1
|
Ali M, Hasan E, Barman SC, Hedhili MN, Alshareef HN, Alsulaiman D. Peptide nucleic acid-clicked Ti 3C 2T x MXene for ultrasensitive enzyme-free electrochemical detection of microRNA biomarkers. MATERIALS HORIZONS 2024; 11:5045-5057. [PMID: 39102217 DOI: 10.1039/d4mh00714j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
We report the engineering and synthesis of peptide nucleic acid-functionalized Ti3C2Tx MXene nanosheets as a novel transducing material for amplification-free, nanoparticle-free, and isothermal electrochemical detection of microRNA biomarkers. Through bio-orthogonal copper-free click chemistry, azido-modified MXene nanosheets are covalently functionalized with clickable peptide nucleic acid probes targeting prostate cancer biomarker hsa-miR-141. The platform demonstrates a wide dynamic range, single-nucleotide specificity, and 40 aM detection limit outperforming more complex, amplification-based methods. Its versatility, analytical performance, and stability under serum exposure highlight the immense potential of this first example of click-conjugated MXene in the next generation of amplification-free biosensors.
Collapse
Affiliation(s)
- Muhsin Ali
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Erol Hasan
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Sharat Chandra Barman
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Mohamed Nejib Hedhili
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Dana Alsulaiman
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Deng YR, Li YF, Yang H, Fan YR, Huang Y. Synthesis, DNA binding of bis-naphthyl ferrocene derivatives and the application as new electroactive indicators for DNA biosensor. J Inorg Biochem 2024; 257:112615. [PMID: 38772187 DOI: 10.1016/j.jinorgbio.2024.112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
A series of bis-naphthyl ferrocene derivatives were synthesized and characterized. Based on the results obtained from UV-visible absorption titration and ethidium bromide (EB) displacement experiments, it was observed that the synthesized compounds exhibited a strong binding ability to dsDNA. In comparison to the viscosity curve of EB, the tested compounds demonstrated a bisintercalation binding mode when interacting with CT-DNA. Differential pulse voltammetry (DPV) was employed to assess the binding specificity of these indicators towards ssDNA and dsDNA. All tested indicators displayed more pronounced signal differences before and after hybridization between probe nucleic acids and target nucleic acids compared to Methylene Blue (MB). Among the evaluated compounds, compound 3j containing an ether chain showed superior performance as an indicator, making it suitable for constructing DNA-based biosensors. Under optimized conditions including probe ssDNA concentration and indicator concentration, this biosensor exhibited good sensitivity, reproducibility, stability, and selectivity. The limit of detection was calculated as 4.53 × 10-11 mol/L. Furthermore, when utilizing 3j as the indicator in serum samples, the biosensor achieved satisfactory recovery rates for detecting the BRCA1 gene.
Collapse
Affiliation(s)
- Ya-Ru Deng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ya-Fei Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Hao Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China
| | - Yan-Ru Fan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| |
Collapse
|
3
|
Ibrahim N, Gan KB, Mohd Yusof NY, Goh CT, Krupa B N, Tan LL. Electrochemical genosensor based on RNA-responsive human telomeric G-quadruplex DNA: A proof-of-concept with SARS-CoV-2 RNA. Talanta 2024; 274:125916. [PMID: 38547835 DOI: 10.1016/j.talanta.2024.125916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/07/2024] [Accepted: 03/11/2024] [Indexed: 05/04/2024]
Abstract
In this report, a facile and label-free electrochemical RNA biosensor is developed by exploiting methylene blue (MB) as an electroactive positive ligand of G-quadruplex. The electrochemical response mechanism of the nucleic acid assay was based on the change in differential pulse voltammetry (DPV) signal of adsorbed MB on the immobilized human telomeric G-quadruplex DNA with a loop that is complementary to the target RNA. Hybridization between synthetic positive control RNA and G-quadruplex DNA probe on the transducer platform rendered a conformational change of G-quadruplex to double-stranded DNA (dsDNA), and increased the redox current of cationic MB π planar ligand at the sensing interface, thereby the electrochemical signal of the MB-adsorbed duplex is proportional to the concentration of target RNA, with SARS-CoV-2 (COVID-19) RNA as the model. Under optimal conditions, the target RNA can be detected in a linear range from 1 zM to 1 μM with a limit of detection (LOD) obtained at 0.59 zM for synthetic target RNA and as low as 1.4 copy number for positive control plasmid. This genosensor exhibited high selectivity towards SARS-CoV-2 RNA over other RNA nucleotides, such as SARS-CoV and MERS-CoV. The electrochemical RNA biosensor showed DPV signal, which was proportional to the 2019-nCoV_N_positive control plasmid from 2 to 200000 copies (R2 = 0.978). A good correlation between the genosensor and qRT-PCR gold standard was attained for the detection of SARS-CoV-2 RNA in terms of viral copy number in clinical samples from upper respiratory specimens.
Collapse
Affiliation(s)
- Nadiah Ibrahim
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| | - Kok Beng Gan
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| | - Choo Ta Goh
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| | - Niranjana Krupa B
- Department of Electronics and Communication Engineering, PES University, Bengaluru-85, Karnataka, India.
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Zhang Z, Ou X, Ma L, Li C, Yang Z, Duan J. A double methylene blue labeled single-stranded DNA and hairpin DNA coupling biosensor for the detection of Fusarium oxysporum f. sp. cubense race 4. Bioelectrochemistry 2024; 156:108612. [PMID: 38035486 DOI: 10.1016/j.bioelechem.2023.108612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The DCL gene in Fusarium oxysporum f. sp. cubense Race 4 (Foc4) is a pivotal pathogenic factor causing banana fusarium wilt. Precise DCL detection is crucial for Foc4 containment. Here, we present a novel ssDNA-hDNA coupling electrochemical biosensor for highly specific DCL detection. The sensing interface was formed via electrodeposition of a composite containing reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) onto a carbon screen-printed electrode (SPE), followed by thiol-modified ssDNA functionalization. Additionally, the incorporation of hDNA, with methylene blue (MB) at both ends, binds to ssDNA through base complementarity, forming an ssDNA-hDNA coupling probe with bismethylene blue. This sensing strategy relies on DCL recognition by the hDNA probe, leading to DNA hairpin unfolding and detachment of hDNA bearing two MBs from ssDNA, generating a robust "on-off" signal. Empirical results demonstrate the sensor's amplified electrical signals, reduced background currents, and an extended detection range (6.02 × 106-3.01 × 1010 copies/μL) with a limit of detection (3.01 × 106 copies/μL) for DCL identification. We applied this sensor to analyze soil, banana leaves, and fruit samples, confirming its high specificity and stability. Moreover, post-sample detection, the sensor exhibits reusability, offering a cost-effective and rapid approach for banana wilt detection.
Collapse
Affiliation(s)
- Zhihong Zhang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Xiangying Ou
- College of Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Lizhe Ma
- College of Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Scienecs, Guangzhou 510642, China
| | - Zhou Yang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jieli Duan
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
5
|
Jamal RB, Bay Gosewinkel U, Ferapontova EE. Electrocatalytic aptasensor for bacterial detection exploiting ferricyanide reduction by methylene blue on mixed PEG/aptamer monolayers. Bioelectrochemistry 2024; 156:108620. [PMID: 38006817 DOI: 10.1016/j.bioelechem.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Pathogen-triggered infections are the most severe global threat to human health, and to provide their timely treatment and prevention, robust methods for rapid and reliable identification of pathogenic microorganisms are required. Here, we have developed a fast and inexpensive electrocatalytic aptamer assay enabling specific and ultrasensitive detection of E. coli. E. coli, a biomarker of environmental contamination and infections, was captured on the mixed aptamer/thiolated PEG self-assembled monolayers formed on electrochemically pre-treated gold screen-printed electrodes (SPE). Signals from aptamer - E. coli binding were amplified by electrocatalytic reduction of ferricyanide mediated by methylene blue (MB) adsorbed on bacterial and aptamer surfaces. PEG operated as an antifouling agent and inhibited direct (not MB-mediated) discharge of ferricyanide. The assay allowed from 10 to 1000 CFU mL-1E. coli detection in 30 min, with no interference from B. subtilis, in buffer and artificial urine samples. This electrocatalytic approach is fast, specific, sensitive, and can be used directly in in-field and point-of-care applications for analysis of bacteria in human environment.
Collapse
Affiliation(s)
- Rimsha B Jamal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Ulrich Bay Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
6
|
Ojeda J, Torres-Salvador F, Bruno N, Eastwood H, Gerasimova Y, Chumbimuni-Torres K. Highly reproducible electrochemical biosensor for Influenza A virus towards low-resource settings. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:772-779. [PMID: 38230437 PMCID: PMC11439509 DOI: 10.1039/d3ay01825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A highly reproducible electrochemical biosensor, employing a five-stranded four-way junction (5S-4WJ) system through square wave voltammetry, has been successfully validated for the detection of Influenza A virus (InfA). A comprehensive assessment of its linearity, precision, accuracy, and robustness has demonstrated its compliance with FDA standards. Integration with Nucleic Acid-Based Amplification (NASBA) has showcased its selectivity for InfA, enabling the detection of InfA RNA with a standard heater set at 41 °C. This platform offers a straightforward setup well-suited for use at low-resource facilities.
Collapse
Affiliation(s)
- Julio Ojeda
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | | | - Nicholas Bruno
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Hannah Eastwood
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Yulia Gerasimova
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | | |
Collapse
|
7
|
Wang Y, Jie H, Ye H, Zhang Y, Li N, Zhuang J. Methylene Blue-Stained Single-Stranded DNA Aptamers as a Highly Efficient Electronic Switch for Quasi-Reagentless Exosomes Detection: An Old Dog with New Tricks. Anal Chem 2023; 95:18166-18173. [PMID: 38037816 DOI: 10.1021/acs.analchem.3c03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Improving the convenience, sensitivity, and cost-effectiveness of electrochemical biosensors is crucial for advancing their clinical diagnostic applications. Herein, we presented an elegant approach to construct electrochemical aptasensors for tumor-derived exosome detection by harnessing the alterable interaction between methylene blue (MB) and DNA aptamer. In detail, the anti-EpCAM aptamer, named SYL3C, was found to exhibit a strong affinity toward MB due to the specific interaction between MB and unbound guanine bases. Thereby, SYL3C could be stained with MB to arouse a strong electrochemical signal on a gold electrode (AuE). Upon binding to EpCAM-positive exosomes, SYL3C underwent a conformational transformation. The resulting conformation, or exosomes-SYL3C complex, not only reduced the accumulation of MB on SYL3C by obstructing the accessibility of guanines to MB but also impeded the transfer of electrons from the bound MB to AuE, leading to a notable decrease in the electrochemical signal. Using MB-stained SYL3C as an electronic switch, an electrochemical aptasensor was readily established for the detection of EpCAM-positive exosome detection. Without the need for signal amplification strategies, expensive auxiliary reagents, and complex operation, this unique signal transduction mechanism alone could endow the aptasensor with ultrahigh sensitivity. A limit of detection (LOD) of 234 particles mL-1 was achieved, surpassing the performance of most reported methods. As a proof of concept, the aptasensor was applied to analyze clinical serum samples and effectively distinguish non-small-cell lung cancer (NSCLC) patients from healthy individuals. As EpCAM exhibits broad expression in exosomes derived from different tumor sources, the developed aptasensor holds promise for diagnosing other tumor types.
Collapse
Affiliation(s)
- Yanhong Wang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Han Jie
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Huajuan Ye
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yuanyuan Zhang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ning Li
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, China
| | - Junyang Zhuang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
8
|
Wu Y, Wang Z, Li J, Yang J, Shen Y, Li H, Hu XY, Xu Q. A dual-mode "signal-on" split-type aptasensor for bisphenol A via target-induced hybridization chain reaction amplification. Analyst 2023; 148:6297-6305. [PMID: 37933485 DOI: 10.1039/d3an01586f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Herein, a dual-mode detection system was constructed for efficient and accurate detection of bisphenol A (BPA) with the assistance of the BPA-induced hybridization chain reaction (HCR). The captured DNA (cDNA) was first modified on the surface of magnetic spheres modified with gold nanoparticles and polydopamine and then hybridized with the BPA aptamer to form double-stranded DNA (dsDNA). In the presence of the BPA target, the BPA aptamer was released from the surface of the magnetic sphere. The free cDNA triggered a HCR to construct a DNA duplex. Methylene blue (MB), as a bifunctional probe, was intercalated into the double-stranded DNA to amplify the photocurrent (IPEC) of the CdS-modified electrode and generate an electrochemical current (IEC) at the same time. Under the optimized conditions, the PEC and EC signal responses of the system were linear to the logarithm of BPA concentration in the range of 1.0 × 10-10 M to 1.0 × 10-5 M. The detection limits were found to be 1.27 × 10-11 M and 3.0 × 10-11 M using the PEC and EC methods, respectively. The constructed dual-mode biosensor exhibited good performance for real sample analysis, demonstrating its promising potential for practical applications. In addition, this dual-mode detection strategy provides more accurate and reliable detection results.
Collapse
Affiliation(s)
- You Wu
- School of Chemistry and Chemical Engineering, Yangzhou, University, Yangzhou 225002, China.
| | - Zheng Wang
- School of Chemistry and Chemical Engineering, Yangzhou, University, Yangzhou 225002, China.
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yangzhou, University, Yangzhou 225002, China.
| | - Jingjing Yang
- School of Chemistry and Chemical Engineering, Yangzhou, University, Yangzhou 225002, China.
| | - Yinzhuo Shen
- School of Chemistry and Chemical Engineering, Yangzhou, University, Yangzhou 225002, China.
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiao-Ya Hu
- School of Chemistry and Chemical Engineering, Yangzhou, University, Yangzhou 225002, China.
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou, University, Yangzhou 225002, China.
| |
Collapse
|
9
|
Park J, Min A, Naik SS, Moon CJ, Theerthagiri J, Choi MY. In-situ monitoring of thiazine molecular aggregation in various solvents via a free-standing acoustic levitator. ULTRASONICS SONOCHEMISTRY 2023; 100:106609. [PMID: 37742422 PMCID: PMC10520568 DOI: 10.1016/j.ultsonch.2023.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
In this work, we explored the in-situ reaction modeling of the molecular self-aggregation of methylene blue (MB), which is a cationic thiazine dye, in different solvents via a container-less acoustic levitator by floating of a single droplet. Our in-situ spectroscopic study revealed that the dimer essentially has a sandwich structural geometry with a deviation from parallel stacking and horizontal arrangements in the molecular planes. The real time conversion of the monomer in MB into a dimer and their dynamics in water and ethanol media were monitored using a free-standing acoustic levitator droplet system. The absorption spectra revealed changes in the two resolved peaks (monomer and dimer) and orderliness when water and ethanol were used as the media. Interestingly, the enhancement in the dimerization of MB could be attributed to droplet evaporation, which is difficult to observe in typical reactor containers. Moreover, acidic protonation resulted in a change in the aggregation orientation direction of the MB molecules, forming an unusual J-aggregation. Theoretical DFT calculations revealed that MB underwent typical H-aggregation and J-aggregation in the different solvent environments, and their orientations well matched the spectroscopic data.
Collapse
Affiliation(s)
- Juhyeon Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Shreyanka Shankar Naik
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Cheol Joo Moon
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
10
|
Kositanont U, Srisawat C, Sripinitchai S, Thawornkuno C, Chaibun T, Karunaithas S, Promptmas C, Lertanantawong B. Electrochemical aptasensor detection of electron transfer flavoprotein subunit beta for leptospirosis diagnosis. Analyst 2023; 148:4777-4786. [PMID: 37599631 DOI: 10.1039/d3an01064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Electron transfer flavoprotein subunit beta (ETFB) of Leptospira interrogans is a biomarker for diagnosing leptospiral infection. Thus, the ETFB-specific nuclease-resistant RNA aptamer ETFB3-63 was developed and used in an electrochemical aptasensor to assay ETFB. Although the majority of reported biosensors detect various genes and antibodies of L. interrogans, this is the first attempt to construct an electrochemical biosensor to detect ETFB protein for the diagnosis of leptospiral infection. The ETFB protein can be detected without any extraction phase. In this assay, a single-stranded DNA probe complementary to the ETFB3-63 sequence was immobilized on a screen-printed carbon electrode (SPCE). The aptamer was then incubated and hybridized with the antisense probe on the SPCE. In the presence of ETFB, the aptamer dissociates from the aptamer/probe complex on the SPCE to bind with the protein. Methylene blue was then added to intercalate with the remaining hybridized aptamers, and its signal was measured using differential pulse voltammetry. The signal arising from the intercalated methylene blue decreased with increasing concentration of ETFB, showing a linear response in the range of 50-500 nM of ETFB and 10 to 109 leptospira cells per mL, respectively. The aptasensor signal was also specific to L. interrogans but not to 12 related bacteria tested. In addition, the aptasensor showed similar performance in detecting ETFB spiked in human serum to that in buffer, indicating that proteins in the serum do not interfere with the assay. Therefore, this assay has great potential to develop into a point-of-care electrochemical device that is accurate, cost-effective, and user-friendly for leptospirosis diagnosis.
Collapse
Affiliation(s)
- Uraiwan Kositanont
- Faculty of Public Health, Thammasat University, Pahol Yothin Rd., Klong Luang, Pathum Thani 12121, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Wang Lang Rd., Bangkok Noi, Bangkok 10700, Thailand
| | - Sirinapa Sripinitchai
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Wang Lang Rd., Bangkok Noi, Bangkok 10700, Thailand
| | - Charin Thawornkuno
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Thanyarat Chaibun
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Sinthu Karunaithas
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Chamras Promptmas
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Benchaporn Lertanantawong
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
11
|
Kim Y, Kang E. A graphitic nano-onion/molybdenum disulfide nanosheet composite as a platform for HPV-associated cancer-detecting DNA biosensors. J Nanobiotechnology 2023; 21:187. [PMID: 37301851 DOI: 10.1186/s12951-023-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
An electrochemical DNA sensor that can detect human papillomavirus (HPV)-16 and HPV-18 for the early diagnosis of cervical cancer was developed by using a graphitic nano-onion/molybdenum disulfide (MoS2) nanosheet composite. The electrode surface for probing DNA chemisorption was prepared via chemical conjugation between acyl bonds on the surfaces of functionalized nanoonions and the amine groups on functionalized MoS2 nanosheets. The cyclic voltammetry profile of an 1:1 nanoonion/MoS2 nanosheet composite electrode had an improved rectangular shape compared to that of an MoS2 nanosheet elecrode, thereby indicating the amorphous nature of the nano-onions with sp2 distancing curved carbon layers that provide enhanced electronic conductivity, compared to MoS2 nanosheet only. The nanoonion/MoS2 sensor for the DNA detection of HPV-16 and HPV-18, respectively, was measured at high sensitivity through differential pulse voltammetry (DPV) in the presence of methylene blue (MB) as a redox indicator. The DPV current peak was lowered after probe DNA chemisorption and target DNA hybridization because the hybridized DNA induced less effective MB electrostatic intercalation due to it being double-stranded, resulting in a lower oxidation peak. The nanoonion/MoS2 nanosheet composite electrodes attained higher current peaks than the MoS2 nanosheet electrode, thereby indicating a greater change in the differential peak probably because the nanoonions enhanced conductive electron transfer. Notably, both of the target DNAs produced from HPV-18 and HPV-16 Siha and Hela cancer cell lines were effectively detected with high specificity. The conductivity of MoS2 improved by complexation with nano-onions provides a suitable platform for electrochemical biosensors for the early diagnosis of many ailments in humans.
Collapse
Affiliation(s)
- Youngjun Kim
- School of Chemical Engineering and Material Science, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, Republic of Korea
| | - Eunah Kang
- School of Chemical Engineering and Material Science, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Kékedy-Nagy L, Perry JM, Little SR, Llorens OY, Shih SCC. An electrochemical aptasensor for Δ 9-tetrahydrocannabinol detection in saliva on a microfluidic platform. Biosens Bioelectron 2023; 222:114998. [PMID: 36549107 DOI: 10.1016/j.bios.2022.114998] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
We present a novel "on-off", cost-effective, rapid electrochemical aptasensor combined with a microfluidics cartridge system for the detection of Δ9-THC (Δ9-tetrahydrocannabinol) in human saliva via differential pulse voltammetry. The assay relied on the competitive binding between the Δ9-THC and a soluble redox indicator methylene blue, using an aptamer selected via FRELEX. We found that the aptasensor can detected 1 nM of Δ9-THC in PBS in a three-electrode cell system, while the sensitivity and both the dissociation constant (Kd) and association constant (Kb) were dependent on the aptamer density. The aptamer also showed great affinity towards Δ9-THC when tested against cannabinol and cannabidiol. The same limit of detection of 1 nM in PBS was achieved in small volume samples (∼60 μL) using the aptamer-modified gold screen-printed electrodes combined with the microfluidic cartridge setup, however, the presence of 10% raw human saliva had a negative effect which manifested in a 10-fold increase in the LOD due to interfering elements. Filtering the saliva, improved the tested volume to 50% and the LOD to 5 nM of Δ9-THC which is lower than the concentrations associated with impairment (6.5-32 nM). The aptasensor showed a good storage capability up to 3 days, however, the reusability significantly dropped from 10 cycles (freshly prepared) to 5 cycles. The results clearly demonstrate the feasibility of the aptasensor platform with the microfluidics chamber towards a point-of-care testing application for the detection of Δ9-THC in saliva.
Collapse
Affiliation(s)
- László Kékedy-Nagy
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, H3G1M8, Canada; Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada
| | - James M Perry
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada; Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada
| | - Samuel R Little
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, H3G1M8, Canada; Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada
| | - Oriol Y Llorens
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, H3G1M8, Canada; Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada
| | - Steve C C Shih
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, H3G1M8, Canada; Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada; Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada.
| |
Collapse
|
13
|
A novel ratiometric electrochemical aptasensor for highly sensitive detection of carcinoembryonic antigen. Anal Biochem 2022; 659:114957. [PMID: 36265690 DOI: 10.1016/j.ab.2022.114957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
A novel ratiometric electrochemical aptasensor was proposed for carcinoembryonic antigen (CEA) detection based on exonuclease III (Exo III)-assisted recycling and rolling circle amplification (RCA) strategies. A thiolated ferrocene-labeled hairpin probe 2 (Fc-HP2) was fixed on the gold nanoparticles (AuNPs)-modified gold electrode (AuE) surface through Au-S bonds. The presence of CEA led to the release of trigger, which hybridized with the 3'-protruding of hairpin probe 1 (HP1) and triggered the Exo III cleavage reaction, accompanied by the releasing of trigger and generation of new DNA fragment which was used for the successive hybridization with Fc-HP2. After the Exo III cleavage process, the remaining Fc-HP2 fragments hybridized as primers with the RCA template to initiate the RCA process, and long single-stranded polynucleotides were produced for methylene blue (MB) binding. Such changes resulted in the signal of Fc (IFc) decreased and that of MB (IMB) increased, achieving a linear relationship between IMB/IFc and logarithm of CEA concentrations ranging from 1.0 pg mL-1 to 100.0 ng mL-1 with a detection limit of 0.59 pg mL-1. Additionally, the developed aptasensor had been successfully applied to detect CEA in human serum samples. Therefore, the proposed strategy might provide a new platform for clinical detections of CEA.
Collapse
|
14
|
Yu X, Jiang B, Wang L. A signal-on electrochemical DNA biosensor based on exonuclease III-assisted recycling amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5041-5046. [PMID: 36448304 DOI: 10.1039/d2ay01592g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA electrochemical detection technology has attracted tremendous interest in recent years. However, a facile and sensitive method for the detection of the disease indicators or genes is still waiting. Herein, we constructed a signal-on electrochemical platform for detecting the manganese superoxide dismutase (MnSOD) gene by incorporating a redox electrochemical signal probe (methylene blue) and exonuclease III-assisted target recycling signal amplification strategy. The sensor was prepared by self-assembly of a capture DNA probe of thiol-modified on GCE with gold electrodeposition. In the presence of target DNA, the exonuclease III can cleave the duplexes formed by the target DNA and the redox-labeled hairpin probes, release the target DNA and produce a residual sequence. The target DNA can continue to hybridize with the hairpin probe for the next cycle of amplification. The residual sequence hybridized with the surface-immobilized capture probes on AuNPs-modified GCE to generate a significantly amplified redox current. In particular, the redox current value of the resultant sensor showed a linear relationship with MnSOD gene concentration in the range of 1-104 pM with the detection limit as low as 0.3 pM. Furthermore, the sensor has excellent specificity and can distinguish single-base mismatch from perfectly matched target DNA. The sensor is fast in operation, and simple in design for detecting different DNA sequences or DNA identification by selecting the appropriate probe sequence, thus shedding light on a good promising application when encountering disease outbreaks or for the early clinical diagnosis of gene-related diseases.
Collapse
Affiliation(s)
- Xiongtao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Bowen Jiang
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
15
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
16
|
Pina-Coronado C, Martínez-Sobrino Á, Gutiérrez-Gálvez L, Del Caño R, Martínez-Periñán E, García-Nieto D, Rodríguez-Peña M, Luna M, Milán-Rois P, Castellanos M, Abreu M, Cantón R, Galán JC, Pineda T, Pariente F, Somoza Á, García-Mendiola T, Miranda R, Lorenzo E. Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures for sensitive and selective SARS-CoV-2 sensing. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 369:132217. [PMID: 35755181 PMCID: PMC9212675 DOI: 10.1016/j.snb.2022.132217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/17/2022] [Accepted: 06/12/2022] [Indexed: 05/20/2023]
Abstract
The development of DNA-sensing platforms based on new synthetized Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures (AuNs), as a new pathway to develop a selective and sensitive methodology for SARS-CoV-2 detection is presented. A mixture of gold nanoparticles and gold nanotriangles have been synthetized to modify disposable electrodes that act as an enhanced nanostructured electrochemical surface for DNA probe immobilization. On the other hand, modified carbon nanodots prepared a la carte to contain Methylene Blue (MB-CDs) are used as electrochemical indicators of the hybridization event. These MB-CDs, due to their structure, are able to interact differently with double and single-stranded DNA molecules. Based on this strategy, target sequences of the SARS-CoV-2 virus have been detected in a straightforward way and rapidly with a detection limit of 2.00 aM. Moreover, this platform allows the detection of the SARS-CoV-2 sequence in the presence of other viruses, and also a single nucleotide polymorphism (SNPs). The developed approach has been tested directly on RNA obtained from nasopharyngeal samples from COVID-19 patients, avoiding any amplification process. The results agree well with those obtained by RT-qPCR or reverse transcription quantitative polymerase chain reaction technique.
Collapse
Affiliation(s)
- Clara Pina-Coronado
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Álvaro Martínez-Sobrino
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Rafael Del Caño
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Departamento de Química Física y Termodinámica Aplicada e Instituto Universitario de Nanoquímica, Universidad de Córdoba, Córdoba 14014, Spain
| | - Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Daniel García-Nieto
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, Madrid 28760, Spain
| | - Micaela Rodríguez-Peña
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, Madrid 28760, Spain
| | - M Luna
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, Madrid 28760, Spain
| | - Paula Milán-Rois
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | | | - Melanie Abreu
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Teresa Pineda
- Departamento de Química Física y Termodinámica Aplicada e Instituto Universitario de Nanoquímica, Universidad de Córdoba, Córdoba 14014, Spain
| | - Félix Pariente
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Álvaro Somoza
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Ciudad Universitaria de Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Rodolfo Miranda
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Ciudad Universitaria de Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
17
|
Alpizar-Sosa EA, Ithnin NRB, Wei W, Pountain AW, Weidt SK, Donachie AM, Ritchie R, Dickie EA, Burchmore RJS, Denny PW, Barrett MP. Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Negl Trop Dis 2022; 16:e0010779. [PMID: 36170238 PMCID: PMC9581426 DOI: 10.1371/journal.pntd.0010779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/19/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.
Collapse
Affiliation(s)
- Edubiel A. Alpizar-Sosa
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Nur Raihana Binti Ithnin
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Medical Microbiology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Andrew W. Pountain
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute for Computational Medicine, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Anne M. Donachie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Richard J. S. Burchmore
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Tang Z, Wang M, Jia X, Xie S, Chen P, Wang D, Chen L, Zhao J. Organophosphonic Acid-Regulating Assembly of P V-Sb III Polyoxotungstate and Its Potential in Building a Dual-Signal Readout Electrochemical Aptasensor for Carcinogen Detection. Inorg Chem 2022; 61:14648-14661. [PMID: 36073797 DOI: 10.1021/acs.inorgchem.2c02003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Template-directed assembly of giant cluster-based nanomaterials is an everlasting theme in cluster science. In this work, ethylenediamine tetramethylphosphonic acid [H8EDTPA = (POCH2(OH)2)4C2H4N2] and [B-α-SbW9O33]9- were, respectively, used as an organic template and an inorganic template to prepare an organophosphonic acid-regulating PV-SbIII-heteroatom-inserted polyoxotungstate aggregate [H2N(CH3)2]5Na11H9[CeW4O10(HEDTPA)SbW15O50][B-α-SbW9O33]2·36H2O (1). Noteworthily, organophosphonic acid ligand not only works as an organic template leading to the assembly of a [HEDTPASbW15O50]14- building block but also further bridges the sandwich-type [CeW4O10(B-α-SbW9O33)2]11- entity. To extend its potential application in electrochemical sensing properties, we prepared a three-dimensional 1@EGO composite (EGO = reduced graphene oxide functionalized by ethylenediamine) with porous architecture and a prominent conducting ability. Furthermore, the 1@EGO composite was explored as a modification material for glassy carbon electrodes to build a dual-signal readout electrochemical aptasensor for carcinogens, which shows much better detection performance for aflatoxin B1 compared with traditional single-signal biosensors.
Collapse
Affiliation(s)
- Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Menglu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Saisai Xie
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Pei Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
19
|
Serapinas S, Gineitytė J, Butkevičius M, Danilevičius R, Dagys M, Ratautas D. Biosensor prototype for rapid detection and quantification of DNase activity. Biosens Bioelectron 2022; 213:114475. [PMID: 35714494 DOI: 10.1016/j.bios.2022.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
DNases are enzymes that cleave phosphodiesteric bonds of deoxyribonucleic acid molecules and are found everywhere in nature, especially in bodily fluids, i.e., saliva, blood, or sweat. Rapid and sensitive detection of DNase activity is highly important for quality control in the pharmaceutical and biotechnology industries. For clinical diagnostics, recent reports indicate that increased DNase activity could be related to various diseases, such as cancers. In this paper, we report a new bioelectronic device for the determination of nuclease activity in various fluids. The system consists of a sensor electrode, a custom design DNA target to maximize the DNase cleavage rate, a signal analysis algorithm, and supporting electronics. The developed sensor enables the determination of DNase activity in the range of 3.4 × 10-4 - 3.0 × 10-2 U mL-1 with a limit of detection of up to 3.4 × 10-4 U mL-1. The sensor was tested by measuring nuclease activity in real human saliva samples and found to demonstrate high accuracy and reproducibility compared to the industry standard DNaseAlert™️. Finally, the entire detection system was implemented as a prototype device system utilizing single-use electrodes, custom-made cells, and electronics. The developed technology can improve nuclease quality control processes in the pharmaceutical/biotechnology industry and provide new insights into the importance of nucleases for medical applications.
Collapse
Affiliation(s)
- Skomantas Serapinas
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Laboratorija 1", Pamėnkalnio g. 36, LT-01114, Vilnius, Lithuania
| | - Justina Gineitytė
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Bioanalizės sistemos", Saulėtekio al. 15, LT-10224, Vilnius, Lithuania
| | - Marius Butkevičius
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Laboratorija 1", Pamėnkalnio g. 36, LT-01114, Vilnius, Lithuania
| | | | - Marius Dagys
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Bioanalizės sistemos", Saulėtekio al. 15, LT-10224, Vilnius, Lithuania
| | - Dalius Ratautas
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Bioanalizės sistemos", Saulėtekio al. 15, LT-10224, Vilnius, Lithuania.
| |
Collapse
|
20
|
Wasiewska LA, Diaz FG, Shao H, Burgess CM, Duffy G, O'Riordan A. Highly sensitive electrochemical sensor for the detection of Shiga toxin-producing E. coli (STEC) using interdigitated micro-electrodes selectively modified with a chitosan-gold nanocomposite. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Ahuja S, Kumar MS, Nandeshwar R, Kondabagil K, Tallur S. Longer amplicons provide better sensitivity for electrochemical sensing of viral nucleic acid in water samples using PCB electrodes. Sci Rep 2022; 12:8814. [PMID: 35614180 PMCID: PMC9130999 DOI: 10.1038/s41598-022-12818-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/04/2022] [Indexed: 12/13/2022] Open
Abstract
The importance of monitoring environmental samples has gained a lot of prominence since the onset of COVID-19 pandemic, and several surveillance efforts are underway using gold standard, albeit expensive qPCR-based techniques. Electrochemical DNA biosensors could offer a potential cost-effective solution suitable for monitoring of environmental water samples in lower middle income countries. In this work, we demonstrate electrochemical detection of amplicons as long as [Formula: see text] obtained from Phi6 bacteriophage (a popular surrogate for SARS-CoV-2) isolated from spiked lake water samples, using ENIG finish PCB electrodes with no surface modification. The electrochemical sensor response is thoroughly characterised for two DNA fragments of different lengths ([Formula: see text] and [Formula: see text]), and the impact of salt in PCR master mix on methylene blue (MB)-DNA interactions is studied. Our findings establish that length of the DNA fragment significantly determines electrochemical sensitivity, and the ability to detect long amplicons without gel purification of PCR products demonstrated in this work bodes well for realisation of fully-automated solutions for in situ measurement of viral load in water samples.
Collapse
Affiliation(s)
- Shruti Ahuja
- Centre for Research in Nanotechnology and Science (CRNTS), IIT Bombay, Mumbai, 400076, India
| | - M Santhosh Kumar
- Department of Biosciences and Bioengineering (BSBE), IIT Bombay, Mumbai, 400076, India
| | - Ruchira Nandeshwar
- Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering (BSBE), IIT Bombay, Mumbai, 400076, India.
| | - Siddharth Tallur
- Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India.
| |
Collapse
|
22
|
Khoris IM, Nasrin F, Chowdhury AD, Park EY. Advancement of dengue virus NS1 protein detection by 3D-nanoassembly complex gold nanoparticles utilizing competitive sandwich aptamer on disposable electrode. Anal Chim Acta 2022; 1207:339817. [DOI: 10.1016/j.aca.2022.339817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 12/25/2022]
|
23
|
PCR-free electrochemical genosensor for Mycobacterium tuberculosis complex detection based on two-dimensional Ti3C2 Mxene-polypyrrole signal amplification. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Pensa E, Bogawat Y, Simmel FC, Santiago I. Single DNA Origami Detection by Nanoimpact Electrochemistry. ChemElectroChem 2022; 9:e202101696. [PMID: 35875253 PMCID: PMC9302979 DOI: 10.1002/celc.202101696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Indexed: 11/19/2022]
Abstract
DNA has emerged as the material of choice for producing supramolecular building blocks of arbitrary geometry from the 'bottom up'. Characterisation of these structures via electron or atomic force microscopy usually requires their surface immobilisation. In this work, we developed a nanoimpact electrochemistry platform to detect DNA self-assembled origami structures in solution, using the intercalator methylene blue as a redox probe. Here, we report the electrochemical detection of single DNA origami collisions at Pt microelectrodes. Our work paves the way towards the characterisation of DNA nanostructures in solution via nanoimpact electrochemistry.
Collapse
Affiliation(s)
- Evangelina Pensa
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Yash Bogawat
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Friedrich C Simmel
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Ibon Santiago
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| |
Collapse
|
25
|
Abdul Rashid JI, Yusof NA, Abdullah J, Shomiad Shueb RH. Strategies for the preparation of non-amplified and amplified genomic dengue gene samples for electrochemical DNA biosensing applications. RSC Adv 2021; 12:1-10. [PMID: 35424522 PMCID: PMC8978653 DOI: 10.1039/d1ra06753b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
The application of electrochemical DNA biosensors in real genomic sample detection is challenging due to the existence of complex structures and low genomic concentrations, resulting in inconsistent and low current signals. This work highlights strategies for the treatment of non-amplified and amplified genomic dengue virus gene samples based on real samples before they can be used directly in our DNA electrochemical sensing system, using methylene blue (MB) as a redox indicator. The main steps in this study for preparing non-amplified cDNA were cDNA conversion, heat denaturation, and sonication. To prepare amplified cDNA dengue virus genomic samples using an RT-PCR approach, we optimized a few parameters, such as the annealing temperature, sonication time, and reverse to forward (R/F) primer concentration ratio. We discovered that the generated methylene blue (MB) signals during the electrochemical sensing of non-amplified and amplified samples differ due to the different MB binding affinities based on the sequence length and base composition. The findings show that our developed electrochemical DNA biosensor successfully discriminates MB current signals in the presence and absence of the target genomic dengue virus, indicating that both samples were successfully treated. This work also provides interesting information about the critical factors in the preparation of genomic gene samples for developing miniaturized PCR-based electrochemical sensing applications in the future. We also discuss the limitations and provide suggestions related to using redox-indicator-based electrochemical biosensors to detect real genomic nucleic acid genes.
Collapse
Affiliation(s)
- Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia Sungai Besi Camp 57000 Kuala Lumpur Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Rafidah Hanim Shomiad Shueb
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 16150 Kubang Kerian Kelantan Malaysia
| |
Collapse
|
26
|
Boccorh DK, Macdonald PA, Boyle CW, Wain AJ, Berlouis LEA, Wark AW. A universal polymer shell-isolated nanoparticle (SHIN) design for single particle spectro-electrochemical SERS sensing using different core shapes. NANOSCALE ADVANCES 2021; 3:6415-6426. [PMID: 36133494 PMCID: PMC9416900 DOI: 10.1039/d1na00473e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/20/2021] [Indexed: 06/16/2023]
Abstract
Shell-isolated nanoparticles (SHINs) have attracted increasing interest for non-interfering plasmonic enhanced sensing in fields such as materials science, biosensing, and in various electrochemical systems. The metallic core of these nanoparticles is isolated from the surrounding environment preventing direct contact or chemical interaction with the metal surface, while still being close enough to enable localized surface plasmon enhancement of the Raman scattering signal from the analyte. This concept forms the basis of the shell isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique. To date, the vast majority of SHIN designs have focused on SiO2 shells around spherical nanoparticle cores and there has been very limited published research considering alternatives. In this article, we introduce a new polymer-based approach which provides excellent control over the layer thickness and can be applied to plasmonic metal nanoparticles of various shapes and sizes without compromising the overall nanoparticle morphology. The SHIN layers are shown to exhibit excellent passivation properties and robustness in the case of gold nanosphere (AuNP) and anisotropic gold nanostar (AuNS) core shapes. In addition, in situ SHINERS spectro-electrochemistry measurements performed on both SHIN and bare Au nanoparticles demonstrate the utility of the SHIN coatings. Correlated confocal Raman and SEM mapping was achieved to clearly establish single nanoparticle SERS sensitivity. Finally, confocal in situ SERS mapping enabled visualisation of the redox related molecular structure changes occurring on an electrode surface in the vicinity of individual SHIN-coated nanoparticles.
Collapse
Affiliation(s)
- Delali K Boccorh
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
- National Physical Laboratory Hampton Road Teddington TW11 0LW UK
| | - Peter A Macdonald
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
| | - Colm W Boyle
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
| | - Andrew J Wain
- National Physical Laboratory Hampton Road Teddington TW11 0LW UK
| | - Leonard E A Berlouis
- Dept. of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral St Glasgow G1 1XL UK
| | - Alastair W Wark
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
| |
Collapse
|
27
|
Zhou Y, Chen Y, Liu W, Fang H, Li X, Hou L, Liu Y, Lai W, Huang X, Xiong Y. Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 343:130139. [PMID: 34035562 DOI: 10.1016/j.snb.2021.130169] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 05/28/2023]
Abstract
Owing to the over-increasing demands in resisting and managing the coronavirus disease 2019 (COVID-19) pandemic, development of rapid, highly sensitive, accurate, and versatile tools for monitoring total antibody concentrations at the population level has been evolved as an urgent challenge on measuring the fatality rate, tracking the changes in incidence and prevalence, comprehending medical sequelae after recovery, as well as characterizing seroprevalence and vaccine coverage. To this end, herein we prepared highly luminescent quantum dot nanobeads (QBs) by embedding numerous quantum dots into polymer matrix, and then applied it as a signal-amplification label in lateral flow immunoassay (LFIA). After covalently linkage with the expressed recombinant SARS-CoV-2 spike protein (RSSP), the synthesized QBs were used to determine the total antibody levels in sera by virtue of a double-antigen sandwich immunoassay. Under the developed condition, the QB-LFIA can allow the rapid detection of SARS-CoV-2 total antibodies within 15 min with about one order of magnitude improvement in analytical sensitivity compared to conventional gold nanoparticle-based LFIA. In addition, the developed QB-LFIA performed well in clinical study in dynamic monitoring of serum antibody levels in the whole course of SARS-CoV-2 infection. In conclusion, we successfully developed a promising fluorescent immunological sensing tool for characterizing the host immune response to SARS-CoV-2 infection and confirming the acquired immunity to COVID-19 by evaluating the SRAS-CoV-2 total antibody level in the crowd.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Wenjuan Liu
- Jiangxi Weibang Biological Technology Co. Ltd, Nanchang 330096, PR China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Li Hou
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Haidian, Beijing 100083, PR China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| |
Collapse
|
28
|
Non-enzymatic electrochemical cholesterol sensor based on strong host-guest interactions with a polymer of intrinsic microporosity (PIM) with DFT study. Anal Bioanal Chem 2021; 413:6523-6533. [PMID: 34462789 DOI: 10.1007/s00216-021-03616-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/16/2023]
Abstract
Advances in materials science have accelerated the development of diagnostic tools with the last decade witnessing the development of enzyme-free sensors, owing to the improved stability, low cost and simple fabrication of component materials. However, the specificity of non-enzymatic sensors for certain analytes still represents a challenging task, for example the determination of cholesterol level in blood is vital due to its medical relevance. In this work, a reagent displacement assay for cholesterol sensing in serum samples was developed. It is based on coating of a glassy carbon electrode with a polymer of intrinsic microporosity (PIM) that forms a host-guest complex with methylene blue (MB). In the presence of cholesterol, the MB electroactive probe was displaced due to the stronger association of cholesterol guest to the PIM host. The decrease in the oxidative current was proportional to the cholesterol concentration achieving a detection limit of approximately 0.1 nM. Moreover, to further assist the experimental studies, comprehensive theoretical calculations are also performed by using density functional theory (DFT) calculations.
Collapse
|
29
|
Xue Y, Wang Y, Feng S, Yan M, Huang J, Yang X. Label-Free and Sensitive Electrochemical Biosensor for Amplification Detection of Target Nucleic Acids Based on Transduction Hairpins and Three-Leg DNAzyme Walkers. Anal Chem 2021; 93:8962-8970. [PMID: 34130449 DOI: 10.1021/acs.analchem.1c01522] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nucleic acids are regarded as reliable biomarkers for the early diagnosis of various diseases. By ingeniously combining a transduction hairpin (THP) with the toehold-mediated strand displacement reaction (TSDR) to form three-leg DNAzyme walkers, for the first time, we constructed a label-free and sensitive electrochemical sensing system for the amplification detection of target nucleic acids. With microRNA-155 (miR-155) as a model target, the feasibility of the biosensing strategy and the conformational states of DNA in the recognition process were studied in detail on the basis of electrochemical and dual polarization interferometry techniques. With the assistance of THP, miR-155 indirectly triggered the TSDR between three hairpins (H1, H2, and H3), then massive Mg2+-dependent three-leg DNAzyme walkers were formed in aqueous solutions. After the binding/cleaving/moving process of three-leg DNAzyme walkers on the electrode surface modified with substrate hairpins (SHPs), a number of single-stranded DNAs (ssDNAs) were generated. Hence, the interaction of methylene blue (MB) with the duplex section of SHPs was impeded, which brought about a decreased electrochemical signal. Benefiting from the cyclic amplification of the TSDR and the higher cleavage activity of three-leg DNAzyme walkers, the proposed sensing strategy showed remarkable improvement in sensitivity with a low detection limit of 0.27 fM for miR-155. Owing to the precise design of the THP, this method exhibited excellent specificity to distinguish miR-155 from the single-base and triplex-base mismatched sequences. This sensing strategy importing the flexible THP can be utilized to detect various nucleic acid biomarkers by only redesigning the THP without changing the main circuit or reporter constructs, showing the great versatility and potential for the early diagnostics and biological analysis.
Collapse
Affiliation(s)
- Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sinuo Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Jia F, Liu D, Dong N, Li Y, Meng S, You T. Interaction between the functionalized probes: The depressed efficiency of dual-amplification strategy on ratiometric electrochemical aptasensor for aflatoxin B1. Biosens Bioelectron 2021; 182:113169. [PMID: 33799027 DOI: 10.1016/j.bios.2021.113169] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Signal amplification is one of the most effective ways to develop the high-performance electrochemical sensors. However, it can be more complicated for ratiometric detections. Herein, a ratiometric electrochemical aptasensor for aflatoxin B1 (AFB1) was proposed by taking advantage of a dual-amplification strategy by coupling of DNA walker (DW) with hybridization chain reaction (HCR). The special binding of AFB1 with ferrocene (Fc)-labelled aptamer triggers DW on hairpin DNA (hDNA) tracks to produce abundant double-stranded DNA (dsDNA). HCR-based strand amplification occurs on these dsDNA to absorb more methylene blue (MB). Then current ratio of MB (IMB) and Fc (IFc) is designed as a yardstick to detect AFB1. Our experiments reveal that the interaction between Fc and MB (i.e., steric hindrance, electron mediator) varies. In addition to steric hindrance, the presence of MB also acts as electron mediator, thereby facilitating the electron transfer between Fc and electrode. Such combined effect consequently depresses the efficiency of dual-amplification strategy to improve the detection. The developed ratiometric electrochemical aptasensor allows the accurate detection of AFB1 in the 0.003-3 pg mL-1 range. Our work has shed light on the amplification strategy for ratiometric sensing, and provided a new route in integrating different amplification strategies.
Collapse
Affiliation(s)
- Fan Jia
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
31
|
Zakashansky JA, Imamura AH, Salgado DF, Romero Mercieca HC, Aguas RFL, Lao AM, Pariser J, Arroyo-Currás N, Khine M. Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:874-883. [PMID: 33576354 DOI: 10.1039/d1ay00041a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Using the children's toy, Shrinky-Dink©, we present an aptamer-based electrochemical (E-AB) assay that recognizes the spike protein of SARS-CoV-2 in saliva for viral infection detection. The low-cost electrodes are implementable at population scale and demonstrate detection down to 1 ag mL-1 of the S1 subunit of the spike protein.
Collapse
Affiliation(s)
- Julia A Zakashansky
- Materials Science and Engineering, University of California - Irvine, Irvine, California 92697, USA.
| | - Amanda H Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, 13566-590 Brazil
| | - Darwin F Salgado
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | | | - Raphael F L Aguas
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Angelou M Lao
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Joseph Pariser
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA and Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, & Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michelle Khine
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| |
Collapse
|
32
|
Response surface methodology optimized electrochemical DNA biosensor based on HAPNPTs/PPY/MWCNTs nanocomposite for detecting Mycobacterium tuberculosis. Talanta 2021; 226:122099. [PMID: 33676656 DOI: 10.1016/j.talanta.2021.122099] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 01/27/2023]
Abstract
An important issue in the prognosis of tuberculosis (TB) is a short period between correct diagnosis and start the suitable antibiotic therapy. So, a rapid and valid method for detection of Mycobacterium tuberculosis (M. tb) complex is considered as a necessity. Herein, a rapid, low-cost, and PCR-free DNA biosensor was developed based on multi-walled carbon nanotubes (MWCNTs), polypyrrole (PPy), and hydroxyapatite nanoparticles (HAPNPs) for highly sensitive and specific recognition of M.tb. The biosensor consisted of M.tb ssDNA probe covalently attached to the HANPs/PPy/MWCNTs/GCE surface that hybridized to a complementary target sequence to form a duplex DNA. The M.tb target recognition was based on the oxidation signal of the electroactive Methylene Blue (MB) on the surface of the modified GCE using differential pulse voltammetry (DPV) method. It is worth to mention that for the first time Plackett-Burman (PB) screening design and response surface method (RSM) based on central composite design (CCD) was applied as a powerful and an efficient approach to find optimal conditions for maximum M.tb biosensor performance leading to simplicity and rapidity of operation. The proposed DNA biosensor exhibits a wide detection range from 0.25 to 200.0 nM with a low detection limit of 0.141 nM. The performance of designed biosensor for clinical diagnosis and practical applications was revealed through hybridization between DNA probe-modified GCE and extracted DNA from sputum clinical samples.
Collapse
|
33
|
Yoneda JS, de Araujo DR, Sella F, Liguori GR, Liguori TTA, Moreira LFP, Spinozzi F, Mariani P, Itri R. Self-assembled guanosine-hydrogels for drug-delivery application: Structural and mechanical characterization, methylene blue loading and controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111834. [PMID: 33579472 DOI: 10.1016/j.msec.2020.111834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
It is known that guanosine derivatives (G) self-assemble in water forming long, flexible, and interacting aggregates (the so-called G-quadruplexes): by modulating the quadruplex charges, e.g. simply using a mixture of guanosine 5'-monophosphate (GMP) and guanosine (Gua), multi-responsive, self-healing hydrogels can be obtained. In this paper, the potential application of G-hydrogels as drug delivery systems has been assessed. Hydrogels were prepared at different Gua:GMP molar ratios. The photosensitizer Methylene Blue and the pro-apoptotic protein cytochrome C were used as cargo molecules. Small angle x-ray scattering and atomic force microscopy experiments confirmed the presence of G-quadruplexes disposed in swollen matrices with different mesh-sizes. Rheology measurements showed that the Gua:GMP molar ratio leads to specific drug release mechanisms, as the gel strength is finely tuned by electrostatic repulsion and van der Waals attraction between G-quadruplexes. Noteworthy, the gel cohesion and the drug release were pH responsive. Swelling, self-healing and cell viability features were also investigated: the results qualify the Gua:GMP hydrogel as an excellent biomaterial that can entrap and deliver key biomolecules in a sustained and responsive release manner.
Collapse
Affiliation(s)
- Juliana S Yoneda
- Instituto de Fisica, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | - Fiorenza Sella
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Gabriel R Liguori
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tácia T A Liguori
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luiz Felipe P Moreira
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Francesco Spinozzi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Paolo Mariani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Rosangela Itri
- Instituto de Fisica, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
34
|
Zakashansky JA, Imamura AH, Salgado DF, Romero Mercieca HC, Aguas RFL, Lao AM, Pariser J, Arroyo-Currás N, Khine M. Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33236028 DOI: 10.1101/2020.11.14.20231811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using the children's toy, Shrinky-Dink ©, we present an aptamer-based electrochemical (E-AB) assay that recognizes the spike protein of SARS-CoV-2 in saliva for viral infection detection. The low-cost electrodes are implementable at population scale and demonstrate detection down to 0.1 fg mL -1 of the S1 subunit of the spike protein.
Collapse
|
35
|
Mokhtari Z, Khajehsharifi H, Hashemnia S, Shahrokhian S. Predicting the Cardiac Troponin I (cTnl) Aptamer/Methylene Blue Configuration Using Computational Modeling Studies: A Screening Search Method for Constructing Aptasensors. ChemistrySelect 2020. [DOI: 10.1002/slct.202001780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zaynab Mokhtari
- Department of Chemistry Yasouj University, Under Hill Yasouj 75918-74934 Iran
| | | | - Sedigheh Hashemnia
- Department of Chemistry, Faculty of Sciences Persian Gulf University Bushehr 75169 Iran
| | - Saeed Shahrokhian
- Department of Chemistry Sharif University of Technology Tehran 11155-9516 Iran
| |
Collapse
|
36
|
López-Marzo AM, Baldrich E. AuNPs/methylene blue dual-signal nanoimmunoconjugates and electrode activation for electrochemical biosensors. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
DNA-Polylactide Modified Biosensor for Electrochemical Determination of the DNA-Drugs and Aptamer-Aflatoxin M1 Interactions. SENSORS 2019; 19:s19224962. [PMID: 31739501 PMCID: PMC6891816 DOI: 10.3390/s19224962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
DNA sensors were assembled by consecutive deposition of thiacalix[4]arenes bearing oligolactic fragments, poly(ethylene imine), and DNA onto the glassy carbon electrode. The assembling of the layers was monitored with scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The configuration of the thiacalix[4]arene core determined self-assembling of the polymeric species to the nano/micro particles with a size of 70–350 nm. Depending on the granulation, the coatings show the accumulation of a variety of DNA quantities, charges, and internal pore volumes. These parameters were used to optimize the DNA sensors based on these coatings. Thus, doxorubicin was determined to have limits of detection of 0.01 nM (cone configuration), 0.05 nM (partial cone configuration), and 0.10 nM (1,3-alternate configuration of the macrocycle core). Substitution of native DNA with aptamer specific to aflatoxin M1 resulted in the detection of the toxin in the range of 20 to 200 ng/L (limit of detection 5 ng/L). The aptasensor was tested in spiked milk samples and showed a recovery of 80 and 85% for 20 and 50 ng/L of the aflatoxin M1, respectively.
Collapse
|
38
|
Zhu C, Liu D, Li Y, Shen X, Ma S, Liu Y, You T. Ratiometric electrochemical aptasensor for ultrasensitive detection of Ochratoxin A based on a dual signal amplification strategy: Engineering the binding of methylene blue to DNA. Biosens Bioelectron 2019; 150:111814. [PMID: 31740254 DOI: 10.1016/j.bios.2019.111814] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022]
Abstract
A novel ratiometric electrochemical aptasensor was developed for Ochratoxin A (OTA) detection based on the binding of methylene blue (MB) to DNA with a dual signal amplification strategy. The formation of dsDNA structures between ferrocene-labeled complementary DNA (Fc-cDNA), the OTA aptamer, and complementary helper DNA (hDNA) caused Fc away from the electrode, and allowed dsDNA to bind with a certain amount of MB. Here, a small oxidation current of Fc (IFc) and a large oxidation current of MB (IMB) were obtained. In the presence of OTA, its specific recognition with the aptamer induced the release of aptamer and hDNA from the electrode and subsequently the formation of hairpin structure for cDNA, which caused Fc close to the electrode and a weaker binding ability with MB. Then, an increased IFc and a decreased IMB were obtained. Based on this principle, OTA could be accurately quantified by measuring the ratiometric signal of IFc/IMB. Herein, the dual signal amplification strategy of the introduction of hDNA and the binding with MB after the OTA recognition was exploited to amplify the response signal. The obtained aptasensor showed a linear detection range from 10 pg mL-1 to 10 ng mL-1 and a detection limit of 3.3 pg mL-1. The aptasensor was successfully applied to determine OTA in wheat, and the results were validated through HPLC-MS. Furthermore, by changing the target aptamers, this strategy could be universally used for the determination of various mycotoxins, showing promising potential applications for mycotoxins monitoring in agricultural products and foods.
Collapse
Affiliation(s)
- Chengxi Zhu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiuli Shen
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shuai Ma
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, High-tech Key Laboratory of Agricultural Equipment & Intelligentization of Jiangsu Province, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
39
|
A Gold Nanoparticle–DNA Bioconjugate–Based Electrochemical Biosensor for Detection of Sus scrofa mtDNA in Raw and Processed Meat. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01593-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Hęclik K, Duliban J, Dębska B, Lubczak J. Analysis of the Possibility and Conditions of Application of Methylene Blue to Determine the Activity of Radicals in Model System with Preaccelerated Cross-Linking of Polyester Resins. Int J Anal Chem 2019; 2019:2879869. [PMID: 31467548 PMCID: PMC6699369 DOI: 10.1155/2019/2879869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 05/19/2019] [Indexed: 11/17/2022] Open
Abstract
Unsaturated polyester resins are usually processed using a curing system consisting of initiator and accelerator introduced into the resin. Actually, the producers apply built-in amine accelerators which can be named as preaccelerators. Commonly used preaccelerators for unsaturated resins are tertiary aromatic amines of which incorporation into resin structure may bring better stability. It also causes shorter gelation time of resins because of formation of active RO• radicals that initiate polymerization. Investigated radical reactions are too fast and there is no possibility of freezing it (in unsaturated polyester) to measure with Electron Paramagnetic Resonance (EPR). The analytical methodology on radicals activity measurement in model of preaccelerated unsaturated polyester resin reaction with methylene blue as indicator was presented. Using methylene blue as indicator allows us to determine the activity of forming radicals in three-component system (cobalt salt, amine preaccelerator, peroxide, or hydroperoxide) during the reaction of radicals generating. Changes in radicals activity using methylene blue as interceptor can be observed by changes of transmittance in the UV-Vis spectrum in the range 400-950 nm.
Collapse
Affiliation(s)
- Karol Hęclik
- Rzeszow University of Technology, Faculty of Chemistry, Department of Biotechnology and Bioinformatics, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland
| | - Jerzy Duliban
- Rzeszow University of Technology, Faculty of Chemistry, Department of Organic Chemistry, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland
| | - Barbara Dębska
- Rzeszow University of Technology, Faculty of Chemistry, Department of Biotechnology and Bioinformatics, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland
| | - Jacek Lubczak
- Rzeszow University of Technology, Faculty of Chemistry, Department of Organic Chemistry, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland
| |
Collapse
|
41
|
You JG, Tseng WL. Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes. Anal Chim Acta 2019; 1078:101-111. [PMID: 31358207 DOI: 10.1016/j.aca.2019.05.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022]
Abstract
A series of polymers and metal ions have been observed to be useful in triggering aggregation-induced emission (AIE) and AIE enhancement (AIEE) of thiolated gold nanoclusters (AuNCs). However, peptide-induced AIEE of thiolated AuNCs and their applications in biosensors have rarely been investigated. In this study, we showed that positively charged peptides induced efficient AIEE of negatively charged glutathione-capped AuNCs (GSH-AuNCs) through electrostatic attraction. In contrast to GSH-AuNCs, polyarginine (polyArg), a cationic peptide, stimulated the AIEE of the GSH-AuNCs, resulting in a 3.5-fold luminescence enhancement, 10-fold enhancement in quantum yield, 8-nm blueshift in the luminescence maximum, and a 2.1-fold increase in the mean luminescence lifetime. Four different AIEE-based biosensors with excellent selectivity and acceptable sensitivity were fabricated using cationic peptides as an AIEE-active trigger and as a biorecognition element. A heparin biosensor with a limit of detection (LOD) of 3 nM was constructed by combining AG73 peptide-mediated AIEE of the GSH-AuNCs and the specific interaction of AG73 peptides with heparin macromolecules. The concentration of human trypsin was selectively detected at a concentration as low as 1 nM using an arginine-glycine repeat peptide as an enzymatic substrate and as an AIEE-active trigger. Alkaline phosphatase (ALP)-catalyzed dephosphorylation of phosphopeptides paired with the corresponding product-mediated AIEE of the GSH-AuNCs was used for ALP sensing with an LOD of 0.3 U L-1. A peptide consisting of a cyclic RGD unit and an AIEE-active unit was designed to synthesize RGD-modified GSH-AuNC aggregates that can target αvβ3 integrin receptors. These AIEE-based sensors were practically applied for the quantitative determination of heparin in human plasma, trypsin in human urine, and ALP in human plasma as well as for luminescent imaging of αvβ3 integrin-overexpressing HeLa cells.
Collapse
Affiliation(s)
- Jyun-Guo You
- Department of Chemistry, National Sun Yat-sen University, Taiwan, ROC
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, Taiwan, ROC; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan, ROC; Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan, ROC.
| |
Collapse
|
42
|
Chang J, Li H, Li F. Diffusivity and intercalation of electroactive dyes-mediated truly ratiometric homogeneous electrochemical strategy for highly sensitive biosensing. Chem Commun (Camb) 2019; 55:10603-10606. [DOI: 10.1039/c9cc05022a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A truly ratiometric homogeneous electrochemical biosensor was developed for miRNA detection based on the unique diffusion/intercalation properties of electroactive dyes.
Collapse
Affiliation(s)
- Jiafu Chang
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Feng Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- People's Republic of China
| |
Collapse
|
43
|
Kékedy-Nagy L, Sørensen KD, Ferapontova EE. Picomolar sensitive and SNP-selective “Off-On” hairpin genosensor based on structure-tunable redox indicator signals. Biosens Bioelectron 2018; 117:444-449. [DOI: 10.1016/j.bios.2018.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 01/10/2023]
|
44
|
Li Z, Askim JR, Suslick KS. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem Rev 2018; 119:231-292. [DOI: 10.1021/acs.chemrev.8b00226] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jon R. Askim
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kenneth S. Suslick
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
45
|
Borghei YS, Hosseini M, Ganjali MR. Visual detection of miRNA using peroxidase-like catalytic activity of DNA-CuNCs and methylene blue as indicator. Clin Chim Acta 2018; 483:119-125. [DOI: 10.1016/j.cca.2018.04.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/10/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
|
46
|
Silva-Moraes MO, Garcia-Basabe Y, de Souza RFB, Mota AJ, Passos RR, Galante D, Fonseca Filho HD, Romaguera-Barcelay Y, Rocco MLM, Brito WR. Geometry-dependent DNA-TiO 2 immobilization mechanism: A spectroscopic approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:349-355. [PMID: 29635179 DOI: 10.1016/j.saa.2018.03.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
DNA nucleotides are used as a molecular recognition system on electrodes modified to be applied in the detection of various diseases, but immobilization mechanisms, as well as, charge transfers are not satisfactorily described in the literature. An electrochemical and spectroscopic study was carried out to characterize the molecular groups involved in the direct immobilization of DNA structures on the surface of nanostructured TiO2 with the aim of evaluating the influence of the geometrical aspects. X-ray photoelectron spectroscopy at O1s and P2p core levels indicate that immobilization of DNA samples occurs through covalent (POTi) bonds. X-ray absorption spectra at the Ti2p edge reinforce this conclusion. A new species at 138.5eV was reported from P2p XPS spectra analysis which plays an important role in DNA-TiO2 immobilization. The POTi/OTi ratio showed that quantitatively the DNA immobilization mechanism is dependent on their geometry, becoming more efficient for plasmid ds-DNA structures than for PCR ds-DNA structures. The analysis of photoabsorption spectra at C1s edge revealed that the molecular groups that participate in the C1s→LUMO electronic transitions have different pathways in the charge transfer processes at the DNA-TiO2 interface. Our results may contribute to additional studies of immobilization mechanisms understanding the influence of the geometry of different DNA molecules on nanostructured semiconductor and possible impact to the charge transfer processes with application in biosensors or aptamers.
Collapse
Affiliation(s)
- M O Silva-Moraes
- Department of Chemistry, Federal University of Amazonas, Manaus, Amazonas 69067-005, Brazil
| | - Y Garcia-Basabe
- Institute of Science of Life and Nature - ILACVN, Federal University of Latin-American Integration, Foz do Iguaçu 85866-000, PR, Brazil
| | - R F B de Souza
- Department of Chemistry, Federal University of Amazonas, Manaus, Amazonas 69067-005, Brazil
| | - A J Mota
- Faculty of Agricultural Sciences, Federal University of Amazonas, Manaus, Amazonas 69067-005, Brazil
| | - R R Passos
- Department of Chemistry, Federal University of Amazonas, Manaus, Amazonas 69067-005, Brazil
| | - D Galante
- Brazilian Synchrotron Light Laboratory LNLS/CNPEM, Campinas, São Paulo 13083-970, Brazil
| | - H D Fonseca Filho
- Department of Physics, Federal University of Amazonas, Manaus, Amazonas 69067-005, Brazil
| | - Y Romaguera-Barcelay
- Department of Physics, Federal University of Amazonas, Manaus, Amazonas 69067-005, Brazil
| | - M L M Rocco
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - W R Brito
- Department of Chemistry, Federal University of Amazonas, Manaus, Amazonas 69067-005, Brazil.
| |
Collapse
|
47
|
Nordin N, Yusof NA, Radu S, Hushiarian R. Development of an Electrochemical DNA Biosensor to Detect a Foodborne Pathogen. J Vis Exp 2018. [PMID: 29912194 DOI: 10.3791/56585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a common foodborne pathogen that contributes to a large proportion of public health problems globally, significantly affecting the rate of human mortality and morbidity. Conventional methods for the detection of V. parahaemolyticus such as culture-based methods, immunological assays, and molecular-based methods require complicated sample handling and are time-consuming, tedious, and costly. Recently, biosensors have proven to be a promising and comprehensive detection method with the advantages of fast detection, cost-effectiveness, and practicality. This research focuses on developing a rapid method of detecting V. parahaemolyticus with high selectivity and sensitivity using the principles of DNA hybridization. In the work, characterization of synthesized polylactic acid-stabilized gold nanoparticles (PLA-AuNPs) was achieved using X-ray Diffraction (XRD), Ultraviolet-visible Spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Field-emission Scanning Electron Microscopy (FESEM), and Cyclic Voltammetry (CV). We also carried out further testing of stability, sensitivity, and reproducibility of the PLA-AuNPs. We found that the PLA-AuNPs formed a sound structure of stabilized nanoparticles in aqueous solution. We also observed that the sensitivity improved as a result of the smaller charge transfer resistance (Rct) value and an increase of active surface area (0.41 cm2). The development of our DNA biosensor was based on modification of a screen-printed carbon electrode (SPCE) with PLA-AuNPs and using methylene blue (MB) as the redox indicator. We assessed the immobilization and hybridization events by differential pulse voltammetry (DPV). We found that complementary, non-complementary, and mismatched oligonucleotides were specifically distinguished by the fabricated biosensor. It also showed reliably sensitive detection in cross-reactivity studies against various food-borne pathogens and in the identification of V. parahaemolyticus in fresh cockles.
Collapse
Affiliation(s)
- Noordiana Nordin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia;
| | - Nor Azah Yusof
- Laboratory of Functional Device, Institute of Advanced Technology, Universiti Putra Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia
| | - Son Radu
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia
| | | |
Collapse
|
48
|
Kaur B, Malecka K, Cristaldi DA, Chay CS, Mames I, Radecka H, Radecki J, Stulz E. Approaching single DNA molecule detection with an ultrasensitive electrochemical genosensor based on gold nanoparticles and cobalt-porphyrin DNA conjugates. Chem Commun (Camb) 2018; 54:11108-11111. [DOI: 10.1039/c8cc05362f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrasensitive genosensor is obtained by using gold nanoparticles and cobalt-porphyrin labelled DNA reporter strands with an attomolar detection limit.
Collapse
Affiliation(s)
- Balwinder Kaur
- Institute of Animal Reproduction and Food Research
- Polish Academy of Sciences
- 10-748 Olsztyn
- Poland
| | - Kamila Malecka
- Institute of Animal Reproduction and Food Research
- Polish Academy of Sciences
- 10-748 Olsztyn
- Poland
| | - Domenico A. Cristaldi
- School of Chemistry & Institute for Life Sciences
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - Clarissa S. Chay
- School of Chemistry & Institute for Life Sciences
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - Iwona Mames
- School of Chemistry & Institute for Life Sciences
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research
- Polish Academy of Sciences
- 10-748 Olsztyn
- Poland
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research
- Polish Academy of Sciences
- 10-748 Olsztyn
- Poland
| | - Eugen Stulz
- School of Chemistry & Institute for Life Sciences
- University of Southampton
- Southampton SO17 1BJ
- UK
| |
Collapse
|
49
|
de Souza RM, Siani P, Schmidt TF, Itri R, Dias LG. Methylene Blue Location in (Hydroperoxized) Cardiolipin Monolayer: Implication in Membrane Photodegradation. J Phys Chem B 2017; 121:8512-8522. [DOI: 10.1021/acs.jpcb.7b04824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- R. M. de Souza
- Departamento
de Química, FFCLRP, Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - P. Siani
- Departamento
de Química, FFCLRP, Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - T. F. Schmidt
- Universidade Federal do ABC (UFABC), Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - R. Itri
- Departamento
de Física Aplicada, Instituto de Física, Universidade de São Paulo, Rua do Matão 187, 05508-900, São Paulo, SP, Brazil
| | - L. G. Dias
- Departamento
de Química, FFCLRP, Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
50
|
Wen S, Zhang C, Liang R, Chi B, Yuan Y, Qiu J. Highly sensitive voltammetric determination of arsenite by exploiting arsenite-induced conformational change of ssDNA and the electrochemical indicator Methylene Blue. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2432-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|