1
|
Li H, Shen Q, Zhou X, Duan P, Hollmann F, Huang Y, Zhang W. Peroxygenase-Catalysed Sulfoxidations in Non-Aqueous Media. CHEMSUSCHEM 2024; 17:e202301321. [PMID: 37948039 DOI: 10.1002/cssc.202301321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Chiral sulfoxides are valuable building blocks in asymmetric synthesis. However, the biocatalytic synthesis of chiral sulfoxides is still challenged by low product titres. Herein, we report the use of peroxygenase as a catalyst for asymmetric sulfoxidation under non-aqueous conditions. Upon covalent immobilisation, the peroxygenase showed stability and activity under neat reaction conditions. A large variety of sulfides was converted into chiral sulfoxides in very high product concentration with moderate to satisfactory optical purity (e. g. 626 mM of (R)-methyl phenyl sulfoxide in approx. 89 % ee in 48 h). Further polishing of the ee value via cascading methionine reductase A (MsrA) gave>99 % ee of the sulfoxide. The robustness of the enzymes and high product titer is superior to the state-of-the-art methodologies. Gram-scale synthesis has been demonstrated. Overall, we demonstrated a practical and facile catalytic method to synthesize chiral sulfoxides.
Collapse
Affiliation(s)
- Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Qianqian Shen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiaoying Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
2
|
Fang C, Li L, Yang H, Kong C, Zhang J, Xie M, Wu J. Rh(III)-catalyzed selective C2 C-H acyloxylation of indoles. Chem Commun (Camb) 2023; 60:216-219. [PMID: 38050725 DOI: 10.1039/d3cc05799b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we present the first highly regio- and chemoselective C2 C-H acyloxylation of indole under rhodium catalysis and an N-quinolinyl auxiliary. This strategy accommodates a wide range of indoles and structurally diverse carboxylic acids with good reaction efficiencies to yield functionalized indoles. The utility of this logic was demonstrated by the concise synthesis of the functionalized 2-oxindole derivatives. Preliminary mechanistic studies indicate that catalyst turnover of RhIII-RhIV/V-RhII/III-RhIII might be involved in this catalytic C-H transformation.
Collapse
Affiliation(s)
- Chaoying Fang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Li Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Haitao Yang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Caiyang Kong
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
3
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
4
|
Brehm J, Lewis RJ, Richards T, Qin T, Morgan DJ, Davies TE, Chen L, Liu X, Hutchings GJ. Enhancing the Chemo-Enzymatic One-Pot Oxidation of Cyclohexane via In Situ H 2O 2 Production over Supported Pd-Based Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Joseph Brehm
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Richard J. Lewis
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Thomas Richards
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Tian Qin
- In-situ Centre for Physical Sciences, School of Chemistry and Chemical, Frontiers Science Centre for Transformative Molecules, Shanghai 200240, P. R. China
| | - David J. Morgan
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- HarwellXPS, Research Complex at Harwell (RCaH), Didcot OX11 OFA, United Kingdom
| | - Thomas E. Davies
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Liwei Chen
- In-situ Centre for Physical Sciences, School of Chemistry and Chemical, Frontiers Science Centre for Transformative Molecules, Shanghai 200240, P. R. China
- School of Chemistry and Chemical, Frontiers Science Centre for Transformative Molecules, Shanghai 200240, P. R. China
| | - Xi Liu
- In-situ Centre for Physical Sciences, School of Chemistry and Chemical, Frontiers Science Centre for Transformative Molecules, Shanghai 200240, P. R. China
| | - Graham J. Hutchings
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
5
|
Hoffmann N. Heterocyclic Compounds in Enantioselective Photochemical Reactions. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Wang Z, Fu Z, Jian Y, Han Y, Xia M, Zhang S, Yan B, Jiang G, Lu D, Wu J, Liu Z. Glucose Induces Heme Leakage and Suppresses H2O2 Uptake of Chloroperoxidase in the Asymmetric Hydroxylation of Ethylbenzene. ChemCatChem 2022. [DOI: 10.1002/cctc.202200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zheyu Wang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Zhongwang Fu
- Tsinghua University Department of Chemical Engineering CHINA
| | - Yupei Jian
- Tsinghua University Department of Chemical Engineering CHINA
| | - Yilei Han
- Tsinghua University Department of Chemical Engineering CHINA
| | - Meng Xia
- Tsinghua University Department of Chemical Engineering CHINA
| | - Shuiwei Zhang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Binhang Yan
- Tsinghua University Department of Chemical Engineering CHINA
| | - Guoqiang Jiang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Diannan Lu
- Tsinghua University Department of Chemical Engineering CHINA
| | - Jianzhong Wu
- University of California Riverside Department of Chemical and Environmental and Engineering CHINA
| | - Zheng Liu
- Tsinghua University Chemical Engineering Qinghua Yuan 1 100084 Beijing CHINA
| |
Collapse
|
7
|
Visible-light-promoted aerobic oxidation of sulfides and sulfoxides in ketone solvents. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Podgorski MN, Harbort JS, Lee JHZ, Nguyen GT, Bruning JB, Donald WA, Bernhardt PV, Harmer JR, Bell SG. An Altered Heme Environment in an Engineered Cytochrome P450 Enzyme Enables the Switch from Monooxygenase to Peroxygenase Activity. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew N. Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Joshua S. Harbort
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joel H. Z. Lee
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Giang T.H. Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John B. Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeffrey R. Harmer
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
9
|
Li K, Yang Q, Zhang P, Zhang W. Research Progress of Peroxygenase-Catalyzed Reactions Driven by in-situ Generation of H 2 O 2. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
A Core‐Shell Cascade of Chloroperoxidase and Gold Nanoclusters for Asymmetric Hydroxylation of Ethylbenzene. ChemCatChem 2021. [DOI: 10.1002/cctc.202101732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
12
|
Hobisch M, Holtmann D, Gomez de Santos P, Alcalde M, Hollmann F, Kara S. Recent developments in the use of peroxygenases - Exploring their high potential in selective oxyfunctionalisations. Biotechnol Adv 2021; 51:107615. [PMID: 32827669 PMCID: PMC8444091 DOI: 10.1016/j.biotechadv.2020.107615] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Peroxygenases are an emerging new class of enzymes allowing selective oxyfunctionalisation reactions in a cofactor-independent way different from well-known P450 monooxygenases. Herein, we focused on recent developments from organic synthesis, molecular biotechnology and reaction engineering viewpoints that are devoted to bring these enzymes in industrial applications. This covers natural diversity from different sources, protein engineering strategies for expression, substrate scope, activity and selectivity, stabilisation of enzymes via immobilisation, and the use of peroxygenases in low water media. We believe that peroxygenases have much to offer for selective oxyfunctionalisations and we have much to study to explore the full potential of these versatile biocatalysts in organic synthesis.
Collapse
Affiliation(s)
- Markus Hobisch
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, Gießen 35390, Germany
| | | | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, Madrid 28049, Spain; EvoEnzyme S.L, C/ Marie Curie 2, Madrid 28049, Spain
| | - Frank Hollmann
- Department of Biotechnology, Biocatalysis Group, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Selin Kara
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark.
| |
Collapse
|
13
|
Zippilli C, Bizzarri BM, Gabellone S, Botta L, Saladino R. Oxidative Coupling of Coumarins by Blue‐LED‐Driven
in situ
Activation of Horseradish Peroxidase in a Two‐Liquid‐Phase System. ChemCatChem 2021. [DOI: 10.1002/cctc.202100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Claudio Zippilli
- Department of Biological and Ecological Sciences University of Tuscia Via S.C. De Lellis s.n.c. 01100 Viterbo Italy
| | - Bruno Mattia Bizzarri
- Department of Biological and Ecological Sciences University of Tuscia Via S.C. De Lellis s.n.c. 01100 Viterbo Italy
| | - Sofia Gabellone
- Department of Biological and Ecological Sciences University of Tuscia Via S.C. De Lellis s.n.c. 01100 Viterbo Italy
| | - Lorenzo Botta
- Department of Biological and Ecological Sciences University of Tuscia Via S.C. De Lellis s.n.c. 01100 Viterbo Italy
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences University of Tuscia Via S.C. De Lellis s.n.c. 01100 Viterbo Italy
| |
Collapse
|
14
|
Yuan X, Cui Y, Zhang X, Qin L, Sun Q, Duan X, Chen L, Li G, Qiu J, Guo K. Electrochemical Tri‐ and Difluoromethylation‐Triggered Cyclization Accompanied by the Oxidative Cleavage of Indole Derivatives. Chemistry 2021; 27:6522-6528. [DOI: 10.1002/chem.202005368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Yu‐Sheng Cui
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Xin‐Peng Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Long‐Zhou Qin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Qi Sun
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Xiu Duan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Lin Chen
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Guigen Li
- Institute of Chemistry & Biomedical Science Nanjing University No.163, Xianlin Avenue, Qixia District Nanjing 210093 P. R. China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409-1061 USA
| | - Jiang‐Kai Qiu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| |
Collapse
|
15
|
Özgen FF, Runda ME, Schmidt S. Photo-biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light. Chembiochem 2021; 22:790-806. [PMID: 32961020 PMCID: PMC7983893 DOI: 10.1002/cbic.202000587] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
In the field of green chemistry, light - an attractive natural agent - has received particular attention for driving biocatalytic reactions. Moreover, the implementation of light to drive (chemo)enzymatic cascade reactions opens up a golden window of opportunities. However, there are limitations to many current examples, mostly associated with incompatibility between the enzyme and the photocatalyst. Additionally, the formation of reactive radicals upon illumination and the loss of catalytic activities in the presence of required additives are common observations. As outlined in this review, the main question is how to overcome current challenges to the exploitation of light to drive (chemo)enzymatic transformations. First, we highlight general concepts in photo-biocatalysis, then give various examples of photo-chemoenzymatic (PCE) cascades, further summarize current synthetic examples of PCE cascades and discuss strategies to address the limitations.
Collapse
Affiliation(s)
- Fatma Feyza Özgen
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Michael E. Runda
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Sandy Schmidt
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| |
Collapse
|
16
|
In situ H 2O 2 generation methods in the context of enzyme biocatalysis. Enzyme Microb Technol 2021; 145:109744. [PMID: 33750536 DOI: 10.1016/j.enzmictec.2021.109744] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Hydrogen peroxide is a versatile oxidant that has use in medical and biotechnology industries. Many enzymes require this oxidant as a reaction mediator in order to undergo their oxygenation chemistries. While there is a reliable method for generating hydrogen peroxide via an anthraquinone cycle, there are several advantages for generating hydrogen in situ. As highlighted in this review, this is particularly beneficial in the case of biocatalysts that require hydrogen peroxide as a reaction mediator because the exogenous addition of hydrogen peroxide can damage their reactive heme centers and render them inactive. In addition, generation of hydrogen peroxide in situ does not dilute the reaction mixture and cause solution parameters to change. The environment would also benefit from a hydrogen peroxide synthesis cycle that does not rely on nonrenewable chemicals obtained from fossil fuels. Generation of hydrogen peroxide in situ for biocatalysis using enzymes, bioelectrocatalyis, photocatalysis, and cold temperature plasmas are addressed. Particular emphasis is given to reaction processes that support high total turnover numbers (TTNs) of the hydrogen peroxide-requiring enzymes. Discussion of innovations in the use of hydrogen peroxide-producing enzyme cascades for antimicrobial activity, wastewater effluent treatment, and biosensors are also included.
Collapse
|
17
|
Phan Thi Thanh N, Dang Thi Thu H, Tone M, Inoue H, Iwasa S. Synthesis of Oxindole Derivatives via Intramolecular C–H Insertion of Diazoamides Using Ru(II)-Pheox Catalyst. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Yuan B, Mahor D, Fei Q, Wever R, Alcalde M, Zhang W, Hollmann F. Water-Soluble Anthraquinone Photocatalysts Enable Methanol-Driven Enzymatic Halogenation and Hydroxylation Reactions. ACS Catal 2020; 10:8277-8284. [PMID: 32802571 PMCID: PMC7418218 DOI: 10.1021/acscatal.0c01958] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Indexed: 02/06/2023]
Abstract
![]()
Peroxyzymes
simply use H2O2 as a cosubstrate
to oxidize a broad range of inert C–H bonds. The lability of
many peroxyzymes against H2O2 can be addressed
by a controlled supply of H2O2, ideally in situ.
Here, we report a simple, robust, and water-soluble anthraquinone
sulfonate (SAS) as a promising organophotocatalyst to drive both haloperoxidase-catalyzed
halogenation and peroxygenase-catalyzed oxyfunctionalization reactions.
Simple alcohols, methanol in particular, can be used both as a cosolvent
and an electron donor for H2O2 generation. Very
promising turnover numbers for the biocatalysts of up to 318 000
have been achieved.
Collapse
Affiliation(s)
- Bo Yuan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Durga Mahor
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ron Wever
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Wuyuan Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
19
|
Nagarajan S, Nagarajan R, Kumar J, Salemme A, Togna AR, Saso L, Bruno F. Antioxidant Activity of Synthetic Polymers of Phenolic Compounds. Polymers (Basel) 2020; 12:E1646. [PMID: 32722059 PMCID: PMC7464737 DOI: 10.3390/polym12081646] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/10/2023] Open
Abstract
In recent years, developing potent antioxidants has been a very active area of research. In this context, phenolic compounds have been evaluated for their antioxidant activity. However, the use of phenolic compounds has also been limited by poor antioxidant activity in several in vivo studies. Polymeric phenols have received much attention owing to their potent antioxidant properties and increased stability in aqueous systems. To be truly effective in biological applications, it is important that these polymers be synthesized using benign methods. In this context, enzyme catalyzed synthesis of polymeric phenols has been explored as an environmentally friendly and safer approach. This review summarizes work in enzymatic syntheses of polymers of phenols. Several assays have been developed to determine the antioxidant potency of these polymeric phenols. These assays are discussed in detail along with structure-property relationships. A deeper understanding of factors affecting antioxidant activity would provide an opportunity for the design of versatile, high performing polymers with enhanced antioxidant activity.
Collapse
Affiliation(s)
- Subhalakshmi Nagarajan
- Department of Natural and Social Sciences, Bowling Green State University-Firelands, Huron, OH 44839, USA
| | - Ramaswamy Nagarajan
- Department of Plastics Engineering and Center for Advanced Materials, University of Massachusetts, Lowell, MA 01854, USA;
| | - Jayant Kumar
- Department of Physics and Center for Advanced Materials, University of Massachusetts, Lowell, MA 01854, USA;
| | - Adele Salemme
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.S.); (A.R.T.); (L.S.)
| | - Anna Rita Togna
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.S.); (A.R.T.); (L.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.S.); (A.R.T.); (L.S.)
| | - Ferdinando Bruno
- Combat Capabilities Development Command Soldier Center, Natick, MA 01760, USA
| |
Collapse
|
20
|
Hobisch M, Schie MMCH, Kim J, Røjkjær Andersen K, Alcalde M, Kourist R, Park CB, Hollmann F, Kara S. Solvent‐Free Photobiocatalytic Hydroxylation of Cyclohexane. ChemCatChem 2020. [DOI: 10.1002/cctc.202000512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Hobisch
- Department of Engineering, Biocatalysis and Bioprocessing Group Aarhus University Gustav Wieds Vej 10 8000 Aarhus C Denmark
| | | | - Jinhyun Kim
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republic of Korea
| | - Kasper Røjkjær Andersen
- Department of Molecular Biology and Genetics Aarhus University Gustav Wieds Vej 10 8000 Aarhus C Denmark
| | - Miguel Alcalde
- Department of Biocatalysis Institute of Catalysis CSIC, Cantoblanco 28049 Madrid Spain
| | - Robert Kourist
- Institute of Molecular Biotechnology Graz University of Technology Petergasse 14 8010 Graz Austria
| | - Chan Beum Park
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology Biocatalysis Group Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Selin Kara
- Department of Engineering, Biocatalysis and Bioprocessing Group Aarhus University Gustav Wieds Vej 10 8000 Aarhus C Denmark
| |
Collapse
|
21
|
Yayci A, Baraibar ÁG, Krewing M, Fueyo EF, Hollmann F, Alcalde M, Kourist R, Bandow JE. Plasma-Driven in Situ Production of Hydrogen Peroxide for Biocatalysis. CHEMSUSCHEM 2020; 13:2072-2079. [PMID: 32026604 PMCID: PMC7216967 DOI: 10.1002/cssc.201903438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Peroxidases and peroxygenases are promising classes of enzymes for biocatalysis because of their ability to carry out one-electron oxidation reactions and stereoselective oxyfunctionalizations. However, industrial application is limited, as the major drawback is the sensitivity toward the required peroxide substrates. Herein, we report a novel biocatalysis approach to circumvent this shortcoming: in situ production of H2 O2 by dielectric barrier discharge plasma. The discharge plasma can be controlled to produce hydrogen peroxide at desired rates, yielding desired concentrations. Using horseradish peroxidase, it is demonstrated that hydrogen peroxide produced by plasma treatment can drive the enzymatic oxidation of model substrates. Fungal peroxygenase is then employed to convert ethylbenzene to (R)-1-phenylethanol with an ee of >96 % using plasma-generated hydrogen peroxide. As direct treatment of the reaction solution with plasma results in reduced enzyme activity, the use of plasma-treated liquid and protection strategies are investigated to increase total turnover. Technical plasmas present a noninvasive means to drive peroxide-based biotransformations.
Collapse
Affiliation(s)
- Abdulkadir Yayci
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Álvaro Gómez Baraibar
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Marco Krewing
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Elena Fernandez Fueyo
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of Catalysis and Petrochemistry (CSIC)Campus Cantoblanco28049MadridSpain
| | - Robert Kourist
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
- current address: Institute for Molecular BiotechnologyGraz University of TechnologyPetersgasse 14GrazAustria
| | - Julia E. Bandow
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| |
Collapse
|
22
|
Bormann S, van Schie MMCH, De Almeida TP, Zhang W, Stöckl M, Ulber R, Hollmann F, Holtmann D. H 2 O 2 Production at Low Overpotentials for Electroenzymatic Halogenation Reactions. CHEMSUSCHEM 2019; 12:4759-4763. [PMID: 31557410 PMCID: PMC6899481 DOI: 10.1002/cssc.201902326] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Various enzymes utilize hydrogen peroxide as an oxidant. Such "peroxizymes" are potentially very attractive catalysts for a broad range of oxidation reactions. Most peroxizymes, however, are inactivated by an excess of H2 O2 . The electrochemical reduction of oxygen can be used as an in situ generation method for hydrogen peroxide to drive the peroxizymes at high operational stabilities. Using conventional electrode materials, however, also necessitates significant overpotentials, thereby reducing the energy efficiency of these systems. This study concerns a method to coat a gas-diffusion electrode with oxidized carbon nanotubes (oCNTs), thereby greatly reducing the overpotential needed to perform an electroenzymatic halogenation reaction. In comparison to the unmodified electrode, with the oCNTs-modified electrode the overpotential can be reduced by approximately 100 mV at comparable product formation rates.
Collapse
Affiliation(s)
- Sebastian Bormann
- Industrial BiotechnologyDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Morten M. C. H. van Schie
- Department of Biotechnology, Biocatalysis GroupTechnical University DelftVan der Maasweg 92629HZDelftThe Netherlands
| | - Tiago Pedroso De Almeida
- Department of Biotechnology, Biocatalysis GroupTechnical University DelftVan der Maasweg 92629HZDelftThe Netherlands
| | - Wuyuan Zhang
- Department of Biotechnology, Biocatalysis GroupTechnical University DelftVan der Maasweg 92629HZDelftThe Netherlands
| | - Markus Stöckl
- ElectrochemistryDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Roland Ulber
- Bioprocess EngineeringUniversity of KaiserslauternGottlieb-Daimler-Str. 4967663KaiserslauternGermany
| | - Frank Hollmann
- Department of Biotechnology, Biocatalysis GroupTechnical University DelftVan der Maasweg 92629HZDelftThe Netherlands
| | - Dirk Holtmann
- Industrial BiotechnologyDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| |
Collapse
|
23
|
Freakley SJ, Kochius S, van Marwijk J, Fenner C, Lewis RJ, Baldenius K, Marais SS, Opperman DJ, Harrison STL, Alcalde M, Smit MS, Hutchings GJ. A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H 2O 2. Nat Commun 2019; 10:4178. [PMID: 31519878 PMCID: PMC6744418 DOI: 10.1038/s41467-019-12120-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
Continuous low-level supply or in situ generation of hydrogen peroxide (H2O2) is essential for the stability of unspecific peroxygenases, which are deemed ideal biocatalysts for the selective activation of C-H bonds. To envisage potential large scale applications of combined catalytic systems the reactions need to be simple, efficient and produce minimal by-products. We show that gold-palladium nanoparticles supported on TiO2 or carbon have sufficient activity at ambient temperature and pressure to generate H2O2 from H2 and O2 and supply the oxidant to the engineered unspecific heme-thiolate peroxygenase PaDa-I. This tandem catalyst combination facilitates efficient oxidation of a range of C-H bonds to hydroxylated products in one reaction vessel with only water as a by-product under conditions that could be easily scaled.
Collapse
Affiliation(s)
- Simon J Freakley
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Svenja Kochius
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- South African DST-NRF Centre of Excellence in Catalysis, C*Change, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa
| | - Jacqueline van Marwijk
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- South African DST-NRF Centre of Excellence in Catalysis, C*Change, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa
| | - Caryn Fenner
- South African DST-NRF Centre of Excellence in Catalysis, C*Change, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
| | - Richard J Lewis
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Kai Baldenius
- BASF SE, RBW/OS - A 30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Sarel S Marais
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- South African DST-NRF Centre of Excellence in Catalysis, C*Change, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa
| | - Diederik J Opperman
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- South African DST-NRF Centre of Excellence in Catalysis, C*Change, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa
| | - Susan T L Harrison
- South African DST-NRF Centre of Excellence in Catalysis, C*Change, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049, Madrid, Spain
| | - Martha S Smit
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa.
- South African DST-NRF Centre of Excellence in Catalysis, C*Change, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa.
| | - Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
24
|
Seel CJ, Gulder T. Biocatalysis Fueled by Light: On the Versatile Combination of Photocatalysis and Enzymes. Chembiochem 2019; 20:1871-1897. [PMID: 30864191 DOI: 10.1002/cbic.201800806] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Enzymes catalyze a plethora of highly specific transformations under mild and environmentally benign reaction conditions. Their fascinating performances attest to high synthetic potential that is often hampered by operational obstacles such as in vitro cofactor supply and regeneration. Exploiting light and combining it with biocatalysis not only helps in overcoming these drawbacks, but the fruitful liaison of these two fields of "green chemistry" also offers opportunities to unlock new synthetic reactivities. In this review we provide an overview of the wide variety of photo-biocatalysis, ranging from the photochemical delivery of electrons required in redox biocatalysis and photochemical cofactor and reagent (re)generation to direct photoactivation of enzymes enabling reactions unknown in nature. We highlight synthetically relevant transformations such as asymmetric reactions facilitated by the combination of light as energy source and enzymes' catalytic power.
Collapse
Affiliation(s)
- Catharina J Seel
- Department of Chemistry and Catalysis Research Center (CRC), Technical University Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Tanja Gulder
- Department of Chemistry and Catalysis Research Center (CRC), Technical University Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
25
|
Pesic M, Willot SJP, Fernández-Fueyo E, Tieves F, Alcalde M, Hollmann F. Multienzymatic in situ hydrogen peroxide generation cascade for peroxygenase-catalysed oxyfunctionalisation reactions. ACTA ACUST UNITED AC 2019; 74:101-104. [PMID: 30379645 DOI: 10.1515/znc-2018-0137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/04/2018] [Indexed: 01/02/2023]
Abstract
There is an increasing interest in the application of peroxygenases in biocatalysis, because of their ability to catalyse the oxyfunctionalisation reaction in a stereoselective fashion and with high catalytic efficiencies, while using hydrogen peroxide or organic peroxides as oxidant. However, enzymes belonging to this class exhibit a very low stability in the presence of peroxides. With the aim of bypassing this fast and irreversible inactivation, we study the use of a gradual supply of hydrogen peroxide to maintain its concentration at stoichiometric levels. In this contribution, we report a multienzymatic cascade for in situ generation of hydrogen peroxide. In the first step, in the presence of NAD+ cofactor, formate dehydrogenase from Candida boidinii (FDH) catalysed the oxidation of formate yielding CO2. Reduced NADH was reoxidised by the reduction of the flavin mononucleotide cofactor bound to an old yellow enzyme homologue from Bacillus subtilis (YqjM), which subsequently reacts with molecular oxygen yielding hydrogen peroxide. Finally, this system was coupled to the hydroxylation of ethylbenzene reaction catalysed by an evolved peroxygenase from Agrocybe aegerita (rAaeUPO). Additionally, we studied the influence of different reaction parameters on the performance of the cascade with the aim of improving the turnover of the hydroxylation reaction.
Collapse
Affiliation(s)
- Milja Pesic
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Sébastien Jean-Paul Willot
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Elena Fernández-Fueyo
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
26
|
Burek BO, de Boer SR, Tieves F, Zhang W, van Schie M, Bormann S, Alcalde M, Holtmann D, Hollmann F, Bahnemann DW, Bloh JZ. Photoenzymatic Hydroxylation of Ethylbenzene Catalyzed by Unspecific Peroxygenase: Origin of Enzyme Inactivation and the Impact of Light Intensity and Temperature. ChemCatChem 2019. [DOI: 10.1002/cctc.201900610] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bastien O. Burek
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
- Institut für Technische ChemieLeibniz Universität Hannover Callinstraße 3 30167 Hannover Germany
| | - Sabrina R. de Boer
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Florian Tieves
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Wuyuan Zhang
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Morten van Schie
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Sebastian Bormann
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of Catalysis, CSIC 28049 Madrid Spain
| | - Dirk Holtmann
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Detlef W. Bahnemann
- Institut für Technische ChemieLeibniz Universität Hannover Callinstraße 3 30167 Hannover Germany
- Laboratory “Photoactive Nanocomposite Materials”Saint-Petersburg State University Ulyanovskaya str. 1, Peterhof Saint-Petersburg 198504 Russia
| | - Jonathan Z. Bloh
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| |
Collapse
|
27
|
Tieves F, Willot SJ, van Schie MMCH, Rauch MCR, Younes SHH, Zhang W, Dong J, Gomez de Santos P, Robbins JM, Bommarius B, Alcalde M, Bommarius AS, Hollmann F. Formate Oxidase (FOx) from Aspergillus oryzae: One Catalyst Enables Diverse H 2 O 2 -Dependent Biocatalytic Oxidation Reactions. Angew Chem Int Ed Engl 2019; 58:7873-7877. [PMID: 30945422 PMCID: PMC6563469 DOI: 10.1002/anie.201902380] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/29/2022]
Abstract
An increasing number of biocatalytic oxidation reactions rely on H2 O2 as a clean oxidant. The poor robustness of most enzymes towards H2 O2 , however, necessitates more efficient systems for in situ H2 O2 generation. In analogy to the well-known formate dehydrogenase to promote NADH-dependent reactions, we here propose employing formate oxidase (FOx) to promote H2 O2 -dependent enzymatic oxidation reactions. Even under non-optimised conditions, high turnover numbers for coupled FOx/peroxygenase catalysis were achieved.
Collapse
Affiliation(s)
- Florian Tieves
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | | | | | | | - Sabry Hamdy Hamed Younes
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
- Chemistry DepartmentFaculty of ScienceSohag UniversitySohag82524Egypt
| | - Wuyuan Zhang
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | - JiaJia Dong
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | | | - John Mick Robbins
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSIC28049MadridSpain
| | - Andreas Sebastian Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology901 Atlantic Drive, N.W.AtlantaGA30332USA
| | - Frank Hollmann
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| |
Collapse
|
28
|
Tieves F, Willot SJ, van Schie MMCH, Rauch MCR, Younes SHH, Zhang W, Dong J, Gomez de Santos P, Robbins JM, Bommarius B, Alcalde M, Bommarius AS, Hollmann F. Formiat‐Oxidase (FOx) aus
Aspergillus oryzae
: ein Katalysator für verschiedene H
2
O
2
‐abhängige biokatalytische Oxidationen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Florian Tieves
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | | | | | | | - Sabry Hamdy Hamed Younes
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
- Chemistry DepartmentFaculty of ScienceSohag University Sohag 82524 Ägypten
| | - Wuyuan Zhang
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | - JiaJia Dong
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | | | - John Mick Robbins
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSIC 28049 Madrid Spanien
| | - Andreas Sebastian Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology 901 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Frank Hollmann
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| |
Collapse
|
29
|
|
30
|
Willot SJP, Fernández-Fueyo E, Tieves F, Pesic M, Alcalde M, Arends IW, Park CB, Hollmann F. Expanding the Spectrum of Light-Driven Peroxygenase Reactions. ACS Catal 2019; 9:890-894. [PMID: 30775065 PMCID: PMC6369655 DOI: 10.1021/acscatal.8b03752] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/10/2018] [Indexed: 12/02/2022]
Abstract
![]()
Peroxygenases
require a controlled supply of H2O2 to operate
efficiently. Here, we propose a photocatalytic
system for the reductive activation of ambient O2 to produce
H2O2 which uses the energy provided by visible
light more efficiently based on the combination of wavelength-complementary
photosensitizers. This approach was coupled to an enzymatic system
to make formate available as a sacrificial electron donor. The scope
and current limitations of this approach are reported and discussed.
Collapse
Affiliation(s)
- Sébastien J.-P. Willot
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Elena Fernández-Fueyo
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Milja Pesic
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | | | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
31
|
Höfler GT, But A, Hollmann F. Haloperoxidases as catalysts in organic synthesis. Org Biomol Chem 2019; 17:9267-9274. [DOI: 10.1039/c9ob01884k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current state-of-the-art of haloperoxidase catalysis in organic synthesis for halogenation reactions is presented in this review.
Collapse
Affiliation(s)
- Georg T. Höfler
- Department of Biotechnology
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| | - Andrada But
- Department of Biotechnology
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| | - Frank Hollmann
- Department of Biotechnology
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| |
Collapse
|
32
|
Hoschek A, Schmid A, Bühler B. In Situ O2Generation for Biocatalytic Oxyfunctionalization Reactions. ChemCatChem 2018. [DOI: 10.1002/cctc.201801262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anna Hoschek
- Department Solar MaterialsHelmholtz-Centre for Environmental Research, UFZ Permoserstrasse 15 Leipzig 04318 Germany
| | - Andreas Schmid
- Department Solar MaterialsHelmholtz-Centre for Environmental Research, UFZ Permoserstrasse 15 Leipzig 04318 Germany
| | - Bruno Bühler
- Department Solar MaterialsHelmholtz-Centre for Environmental Research, UFZ Permoserstrasse 15 Leipzig 04318 Germany
| |
Collapse
|
33
|
Seel CJ, Králík A, Hacker M, Frank A, König B, Gulder T. Atom-Economic Electron Donors for Photobiocatalytic Halogenations. ChemCatChem 2018. [DOI: 10.1002/cctc.201800886] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Catharina Julia Seel
- Department of Chemistry and Catalysis Research Center (CRC); Technical University Munich; Lichtenbergstrasse 4 85747 Garching Germany
| | - Antonín Králík
- Institute of Organic Chemistry; University of Regensburg; Universitätsstraße 31 93053 Regensburg Germany
| | - Melanie Hacker
- Institute of Organic Chemistry; University of Regensburg; Universitätsstraße 31 93053 Regensburg Germany
| | - Annika Frank
- Department of Chemistry, Center for Integrated Protein Science; Technical University Munich; Lichtenbergstrasse 4 85747 Garching Germany
| | - Burkhard König
- Institute of Organic Chemistry; University of Regensburg; Universitätsstraße 31 93053 Regensburg Germany
| | - Tanja Gulder
- Department of Chemistry and Catalysis Research Center (CRC); Technical University Munich; Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
34
|
Zhang W, Hollmann F. Nonconventional regeneration of redox enzymes - a practical approach for organic synthesis? Chem Commun (Camb) 2018; 54:7281-7289. [PMID: 29714371 DOI: 10.1039/c8cc02219d] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidoreductases have become useful tools in the hands of chemists to perform selective and mild oxidation and reduction reactions. Instead of mimicking native catalytic cycles, generally involving costly and unstable nicotinamide cofactors, more direct, NAD(P)-independent methodologies are being developed. The promise of these approaches not only lies with simpler and cheaper reaction schemes but also with higher selectivity as compared to whole cell approaches and their mimics.
Collapse
Affiliation(s)
- Wuyuan Zhang
- Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands.
| | | |
Collapse
|
35
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiokatalyse: Aktivierung von Redoxenzymen durch direkten oder indirekten Transfer photoinduzierter Elektronen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710070] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Da Som Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Su Keun Kuk
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| |
Collapse
|
36
|
Schroeder L, Frese M, Müller C, Sewald N, Kottke T. Photochemically Driven Biocatalysis of Halogenases for the Green Production of Chlorinated Compounds. ChemCatChem 2018. [DOI: 10.1002/cctc.201800280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Lea Schroeder
- Department of Chemistry, Physical and Biophysical Chemistry; Bielefeld University; Universitätsstr. 25 33615 Bielefeld Germany
| | - Marcel Frese
- Department of Chemistry, Organic and Bioorganic Chemistry; Bielefeld University; Universitätsstr. 25 33615 Bielefeld Germany
| | - Caroline Müller
- Department of Chemical Ecology; Bielefeld University; Universitätsstr. 25 33615 Bielefeld Germany
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry; Bielefeld University; Universitätsstr. 25 33615 Bielefeld Germany
| | - Tilman Kottke
- Department of Chemistry, Physical and Biophysical Chemistry; Bielefeld University; Universitätsstr. 25 33615 Bielefeld Germany
| |
Collapse
|
37
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons. Angew Chem Int Ed Engl 2018; 57:7958-7985. [PMID: 29194901 DOI: 10.1002/anie.201710070] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Biocatalytic transformation has received increasing attention in the green synthesis of chemicals because of the diversity of enzymes, their high catalytic activities and specificities, and mild reaction conditions. The idea of solar energy utilization in chemical synthesis through the combination of photocatalysis and biocatalysis provides an opportunity to make the "green" process greener. Oxidoreductases catalyze redox transformation of substrates by exchanging electrons at the enzyme's active site, often with the aid of electron mediator(s) as a counterpart. Recent progress indicates that photoinduced electron transfer using organic (or inorganic) photosensitizers can activate a wide spectrum of redox enzymes to catalyze fuel-forming reactions (e.g., H2 evolution, CO2 reduction) and synthetically useful reductions (e.g., asymmetric reduction, oxygenation, hydroxylation, epoxidation, Baeyer-Villiger oxidation). This Review provides an overview of recent advances in light-driven activation of redox enzymes through direct or indirect transfer of photoinduced electrons.
Collapse
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Su Keun Kuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
38
|
Jiang X, Zheng C, Lei L, Lin K, Yu C. Synthesis of 2-Oxindoles from Substituted Indoles by Hypervalent-Iodine Oxidation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701807] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Cong Zheng
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Lijun Lei
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Kai Lin
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| |
Collapse
|
39
|
Dong JJ, Fernández-Fueyo E, Li J, Guo Z, Renirie R, Wever R, Hollmann F. Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis. Chem Commun (Camb) 2018; 53:6207-6210. [PMID: 28548142 DOI: 10.1039/c7cc03368k] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vanadium-dependent chloroperoxidase from Curvularia inaequalis is a stable and efficient biocatalyst for the hydroxyhalogenation of a broad range of alkenes into halohydrins. Up to 1 200 000 TON with 69 s-1 TOF were observed for the biocatalyst. A bienzymatic cascade to yield epoxides as reaction products is presented.
Collapse
Affiliation(s)
- Jia Jia Dong
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang Z, Xu W, Fu Z, Jiang G, Wu J, Liu Z. Pluronic-Conjugated Enzyme Cascade for In Situ Oxidation in Biphasic Media. ChemCatChem 2018. [DOI: 10.1002/cctc.201701869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zheyu Wang
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 P.R. China
| | - Weina Xu
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 P.R. China
| | - Zhongwang Fu
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 P.R. China
| | - Guoqiang Jiang
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 P.R. China
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering; University of California; Riverside CA 92521 USA
| | - Zheng Liu
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 P.R. China
| |
Collapse
|
41
|
Gandomkar S, Dennig A, Dordic A, Hammerer L, Pickl M, Haas T, Hall M, Faber K. Biocatalytic Oxidative Cascade for the Conversion of Fatty Acids into α-Ketoacids via Internal H 2 O 2 Recycling. Angew Chem Int Ed Engl 2018; 57:427-430. [PMID: 29125663 PMCID: PMC5768024 DOI: 10.1002/anie.201710227] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 11/18/2022]
Abstract
The functionalization of bio-based chemicals is essential to allow valorization of natural carbon sources. An atom-efficient biocatalytic oxidative cascade was developed for the conversion of saturated fatty acids to α-ketoacids. Employment of P450 monooxygenase in the peroxygenase mode for regioselective α-hydroxylation of fatty acids combined with enantioselective oxidation by α-hydroxyacid oxidase(s) resulted in internal recycling of the oxidant H2 O2 , thus minimizing degradation of ketoacid product and maximizing biocatalyst lifetime. The O2 -dependent cascade relies on catalytic amounts of H2 O2 and releases water as sole by-product. Octanoic acid was converted under mild conditions in aqueous buffer to 2-oxooctanoic acid in a simultaneous one-pot two-step cascade in up to >99 % conversion without accumulation of hydroxyacid intermediate. Scale-up allowed isolation of final product in 91 % yield and the cascade was applied to fatty acids of various chain lengths (C6:0 to C10:0).
Collapse
Affiliation(s)
- Somayyeh Gandomkar
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Alexander Dennig
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Andela Dordic
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Austrian Center of Industrial Biotechnology c/oDepartment of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Lucas Hammerer
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Austrian Center of Industrial Biotechnology c/oDepartment of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Mathias Pickl
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Thomas Haas
- CreavisEvonik Industries, Bau 1420Paul Baumann Strasse 145772MarlGermany
| | - Mélanie Hall
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Kurt Faber
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
42
|
Gandomkar S, Dennig A, Dordic A, Hammerer L, Pickl M, Haas T, Hall M, Faber K. Eine biokatalytische oxidative Kaskade für die Umsetzung von Fettsäuren zu α-Ketosäuren mit interner H2
O2
-Regeneration. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Somayyeh Gandomkar
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Alexander Dennig
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Andela Dordic
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
- Austrian Center of Industrial Biotechnology c/o; Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Lucas Hammerer
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
- Austrian Center of Industrial Biotechnology c/o; Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Mathias Pickl
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Thomas Haas
- Creavis; Evonik Industries, Bau 1420; Paul Baumann Straße 1 45772 Marl Deutschland
| | - Mélanie Hall
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Kurt Faber
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| |
Collapse
|
43
|
Metalloporphyrin-mediated aerobic oxidation of hydrocarbons in cumene: Co-substrate specificity and mechanistic consideration. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Ni Y, Hollmann F. Artificial Photosynthesis: Hybrid Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 158:137-158. [PMID: 26987806 DOI: 10.1007/10_2015_5010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidoreductases are promising catalysts for organic synthesis. To sustain their catalytic cycles they require efficient supply with redox equivalents. Today classical biomimetic approaches utilizing natural electron supply chains prevail but artificial regeneration approaches bear the promise of simpler and more robust reaction schemes. Utilizing visible light can accelerate such artificial electron transport chains and even enable thermodynamically unfeasible reactions such as the use of water as reductant.This contribution critically summarizes the current state of the art in photoredoxbiocatalysis (i.e. light-driven biocatalytic oxidation and reduction reactions).
Collapse
Affiliation(s)
- Yan Ni
- Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
45
|
Oxidation of alkyl benzenes by a flavin photooxidation catalyst on nanostructured metal-oxide films. Proc Natl Acad Sci U S A 2017; 114:9279-9283. [PMID: 28802257 DOI: 10.1073/pnas.1707318114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We describe here a surface-bound, oxide-based procedure for the photooxidation of a family of aromatic hydrocarbons by a phosphate-bearing flavin mononucleotide (FMN) photocatalyst on high surface area metal-oxide films.
Collapse
|
46
|
Garg P, Jadhav SD, Singh A. Oxidation State Dichotomy in Copper-Catalyzed Intramolecular Cyclization of α-Diazoanilides: An Integrated Synthetic Platform for Oxindoles and Isatins Enabled by Oxygenase-Type Reactivity. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Parul Garg
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 U.P. India
| | - Santosh D. Jadhav
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 U.P. India
| | - Anand Singh
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 U.P. India
| |
Collapse
|
47
|
Shalan H, Kato M, Cheruzel L. Keeping the spotlight on cytochrome P450. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:80-87. [PMID: 28599858 DOI: 10.1016/j.bbapap.2017.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/26/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
Abstract
This review describes the recent advances utilizing photosensitizers and visible light to harness the synthetic potential of P450 enzymes. The structures of the photosensitizers investigated to date are first presented along with their photophysical and redox properties. Functional photosensitizers range from organic and inorganic complexes to nanomaterials as well as the biological photosystem I complex. The focus is then on the three distinct approaches that have emerged for the activation of P450 enzymes. The first approach utilizes the in situ generation of reactive oxygen species entering the P450 mechanism via the peroxide shunt pathway. The other two approaches are sustained by electron injections into catalytically competent heme domains either facilitated by redox partners or through direct heme domain reduction. Achievements as well as pitfalls of each approach are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Hadil Shalan
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States.
| |
Collapse
|
48
|
Wang Y, Lan D, Durrani R, Hollmann F. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr Opin Chem Biol 2017; 37:1-9. [DOI: 10.1016/j.cbpa.2016.10.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
|
49
|
Bloh JZ, Marschall R. Heterogeneous Photoredox Catalysis: Reactions, Materials, and Reaction Engineering. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601591] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jonathan Z. Bloh
- DECHEMA Research Institute; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Roland Marschall
- Institute of Physical Chemistry; Justus Liebig University Giessen; Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
50
|
Choi DS, Ni Y, Fernández-Fueyo E, Lee M, Hollmann F, Park CB. Photoelectroenzymatic Oxyfunctionalization on Flavin-Hybridized Carbon Nanotube Electrode Platform. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03453] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Da Som Choi
- Department
of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305−701, Republic of Korea
| | - Yan Ni
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Elena Fernández-Fueyo
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Minah Lee
- Department
of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305−701, Republic of Korea
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Chan Beum Park
- Department
of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305−701, Republic of Korea
| |
Collapse
|