI: 10.1021/acs.jpcb.3c07212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
High photostability is a desirable property of fluorescent proteins (FPs) for imaging, yet its molecular basis is poorly understood. We performed ultrafast spectroscopy on TagRFP and its 9-fold more photostable variant TagRFP-T (TagRFP S158T) to characterize their initial photoreactions. We find significant differences in their electronic and vibrational dynamics, including faster excited-state proton transfer and transient changes in the frequency of the v520 mode in the excited electronic state of TagRFP-T. The frequency of v520, which is sensitive to chromophore planarity, downshifts within 0.58 ps and recovers within 0.87 ps. This vibrational mode modulates the distance from the chromophore phenoxy to the side chain of residue N143, which we suggest can trigger cis/trans photoisomerization. In TagRFP, the dynamics of v520 is missing, and this FP therefore lacks an important channel for chromophore isomerization. These dynamics are likely to be a key mechanism differentiating the photostability of the two FPs.
Collapse
Affiliation(s)
- Atsushi Yabushita
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
- Research
Institute for Engineering, Kanagawa University, Yokohama 2210802, Japan
| | - Chia-Yun Cheng
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Ying Kuan Ko
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Takayoshi Kobayashi
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
- Advanced
Ultrafast Laser Research Center, The University
of Electro-Communications, Chofu 1828585, Japan
| | - Izumi Iwakura
- Department
of Chemistry, Faculty of Engineering, Kanagawa
University, Yokohama 2218686, Japan
| | - Ralph Jimenez
- JILA,
National Institute of Standards and Technology and University of Colorado
Boulder, Boulder, Colorado 80309, United States
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Li X, Wei Q, Zhao K, Wang W, Liu B, Li W, Wang J. Monitoring Intracellular IP6 with a Genetically Encoded Fluorescence Biosensor. ACS Sens 2023; 8:4484-4493. [PMID: 38079595 DOI: 10.1021/acssensors.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Inositol hexakisphosphate (IP6), a naturally occurring metabolite of inositol with specific functions in different organelles or tissues, participates in numerous physiological processes and plays a key role in mammalian metabolic regulation. However, current IP6 detection methods, i.e., high-performance liquid chromatography and gel electrophoresis, require sample destruction and lack spatiotemporal resolution. Here, we construct and characterize a genetically encoded fluorescence biosensor named HIPSer that enables ratiometric quantitative IP6 detection in HEK293T cells and subcellular compartments. We demonstrate that HIPSer has a high sensitivity and relative selectivity for IP6 in vitro. We also provide proof-of-concept evidence that HIPSer can monitor IP6 levels in real time in HEK293T cells and can be targeted for IP6 detection in the nucleus of HEK293T cells. Moreover, HIPSer could also detect changes in IP6 content induced by chemical inhibition of IP6-metabolizing enzymes in HEK293T cells. Thus, HIPSer achieves spatiotemporally precise detection of fluctuations in endogenous IP6 in live cells and provides a versatile tool for mechanistic investigations of inositol phosphate functions in metabolism and signaling.
Collapse
Affiliation(s)
- Xi Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingpeng Wei
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kaiyuan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weibo Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Bingjie Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Zhang Q, Kuang G, Wang L, Duan P, Sun W, Ye F. Designing Bioorthogonal Reactions for Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2023; 6:0251. [PMID: 38107023 PMCID: PMC10723801 DOI: 10.34133/research.0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023]
Abstract
Bioorthogonal reactions are a class of chemical reactions that can be carried out in living organisms without interfering with other reactions, possessing high yield, high selectivity, and high efficiency. Since the first proposal of the conception by Professor Carolyn Bertozzi in 2003, bioorthogonal chemistry has attracted great attention and has been quickly developed. As an important chemical biology tool, bioorthogonal reactions have been applied broadly in biomedicine, including bio-labeling, nucleic acid functionalization, drug discovery, drug activation, synthesis of antibody-drug conjugates, and proteolysis-targeting chimeras. Given this, we summarized the basic knowledge, development history, research status, and prospects of bioorthogonal reactions and their biomedical applications. The main purpose of this paper is to furnish an overview of the intriguing bioorthogonal reactions in a variety of biomedical applications and to provide guidance for the design of novel reactions to enrich bioorthogonal chemistry toolkits.
Collapse
Affiliation(s)
- Qingfei Zhang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| | - Gaizhen Kuang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Li Wang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Weijian Sun
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Fangfu Ye
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Krueger TD, Henderson JN, Breen IL, Zhu L, Wachter RM, Mills JH, Fang C. Capturing excited-state structural snapshots of evolutionary green-to-red photochromic fluorescent proteins. Front Chem 2023; 11:1328081. [PMID: 38144887 PMCID: PMC10748491 DOI: 10.3389/fchem.2023.1328081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies. A 3-methyl-histidine chromophore derivative, incorporated through amber suppression using orthogonal aminoacyl tRNA synthetase/tRNA pairs, displays more dynamic photoswitching but greatly reduced photoconversion versus the least-evolved ancestor (LEA). Excitation-dependent measurements of the green anionic chromophore reveal that the varying photoswitching efficiencies arise from both the initial transient dynamics of the bright cis state and the final trans-like photoswitched off state, with an exocyclic bridge H-rocking motion playing an active role during the excited-state energy dissipation. This investigation establishes a close-knit feedback loop between spectroscopic characterization and protein engineering, which may be especially beneficial to develop more versatile FPs with targeted mutations and enhanced functionalities, such as photoconvertible FPs that also feature photoswitching properties.
Collapse
Affiliation(s)
- Taylor D. Krueger
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Isabella L. Breen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Rebekka M. Wachter
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
13
|
Lam WS, Lam WH, Lee PF, Jaaman SH. Biophotonics as a new application in optical technology: A bibliometric analysis. Heliyon 2023; 9:e23011. [PMID: 38076099 PMCID: PMC10703716 DOI: 10.1016/j.heliyon.2023.e23011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
Biophotonics procures wide practicability in life sciences and medicines. The contribution of biophotonics is well recognized in various Nobel Prizes. Therefore, this paper aims to conduct a bibliometric analysis of biophotonics publications. The scientific database used is the Web of Science database. Harzing's Publish or Perish and VOSviewer are the bibliometric tools used in this analysis. This study found an increasing trend in the number of publications in recent years as the number of publications peaked at 347 publications in 2020. Most of the documents are articles (3361 publications) and proceeding papers (1632 publications). The top three subject areas are Optics (3206 publications), Engineering (1706 publications) and Radiology, Nuclear Medicine, and Medical Imaging (1346 publications). The United States has the highest number of publications (2041 publications) and citation impact (38.07 citations per publication; h-index: 125). The top three publication titles are Proceedings of SPIE (920 publications), Journal of Biomedical Optics (599 publications), and Proceedings of the Society of Photo Optical Instrumentation Engineers SPIE (245 publications). The potential areas for future research include to overcome the optical penetration depth issue and to develop publicly available biosensors for the detection of common diseases.
Collapse
Affiliation(s)
- Weng Siew Lam
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Weng Hoe Lam
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Pei Fun Lee
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Saiful Hafizah Jaaman
- Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| |
Collapse
|
14
|
Hu Y, Zhang RQ, Liu SL, Wang ZG. In-situ quantification of lipids in live cells through imaging approaches. Biosens Bioelectron 2023; 240:115649. [PMID: 37678059 DOI: 10.1016/j.bios.2023.115649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Lipids are important molecules that are widely distributed within the cell, and they play a crucial role in several biological processes such as cell membrane formation, signaling, cell motility and division. Monitoring the spatiotemporal dynamics of cellular lipids in real-time and quantifying their concentrations in situ is crucial since the local concentration of lipids initiates various signaling pathways that regulate cellular processes. In this review, we first introduced the historical background of lipid quantification methods. We then delve into the current state of the art of in situ lipid quantification, including the establishment and utility of fluorescence imaging techniques based on sensors of lipid-binding domains labeled with organic dyes or fluorescent proteins, and Raman and magnetic resonance imaging (MRI) techniques that do not require lipid labeling. Next, we highlighted the biological applications of live-cell lipid quantification techniques in the study of in situ lipid distribution, lipid transformation, and lipid-mediated signaling pathways. Finally, we discussed the technical challenges and prospects for the development of lipid quantification in live cells, with the aim of promoting the development of in situ lipid quantification in live cells, which may have a profound impact on the biological and medical fields.
Collapse
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rui-Qiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
15
|
Krueger TD, Chen C, Fang C. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chem Asian J 2023; 18:e202300668. [PMID: 37682793 DOI: 10.1002/asia.202300668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| |
Collapse
|
16
|
Wang Y, Zhao Y, Li Y, Zhang K, Fan Y, Li B, Su W, Li S. piggyBac-mediated genomic integration of linear dsDNA-based library for deep mutational scanning in mammalian cells. Cell Mol Life Sci 2023; 80:321. [PMID: 37815732 PMCID: PMC11071730 DOI: 10.1007/s00018-023-04976-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Deep mutational scanning (DMS) makes it possible to perform massively parallel quantification of the relationship between genetic variants and phenotypes of interest. However, the difficulties in introducing large variant libraries into mammalian cells greatly hinder DMS under physiological states. Here, we developed two novel strategies for DMS library construction in mammalian cells, namely 'piggyBac-in vitro ligation' and 'piggyBac-in vitro ligation-PCR'. For the first strategy, we took the 'in vitro ligation' approach to prepare high-diversity linear dsDNAs, and integrate them into the mammalian genome with a piggyBac transposon system. For the second strategy, we further added a PCR step using the in vitro ligation dsDNAs as templates, for the construction of high-content genome-integrated libraries via large-scale transfection. Both strategies could successfully establish genome-integrated EGFP-chromophore-randomized libraries in HEK293T cells and enrich the green fluorescence-chromophore amino-acid sequences. And we further identified a novel transcriptional activator peptide with the 'piggyBac-in vitro ligation-PCR' strategy. Our novel strategies greatly facilitate the construction of large variant DMS library in mammalian cells, and may have great application potential in the future.
Collapse
Affiliation(s)
- Yi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanjie Zhao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yifan Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kaili Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Fan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
17
|
Peng B, Zhang K, He MY. P-Band Intermediate States Mediate Electron Transfer at Confined Nanoscale. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13409-13419. [PMID: 37703076 DOI: 10.1021/acs.langmuir.3c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
In this Perspective, mainly based on the model of structural water molecules (SWs) as bright color emitters, we briefly summarize the development and theoretical elaboration of P-band intermediate state (PBIS) theory as well as its application in several typical catalytic redox reactions. In addition, with a simple equation (2∫ψ2σ1' + ∫ψ2σ2 + ∫ψ2π = 1), we clearly define how the interface states correlate with the three basic parameters of heterogeneous catalysis (conversion, selectivity, and stability), and what is the dynamic nature of catalytic active sites. Overall, the proposal of SW-dominated PBIS theory establishes an internal physical connection between the decay kinetics of excited electrons and the catalytic reaction kinetics and provides new insights into the physical origin of photoluminescence emission of low-dimensional quantum nanodots and the physical nature of nanoconfinement and nanoconfined catalysis.
Collapse
Affiliation(s)
- Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai 200062, China
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, Lyon 69364, CEDEX 07, France
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Ming-Yuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai 200062, China
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, Lyon 69364, CEDEX 07, France
| |
Collapse
|
18
|
Bauer I, Sarikaya Bayram Ö, Bayram Ö. The use of immunoaffinity purification approaches coupled with LC-MS/MS offers a powerful strategy to identify protein complexes in filamentous fungi. Essays Biochem 2023; 67:877-892. [PMID: 37681641 DOI: 10.1042/ebc20220253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Fungi are a diverse group of organisms that can be both beneficial and harmful to mankind. They have advantages such as producing food processing enzymes and antibiotics, but they can also be pathogens and produce mycotoxins that contaminate food. Over the past two decades, there have been significant advancements in methods for studying fungal molecular biology. These advancements have led to important discoveries in fungal development, physiology, pathogenicity, biotechnology, and natural product research. Protein complexes and protein-protein interactions (PPIs) play crucial roles in fungal biology. Various methods, including yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC), are used to investigate PPIs. However, affinity-based PPI methods like co-immunoprecipitation (Co-IP) are highly preferred because they represent the natural conditions of PPIs. In recent years, the integration of liquid chromatography coupled with mass spectrometry (LC-MS/MS) has been used to analyse Co-IPs, leading to the discovery of important protein complexes in filamentous fungi. In this review, we discuss the tandem affinity purification (TAP) method and single affinity purification methods such as GFP, HA, FLAG, and MYC tag purifications. These techniques are used to identify PPIs and protein complexes in filamentous fungi. Additionally, we compare the efficiency, time requirements, and material usage of Sepharose™ and magnetic-based purification systems. Overall, the advancements in fungal molecular biology techniques have provided valuable insights into the complex interactions and functions of proteins in fungi. The methods discussed in this review offer powerful tools for studying fungal biology and will contribute to further discoveries in this field.
Collapse
Affiliation(s)
- Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
19
|
Peng B, Zhou JF, Ding M, Shan BQ, Chen T, Zhang K. Structural water molecules dominated p band intermediate states as a unified model for the origin on the photoluminescence emission of noble metal nanoclusters: from monolayer protected clusters to cage confined nanoclusters. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2210723. [PMID: 37205011 PMCID: PMC10187113 DOI: 10.1080/14686996.2023.2210723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
In the past several decades, noble metal nanoclusters (NMNCs) have been developed as an emerging class of luminescent materials due to their superior photo-stability and biocompatibility, but their luminous quantum yield is relatively low and the physical origin of the bright photoluminescence (PL) of NMNCs remain elusive, which limited their practical application. As the well-defined structure and composition of NMNCs have been determined, in this mini-review, the effect of each component (metal core, ligand shell and interfacial water) on their PL properties and corresponded working mechanism were comprehensively introduced, and a model that structural water molecules dominated p band intermediate state was proposed to give a unified understanding on the PL mechanism of NMNCs and a further perspective to the future developments of NMNCs by revisiting the development of our studies on the PL mechanism of NMNCs in the past decade.
Collapse
Affiliation(s)
- Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jia-Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Laboratoire de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, Lyon, France
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, PR China
- Institute of Eco-Chongming, Shanghai, China
| |
Collapse
|
20
|
Ragon M, Bertheau L, Dumont J, Bellanger T, Grosselin M, Basu M, Pourcelot E, Horrigue W, Denimal E, Marin A, Vaucher B, Berland A, Lepoivre C, Dupont S, Beney L, Davey H, Guyot S. The Yin-Yang of the Green Fluorescent Protein: Impact on Saccharomyces cerevisiae stress resistance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112603. [PMID: 36459911 DOI: 10.1016/j.jphotobiol.2022.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Although fluorescent proteins are widely used as biomarkers (Yin), no study focuses on their influence on the microbial stress response. Here, the Green Fluorescent Protein (GFP) was fused to two proteins of interest in Saccharomyces cerevisiae. Pab1p and Sur7p, respectively involved in stress granules structure and in Can1 membrane domains. These were chosen since questions remain regarding the understanding of the behavior of S. cerevisiae facing different heat kinetics or oxidative stresses. The main results showed that Pab1p-GFP fluorescent mutant displayed a higher resistance than that of the wild type under a heat shock. Moreover, fluorescent mutants exposed to oxidative stresses displayed changes in the cultivability compared to the wild type strain. In silico approaches showed that the presence of the GFP did not influence the structure and so the functionality of the tagged proteins meaning that changes in yeast resistance were certainly related to GFP ROS-scavenging ability (Yang).
Collapse
Affiliation(s)
- Mélanie Ragon
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Lucie Bertheau
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Jennifer Dumont
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Tiffany Bellanger
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Marie Grosselin
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Mohini Basu
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Eléonore Pourcelot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Walid Horrigue
- UMR Agroécologie Équipe Biocom, INRAE Dijon, Institut Agro, 26 Bd Dr Petitjean, 21000 Dijon, France
| | - Emmanuel Denimal
- Institut Agro Dijon, Direction Scientifique, Appui à la Recherche, 26 Bd Dr Petitjean, 21000 Dijon, France
| | - Ambroise Marin
- Plateau Technique d'IMagerie Spectroscopique (PIMS), DImaCell Platform Université de Bourgogne - INRAE, Dijon, France
| | - Basile Vaucher
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Antoine Berland
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Corentin Lepoivre
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Sébastien Dupont
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Laurent Beney
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Hazel Davey
- Department of Life Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Stéphane Guyot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France.
| |
Collapse
|
21
|
Deng H, Chen Y, Xu L, Mo X, Ju J, Yu C, Zhu X. A Biomimetic Emitter Inspired from Green Fluorescent Protein. J Phys Chem B 2022; 126:8771-8776. [PMID: 36278933 DOI: 10.1021/acs.jpcb.2c07131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The unique tripeptide structure of green fluorescent protein (GFP), a Ser-Tyr-Gly motif, generates the mature chromophore in situ to define the emission profiles of GFP. Here, we describe the rational design and discovery of a biomimetic fluorescent emitter, MBP, by mimicking the key structure of the Ser-Tyr-Gly motif. Through systematically tailoring the tripeptide, a family of four chromophores were engineered, while only MBP exhibited bright fluorescence in different fluid solvents with highly enhanced quantum yields. Distinct to previous hydrogen-bonding-induced fluorescence quenching of GFP chromophore analogues, the emission of MBP was only slightly decreased in protic solvents. Heteronuclear multiple bond correlation techniques demonstrated the fundamental mechanism for enhanced fluorescence emission owing to the synergy of the formation of the intramolecular hydrogen-bonding-ring structure and the self-restricted effect, which was further illustrated via theoretical calculations. This work puts forward an extraordinary approach toward highly emissive biomimicking fluorophores, which gives new insights into the emission mechanisms and photophysics of GFP-like chromophores.
Collapse
Affiliation(s)
- Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
22
|
Rao H, Che J, Yin C, Zhou Y, Ma Y, Tian R. How many authors does it take to publish a high profile or classic paper? Mol Biol Cell 2022; 33:pe6. [PMID: 36137240 DOI: 10.1091/mbc.e22-04-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although the process of publishing a scientific paper has gotten simpler, it is increasingly difficult to publish a paper in high profile journals. We have analyzed the publishing data in the cell biology field and found several alarming trends developing over the last two decades. There is an emerging divide between scientist-run journals and professional-run high profile journals. How did this happen? What should we do? The core issue is whether the current standard for high profile journals hurts rather than helps the scientific discovery process. In this regard, we suggest that the editors and scientists should direct their focus on the potential impact and rigor of the work instead of the "perfection" or "completeness" of the study.
Collapse
Affiliation(s)
- Hai Rao
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Jun Che
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Changhui Yin
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yunfan Zhou
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yifang Ma
- Department of Statistics and Data Science, College of Science, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Ruilin Tian
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, People's Republic of China
| |
Collapse
|
23
|
Evaluation of fluorescence-based viability stains in cells dissociated from scleractinian coral Pocillopora damicornis. Sci Rep 2022; 12:15297. [PMID: 36097278 PMCID: PMC9468155 DOI: 10.1038/s41598-022-19586-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
The application of established cell viability assays such as the commonly used trypan blue staining method to coral cells is not straightforward due to different culture parameters and different cellular features specific to mammalian cells compared to marine invertebrates. Using Pocillopora damicornis as a model, we characterized the autofluorescence and tested different fluorescent dye pair combinations to identify alternative viability indicators. The cytotoxicity of different representative molecules, namely small organic molecules, proteins and nanoparticles (NP), was measured after 24 h of exposure using the fluorescent dye pair Hoechst 33342 and SYTOX orange. Our results show that this dye pair can be distinctly measured in the presence of fluorescent proteins plus chlorophyll. P. damicornis cells exposed for 24 h to Triton-X100, insulin or titanium dioxide (TiO2) NPs, respectively, at concentrations ranging from 0.5 to 100 µg/mL, revealed a LC50 of 0.46 µg/mL for Triton-X100, 6.21 µg/mL for TiO2 NPs and 33.9 µg/mL for insulin. This work presents the approach used to customize dye pairs for membrane integrity-based cell viability assays considering the species- and genotype-specific autofluorescence of scleractinian corals, namely: endogenous fluorescence characterization followed by the selection of dyes that do not overlap with endogenous signals.
Collapse
|
24
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
25
|
Fukushima H, Matikonda SS, Usama SM, Furusawa A, Kato T, Štacková L, Klán P, Kobayashi H, Schnermann MJ. Cyanine Phototruncation Enables Spatiotemporal Cell Labeling. J Am Chem Soc 2022; 144:11075-11080. [PMID: 35696546 PMCID: PMC10523398 DOI: 10.1021/jacs.2c02962] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photoconvertible tracking strategies assess the dynamic migration of cell populations. Here we develop phototruncation-assisted cell tracking (PACT) and apply it to evaluate the migration of immune cells into tumor-draining lymphatics. This method is enabled by a recently discovered cyanine photoconversion reaction that leads to the two-carbon truncation and consequent blue-shift of these commonly used probes. By examining substituent effects on the heptamethine cyanine chromophore, we find that introduction of a single methoxy group increases the yield of the phototruncation reaction in neutral buffer by almost 8-fold. When converted to a membrane-bound cell-tracking variant, this probe can be applied in a series of in vitro and in vivo experiments. These include quantitative, time-dependent measurements of the migration of immune cells from tumors to tumor-draining lymph nodes. Unlike previously reported cellular photoconversion approaches, this method does not require genetic engineering and uses near-infrared (NIR) wavelengths. Overall, PACT provides a straightforward approach to label cell populations with spatiotemporal control.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Siddharth S Matikonda
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lenka Štacková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
26
|
Brøndsted F, Stains CI. Heteroatom-Substituted Xanthene Fluorophores Enter the Shortwave-Infrared Region. Photochem Photobiol 2022; 98:400-403. [PMID: 34953073 PMCID: PMC8930474 DOI: 10.1111/php.13578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022]
Abstract
This article is a highlight of the paper by Ivanic and Schnermann et al. in this issue of Photochemistry and Photobiology (Daly et al. Photochem. Photobiol. 2022). The collaborative team utilized computational approaches to investigate the influence of electron-withdrawing groups at the 10' position of tetramethylrhodamine (TMR). Leveraging this information, the team was able to extend the emission of the TMR scaffold into the shortwave-infrared region (SWIR, 1000-2500 nm) by incorporation of a ketone functional group at the 10' position (Daly et al. Photochem. Photobiol. 2022). This work provides the first example of a TMR derivative with peak SWIR emission (λabs : 862 nm, λem : 1058 nm). The authors utilize the ketone rhodamine scaffold to generate fluorogenic, pH-responsive reporters. This work demonstrates the potential of the classic xanthene scaffold for use as a SWIR reporter, an important step in the ultimate expansion of the repertoire of small-molecule organic fluorophore scaffolds available for deep-tissue imaging applications.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Cliff I. Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA,University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA,Corresponding author: (Cliff I. Stains)
| |
Collapse
|
27
|
Jellyfishing in Europe: Current Status, Knowledge Gaps, and Future Directions towards a Sustainable Practice. SUSTAINABILITY 2021. [DOI: 10.3390/su132212445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Jellyfish are often described as a nuisance species, but as our understanding shifts to more ecosystem-based conceptions, they are also recognized as both important components of marine ecosystems and a resource for humans. Here, we describe global jellyfish fisheries and review production, fishing methods, and applications based on the existing literature. We then focus on future development of a European jellyfish fishery based on current and recent EU research initiatives. Jellyfish have been a staple food in East Asia for eons and now show a potential for non-food applications as well. The main fishing methods are mostly traditional, with set-nets, driftnets, hand-nets, and scoop-nets utilizing small crafts or beach-seines. All require a lot of manual labor, thus providing vital, albeit seasonal, occupation to weaker populations. Larger commercial vessels such as purse seines and trawlers are newly introduced métiers which may enable a larger catch per unit effort and total catch, but pose questions of selectivity, bycatch, vessel stability, and transshipment. Social concerns arising from the seasonality of jellyfish fisheries must be met in SE Asia, Latin America, and in any location where new fisheries are established. In the EU, we recognize at least 15 species showing potential for commercial harvesting, but as of 2021, a commercial fishery has yet to be developed; as in finfish fisheries, we advise caution and recognition of the role of jellyfish in marine ecosystems in doing so. Sustainable harvesting techniques and practices must be developed and implemented for a viable practice to emerge, and social and ecological needs must also be incorporated into the management plan. Once established, the catch, effort, and stock status must be monitored, regulated, and properly reported to FAO by countries seeking a viable jellyfish fishery. In the near future, novel applications for jellyfish will offer added value and new markets for this traditional resource.
Collapse
|
28
|
Zhou J, Yang T, Peng B, Shan B, Ding M, Zhang K. Structural Water Molecules Confined in Soft and Hard Nanocavities as Bright Color Emitters. ACS PHYSICAL CHEMISTRY AU 2021; 2:47-58. [PMID: 36855578 PMCID: PMC9718307 DOI: 10.1021/acsphyschemau.1c00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecules confined in the nanocavity and nanointerface exhibit rich, unique physicochemical properties, e.g., the chromophore in the β-barrel can of green fluorescent protein (GFP) exhibits tunable bright colors. However, the physical origin of their photoluminescence (PL) emission remains elusive. To mimic the microenvironment of the GFP protein scaffold at the molecule level, two groups of nanocavities were created by molecule self-assembly using organic chromophores and by organic functionalization of mesoporous silica, respectively. We provide strong evidence that structural water molecules confined in these nanocavities are color emitters with a universal formula of {X+·(OH-·H2O)·(H2O) n-1}, in which X is hydrated protons (H3O+) or protonated amino (NH3 +) groups as an anchoring point, and that the efficiency of PL is strongly dependent on the stability of the main emitter centers of the structural hydrated hydroxide complex (OH-·H2O), which is a key intermediate to mediate electron transfer dominated by proton transfer at confined nanospace. Further controlled experiments and combined characterizations by time-resolved steady-state and ultrafast transient optical spectroscopy unveil an unusual multichannel radiative and/or nonradiative mechanism dominated by quantum transient states with a distinctive character of topological excitation. The finding of this work underscores the pivotal role of structurally bound H2O in regulating the PL efficiency of aggregation-induced emission luminogens and GFP.
Collapse
Affiliation(s)
- Jiafeng Zhou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Taiqun Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bo Peng
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bingqian Shan
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng Ding
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kun Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China,Laboratoire
de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie
de Lyon, Université de Lyon, 46 Allée d’italie, 69364 Lyon cedex 07, France,Shandong
Provincial Key Laboratory of Chemical Energy Storage and Novel Cell
Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, P. R. China,
| |
Collapse
|
29
|
A Novel Dialkylamino GFP Chromophore as an Environment-Polarity Sensor Reveals the Role of Twisted Intramolecular Charge Transfer. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We discovered a novel fluorophore by incorporating a dimethylamino group (–NMe2) into the conformationally locked green fluorescent protein (GFP) scaffold. It exhibited a marked solvent-polarity-dependent fluorogenic behavior and can potentially find broad applications as an environment-polarity sensor in vitro and in vivo. The ultrafast femtosecond transient absorption (fs-TA) spectroscopy in combination with quantum calculations revealed the presence of a twisted intramolecular charge transfer (TICT) state, which is formed by rotation of the –NMe2 group in the electronic excited state. In contrast to the bright fluorescent state (FS), the TICT state is dark and effectively quenches fluorescence upon formation. We employed a newly developed multivariable analysis approach to the FS lifetime in various solvents and showed that the FS → TICT reaction barrier is mainly modulated by H-bonding capability instead of viscosity of the solvent, accounting for the observed polarity dependence. These deep mechanistic insights are further corroborated by the dramatic loss of fluorogenicity for two similar GFP-derived chromophores in which the rotation of the –NMe2 group is inhibited by structural locking.
Collapse
|
30
|
Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Tsubota H, Takayama A, Takeda Y, Yamada N, Hosoi H. Three Simultaneous Fluorescence Resonance Energy Transfer Processes and Structural Relaxation of Enhanced Yellow Fluorescent Protein Observed by Picosecond Time-Resolved Fluorescence Anisotropy. J Phys Chem B 2021; 125:7997-8009. [PMID: 34259526 DOI: 10.1021/acs.jpcb.1c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescent proteins (FPs) have been widely used to visualize biological processes in living cells. It is essential to understand the underlying fluorescence mechanism to develop novel FPs and to interpret imaging data appropriately. Enhanced yellow fluorescent protein (eYFP) is one of the most typical FPs; however, several reports to date have been limited to individual discussion, which is insufficient to understand the full picture of the dynamics involved. In this study, we focused on the fluorescence resonance energy transfer (FRET) and dimerization behavior and performed picosecond time-resolved fluorescence measurements of eYFP and its A206K mutant, which does not form a dimer. The combination of the dissociation constant and the acid dissociation constant rationally explains the mechanism of ultrafast homo-FRET and ultrafast hetero-FRET. It is also shown that structural relaxation occurs in the dimer after excited-state proton transfer. The formation efficiencies and quaternary structures of dimers consisting of different protonation states are shown to be different. Furthermore, under high-concentration conditions, "slow" homo-FRET with tens of nanoseconds timescale occurs between monomers and dimers. The findings from this study will be applied to other fluorescent proteins such as Aequorea victoria green FP and its mutants and various red FPs with longer conjugation lengths.
Collapse
Affiliation(s)
- Hiroki Tsubota
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Aimi Takayama
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Yuri Takeda
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Natsumi Yamada
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Haruko Hosoi
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| |
Collapse
|
32
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
33
|
Leith GA, Martin CR, Mayers JM, Kittikhunnatham P, Larsen RW, Shustova NB. Confinement-guided photophysics in MOFs, COFs, and cages. Chem Soc Rev 2021; 50:4382-4410. [PMID: 33594994 DOI: 10.1039/d0cs01519a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, the dependence of the photophysical response of chromophores in the confined environments associated with crystalline scaffolds, such as metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and molecular cages, has been carefully evaluated. Tunability of the framework aperture, cavity microenvironment, and scaffold topology significantly affects emission profiles, quantum yields, or fluorescence lifetimes of confined chromophores. In addition to the role of the host and its effect on the guest, the methods for integration of a chromophore (e.g., as a framework backbone, capping linker, ligand side group, or guest) are discussed. The overall potential of chromophore-integrated frameworks for a wide-range of applications, including artificial biomimetic systems, white-light emitting diodes, photoresponsive devices, and fluorescent sensors with unparalleled spatial resolution are highlighted throughout the review.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29210, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Auhim HS, Grigorenko BL, Harris TK, Aksakal OE, Polyakov IV, Berry C, Gomes GDP, Alabugin IV, Rizkallah PJ, Nemukhin AV, Jones DD. Stalling chromophore synthesis of the fluorescent protein Venus reveals the molecular basis of the final oxidation step. Chem Sci 2021; 12:7735-7745. [PMID: 34168826 PMCID: PMC8188506 DOI: 10.1039/d0sc06693a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Fluorescent proteins (FPs) have revolutionised the life sciences, but the mechanism of chromophore maturation is still not fully understood. Here we show that incorporation of a photo-responsive non-canonical amino acid within the chromophore stalls maturation of Venus, a yellow FP, at an intermediate stage; a crystal structure indicates the presence of O2 located above a dehydrated enolate form of the imidazolone ring, close to the strictly conserved Gly67 that occupies a twisted conformation. His148 adopts an "open" conformation so forming a channel that allows O2 access to the immature chromophore. Absorbance spectroscopy supported by QM/MM simulations suggests that the first oxidation step involves formation of a hydroperoxyl intermediate in conjunction with dehydrogenation of the methylene bridge. A fully conjugated mature chromophore is formed through release of H2O2, both in vitro and in vivo. The possibility of interrupting and photochemically restarting chromophore maturation and the mechanistic insights open up new approaches for engineering optically controlled fluorescent proteins.
Collapse
Affiliation(s)
- Husam Sabah Auhim
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
- Department of Biology, College of Science, University of Baghdad Baghdad Iraq
| | - Bella L Grigorenko
- Chemistry Department, Lomonosov Moscow State University Leninskie Gory, 1-3 Moscow Russian Federation +7 495 939 1096
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences Moscow Russian Federation
| | - Tessa K Harris
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| | - Ozan E Aksakal
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| | - Igor V Polyakov
- Chemistry Department, Lomonosov Moscow State University Leninskie Gory, 1-3 Moscow Russian Federation +7 495 939 1096
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences Moscow Russian Federation
| | - Colin Berry
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| | - Gabriel Dos Passos Gomes
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
- Department of Computer Science, University of Toronto 214 College St. Toronto Ontario M5T 3A1 Canada
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Fl 32306 USA +1 850 644 5795
| | | | - Alexander V Nemukhin
- Chemistry Department, Lomonosov Moscow State University Leninskie Gory, 1-3 Moscow Russian Federation +7 495 939 1096
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences Moscow Russian Federation
| | - D Dafydd Jones
- School of Biosciences, Molecular Biosciences Division, Cardiff University Sir Martin Evans Building Cardiff CF10 3AX UK +44 (0)29 2087 4290
| |
Collapse
|
35
|
Abstract
Fluorescence spectroscopy and microscopy are non-destructive methods that provide real-time measurements of ion channel structural dynamics. As such, they constitute a direct path linking the high-resolution structural models from X-ray crystallography and cryo-electron microscopy with the high-resolution functional data from ionic current measurements. The utility of fluorescence as a reporter of channel structure is limited by the palette of available fluorophores. Thiol-reactive fluorophores are small and bright, but are restricted in terms of the positions on a protein that can be labeled and present significant issues with background incorporation. Genetically encoded fluorescent protein tags are specific to a protein of interest, but are very large and usually only used to label the free N- and C-termini of proteins. L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropionic acid (ANAP) is a fluorescent amino acid that can be specifically incorporated into virtually any site on a protein of interest using amber stop-codon suppression. Due to its environmental sensitivity and potential as a donor in fluorescence resonance energy transfer experiments, it has been adopted by numerous investigators to study voltage, ligand, and temperature-dependent activation of a host of ion channels. Simultaneous measurements of ionic currents and ANAP fluorescence yield exceptional mechanistic insights into channel function. In this chapter, I will summarize the current literature regarding ANAP and ion channels and discuss the practical aspects of using ANAP, including potential pitfalls and confounds.
Collapse
|
36
|
Riyas A, Kumar A, Chandran M, Jaleel A, Biju Kumar A. The venom proteome of three common scyphozoan jellyfishes (Chrysaora caliparea, Cyanea nozakii and Lychnorhiza malayensis) (Cnidaria: Scyphozoa) from the coastal waters of India. Toxicon 2021; 195:93-103. [PMID: 33741399 DOI: 10.1016/j.toxicon.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 01/22/2023]
Abstract
The jellyfish venom stored in nematocysts contains highly toxic compounds comprising of polypeptides, enzymes and other proteins, which form their chemical defence armoury against predators. We have characterized the proteome of crude venom extract from three bloom-forming scyphozoan jellyfish along the south-west coast of India, Chrysaora caliparea, Cyanea nozakii and Lychnorhiza malayensis using a Quadrupole-Time of Flight (Q/TOF) mass spectrometry analysis. The most abundant toxin identified from Chrysaora caliparea and Lychnorhiza malayensis is similar to the pore-forming toxins and metalloproteinases. A protective antioxidant enzyme called peroxiredoxin was found abundantly in Cyanea nozakii. Metalloproteinase identified from the C. caliparea shows similarity with the venom of pit viper (Bothrops pauloensis), while that of L. malayensis was similar to the venom of snakes such as the Bothrops insularis and Bothrops asper. Kininogen-1 is a secreted protein, identified for the first time from the jellyfish L. malayensis. The proteome analysis of Cyanea nozakii, Chrysaora caliparea and Lychnorhiza malayensis contained 20, 12, 8 unique proteins, respectively. Our study characterized the proteome map of crude venom extract from L. malayensis and C. caliparea for the first time, and the venom profile is compared with published information elsewhere. Proteomic data from this study has been made available in the public domain.
Collapse
Affiliation(s)
- Abdul Riyas
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, 695581, Kerala, India
| | - Aneesh Kumar
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Mahesh Chandran
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Abdul Jaleel
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
37
|
Salerno EV, Miller NA, Konar A, Li Y, Kieninger C, Kräutler B, Sension RJ. Ultrafast Excited State Dynamics and Fluorescence from Vitamin B 12 and Organometallic [Co]-C≡C-R Cobalamins. J Phys Chem B 2020; 124:6651-6656. [PMID: 32692181 PMCID: PMC7397374 DOI: 10.1021/acs.jpcb.0c04886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Cobalamins are cobalt-centered
cyclic tetrapyrrole ring-based molecules
that provide cofactors for exceptional biological processes and possess
unique and synthetically tunable photochemistry. Typical cobalamins
are characterized by a visible absorption spectrum consisting of peaks
labeled α, β, and sh. The physical basis of these peaks
as having electronic origin or as a vibronic progression is ambiguous
despite much investigation. Here, for the first time, cobalamin fluorescence
is identified in several derivatives. The fluorescence lifetime is
ca. 100–200 fs with quantum yields on the order of 10–6–10–5 because of rapid population of “dark”
excited states. The results are compared with the fluorescent analogue
with zinc replacing the cobalt in the corrin ring. Analysis of the
breadth of the emission spectrum provides evidence that a vibrational
progression in a single excited electronic state makes the dominant
contribution to the visible absorption band.
Collapse
Affiliation(s)
- Elvin V Salerno
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Yan Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States.,Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| |
Collapse
|
38
|
Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115811] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Deng H, Liu H, Kang W, Lei C, Nie Z, Huang Y, Yao S. Biomineralization synthesis of a near-infrared fluorescent nanoprobe for direct glucose sensing in whole blood. NANOSCALE 2020; 12:864-870. [PMID: 31833533 DOI: 10.1039/c9nr06691h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A near-infrared (NIR) fluorescent nanoprobe that enables to circumvent the interference of background absorption and fluorescence in whole blood was developed for the direct sensing of blood glucose. Here, NIR fluorescent protein (iRFP) and glucose oxidase (GOx) were collectively deployed as the templates for the biomineralization of Mn2+ to prepare a NIR fluorescent nanoprobe (iRFP-GOx-MnO2 nanoparticles, iRGMs), in which the fluorescence of iRFP was effectively quenched by MnO2via energy transfer. When the iRGMs were mixed with whole blood samples, GOx can convert blood glucose into gluconic acid, as well as H2O2, which will reduce MnO2 and decompose the iRGMs. As a result, the NIR fluorescence of iRFPs was restored, providing a fluorometric assay for the direct detection of blood glucose. Owing to the high efficiency of the cascade reaction and the low background interference of the NIR fluorescence signal, accurate and rapid analysis of the glucose levels in whole blood samples was achieved using the iRGMs. Moreover, an iRGM-based paper device that only requires 5 microliters of samples was also demonstrated in the direct assay of blood glucose without any pretreatment, affording an alternative approach for the accurate monitoring of blood glucose levels.
Collapse
Affiliation(s)
- Honghua Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China..
| | | | | | | | | | | | | |
Collapse
|
40
|
Soorkia S, Jouvet C, Grégoire G. UV Photoinduced Dynamics of Conformer-Resolved Aromatic Peptides. Chem Rev 2019; 120:3296-3327. [DOI: 10.1021/acs.chemrev.9b00316] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satchin Soorkia
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Christophe Jouvet
- CNRS, Aix Marseille Université, PIIM UMR 7345, 13397, Marseille, France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
41
|
Lipták N, Bősze Z, Hiripi L. GFP transgenic animals in biomedical research: a review of potential disadvantages. Physiol Res 2019; 68:525-530. [PMID: 31342754 DOI: 10.33549/physiolres.934227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Green Fluorescent protein (GFP) transgenic animals are accepted tools for studying various physiological processes, including organ development and cell migration. However, several in vivo studies claimed that GFP may impair transgenic animals' health. Glomerulosclerosis was observed in transgenic mice and rabbits with ubiquitous reporter protein expression. Heart-specific GFP expression evoked dilated cardiomyopathy and altered cardiac function in transgenic mouse and zebrafish lines, respectively. Moreover, growth retardation and increased axon swelling were observed in GFP and yellow fluorescent protein (YFP) transgenic mice, respectively. This review will focus on the potential drawbacks of the applications of GFP transgenic animals in biomedical research.
Collapse
Affiliation(s)
- N Lipták
- NARIC-Agricultural Biotechnology Institute, Animal Biotechnology Department, Gödöllő, Hungary.
| | | | | |
Collapse
|
42
|
Taylor MA, Zhu L, Rozanov ND, Stout KT, Chen C, Fang C. Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection. Phys Chem Chem Phys 2019; 21:9728-9739. [PMID: 31032505 DOI: 10.1039/c9cp01077g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Green fluorescent protein (GFP) has revolutionized bioimaging and life sciences. Its successes have inspired modification of the chromophore structure and environment to tune emission properties, but outside the protein cage, the chromophore is essentially non-fluorescent. In this study, we employ the tunable femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption (TA) to map the energy dissipation pathways of GFP model chromophore (HBDI) in basic aqueous solution. Strategic tuning of the Raman pump to 550 nm exploits the stimulated emission band to enhance excited state vibrational motions as HBDI navigates the non-equilibrium potential energy landscape to pass through a conical intersection. The time-resolved FSRS uncovers prominent anharmonic couplings between a global out-of-plane bending mode of ∼227 cm-1 and two modes at ∼866 and 1572 cm-1 before HBDI reaches the twisted intramolecular charge transfer (TICT) state on the ∼3 ps time scale. Remarkably, the wavelet transform analysis reveals a ∼500 fs delayed onset of the coupling peaks, in correlation with the emergence of an intermediate charge-separated state en route to the TICT state. This mechanism is corroborated by the altered coupling matrix for the HBDI Raman modes in the 50% (v/v) water-glycerol mixture, and a notable lengthening of the picosecond time constant. The real-time molecular "movie" of the general rotor-like HBDI isomerization reaction following photoexcitation represents a significant advance in comprehending the photochemical reaction pathways of the solvated GFP chromophore, therefore providing a crucial foundation to enable rational design of diverse nanomachines from efficient molecular rotors to bright fluorescent probes.
Collapse
Affiliation(s)
- Miles A Taylor
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Hanaoka K. [Development of Novel Dark Quenchers and Their Application to Imaging Probes]. YAKUGAKU ZASSHI 2019; 139:277-283. [PMID: 30713240 DOI: 10.1248/yakushi.18-00174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rhodamine dyes are among the most widely used fluorescent dyes for bioimaging due to their high fluorescence quantum yield and high photostability. Recently, novel far-red to near-infrared (NIR) fluorescent dyes have been developed: Si-rhodamines (SiRs), in which the O atom of conventional rhodamine dyes at the 10 position of the xanthene moiety is replaced with a Si atom. These SiRs are excellent long-wavelength fluorophores for bioimaging, as they retain the advantageous photophysical properties of conventional rhodamine dyes. Further, we focused on the QSY dark quenchers, which contain the rhodamine scaffold bearing aromatic rings at the N atoms at the 3,6-positions of the xanthene moiety; these show no fluorescence, irrespective of solvent polarity and pH. NIR fluorescent probes based on the Förster resonance energy transfer (FRET) mechanism have various practical advantages, and their molecular design is generally based on the use of NIR dark quenchers as cleavable FRET acceptors. However, few NIR dark quenchers can quench fluorescence in the Cy7 region (over 780 nm). We successfully developed SiR-based NIR dark quenchers (SiNQs) which show broad absorption covering this region. To demonstrate their usefulness, we designed and synthesized a NIR fluorescence probe for matrix metalloproteinase (MMP) activity using SiNQs. The developed probe was able to detect MMP activity in terms of NIR fluorescence, not only in vitro, but also in cultured cells and in a tumor-bearing mouse, in which the tumor was clearly visualized.
Collapse
Affiliation(s)
- Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
44
|
Collado S, Pueyo A, Baudequin C, Bischoff L, Jiménez AI, Cativiela C, Hoarau C, Urriolabeitia EP. Orthopalladation of GFP-Like Fluorophores Through C-H Bond Activation: Scope and Photophysical Properties. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sandra Collado
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Alejandro Pueyo
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Christine Baudequin
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Laurent Bischoff
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Ana Isabel Jiménez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Carlos Cativiela
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Christophe Hoarau
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Esteban P. Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
45
|
Schulte LN, Heinrich B, Janga H, Schmeck BT, Vázquez O. A Far‐Red Fluorescent DNA Binder for Interaction Studies of Live Multidrug‐Resistant Pathogens and Host Cells. Angew Chem Int Ed Engl 2018; 57:11564-11568. [DOI: 10.1002/anie.201804090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Leon N. Schulte
- Institute for Lung ResearchPhilipps-Universität Marburg Hans-Meerwein-Strasse 2 35043 Marburg Germany
| | - Benedikt Heinrich
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Harshavardhan Janga
- Institute for Lung ResearchPhilipps-Universität Marburg Hans-Meerwein-Strasse 2 35043 Marburg Germany
| | - Bernd T. Schmeck
- Institute for Lung ResearchPhilipps-Universität Marburg Hans-Meerwein-Strasse 2 35043 Marburg Germany
- Member of the German Center for Lung Research (DZL) Germany
| | - Olalla Vázquez
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| |
Collapse
|
46
|
Marchioretto MK, Horton JT, Berstler CA, Humphries JB, Koloditch IJ, Voss SD, de La Harpe K, Hicks BW, Jefferies LR. Chemical cross-linking of a variety of green fluorescent proteins as Förster resonance energy transfer donors for Yukon orange fluorescent protein: A project-based undergraduate laboratory experience. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 46:516-522. [PMID: 30281890 DOI: 10.1002/bmb.21158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Förster resonance energy transfer (FRET) is the basis for many techniques used in biomedical research. Due to its wide use in molecular sensing, FRET is commonly introduced in many biology, chemistry, and physics courses. While FRET is of great importance in the biophysical sciences, the complexity and difficulty of constructing FRET experiments has resulted in limited usage in undergraduate laboratory settings. Here, we present a practical undergraduate laboratory experiment for teaching FRET using a diverse set of green-emitting fluorescent proteins (FPs) as donors for a cross-linked Yukon orange FP. This laboratory experiment enables students to make the connection of basic lab procedures to real world applications and can be applied to molecular biology, biochemistry, physical chemistry, and biophysical laboratory courses. Published 2018. This article is a U.S. Government work and is in the public domain in the USA., 46(5):516-522, 2018.
Collapse
Affiliation(s)
- Mira K Marchioretto
- Department of Chemistry, United States Air Force Academy, USAFA, Colorado, 80840
| | - Jacqueline T Horton
- Department of Chemistry, United States Air Force Academy, USAFA, Colorado, 80840
| | - Calvin A Berstler
- Department of Chemistry, United States Air Force Academy, USAFA, Colorado, 80840
| | - Joseph B Humphries
- Department of Chemistry, United States Air Force Academy, USAFA, Colorado, 80840
| | - Isaac J Koloditch
- Department of Chemistry, United States Air Force Academy, USAFA, Colorado, 80840
| | - Samuel D Voss
- Department of Chemistry, United States Air Force Academy, USAFA, Colorado, 80840
| | | | - Barry W Hicks
- Department of Chemistry, United States Air Force Academy, USAFA, Colorado, 80840
| | - Latisha R Jefferies
- Department of Chemistry, United States Air Force Academy, USAFA, Colorado, 80840
| |
Collapse
|
47
|
Schulte LN, Heinrich B, Janga H, Schmeck BT, Vázquez O. A Far-Red Fluorescent DNA Binder for Interaction Studies of Live Multidrug-Resistant Pathogens and Host Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Leon N. Schulte
- Institute for Lung Research; Philipps-Universität Marburg; Hans-Meerwein-Strasse 2 35043 Marburg Germany
| | - Benedikt Heinrich
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Harshavardhan Janga
- Institute for Lung Research; Philipps-Universität Marburg; Hans-Meerwein-Strasse 2 35043 Marburg Germany
| | - Bernd T. Schmeck
- Institute for Lung Research; Philipps-Universität Marburg; Hans-Meerwein-Strasse 2 35043 Marburg Germany
- Member of the German Center for Lung Research (DZL); Germany
| | - Olalla Vázquez
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35043 Marburg Germany
| |
Collapse
|
48
|
Berbasova T, Tahmasebi Nick S, Nosrati M, Nossoni Z, Santos EM, Vasileiou C, Geiger JH, Borhan B. A Genetically Encoded Ratiometric pH Probe: Wavelength Regulation-Inspired Design of pH Indicators. Chembiochem 2018; 19:1288-1295. [PMID: 29645331 DOI: 10.1002/cbic.201800050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 11/11/2022]
Abstract
Mutants of human cellular retinol-binding protein II (hCRBPII) were engineered to bind a julolidine retinal analogue for the purpose of developing a ratiometric pH sensor. The design relied on the electrostatic influence of a titratable amino acid side chain, which affects the absorption and, thus, the emission of the protein/fluorophore complex. The ratio of emissions obtained at two excitation wavelengths that correspond to the absorption of the two forms of the protein/fluorophore complex, leads to a concentration-independent measure of pH.
Collapse
Affiliation(s)
- Tetyana Berbasova
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Meisam Nosrati
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Zahra Nossoni
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Elizabeth M Santos
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
49
|
Dissection of Protein Kinase Pathways in Live Cells Using Photoluminescent Probes: Surveillance or Interrogation? CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6020019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Ahmed R, Ji X, Atta RH, Rifat AA, Butt H. Morpho butterfly-inspired optical diffraction, diffusion, and bio-chemical sensing. RSC Adv 2018; 8:27111-27118. [PMID: 35540021 PMCID: PMC9083500 DOI: 10.1039/c8ra04382e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
Morpho-butterfly is well-known for the blue colouration in its tiny wing scales and finds applications in colour filters, anti-reflecting coatings and optical devices. Herein, the structural optical properties of the Morpho peleides-butterfly wing scales were examined through light reflection, diffraction and optical diffusion. The light diffraction property from wing scales was investigated through experiments and computation modelling. Broadband reflection variation was observed from different parts of the dorsal wings at broadband light illumination due to tiny structural variations, as verified by electronic microscopic images. The periodic nanostructures showed well-defined first-order diffraction through monochromatic (red, green and blue) and broadband light at normal illumination. Polyvinyl alcohol (PVA) embedded with Morpho peleides-butterfly wing scales acts as an optical diffuser to produce soft light. Light diffraction and diffusion properties were measured by angle-resolve experiments, followed by computational modelling. The maximum optical diffusion property at ∼185° from the wing scales was observed using broadband light at normal illumination. Finally, Morpho peleides-butterfly based submicron nanostructures were utilized to demonstrate bio-inspired chemical sensing. Morpho butterfly-inspired structures were used as optical devices (diffraction, diffusion, etc.). Their optical performance were modelled and studied, revealing their potential for real-life bio-sensing applications.![]()
Collapse
Affiliation(s)
- Rajib Ahmed
- Nanotechnology Laboratory
- School of Engineering
- University of Birmingham
- Birmingham B15 2TT
- UK
| | - Xiaochao Ji
- School of Metallurgy and Materials
- University of Birmingham
- Birmingham B15 2TT
- UK
| | - Raghied M. H. Atta
- Electrical Engineering Department
- Engineering College
- Taibah University
- Madinah
- Saudi Arabia
| | - Ahmmed A. Rifat
- Nonlinear Physics Centre
- Research School of Physics and Engineering
- The Australian National University
- Acton
- Australia
| | - Haider Butt
- Nanotechnology Laboratory
- School of Engineering
- University of Birmingham
- Birmingham B15 2TT
- UK
| |
Collapse
|