1
|
Weiss MB, Borges RM, Sullivan P, Domingues JPB, da Silva FHS, Trindade VGS, Luo S, Orjala J, Crnkovic CM. Chemical diversity of cyanobacterial natural products. Nat Prod Rep 2025; 42:6-49. [PMID: 39540765 DOI: 10.1039/d4np00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Covering: 2010 to 2023Cyanobacterial natural products are a diverse group of molecules with promising biotechnological applications. This review examines the chemical diversity of 995 cyanobacterial metabolites reported from 2010 to 2023. A computational analysis using similarity networking was applied to visualize the chemical space and to compare the diversity of cyanobacterial metabolites among taxonomic orders and environmental sources. Key examples are highlighted, detailing their sources, biological activities, and discovery processes.
Collapse
Affiliation(s)
- Márcio B Weiss
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Ricardo M Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Peter Sullivan
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123, Saarbrücken, Germany
| | - João P B Domingues
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Francisco H S da Silva
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Victória G S Trindade
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, 60612, Chicago, IL, USA
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Tan LT, Salleh NF. Marine Cyanobacteria: A Rich Source of Structurally Unique Anti-Infectives for Drug Development. Molecules 2024; 29:5307. [PMID: 39598696 PMCID: PMC11596561 DOI: 10.3390/molecules29225307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Marine cyanobacteria represent a promising yet underexplored source of novel natural products with potent biological activities. Historically, the focus has been on isolating cytotoxic compounds from marine cyanobacteria, but a substantial number of these photosynthetic microorganisms also produce diverse specialized molecules with significant anti-infective properties. Given the global pressing need for new anti-infective lead compounds, this review provides a concise yet comprehensive overview of the current knowledge on anti-infective secondary metabolites derived from marine cyanobacteria. A majority of these molecules were isolated from free-living filamentous cyanobacteria, while several examples were derived from marine cyanobacterial symbionts. In addition, SAR studies and potent synthetic analogs based on selected molecules will be featured. With more than 200 molecules, this review presents their antibacterial, antifungal, antiviral, antiprotozoal, and molluscicidal activities, with the chemical and biological information covered in the literature up to September 2024.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore;
| | | |
Collapse
|
3
|
Zeng J, Yang Q, Ran Y, Guo Y, Jiao P, Qiao D, Cao Y, Xu H. Novel extracellular lipase gene Lip1728 influences nutrient-dependent performance bacterial quorum sensing of Burkholderia pyrrocinia WZ10-3. Int J Biol Macromol 2024; 278:134299. [PMID: 39097047 DOI: 10.1016/j.ijbiomac.2024.134299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Quorum sensing (QS) is a cellular communication mechanism in which bacteria secrete and recognize signaling molecules to regulate group behavior. Lipases provide energy for bacterial cell growth but it is unknown whether they influence nutrient-dependent QS by hydrolyzing substrate. A high-yield lipase-producing strain, Burkholderia pyrrocinia WZ10-3, was previously identified in our laboratory, but the composition of its crude enzymes was not elucidated. Here, we identified a key extracellular lipase, Lip1728, in WZ10-3, which accounts for 99 % of the extracellular lipase activity. Lip1728 prefers to hydrolyze triglycerides at sn-1,3 positions, with pNP-C16 being its optimal substrate. Lip1728 exhibited activity at pH 5.0-10.0 and regardless of the presence of metal ions. It had strong resistance to sodium dodecyl sulfate and short-chain alcohols and was activated by phenylmethanesulfonylfluoride (PMSF). Lip1728 knockout significantly affected lipid metabolism and biofilm formation in the presence of olive oil. Finally, oleic acid, a hydrolysate of Lip1728, influenced the production of the signal molecule N-acyl homoserine lactone (AHL) and biofilm formation by downregulating the AHL synthetase gene pyrI. In conclusion, Lip1728, as a key extracellular lipase in B. pyrrocinia WZ10-3, exhibits superior properties that make it suitable for biodiesel production and plays a crucial role in QS.
Collapse
Affiliation(s)
- Jie Zeng
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Qingzhuoma Yang
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yulu Ran
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yihan Guo
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Pengrui Jiao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yi Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| | - Hui Xu
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
4
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Akmukhanova NR, Leong YK, Seiilbek SN, Konysbay A, Zayadan BK, Sadvakasova AK, Sarsekeyeva FK, Bauenova MO, Bolatkhan K, Alharby HF, Chang JS, Allakhverdiev SI. Eco-friendly biopesticides derived from CO 2-Fixing cyanobacteria. ENVIRONMENTAL RESEARCH 2023; 239:117419. [PMID: 37852466 DOI: 10.1016/j.envres.2023.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
There is currently an escalating global demand for the utilization of plant and natural extracts as pesticides due to their minimal health risks. Cyanobacteria are highly valuable organisms with significant potential in agriculture and are of great interest for the development of agrochemical agents as biopesticides. The flexibility and adaptability of Cyanobacteria to various environmental conditions are facilitated by the presence of specialized enzymes involved in the production of biologically active diverse secondary metabolites, including alkaloids, lipopolysaccharides, non-protein amino acids, non-ribosomal peptides, polyketides, terpenoids, and others. This review focuses on the metabolites synthesized from cyanobacteria that have demonstrated effectiveness as antibacterial, antiviral, antifungal agents, insecticides, herbicides, and more. The potential role of cyanobacteria as an alternative to chemical pesticides for environmental conservation is discussed.
Collapse
Affiliation(s)
- Nurziya R Akmukhanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan
| | - Sandugash N Seiilbek
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Aigerim Konysbay
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Bolatkhan K Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Assemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Fariza K Sarsekeyeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Kenzhegul Bolatkhan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
6
|
Zhang JW, Guo C, Xuan CG, Gu JW, Cui ZN, Zhang J, Zhang L, Jiang W, Zhang LQ. High-Throughput, Quantitative Screening of Quorum-Sensing Inhibitors Based on a Bacterial Biosensor. ACS Chem Biol 2023; 18:2544-2554. [PMID: 37983266 DOI: 10.1021/acschembio.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Quorum sensing (QS) is a cell-cell communication mechanism by which bacteria synchronize social behaviors such as biofilm formation and virulence factor secretion by producing and sensing small molecular signals. Quorum quenching (QQ) by degrading signals or blocking signal transmissions has become a promising strategy for disrupting QS and preventing bacterial infection and biofilm formation. However, studies of high-throughput screening and identification approaches for quorum-sensing inhibitors (QSIs) are still inadequate. In this work, we developed a sensitive, high-throughput approach for screening QSIs based on the bacterial biosensor strain Agrobacterium tumefaciens N5 (pBA7P), which contains a traG gene promoter induced by QS signals fused with a promoterless β-lactamase gene reporter. Using this approach, we identified 31 QQ bacteria from ∼2000 soil bacterial isolates, some belonging to the genera Bosea, Cupriavidus, and Flavobacterium that have not been reported previously as QQ bacteria. We also identified four QS inhibitory compounds and one QS signal analogue from ∼5000 small-molecule compounds, which profoundly affected the expression of QS-regulated genes and phenotypes of the pathogenic bacteria. This high-throughput screening system is effective and sensitive for screening of both QQ microbes and small molecules, enabling the discovery of a wide variety of biocompatible compounds.
Collapse
Affiliation(s)
- Jun-Wei Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Cong Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chen-Guang Xuan
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jing-Wen Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jing Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
| | - Lixin Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
| | - Wenjun Jiang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li-Qun Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Zhang Z, Sun Y, Yi Y, Bai X, Zhu L, Zhu J, Gu M, Zhu Y, Jiang L. Screening and Identification of a Streptomyces Strain with Quorum-Sensing Inhibitory Activity and Effect of the Crude Extracts on Virulence Factors of Pseudomonas aeruginosa. Microorganisms 2023; 11:2079. [PMID: 37630639 PMCID: PMC10458028 DOI: 10.3390/microorganisms11082079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Quorum-sensing (QS) is involved in numerous physiological processes in bacteria, such as biofilm formation, sporulation, and virulence formation. Therefore, the search for new quorum-sensing inhibitors (QSI) is a promising strategy that opens up a new perspective for controlling QS-mediated bacterial pathogens. To explore new QSIs, a strain named Streptomyces sp. D67 with QS inhibitory activity was isolated from the soil of the arid zone around the Kumutag Desert in Xinjiang. Phylogenetic analyses demonstrated that strain D67 shared the highest similarity with Streptomyces ardesiacus NBRC 15402T (98.39%), which indicated it represented a potential novel species in the Streptomyces genus. The fermentation crude extracts of strain D67 can effectively reduce the violacein production produced by Chromobacterium violaceum CV026 and the swarming and swimming abilities of Pseudomonas aeruginosa. It also has significant inhibitory activity on the production of virulence factors such as biofilm, pyocyanin, and rhamnolipids of P. aeruginosa in a significant concentration-dependent manner, but not on protease activity. A total of 618 compounds were identified from the fermentation crude extracts of strain D67 by LC-MS, and 19 compounds with significant QS inhibitory activity were observed. Overall, the strain with QS inhibitory activity was screened from Kumutag Desert in Xinjiang for the first time, which provided a basis for further research and development of new QSI.
Collapse
Affiliation(s)
- Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Yang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Yuanyang Yi
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Xiaoyu Bai
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing Zhu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
| | - Meiying Gu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
| | - Yanlei Zhu
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| |
Collapse
|
8
|
do Amaral SC, Xavier LP, Vasconcelos V, Santos AV. Cyanobacteria: A Promising Source of Antifungal Metabolites. Mar Drugs 2023; 21:359. [PMID: 37367684 PMCID: PMC10300848 DOI: 10.3390/md21060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very chemically and biologically diverse. They can belong to different chemical classes, including peptides, fatty acids, alkaloids, polyketides, and macrolides. Moreover, they can also target different cell components. Filamentous cyanobacteria have been the main source of these compounds. This review aims to identify the key features of these antifungal agents, as well as the sources from which they are obtained, their major targets, and the environmental factors involved when they are being produced. For the preparation of this work, a total of 642 documents dating from 1980 to 2022 were consulted, including patents, original research, review articles, and theses.
Collapse
Affiliation(s)
- Samuel Cavalcante do Amaral
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
9
|
Salleh NF, Wang J, Kundukad B, Oluwabusola ET, Goh DXY, Phyo MY, Tong JJL, Kjelleberg S, Tan LT. Cyclopropane-Containing Specialized Metabolites from the Marine Cyanobacterium cf. Lyngbya sp. Molecules 2023; 28:molecules28093965. [PMID: 37175374 PMCID: PMC10180397 DOI: 10.3390/molecules28093965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Marine cyanobacteria are known to produce structurally diverse bioactive specialized metabolites during bloom occurrence. These ecologically active allelochemicals confer chemical defense for the microalgae from competing microbes and herbivores. From a collection of a marine cyanobacterium, cf. Lyngbya sp., a small quantity of a new cyclopropane-containing molecule, benderadiene (2), and lyngbyoic acid (1) were purified and characterized using spectroscopic methods. Using live reporter quorum-sensing (QS) inhibitory assays, based on P. aeruginosa PAO1 lasB-gfp and rhlA-gfp strains, both compounds were found to inhibit QS-regulated gene expression in a dose-dependent manner. In addition to lyngbyoic acid being more active in the PAO1 lasB-gfp biosensor strain (IC50 of 20.4 µM), it displayed anti-biofilm activity when incubated with wild-type P. aeruginosa. The discovery of lyngbyoic acid in relatively high amounts provided insights into its ecological significance as a defensive allelochemical in targeting competing microbes through interference with their QS systems and starting material to produce other related analogs. Similar strategies could be adopted by other marine cyanobacterial strains where the high production of other lipid acids has been reported. Preliminary evidence is provided from the virtual molecular docking of these cyanobacterial free acids at the ligand-binding site of the P. aeruginosa LasR transcriptional protein.
Collapse
Affiliation(s)
- Nurul Farhana Salleh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Jiale Wang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Emmanuel T Oluwabusola
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Delia Xin Yin Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Ma Yadanar Phyo
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Jasmine Jie Lin Tong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| |
Collapse
|
10
|
Coppola D, Buonocore C, Palisse M, Tedesco P, de Pascale D. Exploring Oceans for Curative Compounds: Potential New Antimicrobial and Anti-Virulence Molecules against Pseudomonas aeruginosa. Mar Drugs 2022; 21:9. [PMID: 36662182 PMCID: PMC9865402 DOI: 10.3390/md21010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Although several antibiotics are already widely used against a large number of pathogens, the discovery of new antimicrobial compounds with new mechanisms of action is critical today in order to overcome the spreading of antimicrobial resistance among pathogen bacteria. In this regard, marine organisms represent a potential source of a wide diversity of unique secondary metabolites produced as an adaptation strategy to survive in competitive and hostile environments. Among the multidrug-resistant Gram-negative bacteria, Pseudomonas aeruginosa is undoubtedly one of the most important species due to its high intrinsic resistance to different classes of antibiotics on the market and its ability to cause serious therapeutic problems. In the present review, we first discuss the general mechanisms involved in the antibiotic resistance of P. aeruginosa. Subsequently, we list the marine molecules identified up until now showing activity against P. aeruginosa, dividing them according to whether they act as antimicrobial or anti-virulence compounds.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Morgan Palisse
- Département des Sciences de la Vie et de la Terre, Université de Caen Normandie, Boulevard Maréchal Juin CS, CEDEX, 14032 Caen, France
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| |
Collapse
|
11
|
Youssef DTA, Mufti SJ, Badiab AA, Shaala LA. Anti-Infective Secondary Metabolites of the Marine Cyanobacterium Lyngbya Morphotype between 1979 and 2022. Mar Drugs 2022; 20:md20120768. [PMID: 36547915 PMCID: PMC9788623 DOI: 10.3390/md20120768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria ascribed to the genus Lyngbya (Family Oscillatoriaceae) represent a potential therapeutic gold mine of chemically and biologically diverse natural products that exhibit a wide array of biological properties. Phylogenetic analyses have established the Lyngbya 'morpho-type' as a highly polyphyletic group and have resulted in taxonomic revision and description of an additional six new cyanobacterial genera in the same family to date. Among the most prolific marine cyanobacterial producers of biologically active compounds are the species Moorena producens (previously L. majuscula, then Moorea producens), M. bouillonii (previously L. bouillonii), and L. confervoides. Over the years, compounding evidence from in vitro and in vivo studies in support of the significant pharmaceutical potential of 'Lyngbya'-derived natural products has made the Lyngbya morphotype a significant target for biomedical research and novel drug leads development. This comprehensive review covers compounds with reported anti-infective activities through 2022 from the Lyngbya morphotype, including new genera arising from recent phylogenetic re-classification. So far, 72 anti-infective secondary metabolites have been isolated from various Dapis, Lyngbya, Moorea, and Okeania species. These compounds showed significant antibacterial, antiparasitic, antifungal, antiviral and molluscicidal effects. Herein, a comprehensive literature review covering the natural source, chemical structure, and biological/pharmacological properties will be presented.
Collapse
Affiliation(s)
- Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-548535344
| | - Shatha J. Mufti
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abeer A. Badiab
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lamiaa A. Shaala
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
12
|
Kar J, Ramrao DP, Zomuansangi R, Lalbiaktluangi C, Singh SM, Joshi NC, Kumar A, Kaushalendra, Mehta S, Yadav MK, Singh PK. Revisiting the role of cyanobacteria-derived metabolites as antimicrobial agent: A 21st century perspective. Front Microbiol 2022; 13:1034471. [PMID: 36466636 PMCID: PMC9717611 DOI: 10.3389/fmicb.2022.1034471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2023] Open
Abstract
Cyanobacterial species are ancient photodiazotrophs prevalent in freshwater bodies and a natural reservoir of many metabolites (low to high molecular weight) such as non-ribosomal peptides, polyketides, ribosomal peptides, alkaloids, cyanotoxins, and isoprenoids with a well-established bioactivity potential. These metabolites enable cyanobacterial survival in extreme environments such as high salinity, heavy metals, cold, UV-B, etc. Recently, these metabolites are gaining the attention of researchers across the globe because of their tremendous applications as antimicrobial agents. Many reports claim the antimicrobial nature of these metabolites; unfortunately, the mode of action of such metabolites is not well understood and/or known limited. Henceforth, this review focuses on the properties and potential application, also critically highlighting the possible mechanism of action of these metabolites to offer further translational research. The review also aims to provide a comprehensive insight into current gaps in research on cyanobacterial biology as antimicrobials and hopes to shed light on the importance of continuing research on cyanobacteria metabolites in the search for novel antimicrobials.
Collapse
Affiliation(s)
- Joyeeta Kar
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Devde Pandurang Ramrao
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Ruth Zomuansangi
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - C. Lalbiaktluangi
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Shiv Mohan Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology (AIMT), Amity University, Noida, Uttar Pradesh, India
| | - Ajay Kumar
- Agriculture Research Organization (ARO) - The Volcani Center, Rishon LeZion, Israel
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | | | - Mukesh Kumar Yadav
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| |
Collapse
|
13
|
Asimakis E, Shehata AA, Eisenreich W, Acheuk F, Lasram S, Basiouni S, Emekci M, Ntougias S, Taner G, May-Simera H, Yilmaz M, Tsiamis G. Algae and Their Metabolites as Potential Bio-Pesticides. Microorganisms 2022; 10:microorganisms10020307. [PMID: 35208762 PMCID: PMC8877611 DOI: 10.3390/microorganisms10020307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
An increasing human population necessitates more food production, yet current techniques in agriculture, such as chemical pesticide use, have negative impacts on the ecosystems and strong public opposition. Alternatives to synthetic pesticides should be safe for humans, the environment, and be sustainable. Extremely diverse ecological niches and millions of years of competition have shaped the genomes of algae to produce a myriad of substances that may serve humans in various biotechnological areas. Among the thousands of described algal species, only a small number have been investigated for valuable metabolites, yet these revealed the potential of algal metabolites as bio-pesticides. This review focuses on macroalgae and microalgae (including cyanobacteria) and their extracts or purified compounds, that have proven to be effective antibacterial, antiviral, antifungal, nematocides, insecticides, herbicides, and plant growth stimulants. Moreover, the mechanisms of action of the majority of these metabolites against plant pests are thoroughly discussed. The available information demonstrated herbicidal activities via inhibition of photosynthesis, antimicrobial activities via induction of plant defense responses, inhibition of quorum sensing and blocking virus entry, and insecticidal activities via neurotoxicity. The discovery of antimetabolites also seems to hold great potential as one recent example showed antimicrobial and herbicidal properties. Algae, especially microalgae, represent a vast untapped resource for discovering novel and safe biopesticide compounds.
Collapse
Affiliation(s)
- Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131 Agrinio, Greece;
| | - Awad A. Shehata
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany;
| | - Wolfgang Eisenreich
- Bavarian NMR Center—Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, 85748 Garching, Germany;
| | - Fatma Acheuk
- Laboratory for Valorization and Conservation of Biological Resources, Faculty of Sciences, University M’Hamed Bougara of Boumerdes, Boumerdes 35000, Algeria;
| | - Salma Lasram
- Laboratory of Molecular Physiology of Plants, Borj-Cedria Biotechnology Center. BP. 901, Hammam-Lif 2050, Tunisia;
| | - Shereen Basiouni
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (S.B.); (H.M.-S.)
| | - Mevlüt Emekci
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Keçiören, Ankara 06135, Turkey;
| | - Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece;
| | - Gökçe Taner
- Department of Bioengineering, Bursa Technical University, Bursa 16310, Turkey;
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (S.B.); (H.M.-S.)
| | - Mete Yilmaz
- Department of Bioengineering, Bursa Technical University, Bursa 16310, Turkey;
- Correspondence: (M.Y.); (G.T.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131 Agrinio, Greece;
- Correspondence: (M.Y.); (G.T.)
| |
Collapse
|
14
|
Liang X, Chen QY, Seabra GM, Matthew S, Kwan JC, Li C, Paul VJ, Luesch H. Bifunctional Doscadenamides Activate Quorum Sensing in Gram-Negative Bacteria and Synergize with TRAIL to Induce Apoptosis in Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:779-789. [PMID: 33480689 PMCID: PMC8209783 DOI: 10.1021/acs.jnatprod.0c01003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
New cyanobacteria-derived bifunctional analogues of doscadenamide A, a LasR-dependent quorum sensing (QS) activator in Pseudomonas aeruginosa, characterized by dual acylation of the pyrrolinone core structure and the pendant side chain primary amine to form an imide/amide hybrid are reported. The identities of doscadenamides B-J were confirmed through total synthesis and a strategic focused library with different acylation and unsaturation patterns was created. Key molecular interactions for binding with LasR and a functional response through mutation studies coupled with molecular docking were identified. The structure-activity relationships (SARs) were probed in various Gram-negative bacteria, including P. aeruginosa and Vibrio harveyi, indicating that the pyrrolinone-N acyl chain is critical for full agonist activity, while the other acyl chain is dispensable or can result in antagonist activity, depending on the bacterial system. Since homoserine lactone (HSL) quorum sensing activators have been shown to act in synergy with TRAIL to induce apoptosis in cancer cells, selected doscadenamides were tested in orthogonal eukaryotic screening systems. The most potent QS agonists, doscadenamides S10-S12, along with doscadenamides F and S4 with partial or complete saturation of the acyl side chains, exhibited the most pronounced synergistic effects with TRAIL in triple negative MDA-MB-231 breast cancer cells. The overall correlation of the SAR with respect to prokaryotic and eukaryotic targets may hint at coevolutionary processes and intriguing host-bacteria relationships. The doscadenamide scaffold represents a non-HSL template for combination therapy with TRAIL pathway stimulators.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Gustavo M. Seabra
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Susan Matthew
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Jason C. Kwan
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
15
|
Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, Sanabria-Ríos DJ. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res 2021; 82:101093. [PMID: 33577909 PMCID: PMC8137538 DOI: 10.1016/j.plipres.2021.101093] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The antibacterial activity of fatty acids (FA) is well known in the literature and represents a promising option for developing the next-generation of antibacterial agents to treat a broad spectrum of bacterial infections. FA are highly involved in living organisms' defense system against numerous pathogens, including multidrug-resistant bacteria. When combined with other antibacterial agents, the remarkable ability of FA to enhance their bactericidal properties is a critical feature that is not commonly observed in other naturally-occurring compounds. More reviews focusing on FA antibacterial activity, traditional and non-traditional mechanisms and biomedical applications are needed. This review is intended to update the reader on the antibacterial properties of recent FA and how their chemical structures influence their antibacterial activity. This review also aims to better understand both traditional and non-traditional mechanisms involved in these recently explored FA antibacterial activities.
Collapse
Affiliation(s)
- Giancarlo Casillas-Vargas
- Faculty of Science and Technology, Department of Natural Sciences, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, USA
| | - Carlimar Ocasio-Malavé
- Faculty of Science and Technology, Department of Natural Sciences, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, USA
| | - Solymar Medina
- Faculty of Science and Technology, Department of Natural Sciences, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, USA
| | - Christian Morales-Guzmán
- University of Puerto Rico, Río Piedras Campus, Department of Chemistry, 17 Ave. Universidad Ste. 1701, San Juan, PR 00925-2537, USA
| | - René García Del Valle
- University of Puerto Rico, Río Piedras Campus, Department of Chemistry, 17 Ave. Universidad Ste. 1701, San Juan, PR 00925-2537, USA
| | - Néstor M Carballeira
- University of Puerto Rico, Río Piedras Campus, Department of Chemistry, 17 Ave. Universidad Ste. 1701, San Juan, PR 00925-2537, USA.
| | - David J Sanabria-Ríos
- Faculty of Science and Technology, Department of Natural Sciences, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, USA.
| |
Collapse
|
16
|
Carpine R, Sieber S. Antibacterial and antiviral metabolites from cyanobacteria: Their application and their impact on human health. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
17
|
Chilczuk T, Monson R, Schmieder P, Christov V, Enke H, Salmond G, Niedermeyer THJ. Ambigols from the Cyanobacterium Fischerella ambigua Increase Prodigiosin Production in Serratia spp. ACS Chem Biol 2020; 15:2929-2936. [PMID: 33143417 DOI: 10.1021/acschembio.0c00554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When a library of 573 cyanobacteria extracts was screened for inhibition of the quorum sensing regulated prodigiosin production of Serratia marcescens, an extract of the cyanobacterium Fischerella ambigua (Näg.) Gomont 108b was found to drastically increase prodigiosin production. Bioactivity-guided isolation of the active compounds resulted in the two new natural products ambigol D and E along with the known ambigols A and C. Ambigol C treatment increased prodiginine production of Serratia sp. ATCC 39006 (S39006) by a factor of 10, while ambigols A and D were found to have antibiotic activity against this strain. The RNA-Seq of S39006 treated with ambigol C and subsequent differential gene expression and functional enrichment analyses indicated a significant downregulation of genes associated with the translation machinery and fatty acid biosynthesis in Serratia, as well as increased expression of genes related to the uptake of l-proline. These results suggest that the ambigols increase prodiginine production in S39006 not by activating the SmaIR quorum sensing system but possibly by increasing the precursor supply of l-proline and malonyl-CoA.
Collapse
Affiliation(s)
- Tomasz Chilczuk
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, Halle, Germany
| | - Rita Monson
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Cambridge, CB2 1QW, United Kingdom
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Department of NMR-Supported Structural Biology, Berlin, Germany
| | - Vesselin Christov
- Zentrum für medizinische Grundlagenforschung, University of Halle-Wittenberg, Halle, Germany
| | | | - George Salmond
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Cambridge, CB2 1QW, United Kingdom
| | | |
Collapse
|
18
|
Tian S, Wang C, Li Y, Bao X, Zhang Y, Tang T. The Impact of SlyA on Cell Metabolism of Salmonella typhimurium: A Joint Study of Transcriptomics and Metabolomics. J Proteome Res 2020; 20:184-190. [PMID: 32969666 DOI: 10.1021/acs.jproteome.0c00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SlyA is an important transcriptional regulator in Salmonella typhimurium (S. typhimurium). Numerous reports have indicated the impact of SlyA on the virulence of S. typhimurium. Less information regarding the role of SlyA in the cell metabolism of S. typhimurium is available. To close this gap, we compared the growth kinetics of an S. typhimurium wild-type strain to a slyA deletion mutant strain. The data suggested that the cell growth of S. typhimurium was impaired when slyA abolished, indicating that SlyA might affect the cell metabolism of S. typhimurium. To determine the role of SlyA in cell metabolism, we analyzed the metabolite profiles of S. typhimurium in the presence or absence of slyA using gas chromatography coupled with tandem mass spectrometry (GC-MS-MS). With the aim of appropriately interpreting the results obtained from metabolomics, a transcriptomic analysis on both the wild-type S. typhimurium and the slyA deletion mutant was performed. The metabolome data indicated that several glycolysis and lipid metabolism-associated pathways, including the turnover of glycerolipid, pyruvate, butanoate, and glycerophospholipid, were affected in the absence of slyA. In addition, the mRNA levels of several genes associated with glycolysis and lipid turnover were downregulated when slyA was deleted, including pagP, fadL, mgtB, iacp, and yciA. Collectively, these evidence suggested that SlyA affects the glycolysis and lipid turnover of S. typhimurium at a transcriptional level. The raw data of metabolomics is available in the MetaboLights database with an access number of MTBLS1858. The raw data of transcriptome is available in the Sequence Read Archive (SRA) database with an access number of PRJNA656165.
Collapse
Affiliation(s)
- Sicheng Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Yongyu Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaoming Bao
- Shimadzu (China) Co., Ltd., Sanse Road, Spirit Industry Business District, Chengdu, Sichuan Province 610063, P.R. China
| | - Yunwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
19
|
Solanki H, Pierdet M, Thomas OP, Zubia M. Insights into the Metabolome of the Cyanobacterium Leibleinia gracilis from the Lagoon of Tahiti and First Inspection of Its Variability. Metabolites 2020; 10:E215. [PMID: 32456338 PMCID: PMC7281704 DOI: 10.3390/metabo10050215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/31/2023] Open
Abstract
Cyanobacteria are known to produce a large diversity of specialized metabolites that can cause severe (eco)toxicological effects. In the lagoon of Tahiti, the benthic cyanobacterium Leibleinia gracilis is commonly found overgrowing the proliferative macroalga Turbinaria ornata or dead branching corals. The specialized metabolome of the cyanobacterium L. gracilis was therefore investigated together with its variability on both substrates and changes in environmental parameters. For the study of the metabolome variability, replicates of L. gracilis were collected in the same location of the lagoon of Tahiti before and after a raining event, both on dead corals and on T. ornata. The variability in the metabolome was inferred from a comparative non-targeted metabolomic using high resolution mass spectrometry (MS) data and a molecular network analysis built through MS/MS analyses. Oxidized fatty acid derivatives including the unusual 11-oxopalmitelaidic acid were found as major constituents of the specialized metabolome of this species. Significant variations in the metabolome of the cyanobacteria were observed, being more important with a change in environmental factors. Erucamide was found to be the main chemical marker highly present when the cyanobacterium grows on the macroalga. This study highlights the importance of combined approaches in metabolomics and molecular networks to inspect the variability in the metabolome of cyanobacteria with applications for ecological questions.
Collapse
Affiliation(s)
- Hiren Solanki
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland;
| | - Manon Pierdet
- University of French Polynesia, UMR Ecosystèmes Insulaires Océaniens, LabEx CORAIL, BP6570, Faa’a, 98702 Tahiti, French Polynesia;
| | - Olivier P. Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland;
| | - Mayalen Zubia
- University of French Polynesia, UMR Ecosystèmes Insulaires Océaniens, LabEx CORAIL, BP6570, Faa’a, 98702 Tahiti, French Polynesia;
| |
Collapse
|
20
|
D´yakonov VA, Makarov AA, Andreev EN, Makarova EK, Dzhemileva LU, Khalilov LM, Dzhemilev UM. Catalytic cycloalumination of 1,2-dienes in the total synthesis of natural grenadamide and lyngbyoic acid. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2772-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Liang X, Matthew S, Chen QY, Kwan JC, Paul VJ, Luesch H. Discovery and Total Synthesis of Doscadenamide A: A Quorum Sensing Signaling Molecule from a Marine Cyanobacterium. Org Lett 2019; 21:7274-7278. [PMID: 31414826 PMCID: PMC7325281 DOI: 10.1021/acs.orglett.9b02525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quorum sensing (QS) plays a critical role in the regulation of bacterial pathogenesis. Doscadenamide A (1a) was isolated from a marine cyanobacterium, its structure elucidated by NMR, and its activity linked to QS induction. The total synthesis of 1a was developed, and the absolute configuration confirmed through comparison of the isolated natural product with synthetic diastereomers. Our preliminary investigation indicated that 1a could activate QS signaling in a LasR-dependent manner.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Susan Matthew
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Jason C. Kwan
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
22
|
Zhao J, Li X, Hou X, Quan C, Chen M. Widespread Existence of Quorum Sensing Inhibitors in Marine Bacteria: Potential Drugs to Combat Pathogens with Novel Strategies. Mar Drugs 2019; 17:md17050275. [PMID: 31072008 PMCID: PMC6562741 DOI: 10.3390/md17050275] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Quorum sensing (QS) is a phenomenon of intercellular communication discovered mainly in bacteria. A QS system consisting of QS signal molecules and regulatory protein components could control physiological behaviors and virulence gene expression of bacterial pathogens. Therefore, QS inhibition could be a novel strategy to combat pathogens and related diseases. QS inhibitors (QSIs), mainly categorized into small chemical molecules and quorum quenching enzymes, could be extracted from diverse sources in marine environment and terrestrial environment. With the focus on the exploitation of marine resources in recent years, more and more QSIs from the marine environment have been investigated. In this article, we present a comprehensive review of QSIs from marine bacteria. Firstly, screening work of marine bacteria with potential QSIs was concluded and these marine bacteria were classified. Afterwards, two categories of marine bacteria-derived QSIs were summarized from the aspects of sources, structures, QS inhibition mechanisms, environmental tolerance, effects/applications, etc. Next, structural modification of natural small molecule QSIs for future drug development was discussed. Finally, potential applications of QSIs from marine bacteria in human healthcare, aquaculture, crop cultivation, etc. were elucidated, indicating promising and extensive application perspectives of QS disruption as a novel antimicrobial strategy.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xinyun Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xiyan Hou
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116600, China.
| |
Collapse
|
23
|
Brumley D, Spencer KA, Gunasekera SP, Sauvage T, Biggs J, Paul VJ, Luesch H. Isolation and Characterization of Anaephenes A-C, Alkylphenols from a Filamentous Cyanobacterium ( Hormoscilla sp., Oscillatoriales). JOURNAL OF NATURAL PRODUCTS 2018; 81:2716-2721. [PMID: 30489078 PMCID: PMC7315913 DOI: 10.1021/acs.jnatprod.8b00650] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three related new alkylphenols, termed anaephenes A-C (1-3), containing different side chains, were isolated from an undescribed filamentous cyanobacterium (VPG 16-59) collected in Guam. Our 16S rDNA sequencing efforts indicated that VPG 16-59 is a member of the marine genus Hormoscilla (Oscillatoriales). The structures of anaephenes A-C (1-3) were elucidated by spectroscopic methods, and compounds assayed for growth inhibitory activity against prokaryotic and eukaryotic cell lines. Anaephene B (2), possessing a terminal alkyne, displayed moderate activity against Bacillus cereus and Staphylococcus aureus with MIC values of 6.1 μg/mL. While 1 and 3 showed no pronounced activity in these assays, their structural features highlight the unusual biosynthetic capacity of this cyanobacterium and warrant further study.
Collapse
Affiliation(s)
- David Brumley
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Kara A. Spencer
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Sarath P. Gunasekera
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
| | - Thomas Sauvage
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
| | - Jason Biggs
- University of Guam Marine Laboratory, Mangilao, Guam 96923
| | - Valerie J. Paul
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
24
|
Vadakkan K, Choudhury AA, Gunasekaran R, Hemapriya J, Vijayanand S. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J Genet Eng Biotechnol 2018; 16:239-252. [PMID: 30733731 PMCID: PMC6353778 DOI: 10.1016/j.jgeb.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023]
Abstract
Bacteria communicate within a system by means of a density dependent mechanism known as quorum sensing which regulate the metabolic and behavioral activities of a bacterial community. This sort of interaction occurs through a dialect of chemical signals called as autoinducers synthesized by bacteria. Bacterial quorum sensing occurs through various complex pathways depending upon specious diversity. Therefore the cognizance of quorum sensing mechanism will enable the regulation and thereby constrain bacterial communication. Inhibition strategies of quorum sensing are collectively called as quorum quenching; through which bacteria are incapacitated of its interaction with each other. Many virulence mechanism such as sporulation, biofilm formation, toxin production can be blocked by quorum quenching. Usually quorum quenching mechanisms can be broadly classified into enzymatic methods and non-enzymatic methods. Substantial understanding of bacterial communication and its inhibition enhances the development of novel antibacterial therapeutic drugs. In this review we have discussed the types and mechanisms of quorum sensing and various methods to inhibit and regulate density dependent bacterial communication.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Abbas Alam Choudhury
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Ramya Gunasekaran
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | | | - Selvaraj Vijayanand
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| |
Collapse
|
25
|
Amiri Moghaddam J, Dávila-Céspedes A, Kehraus S, Crüsemann M, Köse M, Müller CE, König GM. Cyclopropane-Containing Fatty Acids from the Marine Bacterium Labrenzia sp. 011 with Antimicrobial and GPR84 Activity. Mar Drugs 2018; 16:md16100369. [PMID: 30297608 PMCID: PMC6213206 DOI: 10.3390/md16100369] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 11/23/2022] Open
Abstract
Bacteria of the family Rhodobacteraceae are widespread in marine environments and known to colonize surfaces, such as those of e.g., oysters and shells. The marine bacterium Labrenzia sp. 011 is here investigated and it was found to produce two cyclopropane-containing medium-chain fatty acids (1, 2), which inhibit the growth of a range of bacteria and fungi, most effectively that of a causative agent of Roseovarius oyster disease (ROD), Pseudoroseovarius crassostreae DSM 16950. Additionally, compound 2 acts as a potent partial, β-arrestin-biased agonist at the medium-chain fatty acid-activated orphan G-protein coupled receptor GPR84, which is highly expressed on immune cells. The genome of Labrenzia sp. 011 was sequenced and bioinformatically compared with those of other Labrenzia spp. This analysis revealed several cyclopropane fatty acid synthases (CFAS) conserved in all Labrenzia strains analyzed and a putative gene cluster encoding for two distinct CFASs is proposed as the biosynthetic origin of 1 and 2.
Collapse
Affiliation(s)
| | | | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| | - Meryem Köse
- Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Gabriele Maria König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| |
Collapse
|
26
|
Engene N, Tronholm A, Paul VJ. Uncovering cryptic diversity of Lyngbya: the new tropical marine cyanobacterial genus Dapis (Oscillatoriales). JOURNAL OF PHYCOLOGY 2018; 54:435-446. [PMID: 29791035 DOI: 10.1111/jpy.12752] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria comprise an extraordinarily diverse group of microorganisms and, as revealed by increasing molecular information, this biodiversity is even more extensive than previously estimated. In this sense, the cyanobacterial genus Lyngbya is a highly polyphyletic group composed of many unrelated taxa with morphological similarities. In this study, the new genus Dapis was erected from the genus Lyngbya, based on a combined molecular, chemical, and morphological approach. Herein, two new species of cyanobacteria are described: D. pleousa and D. pnigousa. Our analyses found these species to be widely distributed and abundant in tropical and subtropical marine habitats. Seasonally, both species have the ability to form extensive algal blooms in marine habitats: D. pleousa in shallow-water, soft bottom habitats and D. pnigousa on coral reefs below depths of 10 m. Electron microscopy showed that D. pleousa contains gas vesicles, a character not previously reported in Lyngbya. These gas vesicles, in conjunction with a mesh-like network of filaments that trap oxygen released from photosynthesis, provide this species with an unusual mechanism to disperse in coastal marine waters, allowing D. pleousa to be present in both benthic and planktonic forms. In addition, both D. pleousa and D. pnigousa contained nitrogen-fixing genes as well as bioactive secondary metabolites. Several specimens of D. pnigousa biosynthesized the secondary metabolite lyngbic acid, a molecule that has also been isolated from many other marine cyanobacteria. Dapis pleousa consistently produced the secondary metabolite malyngolide, which may provide a promising chemotaxonomic marker for this species.
Collapse
Affiliation(s)
- Niclas Engene
- Department of Biological Sciences, Florida International University, Miami, Florida, 33199, USA
| | - Ana Tronholm
- Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA
| | - Valerie J Paul
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA
| |
Collapse
|
27
|
Manner S, Fallarero A. Screening of Natural Product Derivatives Identifies Two Structurally Related Flavonoids as Potent Quorum Sensing Inhibitors against Gram-Negative Bacteria. Int J Mol Sci 2018; 19:ijms19051346. [PMID: 29751512 PMCID: PMC5983823 DOI: 10.3390/ijms19051346] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 01/14/2023] Open
Abstract
Owing to the failure of conventional antibiotics in biofilm control, alternative approaches are urgently needed. Inhibition of quorum sensing (QS) represents an attractive target since it is involved in several processes essential for biofilm formation. In this study, a compound library of natural product derivatives (n = 3040) was screened for anti-quorum sensing activity using Chromobacterium violaceum as reporter bacteria. Screening assays, based on QS-mediated violacein production and viability, were performed in parallel to identify non-bactericidal QS inhibitors (QSIs). Nine highly active QSIs were identified, while 328 compounds were classified as moderately actives and 2062 compounds as inactives. Re-testing of the highly actives at a lower concentration against C. violaceum, complemented by a literature search, led to the identification of two flavonoid derivatives as the most potent QSIs, and their impact on biofilm maturation in Escherichia coli and Pseudomonas aeruginosa was further investigated. Finally, effects of these leads on swimming and swarming motility of P. aeruginosa were quantified. The identified flavonoids affected all the studied QS-related functions at micromolar concentrations. These compounds can serve as starting points for further optimization and development of more potent QSIs as adjunctive agents used with antibiotics in the treatment of biofilms.
Collapse
Affiliation(s)
- Suvi Manner
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, FI-20520 Turku, Finland.
| | - Adyary Fallarero
- Pharmaceutical Design and Discovery (PharmDD), Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|
28
|
Nalini S, Sandy Richard D, Mohammed Riyaz SU, Kavitha G, Inbakandan D. Antibacterial macro molecules from marine organisms. Int J Biol Macromol 2018; 115:696-710. [PMID: 29702164 DOI: 10.1016/j.ijbiomac.2018.04.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 11/29/2022]
Abstract
Marine ecosystem comprises of microorganisms, plants, invertebrates and vertebrates which were rich source of diverse antimicrobial products, which were structurally unique belonging to a known class of macromolecules like peptides, terpenes, alkaloids and proteins, etc. Natural macromolecules from marine ecological niches are a promising source of antibacterial agents against several drug resistant strains of pathogenic microorganisms; whereas rest of the metabolites were derived from marine flora and fauna while some arise from microbes associated with living organisms. >30,000 natural macromolecules have been identified and reported from marine organisms, however only few macromolecules are being explored and validated. The discovery of marine antibacterial macromolecules plays a significant part in the field of drug discovery and biomedical research. Despite the fact that literatures were documented on the antifungal, antiviral, antimalarial and anticancer properties, this review exclusively highlights the different antibacterial natural macromolecules from marine sources like bacteria, fungi, sponge, algae, bryozoans, tunicates, corals, cnidarians, arthropods and echinoderm along with their mode of action.
Collapse
Affiliation(s)
- S Nalini
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - D Sandy Richard
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - S U Mohammed Riyaz
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - G Kavitha
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - D Inbakandan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India.
| |
Collapse
|
29
|
Fatin SN, Boon-Khai T, Shu-Chien AC, Khairuddean M, Al-Ashraf Abdullah A. A Marine Actinomycete Rescues Caenorhabditis elegans from Pseudomonas aeruginosa Infection through Restitution of Lysozyme 7. Front Microbiol 2017; 8:2267. [PMID: 29201023 PMCID: PMC5696594 DOI: 10.3389/fmicb.2017.02267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
The resistance of Pseudomonas aeruginosa to conventional antimicrobial treatment is a major scourge in healthcare. Therefore, it is crucial that novel potent anti-infectives are discovered. The aim of the present study is to screen marine actinomycetes for chemical entities capable of overcoming P. aeruginosa infection through mechanisms involving anti-virulence or host immunity activities. A total of 18 actinomycetes isolates were sampled from marine sediment of Songsong Island, Kedah, Malaysia. Upon confirming that the methanolic crude extract of these isolates do not display direct bactericidal activities, they were tested for capacity to rescue Caenorhabditis elegans infected with P. aeruginosa strain PA14. A hexane partition of the extract from one isolate, designated as Streptomyces sp. CCB-PSK207, could promote the survival of PA14 infected worms by more than 60%. Partial 16S sequence analysis on this isolate showed identity of 99.79% with Streptomyces sundarbansensis. This partition did not impair feeding behavior of C. elegans worms. Tested on PA14, the partition also did not affect bacterial growth or its ability to colonize host gut. The production of biofilm, protease, and pyocyanin in PA14 were uninterrupted, although there was an increase in elastase production. In lys-7::GFP worms, this partition was shown to induce the expression of lysozyme 7, an important innate immunity defense molecule that was repressed during PA14 infection. GC-MS analysis of the bioactive fraction of Streptomyces sp. CCB-PSK207 revealed the presence of methyl esters of branched saturated fatty acids. In conclusion, this is the first report of a marine actinomycete producing metabolites capable of rescuing C. elegans from PA14 through a lys-7 mediated activity.
Collapse
Affiliation(s)
- Siti N. Fatin
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Tan Boon-Khai
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPHARM), National Institute of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Bukit Gambir, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Amirul Al-Ashraf Abdullah
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPHARM), National Institute of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Bukit Gambir, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Malaysia
| |
Collapse
|
30
|
Sneed JM, Meickle T, Engene N, Reed S, Gunasekera S, Paul VJ. Bloom dynamics and chemical defenses of benthic cyanobacteria in the Indian River Lagoon, Florida. HARMFUL ALGAE 2017; 69:75-82. [PMID: 29122244 DOI: 10.1016/j.hal.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 05/27/2023]
Abstract
Cyanobacterial blooms are predicted to become more prominent in the future as a result of increasing seawater temperatures and the continued addition of nutrients to coastal waters. Many benthic marine cyanobacteria have potent chemical defenses that protect them from top down pressures and contribute to the persistence of blooms. Blooms of benthic cyanobacteria have been observed along the coast of Florida and within the Indian River Lagoon (IRL), a biodiverse estuary system that spans 250km along Florida's east coast. In this study, the cyanobacterial bloom progression at three sites within the central IRL was monitored over the course of two summers. The blooms consisted of four unique cyanobacterial species, including the recently described Okeania erythroflocculosa. The cyanobacteria produced a range of known bioactive compounds including malyngolide, lyngbyoic acid, microcolins A-B, and desacetylmicrocolin B. Ecologically-relevant assays showed that malyngolide inhibited the growth of marine fungi (Dendryphiella salina and Lindra thalassiae); microcolins A-B and desacetylmicrocolin B inhibited feeding by a generalist herbivore, the sea urchin Lytechinus variegatus; and lyngbyoic acid inhibited fungal growth and herbivore feeding. These chemical defenses likely contribute to the persistence of cyanobacterial blooms in the IRL during the summer growing period.
Collapse
Affiliation(s)
- Jennifer M Sneed
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Dr., Ft. Pierce, FL 34949, USA.
| | - Theresa Meickle
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Dr., Ft. Pierce, FL 34949, USA
| | - Niclas Engene
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Dr., Ft. Pierce, FL 34949, USA; Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Sherry Reed
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Dr., Ft. Pierce, FL 34949, USA
| | - Sarath Gunasekera
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Dr., Ft. Pierce, FL 34949, USA
| | - Valerie J Paul
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Dr., Ft. Pierce, FL 34949, USA
| |
Collapse
|
31
|
Choudhary A, Naughton LM, Montánchez I, Dobson ADW, Rai DK. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Mar Drugs 2017; 15:md15090272. [PMID: 28846659 PMCID: PMC5618411 DOI: 10.3390/md15090272] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/12/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Alka Choudhary
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| | - Lynn M Naughton
- School of Microbiology, University College Cork, Western Road, Cork City T12 YN60, Ireland.
| | - Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, Faculty of Science, University of the Basque Country, (UPV/EHU), 48940 Leioa, Spain.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Western Road, Cork City T12 YN60, Ireland.
| | - Dilip K Rai
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| |
Collapse
|
32
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
33
|
Costantino V, Della Sala G, Saurav K, Teta R, Bar-Shalom R, Mangoni A, Steindler L. Plakofuranolactone as a Quorum Quenching Agent from the Indonesian Sponge Plakortis cf. lita. Mar Drugs 2017; 15:md15030059. [PMID: 28264490 PMCID: PMC5367016 DOI: 10.3390/md15030059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/09/2017] [Accepted: 02/22/2017] [Indexed: 01/25/2023] Open
Abstract
There is an urgent need for novel strategies to fight drug resistance and multi-drug resistance. As an alternative to the classic antibiotic therapy, attenuation of the bacteria virulence affecting their Quorum sensing (QS) system is a promising approach. Quorum sensing (QS) is a genetic regulation system that allows bacteria to communicate with each other and coordinate group behaviors. A new γ-lactone that is capable of inhibiting the LasI/R QS system, plakofuranolactone (1), was discovered in the extract of the marine sponge Plakortis cf. lita, and its structure, including absolute configuration, was determined by NMR spectroscopy, MS spectrometry, and quantum-mechanical prediction of optical rotation. The quorum quenching activity of plakofuranolactone was evaluated using reporter gene assays for long- and short-chain signals (E. coli pSB1075, E. coli pSB401, and C. violeaceum CV026) and was confirmed by measuring the total protease activity (a virulence factor which is under control of the LasI/R system) of the wild-type P. aeruginosa PAO1. Further research will be pursued to assess the potential of plakofuranolactone as a new antivirulence lead compound and a chemical tool to increase the knowledge in this field.
Collapse
Affiliation(s)
- Valeria Costantino
- The Blue Chemistry Lab Group, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Gerardo Della Sala
- The Blue Chemistry Lab Group, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Kumar Saurav
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| | - Roberta Teta
- The Blue Chemistry Lab Group, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| | - Alfonso Mangoni
- The Blue Chemistry Lab Group, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| |
Collapse
|
34
|
Saurav K, Costantino V, Venturi V, Steindler L. Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors. Mar Drugs 2017; 15:md15030053. [PMID: 28241461 PMCID: PMC5367010 DOI: 10.3390/md15030053] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022] Open
Abstract
Marine natural products with antibiotic activity have been a rich source of drug discovery; however, the emergence of antibiotic-resistant bacterial strains has turned attention towards the discovery of alternative innovative strategies to combat pathogens. In many pathogenic bacteria, the expression of virulence factors is under the regulation of quorum sensing (QS). QS inhibitors (QSIs) present a promising alternative or potential synergistic treatment since they disrupt the signaling pathway used for intra- and interspecies coordination of expression of virulence factors. This review covers the set of molecules showing QSI activity that were isolated from marine organisms, including plants (algae), animals (sponges, cnidarians, and bryozoans), and microorganisms (bacteria, fungi, and cyanobacteria). The compounds found and the methods used for their isolation are the emphasis of this review.
Collapse
Affiliation(s)
- Kumar Saurav
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| | - Valeria Costantino
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering & Biotechnology, Padriciano 99, 34149 Trieste, Italy.
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| |
Collapse
|
35
|
Rolland JL, Stien D, Sanchez-Ferandin S, Lami R. Quorum Sensing and Quorum Quenching in the Phycosphere of Phytoplankton: a Case of Chemical Interactions in Ecology. J Chem Ecol 2016; 42:1201-1211. [PMID: 27822708 DOI: 10.1007/s10886-016-0791-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/20/2016] [Accepted: 10/05/2016] [Indexed: 12/28/2022]
Abstract
The interactions between bacteria and phytoplankton regulate many important biogeochemical reactions in the marine environment, including those in the global carbon, nitrogen, and sulfur cycles. At the microscopic level, it is now well established that important consortia of bacteria colonize the phycosphere, the immediate environment of phytoplankton cells. In this microscale environment, abundant bacterial cells are organized in a structured biofilm, and exchange information through the diffusion of small molecules called semiochemicals. Among these processes, quorum sensing plays a particular role as, when a sufficient abundance of cells is reached, it allows bacteria to coordinate their gene expression and physiology at the population level. In contrast, quorum quenching mechanisms are employed by many different types of microorganisms that limit the coordination of antagonistic bacteria. This review synthesizes quorum sensing and quorum quenching mechanisms evidenced to date in the phycosphere, emphasizing the implications that these signaling systems have for the regulation of bacterial communities and their activities. The diversity of chemical compounds involved in these processes is examined. We further review the bacterial functions regulated in the phycosphere by quorum sensing, which include biofilm formation, nutrient acquisition, and emission of algaecides. We also discuss quorum quenching compounds as antagonists of quorum sensing, their function in the phycosphere, and their potential biotechnological applications. Overall, the current state of the art demonstrates that quorum sensing and quorum quenching regulate a balance between a symbiotic and a parasitic way of life between bacteria and their phytoplankton host.
Collapse
Affiliation(s)
- Jean Luc Rolland
- Interactions-Hôtes-Pathogènes-Environnements (IHPE), Ifremer, CNRS, UPVD, Université de Montpellier, UMR 5244, 34090, Montpellier, France
| | - Didier Stien
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Sophie Sanchez-Ferandin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Raphaël Lami
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| |
Collapse
|
36
|
Abstract
Microbial communities span many orders of magnitude, ranging in scale from hundreds of cells on a single particle of soil to billions of cells within the lumen of the gastrointestinal tract. Bacterial cells in all habitats are members of densely populated local environments that facilitate competition between neighboring cells. Accordingly, bacteria require dynamic systems to respond to the competitive challenges and the fluctuations in environmental circumstances that tax their fitness. The assemblage of bacteria into communities provides an environment where competitive mechanisms are developed into new strategies for survival. In this minireview, we highlight a number of mechanisms used by bacteria to compete between species. We focus on recent discoveries that illustrate the dynamic and multifaceted functions used in bacterial competition and discuss how specific mechanisms provide a foundation for understanding bacterial community development and function.
Collapse
|
37
|
Welsh MA, Blackwell HE. Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiol Rev 2016; 40:774-94. [PMID: 27268906 DOI: 10.1093/femsre/fuw009] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 01/20/2023] Open
Abstract
Bacteria can utilize chemical signals to coordinate the expression of group-beneficial behaviors in a method of cell-cell communication called quorum sensing (QS). The discovery that QS controls the production of virulence factors and biofilm formation in many common pathogens has driven an explosion of research aimed at both deepening our fundamental understanding of these regulatory networks and developing chemical agents that can attenuate QS signaling. The inherently chemical nature of QS makes studying these pathways with small molecule tools a complementary approach to traditional microbiology techniques. Indeed, chemical tools are beginning to yield new insights into QS regulation and provide novel strategies to inhibit QS. Here, we review the most recent advances in the development of chemical probes of QS systems in Gram-negative bacteria, with an emphasis on the opportunistic pathogen Pseudomonas aeruginosa We first describe reports of novel small molecule modulators of QS receptors and QS signal synthases. Next, in several case studies, we showcase how chemical tools have been deployed to reveal new knowledge of QS biology and outline lessons for how researchers might best target QS to combat bacterial virulence. To close, we detail the outstanding challenges in the field and suggest strategies to overcome these issues.
Collapse
Affiliation(s)
- Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
38
|
Mazard S, Penesyan A, Ostrowski M, Paulsen IT, Egan S. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future. Mar Drugs 2016; 14:E97. [PMID: 27196915 PMCID: PMC4882571 DOI: 10.3390/md14050097] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023] Open
Abstract
Cyanobacteria are among the first microorganisms to have inhabited the Earth. Throughout the last few billion years, they have played a major role in shaping the Earth as the planet we live in, and they continue to play a significant role in our everyday lives. Besides being an essential source of atmospheric oxygen, marine cyanobacteria are prolific secondary metabolite producers, often despite the exceptionally small genomes. Secondary metabolites produced by these organisms are diverse and complex; these include compounds, such as pigments and fluorescent dyes, as well as biologically-active compounds with a particular interest for the pharmaceutical industry. Cyanobacteria are currently regarded as an important source of nutrients and biofuels and form an integral part of novel innovative energy-efficient designs. Being autotrophic organisms, cyanobacteria are well suited for large-scale biotechnological applications due to the low requirements for organic nutrients. Recent advances in molecular biology techniques have considerably enhanced the potential for industries to optimize the production of cyanobacteria secondary metabolites with desired functions. This manuscript reviews the environmental role of marine cyanobacteria with a particular focus on their secondary metabolites and discusses current and future developments in both the production of desired cyanobacterial metabolites and their potential uses in future innovative projects.
Collapse
Affiliation(s)
- Sophie Mazard
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
39
|
Gunasekera SP, Li Y, Ratnayake R, Luo D, Lo J, Reibenspies JH, Xu Z, Clare-Salzler MJ, Ye T, Paul VJ, Luesch H. Discovery, Total Synthesis and Key Structural Elements for the Immunosuppressive Activity of Cocosolide, a Symmetrical Glycosylated Macrolide Dimer from Marine Cyanobacteria. Chemistry 2016; 22:8158-66. [PMID: 27139508 DOI: 10.1002/chem.201600674] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 11/05/2022]
Abstract
A new dimeric macrolide xylopyranoside, cocosolide (1), was isolated from the marine cyanobacterium preliminarily identified as Symploca sp. from Guam. The structure was determined by a combination of NMR spectroscopy, HRMS, X-ray diffraction studies and Mosher's analysis of the base hydrolysis product. Its carbon skeleton closely resembles that of clavosolides A-D isolated from the sponge Myriastra clavosa, for which no bioactivity is known. We performed the first total synthesis of cocosolide (1) along with its [α,α]-anomer (26) and macrocyclic core (28), thus leading to the confirmation of the structure of natural 1. The convergent synthesis featured Wadsworth-Emmons cyclopropanation, Sakurai annulation, Yamaguchi macrocyclization/dimerization reaction, α-selective glycosidation and β-selective glycosidation. Compounds 1 and 26 potently inhibited IL-2 production in both T-cell receptor dependent and independent manners. Full activity requires the presence of the sugar moiety as well as the intact dimeric structure. Cocosolide also suppressed the proliferation of anti-CD3-stimulated T-cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Sarath P Gunasekera
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA
| | - Yang Li
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, P.R. China
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, USA
| | - Danmeng Luo
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, USA
| | - Jeannette Lo
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Joseph H Reibenspies
- Department of Chemistry, Texas A & M University, College Station, Texas, 77843, USA
| | - Zhengshuang Xu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, P.R. China
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Tao Ye
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, P.R. China.
| | - Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA.
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, USA.
| |
Collapse
|
40
|
Garrison AT, Abouelhassan Y, Norwood VM, Kallifidas D, Bai F, Nguyen MT, Rolfe M, Burch GM, Jin S, Luesch H, Huigens RW. Structure-Activity Relationships of a Diverse Class of Halogenated Phenazines That Targets Persistent, Antibiotic-Tolerant Bacterial Biofilms and Mycobacterium tuberculosis. J Med Chem 2016; 59:3808-25. [PMID: 27018907 DOI: 10.1021/acs.jmedchem.5b02004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Persistent bacteria, including persister cells within surface-attached biofilms and slow-growing pathogens lead to chronic infections that are tolerant to antibiotics. Here, we describe the structure-activity relationships of a series of halogenated phenazines (HP) inspired by 2-bromo-1-hydroxyphenazine 1. Using multiple synthetic pathways, we probed diverse substitutions of the HP scaffold in the 2-, 4-, 7-, and 8-positions, providing critical information regarding their antibacterial and bacterial eradication profiles. Halogenated phenazine 14 proved to be the most potent biofilm-eradicating agent (≥99.9% persister cell killing) against MRSA (MBEC < 10 μM), MRSE (MBEC = 2.35 μM), and VRE (MBEC = 0.20 μM) biofilms while 11 and 12 demonstrated excellent antibacterial activity against M. tuberculosis (MIC = 3.13 μM). Unlike antimicrobial peptide mimics that eradicate biofilms through the general lysing of membranes, HPs do not lyse red blood cells. HPs are promising agents that effectively target persistent bacteria while demonstrating negligible toxicity against mammalian cells.
Collapse
Affiliation(s)
- Aaron T Garrison
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Verrill M Norwood
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Dimitris Kallifidas
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Fang Bai
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Minh Thu Nguyen
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Melanie Rolfe
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Gena M Burch
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Shouguang Jin
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Robert W Huigens
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| |
Collapse
|
41
|
Chatterjee M, Anju C, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol 2016; 306:48-58. [DOI: 10.1016/j.ijmm.2015.11.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 01/05/2023] Open
|
42
|
Garrison AT, Abouelhassan Y, Kallifidas D, Bai F, Ukhanova M, Mai V, Jin S, Luesch H, Huigens RW. Halogenated Phenazines that Potently Eradicate Biofilms, MRSA Persister Cells in Non‐Biofilm Cultures, and
Mycobacterium tuberculosis. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Aaron T. Garrison
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Dimitris Kallifidas
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Fang Bai
- Department of Molecular Genetics & Microbiology, University of Florida (USA)
| | - Maria Ukhanova
- Department of Epidemiology, University of Florida, P.O. Box 100009, Gainesville, FL 32610 (USA)
| | - Volker Mai
- Department of Epidemiology, University of Florida, P.O. Box 100009, Gainesville, FL 32610 (USA)
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, University of Florida (USA)
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Robert W. Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| |
Collapse
|
43
|
Garrison AT, Abouelhassan Y, Kallifidas D, Bai F, Ukhanova M, Mai V, Jin S, Luesch H, Huigens RW. Halogenated Phenazines that Potently Eradicate Biofilms, MRSA Persister Cells in Non-Biofilm Cultures, and Mycobacterium tuberculosis. Angew Chem Int Ed Engl 2015; 54:14819-23. [PMID: 26480852 DOI: 10.1002/anie.201508155] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/22/2015] [Indexed: 01/23/2023]
Abstract
Conventional antibiotics are ineffective against non-replicating bacteria (for example, bacteria within biofilms). We report a series of halogenated phenazines (HP), inspired by marine antibiotic 1, that targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC = 0.2-12.5 μM), as well as the effective killing of MRSA persister cells in non-biofilm cultures. Frontline MRSA treatments, vancomycin and daptomycin, were unable to eradicate MRSA biofilms or non-biofilm persisters alongside 14. HP 13 displayed potent antibacterial activity against slow-growing M. tuberculosis (MIC = 3.13 μM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through a mechanism that is non-toxic to mammalian cells and could have a significant impact on treatments for chronic bacterial infections.
Collapse
Affiliation(s)
- Aaron T Garrison
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Dimitris Kallifidas
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Fang Bai
- Department of Molecular Genetics & Microbiology, University of Florida (USA)
| | - Maria Ukhanova
- Department of Epidemiology, University of Florida, P.O. Box 100009, Gainesville, FL 32610 (USA)
| | - Volker Mai
- Department of Epidemiology, University of Florida, P.O. Box 100009, Gainesville, FL 32610 (USA)
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, University of Florida (USA)
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA).
| |
Collapse
|
44
|
Salvador-Reyes LA, Luesch H. Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat Prod Rep 2015; 32:478-503. [PMID: 25571978 DOI: 10.1039/c4np00104d] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Marine cyanobacteria are an ancient group of organisms and prolific producers of bioactive secondary metabolites. These compounds are presumably optimized by evolution over billions of years to exert high affinity for their intended biological target in the ecologically relevant organism but likely also possess activity in different biological contexts such as human cells. Screening of marine cyanobacterial extracts for bioactive natural products has largely focused on cancer cell viability; however, diversification of the screening platform led to the characterization of many new bioactive compounds. Targets of compounds have oftentimes been elusive if the compounds were discovered through phenotypic assays. Over the past few years, technology has advanced to determine mechanism of action (MOA) and targets through reverse chemical genetic and proteomic approaches, which has been applied to certain cyanobacterial compounds and will be discussed in this review. Some cyanobacterial molecules are the most-potent-in-class inhibitors and therefore may become valuable tools for chemical biology to probe protein function but also be templates for novel drugs, assuming in vitro potency translates into cellular and in vivo activity. Our review will focus on compounds for which the direct targets have been deciphered or which were found to target a novel pathway, and link them to disease states where target modulation may be beneficial.
Collapse
Affiliation(s)
- Lilibeth A Salvador-Reyes
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
45
|
Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, García-Contreras SJ, Wood TK, García-Contreras R. Role of quorum sensing in bacterial infections. World J Clin Cases 2015; 3:575-598. [PMID: 26244150 PMCID: PMC4517333 DOI: 10.12998/wjcc.v3.i7.575] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/30/2014] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed.
Collapse
|
46
|
Soares AR, Engene N, Gunasekera SP, Sneed JM, Paul VJ. Carriebowlinol, an antimicrobial tetrahydroquinolinol from an assemblage of marine cyanobacteria containing a novel taxon. JOURNAL OF NATURAL PRODUCTS 2015; 78:534-538. [PMID: 25536090 DOI: 10.1021/np500598x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A combined biodiversity- and bioassay-guided natural products discovery approach was used to explore new groups of marine cyanobacteria for novel secondary metabolites with ecologically relevant bioactivities. Phylogenetic analysis of cyanobacterial collections from Belize revealed a new taxon not previously well explored for natural products. The new alkaloid 5-hydroxy-4-(chloromethyl)-5,6,7,8-tetrahydroquinoline (1), named carriebowlinol, and the known compound lyngbic acid (2) were isolated from a nonpolar extract and identified by NMR and MS techniques. Compounds 1 and 2 inhibited the growth of pathogenic and saprophytic marine fungi, and 1 inhibited the growth of marine bacteria, suggesting an antimicrobial ecological function.
Collapse
Affiliation(s)
- Angélica R Soares
- †Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida 34949, United States
- ‡Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Universidade Federal do Rio de Janeiro, Caixa Postal 119331, Macaé, RJ CEP 27910-970, Brazil
| | - Niclas Engene
- †Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida 34949, United States
- §Department of Biological Sciences, Florida International University, Miami, Florida 33199, United States
| | - Sarath P Gunasekera
- †Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida 34949, United States
| | - Jennifer M Sneed
- †Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida 34949, United States
| | - Valerie J Paul
- †Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida 34949, United States
| |
Collapse
|
47
|
Guo M, Zheng Y, Starks R, Opoku-Temeng C, Ma X, Sintim HO. 3-Aminooxazolidinone AHL analogs as hydrolytically-stable quorum sensingagonists in Gram-negative bacteria. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00015g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrolytically stable 3-aminooxazolidinone analogs of acylhomoserine lactone quorum sensing autoinducers can modulate LuxR-type proteins and hence analogs thereof hold promise as quorum sensing modulators for diverse applications.
Collapse
Affiliation(s)
- Min Guo
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Yue Zheng
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Rusty Starks
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | | | - Xiaochu Ma
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| |
Collapse
|
48
|
Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ. Marine chemical ecology in benthic environments. Nat Prod Rep 2014; 31:1510-53. [DOI: 10.1039/c4np00017j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
49
|
Tang K, Zhang XH. Quorum quenching agents: resources for antivirulence therapy. Mar Drugs 2014; 12:3245-82. [PMID: 24886865 PMCID: PMC4071575 DOI: 10.3390/md12063245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/15/2022] Open
Abstract
The continuing emergence of antibiotic-resistant pathogens is a concern to human health and highlights the urgent need for the development of alternative therapeutic strategies. Quorum sensing (QS) regulates virulence in many bacterial pathogens, and thus, is a promising target for antivirulence therapy which may inhibit virulence instead of cell growth and division. This means that there is little selective pressure for the evolution of resistance. Many natural quorum quenching (QQ) agents have been identified. Moreover, it has been shown that many microorganisms are capable of producing small molecular QS inhibitors and/or macromolecular QQ enzymes, which could be regarded as a strategy for bacteria to gain benefits in competitive environments. More than 30 species of marine QQ bacteria have been identified thus far, but only a few of them have been intensively studied. Recent studies indicate that an enormous number of QQ microorganisms are undiscovered in the highly diverse marine environments, and these marine microorganism-derived QQ agents may be valuable resources for antivirulence therapy.
Collapse
Affiliation(s)
- Kaihao Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
50
|
Garg N, Manchanda G, Kumar A. Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 2013; 105:289-305. [DOI: 10.1007/s10482-013-0082-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/16/2013] [Indexed: 11/28/2022]
|