1
|
Mattos LMM, Hottum HM, Pires DC, Segat BB, Horn A, Fernandes C, Pereira MD. Exploring the antioxidant activity of Fe(III), Mn(III)Mn(II), and Cu(II) compounds in Saccharomyces cerevisiae and Galleria mellonella models of study. FEMS Yeast Res 2024; 24:foad052. [PMID: 38124682 PMCID: PMC10776354 DOI: 10.1093/femsyr/foad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/19/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Reactive oxygen species (ROS) are closely related to oxidative stress, aging, and the onset of human diseases. To mitigate ROS-induced damages, extensive research has focused on examining the antioxidative attributes of various synthetic/natural substances. Coordination compounds serving as synthetic antioxidants have emerged as a promising approach to attenuate ROS toxicity. Herein, we investigated the antioxidant potential of a series of Fe(III) (1), Mn(III)Mn(II) (2) and Cu(II) (3) coordination compounds synthesized with the ligand N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]-propylamine in Saccharomyces cerevisiae exposed to oxidative stress. We also assessed the antioxidant potential of these complexes in the alternative model of study, Galleria mellonella. DPPH analysis indicated that these complexes presented moderate antioxidant activity. However, treating Saccharomyces cerevisiae with 1, 2 and 3 increased the tolerance against oxidative stress and extended yeast lifespan. The treatment of yeast cells with these complexes decreased lipid peroxidation and catalase activity in stressed cells, whilst no change in SOD activity was observed. Moreover, these complexes induced the Hsp104 expression. In G. mellonella, complex administration extended larval survival under H2O2 stress and did not affect the insect's life cycle. Our results suggest that the antioxidant potential exhibited by these complexes could be further explored to mitigate various oxidative stress-related disorders.
Collapse
Affiliation(s)
- Larissa M M Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Rede de Micologia RJ - FAPERJ
| | - Hyan M Hottum
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Rede de Micologia RJ - FAPERJ
| | - Daniele C Pires
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Rede de Micologia RJ - FAPERJ
| | - Bruna B Segat
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Adolfo Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marcos D Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Rede de Micologia RJ - FAPERJ
| |
Collapse
|
2
|
Gibney A, de Paiva REF, Singh V, Fox R, Thompson D, Hennessy J, Slator C, McKenzie CJ, Johansson P, McKee V, Westerlund F, Kellett A. A Click Chemistry-Based Artificial Metallo-Nuclease. Angew Chem Int Ed Engl 2023; 62:e202305759. [PMID: 37338105 DOI: 10.1002/anie.202305759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Artificial metallo-nucleases (AMNs) are promising DNA damaging drug candidates. Here, we demonstrate how the 1,2,3-triazole linker produced by the Cu-catalysed azide-alkyne cycloaddition (CuAAC) reaction can be directed to build Cu-binding AMN scaffolds. We selected biologically inert reaction partners tris(azidomethyl)mesitylene and ethynyl-thiophene to develop TC-Thio, a bioactive C3 -symmetric ligand in which three thiophene-triazole moieties are positioned around a central mesitylene core. The ligand was characterised by X-ray crystallography and forms multinuclear CuII and CuI complexes identified by mass spectrometry and rationalised by density functional theory (DFT). Upon Cu coordination, CuII -TC-Thio becomes a potent DNA binding and cleaving agent. Mechanistic studies reveal DNA recognition occurs exclusively at the minor groove with subsequent oxidative damage promoted through a superoxide- and peroxide-dependent pathway. Single molecule imaging of DNA isolated from peripheral blood mononuclear cells shows that the complex has comparable activity to the clinical drug temozolomide, causing DNA damage that is recognised by a combination of base excision repair (BER) enzymes.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Raphael E F de Paiva
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Vandana Singh
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Fox
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Damien Thompson
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Physics, University of Limerick, Ireland
| | - Joseph Hennessy
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Creina Slator
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Pegah Johansson
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Vickie McKee
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew Kellett
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| |
Collapse
|
3
|
Kumar P, Tomar S, Kumar K, Kumar S. Transition metal complexes as self-activating chemical nucleases: proficient DNA cleavage without any exogenous redox agents. Dalton Trans 2023; 52:6961-6977. [PMID: 37128993 DOI: 10.1039/d3dt00368j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical nucleases have found potential applications in the research fields of chemistry, biotechnology and medicine. A variety of metal complexes have been explored as good to outstanding therapeutic agents for DNA cleavage activity most likely via hydrolytic, oxidative or photoinduced cleavage pathways. However, most of these DNA cleaving agents lack their utility in in vivo applications due to their dependence on exogenous oxidants or reductants to achieve successful DNA damage. In view of addressing these issues, the development of metal complexes/organic molecules serving as self-activating chemical nucleases has received growing attention from researchers. In only the last decade, this field has dramatically expanded for the usage of chemical nucleases as therapeutic agents for DNA damage. The present study provides an overview of the opportunities and challenges in the design and development of self-activating chemical nucleases as improved DNA therapeutic candidates in the absence of an external redox agent. The reports on DNA nuclease activity via self-activation, especially with copper, zinc and iron complexes, and their mechanistic investigation have been discussed in this review article.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India.
| | - Sunil Tomar
- Department of Zoology, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India
| | - Krishan Kumar
- Department of Chemistry, Motilal Nehru College, South Campus University of Delhi, New Delhi, India
| | - Sushil Kumar
- Department of Chemistry, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
4
|
Interplay of electronic and geometric structure on Cu phenanthroline, bipyridine and derivative complexes, synthesis, characterization, and reactivity towards oxygen. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Antibacterial activity of metal-phenanthroline complexes against multidrug-resistant Irish clinical isolates: a whole genome sequencing approach. J Biol Inorg Chem 2023; 28:153-171. [PMID: 36484826 PMCID: PMC9734640 DOI: 10.1007/s00775-022-01979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance (AMR) is one of the serious global health challenges of our time. There is now an urgent need to develop novel therapeutic agents that can overcome AMR, preferably through alternative mechanistic pathways from conventional treatments. The antibacterial activity of metal complexes (metal = Cu(II), Mn(II), and Ag(I)) incorporating 1,10-phenanthroline (phen) and various dianionic dicarboxylate ligands, along with their simple metal salt and dicarboxylic acid precursors, against common AMR pathogens were investigated. Overall, the highest level of antibacterial activity was evident in compounds that incorporate the phen ligand compared to the activities of their simple salt and dicarboxylic acid precursors. The chelates incorporating both phen and the dianion of 3,6,9-trioxaundecanedioic acid (tdda) were the most effective, and the activity varied depending on the metal centre. Whole-genome sequencing (WGS) was carried out on the reference Pseudomonas aeruginosa strain, PAO1. This strain was exposed to sub-lethal doses of lead metal-tdda-phen complexes to form mutants with induced resistance properties with the aim of elucidating their mechanism of action. Various mutations were detected in the mutant P. aeruginosa genome, causing amino acid changes to proteins involved in cellular respiration, the polyamine biosynthetic pathway, and virulence mechanisms. This study provides insights into acquired resistance mechanisms of pathogenic organisms exposed to Cu(II), Mn(II), and Ag(I) complexes incorporating phen with tdda and warrants further development of these potential complexes as alternative clinical therapeutic drugs to treat AMR infections.
Collapse
|
6
|
Santos MFA, Sciortino G, Correia I, Fernandes ACP, Santos-Silva T, Pisanu F, Garribba E, Costa Pessoa J. Binding of V IV O 2+ , V IV OL, V IV OL 2 and V V O 2 L Moieties to Proteins: X-ray/Theoretical Characterization and Biological Implications. Chemistry 2022; 28:e202200105. [PMID: 35486702 DOI: 10.1002/chem.202200105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIV O2+ and VIV OL2+ , where L=2,2'-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIV O(picolinato)2 and VV O2 (phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin-VV O2 (phen) and trypsin-VIV O(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium-protein interactions.
Collapse
Affiliation(s)
- Marino F A Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007, Tarragona, Spain
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Andreia C P Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
7
|
Queiroz DD, Ribeiro TP, Gonçalves JM, Mattos LMM, Gerhardt E, Freitas J, Palhano FL, Frases S, Pinheiro AS, McCann M, Knox A, Devereux M, Outeiro TF, Pereira MD. A water-soluble manganese(II) octanediaoate/phenanthroline complex acts as an antioxidant and attenuates alpha-synuclein toxicity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166475. [PMID: 35777688 DOI: 10.1016/j.bbadis.2022.166475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
Abstract
The overproduction of reactive oxygen species (ROS) induces oxidative stress, a well-known process associated with aging and several human pathologies, such as cancer and neurodegenerative diseases. A large number of synthetic compounds have been described as antioxidant enzyme mimics, capable of eliminating ROS and/or reducing oxidative damage. In this study, we investigated the antioxidant activity of a water-soluble 1,10-phenantroline-octanediaoate Mn2+-complex on cells under oxidative stress, and assessed its capacity to attenuate alpha-synuclein (aSyn) toxicity and aggregation, a process associated with increased oxidative stress. This Mn2+-complex exhibited a significant antioxidant potential, reducing intracelular oxidation and increasing oxidative stress resistance in S. cerevisiae cells and in vivo, in G. mellonella, increasing the activity of the intracellular antioxidant enzymes superoxide dismutase and catalase. Strikingly, the Mn2+-complex reduced both aSyn oligomerization and aggregation in human cell cultures and, using NMR and DFT/molecular docking we confirmed its interaction with the C-terminal region of aSyn. In conclusion, the Mn2+-complex appears as an excellent lead for the design of new phenanthroline derivatives as alternative compounds for preventing oxidative damages and oxidative stress - related diseases.
Collapse
Affiliation(s)
- Daniela D Queiroz
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil; Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany; Rede de Micrologia RJ-FAPERJ, Brazil
| | - Thales P Ribeiro
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil; Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany; Rede de Micrologia RJ-FAPERJ, Brazil
| | - Julliana M Gonçalves
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil; Rede de Micrologia RJ-FAPERJ, Brazil
| | - Larissa M M Mattos
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil; Rede de Micrologia RJ-FAPERJ, Brazil
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany
| | - Júlia Freitas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil
| | - Malachy McCann
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Andrew Knox
- The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Camden Row, Dublin 8, Ireland
| | - Michael Devereux
- The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Camden Row, Dublin 8, Ireland
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK; Scientific employee with an honorary contract at German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Marcos D Pereira
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil; Rede de Micrologia RJ-FAPERJ, Brazil.
| |
Collapse
|
8
|
New mixed ligand oxidovanadium(IV) complexes: Solution behavior, protein interaction and cytotoxicity. J Inorg Biochem 2022; 233:111853. [DOI: 10.1016/j.jinorgbio.2022.111853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
|
9
|
O’Shaughnessy M, Piatek M, McCarron P, McCann M, Devereux M, Kavanagh K, Howe O. In Vivo Activity of Metal Complexes Containing 1,10-Phenanthroline and 3,6,9-Trioxaundecanedioate Ligands against Pseudomonas aeruginosa Infection in Galleria mellonella Larvae. Biomedicines 2022; 10:biomedicines10020222. [PMID: 35203432 PMCID: PMC8869450 DOI: 10.3390/biomedicines10020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Drug-resistant Pseudomonas aeruginosa is rapidly developing resulting in a serious global threat. Immunocompromised patients are specifically at risk, especially those with cystic fibrosis (CF). Novel metal complexes incorporating 1,10-phenanthroline (phen) ligands have previously demonstrated antibacterial and anti-biofilm effects against resistant P. aeruginosa from CF patients in vitro. Herein, we present the in vivo efficacy of {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Cu-tdda-phen), {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Mn-tdda-phen) and [Ag2(3,6,9-tdda)(phen)4]·EtOH (Ag-tdda-phen) (tddaH2 = 3,6,9-trioxaundecanedioic acid). Individual treatments of these metal-tdda-phen complexes and in combination with the established antibiotic gentamicin were evaluated in vivo in larvae of Galleria mellonella infected with clinical isolates and laboratory strains of P. aeruginosa. G. mellonella were able to tolerate all test complexes up to 10 µg/larva. In addition, the immune response was affected by stimulation of immune cells (hemocytes) and genes that encode for immune-related peptides, specifically transferrin and inducible metallo-proteinase inhibitor. The amalgamation of metal-tdda-phen complexes and gentamicin further intensified this response at lower concentrations, clearing a P. aeruginosa infection that were previously resistant to gentamicin alone. Therefore this work highlights the anti-pseudomonal capabilities of metal-tdda-phen complexes alone and combined with gentamicin in an in vivo model.
Collapse
Affiliation(s)
- Megan O’Shaughnessy
- School of Biological and Health Sciences, Technological University Dublin-City Campus, D07 ADY7 Dublin, Ireland;
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
| | - Magdalena Piatek
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland;
| | - Pauraic McCarron
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
| | - Malachy McCann
- Chemistry Department, Maynooth University, W23 F2H6 Kildare, Ireland;
| | - Michael Devereux
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
| | - Kevin Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland;
- Correspondence: (K.K.); (O.H.)
| | - Orla Howe
- School of Biological and Health Sciences, Technological University Dublin-City Campus, D07 ADY7 Dublin, Ireland;
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
- Correspondence: (K.K.); (O.H.)
| |
Collapse
|
10
|
Banasiak A, Zuin Fantoni N, Kellett A, Colleran J. Mapping the DNA Damaging Effects of Polypyridyl Copper Complexes with DNA Electrochemical Biosensors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030645. [PMID: 35163909 PMCID: PMC8838702 DOI: 10.3390/molecules27030645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 01/01/2022] [Indexed: 12/22/2022]
Abstract
Several classes of copper complexes are known to induce oxidative DNA damage that mediates cell death. These compounds are potentially useful anticancer agents and detailed investigation can reveal the mode of DNA interaction, binding strength, and type of oxidative lesion formed. We recently reported the development of a DNA electrochemical biosensor employed to quantify the DNA cleavage activity of the well-studied [Cu(phen)2]2+ chemical nuclease. However, to validate the broader compatibility of this sensor for use with more diverse—and biologically compatible—copper complexes, and to probe its use from a drug discovery perspective, analysis involving new compound libraries is required. Here, we report on the DNA binding and quantitative cleavage activity of the [Cu(TPMA)(N,N)]2+ class (where TPMA = tris-2-pyridylmethylamine) using a DNA electrochemical biosensor. TPMA is a tripodal copper caging ligand, while N,N represents a bidentate planar phenanthrene ligand capable of enhancing DNA interactions through intercalation. All complexes exhibited electroactivity and interact with DNA through partial (or semi-) intercalation but predominantly through electrostatic attraction. Although TPMA provides excellent solution stability, the bulky ligand enforces a non-planar geometry on the complex, which sterically impedes full interaction. [Cu(TPMA)(phen)]2+ and [Cu(TPMA)(DPQ)]2+ cleaved 39% and 48% of the DNA strands from the biosensor surface, respectively, while complexes [Cu(TPMA)(bipy)]2+ and [Cu(TPMA)(PD)]2+ exhibit comparatively moderate nuclease efficacy (ca. 26%). Comparing the nuclease activities of [Cu(TPMA)(phen)] 2+ and [Cu(phen)2]2+ (ca. 23%) confirms the presence of TPMA significantly enhances chemical nuclease activity. Therefore, the use of this DNA electrochemical biosensor is compatible with copper(II) polypyridyl complexes and reveals TPMA complexes as a promising class of DNA damaging agent with tuneable activity due to coordinated ancillary phenanthrene ligands.
Collapse
Affiliation(s)
- Anna Banasiak
- Applied Electrochemistry Group, FOCAS Institute, Technological University Dublin, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland;
| | - Nicolò Zuin Fantoni
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, D09 NR58 Dublin, Ireland
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, D09 NR58 Dublin, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, D09 NR58 Dublin, Ireland
- Correspondence: (A.K.); (J.C.); Tel.: +353-1-700-5461 (A.K.); +353-1-220-5562 (J.C.)
| | - John Colleran
- Applied Electrochemistry Group, FOCAS Institute, Technological University Dublin, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland;
- Central Quad Grangegorman, School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Dublin 7, D07 H6K8 Dublin, Ireland
- Correspondence: (A.K.); (J.C.); Tel.: +353-1-700-5461 (A.K.); +353-1-220-5562 (J.C.)
| |
Collapse
|
11
|
Masuri S, Vaňhara P, Cabiddu MG, Moráň L, Havel J, Cadoni E, Pivetta T. Copper(II) Phenanthroline-Based Complexes as Potential AntiCancer Drugs: A Walkthrough on the Mechanisms of Action. Molecules 2021; 27:49. [PMID: 35011273 PMCID: PMC8746828 DOI: 10.3390/molecules27010049] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
Copper is an endogenous metal ion that has been studied to prepare a new antitumoral agent with less side-effects. Copper is involved as a cofactor in several enzymes, in ROS production, in the promotion of tumor progression, metastasis, and angiogenesis, and has been found at high levels in serum and tissues of several types of human cancers. Under these circumstances, two strategies are commonly followed in the development of novel anticancer Copper-based drugs: the sequestration of free Copper ions and the synthesis of Copper complexes that trigger cell death. The latter strategy has been followed in the last 40 years and many reviews have covered the anticancer properties of a broad spectrum of Copper complexes, showing that the activity of these compounds is often multi factored. In this work, we would like to focus on the anticancer properties of mixed Cu(II) complexes bearing substituted or unsubstituted 1,10-phenanthroline based ligands and different classes of inorganic and organic auxiliary ligands. For each metal complex, information regarding the tested cell lines and the mechanistic studies will be reported and discussed. The exerted action mechanisms were presented according to the auxiliary ligand/s, the metallic centers, and the increasing complexity of the compound structures.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Josef Havel
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Enzo Cadoni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| |
Collapse
|
12
|
Yang L, Heidari Majd M, Shiri F, Shahraki S, Karimi P. The in vitro apoptotic effect of new zinc complex possessing folic acid and phenanthroline on cervix cancer cells. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liyun Yang
- Department of Obstetrics and Gynecology Henan Provincial People's Hospital Zhengzhou Henan Province China
| | - Mostafa Heidari Majd
- Department of Medicinal Chemistry, Faculty of Pharmacy Zabol University of Medical Sciences Zabol Iran
| | | | | | - Pouya Karimi
- Department of Chemistry University of Zabol Zabol Iran
| |
Collapse
|
13
|
Levín P, Balsa LM, Silva CP, Herzog AE, Vega A, Pavez J, León IE, Lemus L. Artificial Chemical Nuclease and Cytotoxic Activity of a Mononuclear Copper(I) Complex and a Related Binuclear Double‐Stranded Helicate. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pedro Levín
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
| | - Lucía M. Balsa
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP) Facultad de Ciencias Exactas Universidad Nacional de La Plata Bv 120 1465 La Plata Argentina
| | - Carlos P. Silva
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
- Soft Matter Research and Technology Center, SMAT-C Santiago Chile
| | - Austin E. Herzog
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | - Andrés Vega
- Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andrés Bello Viña del Mar Chile
- Centro para el Desarrollo de Nanociencias y Nanotecnología, CEDENNA Santiago Chile
| | - Jorge Pavez
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
- Soft Matter Research and Technology Center, SMAT-C Santiago Chile
| | - Ignacio E. León
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP) Facultad de Ciencias Exactas Universidad Nacional de La Plata Bv 120 1465 La Plata Argentina
| | - Luis Lemus
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
| |
Collapse
|
14
|
McStay N, Slator C, Singh V, Gibney A, Westerlund F, Kellett A. Click and Cut: a click chemistry approach to developing oxidative DNA damaging agents. Nucleic Acids Res 2021; 49:10289-10308. [PMID: 34570227 PMCID: PMC8501983 DOI: 10.1093/nar/gkab817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Metallodrugs provide important first-line treatment against various forms of human cancer. To overcome chemotherapeutic resistance and widen treatment possibilities, new agents with improved or alternative modes of action are highly sought after. Here, we present a click chemistry strategy for developing DNA damaging metallodrugs. The approach involves the development of a series of polyamine ligands where three primary, secondary or tertiary alkyne-amines were selected and 'clicked' using the copper-catalysed azide-alkyne cycloaddition reaction to a 1,3,5-azide mesitylene core to produce a family of compounds we call the 'Tri-Click' (TC) series. From the isolated library, one dominant ligand (TC1) emerged as a high-affinity copper(II) binding agent with potent DNA recognition and damaging properties. Using a range of in vitro biophysical and molecular techniques-including free radical scavengers, spin trapping antioxidants and base excision repair (BER) enzymes-the oxidative DNA damaging mechanism of copper-bound TC1 was elucidated. This activity was then compared to intracellular results obtained from peripheral blood mononuclear cells exposed to Cu(II)-TC1 where use of BER enzymes and fluorescently modified dNTPs enabled the characterisation and quantification of genomic DNA lesions produced by the complex. The approach can serve as a new avenue for the design of DNA damaging agents with unique activity profiles.
Collapse
Affiliation(s)
- Natasha McStay
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Creina Slator
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Vandana Singh
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Alex Gibney
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
15
|
Mariani D, Ghasemishahrestani Z, Freitas W, Pezzuto P, Costa-da-Silva AC, Tanuri A, Kanashiro MM, Fernandes C, Horn A, Pereira MD. Antitumoral synergism between a copper(II) complex and cisplatin improves in vitro and in vivo anticancer activity against melanoma, lung and breast cancer cells. Biochim Biophys Acta Gen Subj 2021; 1865:129963. [PMID: 34246719 DOI: 10.1016/j.bbagen.2021.129963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Intrinsic resistance of cancer cells is a major concern for the success of chemotherapy, and this undesirable feature stimulates further research into the design of new compounds and/or alternative multiple drug chemotherapy protocols. METHODS In this study, we investigated the antitumoral potential of the coordination compounds [Cu(HPClNOL)Cl]Cl (1), [Fe(HPClNOL)Cl2]NO3(2) and [Mn(HPClNOL)Cl2] (3). Using the human, MCF-7 and A549, and the murine melanoma, B16-F10, cell lines, we determined the cytotoxicity, DCFH oxidation, disruption of mitochondrial membrane potential (ΔΨm), Sub-G1 and TUNEL positive cells, and caspase 8 and 9 activities. Fractional inhibitory concentration (FIC) and xenograft models were also assessed to evaluate the efficacy of antitumoral potential. RESULTS We observed that only complex 1 was cytotoxic. The treatment of cancer cells with complex 1 triggered ROS generation and promoted the disruption of ΔΨm. Complex 1 increased the number of Sub-G1 and TUNEL positive cells, and the measurement of caspase 8 and 9 activity confirmed that apoptosis was triggered by the intrinsic pathway. FIC demonstrated that the combination of complex 1 with cisplatin was additive for the A549 cells whilst it was synergic for MCF-7 and B16-F10. Treatment with complex 1, either alone or combined with cisplatin, reduced tumor growth on xenograft models. CONCLUSIONS The present study brings new clues regarding the mechanism of action of [Cu(HPClNOL)Cl]Cl, either alone or in combination with cisplatin. GENERAL SIGNIFICANCE These results indicate that complex 1, administered either singly or in combination with current drugs, has real potential for use in cancer therapy.
Collapse
Affiliation(s)
- D Mariani
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil; Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Z Ghasemishahrestani
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil
| | - W Freitas
- Universidade Federal do Sul da Bahia, Teixeira de Freitas, BA, Brazil
| | - P Pezzuto
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - A C Costa-da-Silva
- National Institute of Dental and Craniofacial Research, NIH, United States
| | - A Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - M M Kanashiro
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - C Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Brazil
| | - A Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Brazil
| | - M D Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Granato MQ, Mello TP, Nascimento RS, Pereira MD, Rosa TLSA, Pessolani MCV, McCann M, Devereux M, Branquinha MH, Santos ALS, Kneipp LF. Silver(I) and Copper(II) Complexes of 1,10-Phenanthroline-5,6-Dione Against Phialophora verrucosa: A Focus on the Interaction With Human Macrophages and Galleria mellonella Larvae. Front Microbiol 2021; 12:641258. [PMID: 34025603 PMCID: PMC8138666 DOI: 10.3389/fmicb.2021.641258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Phialophora verrucosa is a dematiaceous fungus that causes mainly chromoblastomycosis, but also disseminated infections such as phaeohyphomycosis and mycetoma. These diseases are extremely hard to treat and often refractory to current antifungal therapies. In this work, we have evaluated the effect of 1,10-phenanthroline-5,6-dione (phendione) and its metal-based complexes, [Ag (phendione)2]ClO4 and [Cu(phendione)3](ClO4)2.4H2O, against P. verrucosa, focusing on (i) conidial viability when combined with amphotericin B (AmB); (ii) biofilm formation and disarticulation events; (iii) in vitro interaction with human macrophages; and (iv) in vivo infection of Galleria mellonella larvae. The combination of AmB with each of the test compounds promoted the additive inhibition of P. verrucosa growth, as judged by the checkerboard assay. During the biofilm formation process over polystyrene surface, sub-minimum inhibitory concentrations (MIC) of phendione and its silver(I) and copper(II) complexes were able to reduce biomass and extracellular matrix production. Moreover, a mature biofilm treated with high concentrations of the test compounds diminished biofilm viability in a concentration-dependent manner. Pre-treatment of conidial cells with the test compounds did not alter the percentage of infected THP-1 macrophages; however, [Ag(phendione)2]ClO4 caused a significant reduction in the number of intracellular fungal cells compared to the untreated system. In addition, the killing process was significantly enhanced by post-treatment of infected macrophages with the test compounds. P. verrucosa induced a typically cell density-dependent effect on G. mellonella larvae death after 7 days of infection. Interestingly, exposure to the silver(I) complex protected the larvae from P. verrucosa infection. Collectively, the results corroborate the promising therapeutic potential of phendione-based drugs against fungal infections, including those caused by P. verrucosa.
Collapse
Affiliation(s)
- Marcela Q. Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Renata S. Nascimento
- Laboratório de Citotoxicidade e Genotoxicidade (LaCiGen), Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Marcos D. Pereira
- Laboratório de Citotoxicidade e Genotoxicidade (LaCiGen), Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | | | | | - Malachy McCann
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Michael Devereux
- Center for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Citotoxicidade e Genotoxicidade (LaCiGen), Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Lucimar F. Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Misinterpretations in Evaluating Interactions of Vanadium Complexes with Proteins and Other Biological Targets. INORGANICS 2021. [DOI: 10.3390/inorganics9020017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In aqueous media, VIV- and VV-ions and compounds undergo chemical changes such as hydrolysis, ligand exchange and redox reactions that depend on pH and concentration of the vanadium species, and on the nature of the several components present. In particular, the behaviour of vanadium compounds in biological fluids depends on their environment and on concentration of the many potential ligands present. However, when reporting the biological action of a particular complex, often the possibility of chemical changes occurring has been neglected, and the modifications of the complex added are not taken into account. In this work, we highlight that as soon as most vanadium(IV) and vanadium(V) compounds are dissolved in a biological media, they undergo several types of chemical transformations, and these changes are particularly extensive at the low concentrations normally used in biological experiments. We also emphasize that in case of a biochemical interaction or effect, to determine binding constants or the active species and/or propose mechanisms of action, it is essential to evaluate its speciation in the media where it is acting. This is because the vanadium complex no longer exists in its initial form.
Collapse
|
18
|
Lüdtke C, Sobottka S, Heinrich J, Liebing P, Wedepohl S, Sarkar B, Kulak N. Forty Years after the Discovery of Its Nucleolytic Activity: [Cu(phen) 2 ] 2+ Shows Unattended DNA Cleavage Activity upon Fluorination. Chemistry 2021; 27:3273-3277. [PMID: 33245157 PMCID: PMC7898652 DOI: 10.1002/chem.202004594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Indexed: 11/30/2022]
Abstract
[Cu(phen)2]2+ (phen=1,10‐phenanthroline) is the first and still one of the most efficient artificial nucleases. In general, when the phen ligand is modified, the nucleolytic activity of its CuII complex is significantly reduced. This is most likely due to higher steric bulk of such ligands and thus lower affinity to DNA. CuII complexes with phen ligands having fluorinated substituents (F, CF3, SF5, SCF3) surprisingly showed excellent DNA cleavage activity—in contrast to the unsubstituted [Cu(phen)2]2+—in the absence of the otherwise required classical, bioabundant external reducing agents like thiols or ascorbate. This nucleolytic activity correlates well with the half‐wave potentials E1/2 of the complexes. Cancer cell studies show cytotoxic effects of all complexes with fluorinated ligands in the low μm range, whereas they were less toxic towards healthy cells (fibroblasts).
Collapse
Affiliation(s)
- Carsten Lüdtke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Julian Heinrich
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Phil Liebing
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Stefanie Wedepohl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
19
|
Therapeutic potential of vanadium complexes with 1,10-phenanthroline ligands, quo vadis? Fate of complexes in cell media and cancer cells. J Inorg Biochem 2021; 217:111350. [PMID: 33477088 DOI: 10.1016/j.jinorgbio.2020.111350] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
VIVO-complexes formulated as [VIVO(OSO3)(phen)2] (1) (phen = 1,10-phenanthroline), [VIVO(OSO3)(Me2phen)2] (2) (Me2phen = 4,7-dimethyl-1,10-phenanthroline) and [VIVO(OSO3)(amphen)2] (3) (amphen = 5-amino-1,10-phenanthroline) were prepared and stability in cell incubation media evaluated. Their cytotoxicity was determined against the A2780 (ovarian), MCF7 (breast) and PC3 (prostate) human cancer cells at different incubation times. While at 3 and 24 h the cytotoxicity differs for complexes and corresponding free ligands, at 72 h incubation all compounds are equally active presenting low IC50 values. Upon incubation of A2780 cells with 1-3, cellular distribution of vanadium in cytosol, membranes, nucleus and cytoskeleton, indicate that the uptake of V is low, particularly for 1, and that the uptake pattern depends on the ligand. Nuclear microscopic techniques are used for imaging and elemental quantification in whole PC3 cells incubated with 1. Once complexes are added to cell culture media, they decompose, and with time most VIV oxidizes to VV-species. Modeling of speciation when [VIVO(OSO3)(phen)2] (1) is added to cell media is presented. At lower concentrations of 1, VIVO- and phen-containing species are mainly bound to bovine serum albumin, while at higher concentrations [VIVO(phen)n]2+-complexes become relevant, being predicted that the species taken up and mechanisms of action operating depend on the total concentration of complex. This study emphasizes that for these VIVO-systems, and probably for many others involving oxidovanadium or other labile metal complexes, it is not possible to identify active species or propose mechanisms of cytotoxic action without evaluating speciation occurring in cell media.
Collapse
|
20
|
Levín P, Ruiz MC, Romo AIB, Nascimento OR, Di Virgilio AL, Oliver AG, Ayala AP, Diógenes ICN, León IE, Lemus L. Water-mediated reduction of [Cu(dmp) 2(CH 3CN)] 2+: implications of the structure of a classical complex on its activity as an anticancer drug. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00233c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Cu(dmp)2(CH3CN)]2+ can be reduced in acetonitrile containing water due to steric constraints of the ligands. Hydroxyl radicals are produced from water oxidation. We take advantage of this reaction to evaluate the anticancer activity of the complex.
Collapse
Affiliation(s)
- Pedro Levín
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - María C. Ruiz
- Centro de Química Inorgánica CEQUINOR (CONICET-UNLP)
- La Plata
- Argentina
| | - Adolfo I. B. Romo
- Departamento de Química Orgânica e Inorgânica Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Otaciro R. Nascimento
- Departamento de Física Interdiciplinar
- Instituto de Física de São Carlos Universidade de São Paulo
- CEP 13560-970 São Carlos
- Brazil
| | | | - Allen G. Oliver
- Department of Chemistry and Biochemistry
- University of Notre Dame
- 46556-5670 Notre Dame
- USA
| | | | - Izaura C. N. Diógenes
- Departamento de Química Orgânica e Inorgânica Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Ignacio E. León
- Centro de Química Inorgánica CEQUINOR (CONICET-UNLP)
- La Plata
- Argentina
| | - Luis Lemus
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Santiago
- Chile
| |
Collapse
|
21
|
Structural analysis of metal chelation of the metalloproteinase thermolysin by 1,10-phenanthroline. J Inorg Biochem 2020; 215:111319. [PMID: 33310458 DOI: 10.1016/j.jinorgbio.2020.111319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/06/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022]
Abstract
Metalloproteases and their inhibitors are important in numerous fundamental biochemical phenomena and medical applications. The heterocyclic organic compound, 1,10-phenanthroline, forms a complex with transition metal ions and is a Zn2+-chelating metalloprotease inhibitor; however, the mechanism of 1,10-phenanthroline-based chelation inhibition has not been fully elucidated. This study aimed to understand the structural basis of zinc metalloproteinase inhibition by 1,10-phenanthroline. Herein, the crystal structure of thermolysin was determined in the absence and presence of 1,10-phenanthroline at 1.5 and 1.8 Å, respectively. In native thermolysin, Zn2+ at the active site is tetrahedrally coordinated by His142, His146, Glu166, and water molecule and contains three Ca2+ ions, which are involved in thermostability. In the crystal structure of 1,10-phenanthroline-treated thermolysin crystal, seven 1,10-phenanthroline molecules were observed on the surface of thermolysin. These molecules are stabilized by π- π stacking interactions with aromatic amino acids (Phe63, Tyr66, Tyr110, His216, and Try251) or between the 1,10-phenanthrolines. Moreover, interactions with Ser5 and Arg101 were also observed. In this structure, Zn2+ at the active site was completely chelated, but no large conformational changes were observed in Zn2+ coordination with amino acid residues. Ca2+ at the Ca3 site exposed to the solvent was chelated by 1,10-phenanthroline, resulting in a conformational change in the side chain of Asp56 and Gln61. Based on the surface structure, for 1,10-phenanthroline to chelate a metal, it is important that the metal is exposed on the protein surface and that there is no steric hindrance impairing 1,10-phenanthroline access by the amino acids around the metal.
Collapse
|
22
|
The Antibacterial and Anti-biofilm Activity of Metal Complexes Incorporating 3,6,9-Trioxaundecanedioate and 1,10-Phenanthroline Ligands in Clinical Isolates of Pseudomonas Aeruginosa from Irish Cystic Fibrosis Patients. Antibiotics (Basel) 2020; 9:antibiotics9100674. [PMID: 33027987 PMCID: PMC7600655 DOI: 10.3390/antibiotics9100674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic infections of Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients are problematic in Ireland where inherited CF is prevalent. The bacteria’s capacity to form a biofilm in its pathogenesis is highly virulent and leads to decreased susceptibility to most antibiotic treatments. Herein, we present the activity profiles of the Cu(II), Mn(II) and Ag(I) tdda-phen chelate complexes {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Cu-tdda-phen), {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Mn-tdda-phen) and [Ag2(3,6,9-tdda)(phen)4]·EtOH (Ag-tdda-phen) (tddaH2 = 3,6,9-trioxaundecanedioic acid; phen = 1,10-phenanthroline) towards clinical isolates of P. aeruginosa derived from Irish CF patients in comparison to two reference laboratory strains (ATCC 27853 and PAO1). The effects of the metal-tdda-phen complexes and gentamicin on planktonic growth, biofilm formation (pre-treatment) and mature biofilm (post-treatment) alone and in combination were investigated. The effects of the metal-tdda-phen complexes on the individual biofilm components; exopolysaccharide, extracellular DNA (eDNA), pyocyanin and pyoverdine are also presented. All three metal-tdda-phen complexes showed comparable and often superior activity to gentamicin in the CF strains, compared to their activities in the laboratory strains, with respect to both biofilm formation and established biofilms. Combination studies presented synergistic activity between all three complexes and gentamicin, particularly for the post-treatment of established mature biofilms, and was supported by the reduction of the individual biofilm components examined.
Collapse
|
23
|
Batool SS, Gilani SR, Zainab SS, Tahir MN, Harrison WTA, Haider MS, Syed Q, Mazhar S, Shoaib M. Synthesis, crystal structure, thermal studies and antimicrobial activity of a new chelate complex of copper(II) succinate with N,N,N′,N′-tetramethylethylenediamine. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1795147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Syeda Shahzadi Batool
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
- Department of Chemistry, Govt. Post Graduate Islamia college (W), Lahore, Pakistan
| | - Syeda Rubina Gilani
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | - Syeda Sakina Zainab
- Department of Chemistry, Govt. Post Graduate Islamia college (W), Lahore, Pakistan
| | | | | | | | - Quratulain Syed
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Lahore, Lahore, Pakistan
| | - Sania Mazhar
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Lahore, Lahore, Pakistan
| | - Muhammad Shoaib
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| |
Collapse
|
24
|
Nunes P, Correia I, Marques F, Matos AP, Dos Santos MMC, Azevedo CG, Capelo JL, Santos HM, Gama S, Pinheiro T, Cavaco I, Pessoa JC. Copper Complexes with 1,10-Phenanthroline Derivatives: Underlying Factors Affecting Their Cytotoxicity. Inorg Chem 2020; 59:9116-9134. [PMID: 32578983 DOI: 10.1021/acs.inorgchem.0c00925] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interpretation of in vitro cytotoxicity data of Cu(II)-1,10-phenanthroline (phen) complexes normally does not take into account the speciation that complexes undergo in cell incubation media and its implications in cellular uptake and mechanisms of action. We synthesize and test the activity of several distinct Cu(II)-phen compounds; up to 24 h of incubation, the cytotoxic activity differs for the Cu complexes and the corresponding free ligands, but for longer incubation times (e.g., 72 h), all compounds display similar activity. Combining the use of several spectroscopic, spectrometric, and electrochemical techniques, the speciation of Cu-phen compounds in cell incubation media is evaluated, indicating that the originally added complex almost totally decomposed and that Cu(II) and phen are mainly bound to bovine serum albumin. Several methods are used to disclose relationships between structure, activity, speciation in incubation media, cellular uptake, distribution of Cu in cells, and cytotoxicity. Contrary to what is reported in most studies, we conclude that interaction with cell components and cell death involves the separate action of Cu ions and phen molecules, not [Cu(phen)n] species. This conclusion should similarly apply to many other Cu-ligand systems reported to date.
Collapse
Affiliation(s)
- Patrique Nunes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Ciências e Engenharia Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Pedro Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Margarida M C Dos Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cristina G Azevedo
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José-Luis Capelo
- LAVQ, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Hugo M Santos
- LAVQ, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Sofia Gama
- Department of Analytical Chemistry, Faculty of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Teresa Pinheiro
- Institute for Bioengineering and Biosciences and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Isabel Cavaco
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
25
|
Nanofluid Development Using Silver Nanoparticles and Organic-Luminescent Molecules for Solar-Thermal and Hybrid Photovoltaic-Thermal Applications. NANOMATERIALS 2020; 10:nano10061201. [PMID: 32575601 PMCID: PMC7353118 DOI: 10.3390/nano10061201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/25/2022]
Abstract
Exploiting solar energy using photo-thermal (PT) and/or hybridised photovoltaic/thermal (PVT) systems can represent a viable alternative to the growing demand for renewable energy. For large-scale implementation, such systems require thermal fluids able to enhance the combined conversion efficiency achievable by controlling the ‘thermal’ and ‘electrical’ components of the solar spectrum. Nanofluids are typically employed for these purposes and they should exhibit high heat-transfer capabilities and optical properties tuned towards the peak performance spectral window of the photovoltaic (PV) component. In this work, novel nanofluids, composed of highly luminescent organic molecules and Ag nanoparticles dispersed within a base fluid, were tested for PT and PVT applications. These nanofluids were designed to mimic the behaviour of luminescent down-shifting molecules while offering enhanced thermo-physical characteristics over the host base fluid. The nanofluids’ conversion efficiency was evaluated under a standard AM1.5G weighted solar spectrum. The results revealed that the Ag nanoparticles’ inclusion in the composite fluid has the potential to improve the total solar energy conversion. The nanoparticles’ presence minimizes the losses in the electrical power component of the PVT systems as the thermal conversion increases. The enhanced performances recorded suggest that these nanofluids could represent suitable candidates for solar energy conversion applications.
Collapse
|
26
|
Structure, DFT studies, magnetism and biological activity of bis[(µ-azido)-chloro-(1,10-phenanthroline)-copper(II)] complex. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Rochford G, Molphy Z, Kavanagh K, McCann M, Devereux M, Kellett A, Howe O. Cu(ii) phenanthroline–phenazine complexes dysregulate mitochondrial function and stimulate apoptosis. Metallomics 2020; 12:65-78. [DOI: 10.1039/c9mt00187e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we report the central role of the mitochondria in the cytotoxicity of four developmental cytotoxic copper(ii) complexes [Cu(phen)2]2+, [Cu(DPQ)(Phen)]2+, [Cu(DPPZ)(Phen)]2+and [Cu(DPPN)(Phen)]2+superior to cisplatin and independent of resistance in a range of cells.
Collapse
Affiliation(s)
- Garret Rochford
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| | - Zara Molphy
- School of Chemical Science and The National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | | | - Malachy McCann
- Department of Chemistry
- Maynooth University
- Maynooth
- Ireland
| | - Michael Devereux
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| | - Andrew Kellett
- School of Chemical Science and The National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - Orla Howe
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| |
Collapse
|
28
|
Copper bis-Dipyridoquinoxaline Is a Potent DNA Intercalator that Induces Superoxide-Mediated Cleavage via the Minor Groove. Molecules 2019; 24:molecules24234301. [PMID: 31779066 PMCID: PMC6930674 DOI: 10.3390/molecules24234301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/25/2023] Open
Abstract
Herein, we report the synthesis, characterisation, X-ray crystallography, and oxidative DNA binding interactions of the copper artificial metallo-nuclease [Cu(DPQ)2(NO3)](NO3), where DPQ = dipyrido[3,2-f:2',3'-h]quinoxaline. The cation [Cu(DPQ)2]2+ (Cu-DPQ), is a high-affinity binder of duplex DNA and presents an intercalative profile in topoisomerase unwinding and viscosity experiments. Artificial metallo-nuclease activity occurs in the absence of exogenous reductant but is greatly enhanced by the presence of the reductant Na-L-ascorbate. Mechanistically, oxidative DNA damage occurs in the minor groove, is mediated aerobically by the Cu(I) complex and is dependent on both superoxide and hydroxyl radical generation. To corroborate cleavage at the minor groove, DNA oxidation of a cytosine-guanine (5'-CCGG-3')-rich oligomer was examined in tandem with a 5-methylcytosine (5'-C5mCGG-3') derivative where 5mC served to sterically block the major groove and direct damage to the minor groove. Overall, both the DNA binding affinity and cleavage mechanism of Cu-DPQ depart from Sigman's reagent [Cu(1,10-phenanthroline)2]2+; however, both complexes are potent oxidants of the minor groove.
Collapse
|
29
|
Eskandari A, Suntharalingam K. A reactive oxygen species-generating, cancer stem cell-potent manganese(ii) complex and its encapsulation into polymeric nanoparticles. Chem Sci 2019; 10:7792-7800. [PMID: 31588328 PMCID: PMC6764274 DOI: 10.1039/c9sc01275c] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
Intracellular redox modulation offers a viable approach to effectively remove cancer stem cells (CSCs), a subpopulation of tumour cells thought to be responsible for cancer recurrence and metastasis. Here we report the breast CSC potency of reactive oxygen species (ROS)-generating manganese(ii)- and copper(ii)-4,7-diphenyl-1,10-phenanthroline complexes bearing diclofenac, a nonsteriodial anti-inflammatory drug (NSAID), 1 and 3. Notably, the manganese(ii) complex, 1, exhibits 9-fold, 31-fold, and 40-fold greater potency towards breast CSCs than 3, salinomycin (an established breast CSC-potent agent), and cisplatin (a clinically approved anticancer drug) respectively. Encouragingly, 1 displays 61-fold higher potency toward breast CSCs than normal skin fibroblast cells. Clinically relevant epithelial spheroid studies show that 1 is able to selectively inhibit breast CSC-enriched HMLER-shEcad mammosphere formation and viability (one order of magnitude) over non-tumorigenic breast MCF10A spheroids. Mechanistic studies show that 1 prompts breast CSC death by generating intracellular ROS and inhibiting cyclooxygenase-2 (COX-2) activity. The manganese(ii) complex, 1, induces a greater degree of intracellular ROS in CSCs than the corresponding copper(ii) complex, 3, highlighting the ROS-generating superiority of manganese(ii)- over copper(ii)-phenanthroline complexes. Encapsulation of 1 by biodegradable methoxy poly(ethylene glycol)-b-poly(d,l-lactic-co-glycolic) acid (PEG-PLGA) copolymers at the appropriate feed (5%, 1 NP5 ) enhances breast CSC uptake and greatly reduces overall toxicity. The nanoparticle formulation 1 NP5 indiscriminately kills breast CSCs and bulk breast cancer cells, and evokes a similar cellular response to the payload, 1. To the best of our knowledge, this is the first study to investigate the anti-CSC properties of managense complexes and to demonstrate that polymeric nanoparticles can be used to effectively deliver managense complexes into CSCs.
Collapse
Affiliation(s)
- Arvin Eskandari
- Department of Chemistry , King's College London , London , SE1 1DB , UK
| | | |
Collapse
|
30
|
MacLean L, Karcz D, Jenkins H, McClean S, Devereux M, Howe O, Pereira MD, May NV, Enyedy ÉA, Creaven BS. Copper(II) complexes of coumarin-derived Schiff base ligands: Pro- or antioxidant activity in MCF-7 cells? J Inorg Biochem 2019; 197:110702. [DOI: 10.1016/j.jinorgbio.2019.110702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
|
31
|
Slator C, Molphy Z, McKee V, Long C, Brown T, Kellett A. Di-copper metallodrugs promote NCI-60 chemotherapy via singlet oxygen and superoxide production with tandem TA/TA and AT/AT oligonucleotide discrimination. Nucleic Acids Res 2019; 46:2733-2750. [PMID: 29474633 PMCID: PMC5888725 DOI: 10.1093/nar/gky105] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/08/2018] [Indexed: 12/29/2022] Open
Abstract
In order to expand the current repertoire of cancer treatments and to help circumvent limitations associated with resistance, the identification of new metallodrugs with high potency and novel mechanisms of action is of significant importance. Here we present a class of di-copper(II) complex based on the synthetic chemical nuclease [Cu(Phen)2]+ (where Phen = 1,10-phenanthroline) that is selective against solid epithelial cancer cells from the National Cancer Institute's 60 human cell line panel (NCI-60). Two metallodrug leads are studied and in each case two [Cu(Phen)2]+ units are bridged by a dicarboxylate linker but the length and rigidity of the linkers differ distinctly. Both agents catalyze intracellular superoxide (O2•-) and singlet oxygen (1O2) formation with radical species mediating oxidative damage within nuclear DNA in the form of double strand breaks and to the mitochondria in terms of membrane depolarization. The complexes are effective DNA binders and can discriminate AT/AT from TA/TA steps of duplex DNA through induction of distinctive Z-like DNA or by intercalative interactions.
Collapse
Affiliation(s)
- Creina Slator
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Conor Long
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
32
|
Efficient hydrolytic cleavage of DNA and antiproliferative effect on human cancer cells by two dinuclear Cu(II) complexes containing a carbohydrazone ligand and 1,10-phenanthroline as a coligand. J Biol Inorg Chem 2019; 24:343-363. [DOI: 10.1007/s00775-019-01651-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
|
33
|
DNA cleavage, DNA/HSA binding study, and antiproliferative activity of a phenolate-bridged binuclear copper(II) complex. Biometals 2019; 32:227-240. [DOI: 10.1007/s10534-019-00172-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
|
34
|
Ude Z, Kavanagh K, Twamley B, Pour M, Gathergood N, Kellett A, Marmion CJ. A new class of prophylactic metallo-antibiotic possessing potent anti-cancer and anti-microbial properties. Dalton Trans 2019; 48:8578-8593. [DOI: 10.1039/c9dt00250b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A family of metallo-antibiotics of general formula [Cu(N,N)(CipA)Cl] where N,N is a phenanthrene ligand and CipA is a derivative of the clinically used fluoroquinolone antibiotic ciprofloxacin – targeting immunocompromised cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Ziga Ude
- Centre for Synthesis and Chemical Biology
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| | | | - Brendan Twamley
- School of Chemistry
- Trinity College Dublin
- University of Dublin College Green
- Dublin 2
- Ireland
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry
- Faculty of Pharmacy
- Charles University
- 500 05 Hradec Kralove
- Czech Republic
| | - Nicholas Gathergood
- ERA Chair of Green Chemistry
- Division of Chemistry
- Department of Chemistry and Biotechnology
- School of Science
- Tallinn University of Technology
| | - Andrew Kellett
- School of Chemical Sciences and the National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - Celine J. Marmion
- Centre for Synthesis and Chemical Biology
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| |
Collapse
|
35
|
Lima S, Banerjee A, Mohanty M, Sahu G, Kausar C, Patra SK, Garribba E, Kaminsky W, Dinda R. Synthesis, structure and biological evaluation of mixed ligand oxidovanadium(iv) complexes incorporating 2-(arylazo)phenolates. NEW J CHEM 2019. [DOI: 10.1039/c9nj01910c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthesis and characterization of mixed ligand oxidovanadium(iv) complexes [VIVO(L1–4)(LNN)] incorporating arylazo ligands: evaluation of DNA/BSA interaction and cytotoxicity activity.
Collapse
Affiliation(s)
- Sudhir Lima
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Atanu Banerjee
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Monalisa Mohanty
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Gurunath Sahu
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Chahat Kausar
- Department of Life Science
- National Institute of Technology
- Rourkela
- India
| | - Samir Kumar Patra
- Department of Life Science
- National Institute of Technology
- Rourkela
- India
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | | | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
36
|
Doyle AA, Krämer T, Kavanagh K, Stephens JC. Cinnamaldehydes: Synthesis, antibacterial evaluation, and the effect of molecular structure on antibacterial activity. RESULTS IN CHEMISTRY 2019. [DOI: 10.1016/j.rechem.2019.100013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
37
|
Synthesis, crystal structures and in vitro anticancer activities of two copper(II) coordination compounds. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0288-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Cu(II) complexes with hydrazone-functionalized phenanthrolines as self-activating metallonucleases. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Sanna D, Ugone V, Micera G, Buglyó P, Bíró L, Garribba E. Speciation in human blood of Metvan, a vanadium based potential anti-tumor drug. Dalton Trans 2018. [PMID: 28640312 DOI: 10.1039/c7dt00943g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first report on the anti-cancer activity of the compound Metvan, [VIVO(Me2phen)2(SO4)], where Me2phen is 4,7-dimethyl-1,10-phenanthroline, dates back to 2001. Although it was immediately identified as one of the most promising multitargeted anti-cancer V compounds, no development on the medical experimentation was carried out. One of the possible reasons is the lack of information on its speciation in aqueous solution and its thermodynamic stability, factors which influence the transport in the blood and the final form which reaches the target organs. To fill this gap, in this work the speciation of Metvan in aqueous solution and human blood was studied by instrumental (EPR, electronic absorption spectroscopy, ESI-MS and ESI-MS/MS), analytical (pH-potentiometry) and computational (DFT) methods. The results suggested that Metvan transforms at physiological pH into the hydrolytic species cis-[VO(Me2phen)2(OH)]+ and that both citrate and proteins (transferrin and albumin in the blood serum, and hemoglobin in the erythrocytes) form mixed complexes, denoted [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein with the probable binding of His-N donors. The measurements with erythrocytes suggest that Metvan is able to cross their membrane forming mixed species VO-Me2phen-Hb. The redox stability in cell culture medium was also examined, showing that ca. 60% is oxidized to VV after 5 h. Overall, the speciation of Metvan in the blood mainly depends on the V concentration: when it is larger than 50 μM, [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein are the major species, while for concentrations lower than 10 μM, (VO)(hTf) is formed and Me2phen is lost. Therefore, it is plausible that the pharmacological activity of Metvan could be due to the synergic action of free Me2phen, and VIVO and VVO/VVO2 species.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | | | | | | | | | | |
Collapse
|
40
|
McCarron P, McCann M, Devereux M, Kavanagh K, Skerry C, Karakousis PC, Aor AC, Mello TP, Santos ALS, Campos DL, Pavan FR. Unprecedented in Vitro Antitubercular Activitiy of Manganese(II) Complexes Containing 1,10-Phenanthroline and Dicarboxylate Ligands: Increased Activity, Superior Selectivity, and Lower Toxicity in Comparison to Their Copper(II) Analogs. Front Microbiol 2018; 9:1432. [PMID: 30013535 PMCID: PMC6036174 DOI: 10.3389/fmicb.2018.01432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/11/2018] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis is the etiologic agent of tuberculosis. The demand for new chemotherapeutics with unique mechanisms of action to treat (multi)resistant strains is an urgent need. The objective of this work was to test the effect of manganese(II) and copper(II) phenanthroline/dicarboxylate complexes against M. tuberculosis. The water-soluble Mn(II) complexes, [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2]·4H2O (1) and {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (3) (odaH2 = octanedioic acid, phen = 1,10-phenanthroline, tddaH2 = 3,6,9-trioxaundecanedioic acid), and water-insoluble complexes, [Mn(ph)(phen)(H2O)2] (5), [Mn(ph)(phen)2(H2O)]·4H2O (6), [Mn2(isoph)2(phen)3]·4H2O (7), {[Mn(phen)2(H2O)2]}2(isoph)2(phen)·12H2O (8) and [Mn(tereph)(phen)2]·5H2O (9) (phH2 = phthalic acid, isophH2 = isophthalic acid, terephH2 = terephthalic acid), robustly inhibited the viability of M. tuberculosis strains, H37Rv and CDC1551. The water-soluble Cu(II) analog of (1), [Cu2(oda)(phen)4](ClO4)2·2.76H2O·EtOH (2), was significantly less effective against both strains. Whilst (3) retarded H37Rv growth much better than its soluble Cu(II) equivalent, {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (4), both were equally efficient against CDC1551. VERO and A549 mammalian cells were highly tolerant to the Mn(II) complexes, culminating in high selectivity index (SI) values. Significantly, in vivo studies using Galleria mellonella larvae indicated that the metal complexes were minimally toxic to the larvae. The Mn(II) complexes presented low MICs and high SI values (up to 1347), indicating their auspicious potential as novel antitubercular lead agents.
Collapse
Affiliation(s)
- Pauraic McCarron
- Chemistry Department, Maynooth University, National University of Ireland, Maynooth, Ireland.,The Center for Biomimetic and Therapeutic Research, Focas Research Institute, Dublin Institute of Technology, Dublin, Ireland
| | - Malachy McCann
- Chemistry Department, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Michael Devereux
- The Center for Biomimetic and Therapeutic Research, Focas Research Institute, Dublin Institute of Technology, Dublin, Ireland
| | - Kevin Kavanagh
- Biology Department, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Ciaran Skerry
- Division of Infectious Diseases, Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Division of Infectious Diseases, Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ana C Aor
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís P Mello
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora L Campos
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Fernando R Pavan
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| |
Collapse
|
41
|
Rochford G, Molphy Z, Browne N, Surlis C, Devereux M, McCann M, Kellett A, Howe O, Kavanagh K. In-vivo evaluation of the response of Galleria mellonella larvae to novel copper(II) phenanthroline-phenazine complexes. J Inorg Biochem 2018; 186:135-146. [PMID: 29906780 DOI: 10.1016/j.jinorgbio.2018.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/15/2018] [Accepted: 05/27/2018] [Indexed: 01/28/2023]
Abstract
Herein we report the in-vivo characterisation and metabolic changes in Galleria mellonella larvae to a series of bis-chelate copper(II) phenanthroline-phenazine cationic complexes of [Cu(phen)2]2+ (Cu-Phen), [Cu(DPQ)(Phen)]2+ (Cu-DPQ-Phen) and [Cu(DPPZ)(Phen)]2+ (Cu-DPPZ-Phen) (where phen = 1,10-phenanthroline, DPQ = dipyrido[3,2-ƒ:2',3'-h]quinoxaline and DPPZ = dipyrido[3,2-a:2',3'-c]phenazine). Our aim was to investigate the influence of the systematic extension of the ligated phenazine ligand in the G. mellonella model as a first step towards assessing the in-vivo tolerance and mode of action of the complex series with respect to the well-studied oxidative chemical nuclease, Cu-Phen. The Lethal Dose50 (LD50) values were established over dose ranges of 2 - 30 μg at 4-, 24-, 48- and 72 h by mortality assessment, with Cu-Phen eliciting the highest mortality at 4 h (Cu-Phen, 12.62 μg < Cu-DPQ-Phen, 21.53 μg < Cu-DPPZ-Phen, 26.07 μg). At other timepoints, a similar profile was observed as the phenazine π-backbone within the complex scaffold was extended. Assessment of both cellular response and related gene expression demonstrated that the complexes did not initiate an immune response. However, Label-Free Quantification proteomic data indicated the larval response was associated with upregulation of key proteins such as Glutathione S-transferase, purine synthesis and glycolysis/gluconeogenesis (e.g. fructose-bisphosphate aldolase and glyceraldehyde-3-phosphate). Both Cu-Phen and Cu-DPQ-Phen elicited a similar in-vivo response in contrast to Cu-DPPZ-Phen, which displayed a substantial increase in nitrogen detoxification proteins and proteins with calcium binding sites. Overall, the response of G. mellonella larvae exposure to the complex series is dominated by detoxification and metabolic proteome response mechanisms.
Collapse
Affiliation(s)
- Garret Rochford
- Centre for Biomimetics and Therapeutics and Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland.
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Niall Browne
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Carla Surlis
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Michael Devereux
- Centre for Biomimetics and Therapeutics and Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland
| | - Malachy McCann
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Orla Howe
- Centre for Biomimetics and Therapeutics and Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
42
|
Perdisatt L, Moqadasi S, O'Neill L, Hessman G, Ghion A, Warraich MQM, Casey A, O'Connor C. Synthesis, characterisation and DNA intercalation studies of regioisomers of ruthenium (II) polypyridyl complexes. J Inorg Biochem 2018; 182:71-82. [DOI: 10.1016/j.jinorgbio.2018.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 11/30/2022]
|
43
|
|
44
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
45
|
Levina A, Lay PA. Stabilities and Biological Activities of Vanadium Drugs: What is the Nature of the Active Species? Chem Asian J 2017; 12:1692-1699. [PMID: 28401668 DOI: 10.1002/asia.201700463] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/12/2022]
Abstract
Diverse biological activities of vanadium(V) drugs mainly arise from their abilities to inhibit phosphatase enzymes and to alter cell signaling. Initial interest focused on anti-diabetic activities but has shifted to anti-cancer and anti-parasitic drugs. V-based anti-diabetics are pro-drugs that release active components (e.g., H2 VO4- ) in biological media. By contrast, V anti-cancer drugs are generally assumed to enter cells intact; however, speciation studies indicate that nearly all drugs are likely to react in cell culture media during in vitro assays and the same would apply in vivo. The biological activities are due to VV and/or VIV reaction products with cell culture media, or the release of ligands (e.g., aromatic diimines, 8-hydroxyquinolines or thiosemicarbazones) that bind to essential metal ions in the media. Careful consideration of the stability and speciation of V complexes in cell culture media and in biological fluids is essential to design targeted V-based anti-cancer therapies.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, University of Sydney, Sydney, 2006 NSW, Australia
| | - Peter A Lay
- School of Chemistry, University of Sydney, Sydney, 2006 NSW, Australia
| |
Collapse
|
46
|
High cytotoxicity of vanadium(IV) complexes with 1,10-phenanthroline and related ligands is due to decomposition in cell culture medium. J Biol Inorg Chem 2017; 22:663-672. [PMID: 28374136 DOI: 10.1007/s00775-017-1453-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Cytotoxic effects of Metvan (cis-[VIVO(OSO3)(Me2phen)2], where Me2phen = 4,7-dimethyl-1,10-phenanthroline) and its analogues with 1,10-phenanthroline (phen) and 2,2'-bipyridine (bpy) ligands in cultured human lung cancer (A549) cells have been re-investigated in conjunction with reactivity of the V(IV) complexes in neutral aerated aqueous solutions and in cell culture medium. All the V(IV) complexes underwent rapid oxidation to the corresponding V(V) species (cis-[VV(O)2L2]+), followed by release of free ligands (shown by electrospray mass spectrometry). Decomposition of V(IV) complexes in cell culture medium within minutes at 310 K was confirmed by UV-Vis and EPR spectroscopies. High cytotoxicities (low μM or sub-μM IC50 range in 72 h assays) were observed for the phen and Me2phen complexes, but they were not different from that of the corresponding free ligands, which confirmed that the original V(IV) complexes played no significant role in the observed biological activities. The cytotoxicities of the ligands were most likely due to their complexation of redox-active essential metal ions, such as Cu(II) and Fe(II), in the medium, and their increased cellular uptake, leading to oxidative stress-related cell death. These results emphasize the need to assess the stability of metal-based drugs under the conditions of biological assays, particularly when biologically active ligands, such as 1,10-phenanthroline and its derivatives, are used. These ligands have high systemic toxicities in vivo and their release in the GI tract and blood makes the complexes unsuitable for use as anti-cancer drugs.
Collapse
|
47
|
Slator C, Molphy Z, McKee V, Kellett A. Triggering autophagic cell death with a di-manganese(II) developmental therapeutic. Redox Biol 2017; 12:150-161. [PMID: 28236767 PMCID: PMC5328722 DOI: 10.1016/j.redox.2017.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 12/16/2022] Open
Abstract
There is an unmet need for novel metal-based chemotherapeutics with alternative modes of action compared to clinical agents such as cisplatin and metallo-bleomycin. Recent attention in this field has focused on designing intracellular ROS-mediators as powerful cytotoxins of human cancers and identifying potentially unique toxic mechanisms underpinning their utility. Herein, we report the developmental di-manganese(II) therapeutic [Mn2(μ-oda)(phen)4(H2O)2][Mn2(μ-oda)(phen)4(oda)2]·4H2O (Mn-Oda) induces autophagy-promoted apoptosis in human ovarian cancer cells (SKOV3). The complex was initially identified to intercalate DNA by topoisomerase I unwinding and circular dichroism spectroscopy. Intracellular DNA damage, detected by γH2AX and the COMET assay, however, is not linked to direct Mn-Oda free radical generation, but is instead mediated through the promotion of intracellular reactive oxygen species (ROS) leading to autophagic vacuole formation and downstream nuclear degradation. To elucidate the cytotoxic profile of Mn-Oda, a wide range of biomarkers specific to apoptosis and autophagy including caspase release, mitochondrial membrane integrity, fluorogenic probe localisation, and cell cycle analysis were employed. Through these techniques, the activity of Mn-Oda was compared directly to i.) the pro-apoptotic clinical anticancer drug doxorubicin, ii.) the multimodal histone deacetylase inhibitor suberoyanilide hydroxamic acid, and iii.) the autophagy inducer rapamycin. In conjunction with ROS-specific trapping agents and established inhibitors of autophagy, we have identified autophagy-induction linked to mitochondrial superoxide production, with confocal image analysis of SKOV3 cells further supporting autophagosome formation.
Collapse
Affiliation(s)
- Creina Slator
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
48
|
Jadeja RN, Vyas KM, Upadhyay KK, Devkar RV. In vitro apoptosis-inducing effect and gene expression profiles of mixed ligand Cu(ii) complexes derived from 4-acyl pyrazolones on human lung cancer cells. RSC Adv 2017. [DOI: 10.1039/c7ra01025g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mixed-ligand Cu(ii) complexes of 4-acylpyrazolone ligands and poly pyridyls were synthesized, characterized and their anticancer activity was evaluated against A549 lung carcinoma cell lines.
Collapse
Affiliation(s)
- R. N. Jadeja
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara 390 002
- India
| | - K. M. Vyas
- Discipline of Chemistry
- School of Basic Sciences
- Indian Institute of Technology (IIT) Indore
- Indore 452 017
- India
| | - K. K. Upadhyay
- Division of Phytotherapeutics and Metabolic Endocrinology
- Faculty of Science
- The M.S. University of Baroda
- Vadodara 390 002
- India
| | - R. V. Devkar
- Division of Phytotherapeutics and Metabolic Endocrinology
- Faculty of Science
- The M.S. University of Baroda
- Vadodara 390 002
- India
| |
Collapse
|
49
|
Thornton L, Dixit V, Assad LO, Ribeiro TP, Queiroz DD, Kellett A, Casey A, Colleran J, Pereira MD, Rochford G, McCann M, O'Shea D, Dempsey R, McClean S, Kia AFA, Walsh M, Creaven B, Howe O, Devereux M. Water-soluble and photo-stable silver(I) dicarboxylate complexes containing 1,10-phenanthroline ligands: Antimicrobial and anticancer chemotherapeutic potential, DNA interactions and antioxidant activity. J Inorg Biochem 2016; 159:120-32. [DOI: 10.1016/j.jinorgbio.2016.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/08/2016] [Accepted: 02/25/2016] [Indexed: 11/25/2022]
|
50
|
Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure–activity relationship study of a quinoline thiourea. Bioorg Med Chem Lett 2016; 26:630-635. [DOI: 10.1016/j.bmcl.2015.11.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022]
|