1
|
Mishra AK, Ghotekar BK, Puley CK, Kulkarni SS. Expanding the Scope of a One-Pot Double Displacement Protocol to Access the All-Rare-Sugar-Containing Trisaccharide Unit of Pseudomonas stutzeri OX1. Org Lett 2024. [PMID: 39530287 DOI: 10.1021/acs.orglett.4c03788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we have explored a one-pot bis-triflation and regioselective displacement protocol with d-fucose 2,4-diol to access various rare 6-deoxy amino d-sugars. This strategy enabled the first total synthesis of the trisaccharide unit of Pseudomonas stutzeri OX1 strain containing d-perosamine and d-tomosamine. Installation of a 1,2-cis linkage and late-stage N-formylation are the key challenges in the total synthesis, which was accomplished via the longest linear sequence of 21 steps with 1.2% overall yield.
Collapse
Affiliation(s)
- Amar K Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Balasaheb K Ghotekar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chanchal K Puley
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Puri K, Kulkarni SS. Total synthesis of a structurally complex zwitterionic hexasaccharide repeating unit of polysaccharide B from Bacteroides fragilis via one-pot glycosylation. Commun Chem 2024; 7:204. [PMID: 39285253 PMCID: PMC11405768 DOI: 10.1038/s42004-024-01296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
Zwitterionic polysaccharides (ZPSs) present on the surface of a common gut commensal Bacteroides fragilis are endowed with unique immunological properties as they can directly bind to T-cells in the absence of protein conjugation. ZPSs are therefore considered to be potential antigens for the development of totally carbohydrate-based vaccines. Herein, we disclose the first total synthesis of a highly branched phosphorylated zwitterionic capsular polysaccharide repeating unit of Bacteroides fragilis. The hexasaccharide repeating unit bearing six different monosaccharides comprises three 1,2-cis-glycosidic linkages, a challenging 1,2-trans linkage in D-QuipNAc-β-(1→4)-D-Gal motif, and a 2-aminoethyl phosphonate appendage. The synthesis of target ZPS was accomplished utilizing an expeditious, highly stereoselective and convergent (1 + 2 + 2 + 1) one-pot glycosylation strategy. The striking features include efficient synthesis of rare deoxy amino sugars D- and L-quinovosamine, stereoselective installation of three 1,2-cis glycosidic linkages, glycosylation of D-quinovosamine donor with a sterically crowded, poorly reactive 4-OH galactose moiety, as well as late stage phosphorylation.
Collapse
Affiliation(s)
- Krishna Puri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
3
|
Crone L, Sobek J, Müller N, Restin T, Bassler D, Paganini D, Zimmermann MB, Zarnovican P, Routier FH, Romero-Uruñuela T, Izquierdo L, Hennet T. Inter-individual and inter-regional variability of breast milk antibody reactivity to bacterial lipopolysaccharides. Front Immunol 2024; 15:1404192. [PMID: 39308863 PMCID: PMC11412857 DOI: 10.3389/fimmu.2024.1404192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Breast milk is a vital source of nutrients, prebiotics, probiotics, and protective factors, including antibodies, immune cells and antimicrobial proteins. Using bacterial lipopolysaccharide arrays, we investigated the reactivity and specificity of breast milk antibodies towards microbial antigens, comparing samples from rural Kenya and urban Switzerland. Results showed considerable variability in antibody reactivity both within and between these locations. Kenyan breast milk demonstrated broad reactivity to bacterial lipopolysaccharides, likely due to increased microbial exposure. Antibodies primarily recognized the O-antigens of lipopolysaccharides and showed strong binding to specific carbohydrate motifs. Notably, antibodies against specific Escherichia coli O-antigens showed cross-reactivity with parasitic pathogens like Leishmania major and Plasmodium falciparum, thus showing that antibodies reacting against lipopolysaccharide O-antigens can recognize a wide range of antigens beyond bacteria. The observed diversity in antigen recognition highlights the significance of breast milk in safeguarding infants from infections, particularly those prevalent in specific geographic regions. The findings also offer insights for potential immunobiotic strategies to augment natural antibody-mediated defense against diverse pathogens.
Collapse
Affiliation(s)
- Lisa Crone
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule (ETH) Zurich and University of Zurich, Zurich, Switzerland
| | - Nicole Müller
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Tanja Restin
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Daniela Paganini
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Michael B. Zimmermann
- Medical Research Council (MRC) Translational Immune Discovery Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Patricia Zarnovican
- Department of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Tais Romero-Uruñuela
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Calles-Garcia D, Dube DH. Chemical biology tools to probe bacterial glycans. Curr Opin Chem Biol 2024; 80:102453. [PMID: 38582017 PMCID: PMC11164641 DOI: 10.1016/j.cbpa.2024.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
Bacterial cells are covered by a complex carbohydrate coat of armor that allows bacteria to thrive in a range of environments. As a testament to the importance of bacterial glycans, effective and heavily utilized antibiotics including penicillin and vancomycin target and disrupt the bacterial glycocalyx. Despite their importance, the study of bacterial glycans lags far behind their eukaryotic counterparts. Bacterial cells use a large palette of monosaccharides to craft glycans, leading to molecules that are significantly more complex than eukaryotic glycans and that are refractory to study. Fortunately, chemical tools designed to probe bacterial glycans have yielded insights into these molecules, their structures, their biosynthesis, and their functions.
Collapse
Affiliation(s)
- Daniel Calles-Garcia
- Department of Chemistry and Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Danielle H Dube
- Department of Chemistry and Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|
6
|
Maji S, Ghotekar BK, Kulkarni SS. Total Synthesis of a Conjugation-Ready Tetrasaccharide Repeating Unit of Vibrio cholerae O:3 O-antigen Polysaccharide. Org Lett 2024; 26:745-750. [PMID: 38198674 DOI: 10.1021/acs.orglett.3c04225] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Herein, we report the first total synthesis of the tetrasaccharide repeating unit of Vibrio cholerae O:3 O-antigen polysaccharide. The highly complex tetrasaccharide contains rare amino sugars such as d-bacillosamine and l-fucosamine, highly labile sugar ascarylose, and higher carbon sugar d-d-heptose. Stereoselective glycosylation of the notoriously reactive ascarylose with d-d-heptose, poor nucleophilicity of the axial C4-OH of l-fucosamine, and amide coupling are the key challenges encountered in the total synthesis, which was completed via a longest linear sequence of 23 steps in 4.2% overall yield.
Collapse
Affiliation(s)
- Soumyakanta Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Balasaheb K Ghotekar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
7
|
Mota TF, Fukutani ER, Martins KA, Salgado VR, Andrade BB, Fraga DBM, Queiroz ATL. Another tick bites the dust: exploring the association of microbial composition with a broad transmission competence of tick vector species. Microbiol Spectr 2023; 11:e0215623. [PMID: 37800912 PMCID: PMC10714957 DOI: 10.1128/spectrum.02156-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Some tick species are competent to transmit more than one pathogen while other species are, until now, known to be competent to transmit only one single or any pathogen. Such a difference in vector competence for one or more pathogens might be related to the microbiome, and understanding what differentiates these two groups of ticks could help us control several diseases aiming at the bacteria groups that contribute to such a broad vector competence. Using 16S rRNA from tick species that could be classified into these groups, genera such as Rickettsia and Staphylococcus seemed to be associated with such a broad vector competence. Our results highlight differences in tick species when they are divided based on the number of pathogens they are competent to transmit. These findings are the first step into understanding the relationship between one single tick species and the pathogens it transmits.
Collapse
Affiliation(s)
- Tiago F. Mota
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Eduardo R. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Kelsilandia A. Martins
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Vanessa R. Salgado
- Faculdade de Medicina Veterinária da União Metropolitana de Educação e Cultura (UNIME), Lauro de Freitas, Bahia, Brazil
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Deborah B. M. Fraga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Artur T. L. Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| |
Collapse
|
8
|
Quintana ILL, Paul A, Chowdhury A, Moulton KD, Kulkarni SS, Dube DH. Thioglycosides Act as Metabolic Inhibitors of Bacterial Glycan Biosynthesis. ACS Infect Dis 2023; 9:2025-2035. [PMID: 37698279 PMCID: PMC10580310 DOI: 10.1021/acsinfecdis.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 09/13/2023]
Abstract
Glycans that coat the surface of bacteria are compelling antibiotic targets because they contain distinct monosaccharides that are linked to pathogenesis and are absent in human cells. Disrupting glycan biosynthesis presents a path to inhibiting the ability of a bacterium to infect the host. We previously demonstrated that O-glycosides act as metabolic inhibitors and disrupt bacterial glycan biosynthesis. Inspired by a recent study which showed that thioglycosides (S-glycosides) are 10 times more effective than O-glycosides at inhibiting glycan biosynthesis in mammalian cells, we crafted a panel of S-glycosides based on rare bacterial monosaccharides. The novel thioglycosides altered glycan biosynthesis and fitness in pathogenic bacteria but had no notable effect on glycosylation or growth in beneficial bacteria or mammalian cells. In contrast to findings in mammalian cells, S-glycosides and O-glycosides exhibited comparable potency in bacteria. However, S-glycosides exhibited enhanced selectivity relative to O-glycosides. These novel metabolic inhibitors will allow selective perturbation of the bacterial glycocalyx for functional studies and set the stage to expand our antibiotic arsenal.
Collapse
Affiliation(s)
- Isabella
de la Luz Quintana
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Ankita Paul
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400-076, India
| | - Aniqa Chowdhury
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Karen D. Moulton
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Suvarn S. Kulkarni
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400-076, India
| | - Danielle H. Dube
- Department
of Chemistry & Biochemistry, Bowdoin
College, 6600 College Station, Brunswick, Maine 04011, United States
| |
Collapse
|
9
|
Ghosh A, Kulkarni SS. Total Synthesis of a Linear Tetrasaccharide Repeating Unit of Vibrio vulnificus MO6-24. Org Lett 2023; 25:7242-7246. [PMID: 37756139 DOI: 10.1021/acs.orglett.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Herein, we report the total synthesis of a linear, conjugation-ready, tetrasaccharide repeating unit of Vibrio vulnificus MO6-24, which is composed of rare amino sugars such as l-quinovosamine and d-galactosamine uronic acid. The key challenges addressed here are the synthesis of rare deoxy amino sugars, installation of consecutive 1,2-cis glycosidic linkages, and late-stage oxidation. Total synthesis of the target molecule was completed via a longest linear sequence of 29 steps in an overall yield of 0.7% starting from l-rhamnose.
Collapse
Affiliation(s)
- Antara Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Harnagel AP, Sheshova M, Zheng M, Zheng M, Skorupinska-Tudek K, Swiezewska E, Lupoli TJ. Preference of Bacterial Rhamnosyltransferases for 6-Deoxysugars Reveals a Strategy To Deplete O-Antigens. J Am Chem Soc 2023. [PMID: 37437030 PMCID: PMC10375533 DOI: 10.1021/jacs.3c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Bacteria synthesize hundreds of bacteria-specific or "rare" sugars that are absent in mammalian cells and enriched in 6-deoxy monosaccharides such as l-rhamnose (l-Rha). Across bacteria, l-Rha is incorporated into glycans by rhamnosyltransferases (RTs) that couple nucleotide sugar substrates (donors) to target biomolecules (acceptors). Since l-Rha is required for the biosynthesis of bacterial glycans involved in survival or host infection, RTs represent potential antibiotic or antivirulence targets. However, purified RTs and their unique bacterial sugar substrates have been difficult to obtain. Here, we use synthetic nucleotide rare sugar and glycolipid analogs to examine substrate recognition by three RTs that produce cell envelope components in diverse species, including a known pathogen. We find that bacterial RTs prefer pyrimidine nucleotide-linked 6-deoxysugars, not those containing a C6-hydroxyl, as donors. While glycolipid acceptors must contain a lipid, isoprenoid chain length, and stereochemistry can vary. Based on these observations, we demonstrate that a 6-deoxysugar transition state analog inhibits an RT in vitro and reduces levels of RT-dependent O-antigen polysaccharides in Gram-negative cells. As O-antigens are virulence factors, bacteria-specific sugar transferase inhibition represents a novel strategy to prevent bacterial infections.
Collapse
Affiliation(s)
- Alexa P Harnagel
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Mia Sheshova
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Meng Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | | | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
11
|
Dhara D, Bouchet M, Mulard LA. Scalable Synthesis of Versatile Rare Deoxyamino Sugar Building Blocks from d-Glucosamine. J Org Chem 2023. [PMID: 37141399 DOI: 10.1021/acs.joc.2c03016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report the syntheses of 1,3,4-tri-O-acetyl-2-amino-2,6-dideoxy-β-d-glucopyranose and allyl 2-amino-2,6-dideoxy-β-d-glucopyranoside from d-glucosamine hydrochloride. The potential of these two versatile scaffolds as key intermediates to a diversity of orthogonally protected rare deoxyamino hexopyranosides is exemplified in the context of fucosamine, quinovosamine, and bacillosamine. The critical C-6 deoxygenation step to 2,6-dideoxy aminosugars is performed at an early stage on a precursor featuring an imine moiety or a trifluoroacetamide moiety in place of the 2-amino group, respectively. Robustness and scalability are demonstrated for a combination of protecting groups and incremental chemical modifications that sheds light on the promise of the yet unreported allyl 2,6-dideoxy-2-N-trifluoroacetyl-β-d-glucopyranoside when addressing the feasibility of synthetic zwitterionic oligosaccharides. In particular, allyl 3-O-acetyl-4-azido-2,4,6-trideoxy-2-trifluoroacetamido-β-d-galactopyranoside, an advanced 2-acetamido-4-amino-2,4,6-trideoxy-d-galactopyranose building block, was achieved on the 30 g scale from 1,3,4,6-tetra-O-acetyl-β-d-glucosamine hydrochloride in 50% yield and nine steps, albeit only two chromatography purifications.
Collapse
Affiliation(s)
- Debashis Dhara
- , Institut Pasteur, Université Paris Cité, UMR CNRS3523, Chemistry of Biomolecules Laboratory, 8 rue du Dr Roux, 75015 Paris, France
| | - Marion Bouchet
- , Institut Pasteur, Université Paris Cité, UMR CNRS3523, Chemistry of Biomolecules Laboratory, 8 rue du Dr Roux, 75015 Paris, France
| | - Laurence A Mulard
- , Institut Pasteur, Université Paris Cité, UMR CNRS3523, Chemistry of Biomolecules Laboratory, 8 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
12
|
Shirsat AA, Rai D, Ghotekar BK, Kulkarni SS. Total Synthesis of Trisaccharide Repeating Unit of Staphylococcus aureus Strain M. Org Lett 2023; 25:2913-2917. [PMID: 37052906 DOI: 10.1021/acs.orglett.3c00997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
An efficient total synthesis of a conjugation-ready trisaccharide repeating unit of Staphylococcus aureus strain M is reported here. The main challenges involved in this synthesis are the procurement of rare sugars (d-FucNAc and d-GalNAcA) and installation of consecutive 1,2-cis-glycosidic linkages between them. Stereoselective 1,2-cis glycosylation with the linker acceptor was achieved with easily accessible benzylidene protected d-galactosamine thioglycoside by employing a DMF modulated preactivation glycosylation method. The consecutive 1,2-cis linkages were installed with the help of solvent participation. The carboxylic acid functionality was introduced via postglycosylation oxidation on the disaccharide moiety. The total synthesis of trisaccharide repeating unit was accomplished with the longest linear sequence of 24 steps in 4.5% overall yield.
Collapse
Affiliation(s)
- Archana A Shirsat
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Balasaheb K Ghotekar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
13
|
Barrett K, Dube DH. Chemical tools to study bacterial glycans: a tale from discovery of glycoproteins to disruption of their function. Isr J Chem 2023; 63:e202200050. [PMID: 37324574 PMCID: PMC10266715 DOI: 10.1002/ijch.202200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 01/02/2024]
Abstract
Bacteria coat themselves with a dense array of cell envelope glycans that enhance bacterial fitness and promote survival. Despite the importance of bacterial glycans, their systematic study and perturbation remains challenging. Chemical tools have made important inroads toward understanding and altering bacterial glycans. This review describes how pioneering discoveries from Prof. Carolyn Bertozzi's laboratory inspired our laboratory to develop sugar probes to facilitate the study of bacterial glycans. As described below, we used metabolic glycan labelling to install bioorthogonal reporters into bacterial glycans, ultimately permitting the discovery of a protein glycosylation system, the identification of glycosylation genes, and the development of metabolic glycan inhibitors. Our results have provided an approach to screen bacterial glycans and gain insight into their function, even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Katharine Barrett
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011 USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011 USA
| |
Collapse
|
14
|
Morrison ZA, Eddenden A, Subramanian AS, Howell PL, Nitz M. Termination of Poly- N-acetylglucosamine (PNAG) Polymerization with N-Acetylglucosamine Analogues. ACS Chem Biol 2022; 17:3036-3046. [PMID: 35170962 DOI: 10.1021/acschembio.1c00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bacteria require polysaccharides for structure, survival, and virulence. Despite their central role in microbiology, few tools are available to manipulate their production. In E. coli, the glycosyltransferase complex PgaCD produces poly-N-acetylglucosamine (PNAG), an extracellular matrix polysaccharide required for biofilm formation. We report that C6-substituted (H, F, N3, SH, NH2) UDP-GlcNAc substrate analogues are inhibitors of PgaCD. In vitro, the inhibitors cause PNAG chain termination, consistent with the mechanism of PNAG polymerization from the nonreducing terminus. In vivo, expression of the GlcNAc-1-kinase NahK in E. coli provided a non-native GlcNAc salvage pathway that produced the UDP-GlcNAc analogue inhibitors in situ. The 6-fluoro and 6-deoxy derivatives were potent inhibitors of biofilm formation in the transformed strain, providing a tool to manipulate this key exopolysaccharide. Characterization of the UDP-GlcNAc pool and quantification of PNAG generation support PNAG termination as the primary in vivo mechanism of biofilm inhibition by 6-fluoro UDP-GlcNAc.
Collapse
Affiliation(s)
- Zachary A Morrison
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| | - Alexander Eddenden
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| | - Adithya Shankara Subramanian
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, OntarioM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, OntarioM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
15
|
Zheng M, Zheng M, Lupoli TJ. Expanding the Substrate Scope of a Bacterial Nucleotidyltransferase via Allosteric Mutations. ACS Infect Dis 2022; 8:2035-2044. [PMID: 36106727 DOI: 10.1021/acsinfecdis.2c00402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacterial glycoconjugates, such as cell surface polysaccharides and glycoproteins, play important roles in cellular interactions and survival. Enzymes called nucleotidyltransferases use sugar-1-phosphates and nucleoside triphosphates (NTPs) to produce nucleoside diphosphate sugars (NDP-sugars), which serve as building blocks for most glycoconjugates. Research spanning several decades has shown that some bacterial nucleotidyltransferases have broad substrate tolerance and can be exploited to produce a variety of NDP-sugars in vitro. While these enzymes are known to be allosterically regulated by NDP-sugars and their fragments, much work has focused on the effect of active site mutations alone. Here, we show that rational mutations in the allosteric site of the nucleotidyltransferase RmlA lead to expanded substrate tolerance and improvements in catalytic activity that can be explained by subtle changes in quaternary structure and interactions with ligands. These observations will help inform future studies on the directed biosynthesis of diverse bacterial NDP-sugars and downstream glycoconjugates.
Collapse
Affiliation(s)
- Maggie Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Meng Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
16
|
Liu H, Laporte AG, Tardieu D, Hazelard D, Compain P. Formal Glycosylation of Quinones with exo-Glycals Enabled by Iron-Mediated Oxidative Radical-Polar Crossover. J Org Chem 2022; 87:13178-13194. [PMID: 36095170 DOI: 10.1021/acs.joc.2c01635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intermolecular C-O coupling reaction of 1,4-quinones with exo-glycals under iron hydride hydrogen atom transfer (HAT) conditions is described. This method provides a direct and regioselective access to a wide range of phenolic O-ketosides related to biologically relevant natural products in diastereomeric ratios up to >98:2 in the furanose and pyranose series. No trace of the corresponding C-glycosylated products that might have resulted from the radical alkylation of 1,4-quinones was observed. The results of mechanistic experiments suggest that the key C-O bond-forming event proceeds through an oxidative radical-polar crossover process involving a single-electron transfer between the HAT-generated glycosyl radical and the electron-acceptor quinone.
Collapse
Affiliation(s)
- Haijuan Liu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Adrien G Laporte
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Damien Tardieu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| |
Collapse
|
17
|
Examining the diversity of structural motifs in fungal glycome. Comput Struct Biotechnol J 2022; 20:5466-5476. [PMID: 36249563 PMCID: PMC9535381 DOI: 10.1016/j.csbj.2022.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
In this paper, we present the results of a systematic statistical analysis of the fungal glycome in comparison with the prokaryotic and protistal glycomes as described in the scientific literature and presented in the Carbohydrate Structure Database (CSDB). The monomeric and dimeric compositions of glycans, their non-carbohydrate modifications, glycosidic linkages, sizes of structures, branching degree and net charge are assessed. The obtained information can help elucidating carbohydrate molecular markers for various fungal classes which, in its turn, can be demanded for the development of diagnostic tools and carbohydrate-based vaccines against pathogenic fungi. It can also be useful for revealing specific glycosyltransferases active in a particular fungal species.
Collapse
|
18
|
QIN CJ, DING MR, TIAN GZ, ZOU XP, FU JJ, HU J, YIN J. Chemical approaches towards installation of rare functional groups in bacterial surface glycans. Chin J Nat Med 2022; 20:401-420. [DOI: 10.1016/s1875-5364(22)60177-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 11/24/2022]
|
19
|
Ghosh B, Bhattacharjee N, Podilapu AR, Puri K, Kulkarni SS. Total Synthesis of the Repeating Units of O-Specific Polysaccharide of Pseudomonas chlororaphis subsp. aureofaciens UCM B-306 via One-Pot Glycosylation. Org Lett 2022; 24:3696-3701. [PMID: 35549295 DOI: 10.1021/acs.orglett.2c01318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report the first total syntheses of the trisaccharide-repeating units of Pseudomonas chlororaphis subsp. aureofaciens UCM B-306 via a one-pot assembly of the core trisaccharide structure. The rare-sugar-containing trisaccharide-repeating units are comprised of d-bacillosamine, 2-amino-2-deoxy-d-galacturonic acid or amide, and d-rhamnose units linked through three consecutive α-linkages. The total syntheses of two repeating units were completed starting from d-mannose via a longest-linear sequence of 27 steps in 5.8% and 4.4% overall yields, respectively.
Collapse
Affiliation(s)
- Bhaswati Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Nabarupa Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Ananda Rao Podilapu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Krishna Puri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| |
Collapse
|
20
|
Luong P, Ghosh A, Moulton KD, Kulkarni SS, Dube DH. Synthesis and Application of Rare Deoxy Amino l-Sugar Analogues to Probe Glycans in Pathogenic Bacteria. ACS Infect Dis 2022; 8:889-900. [PMID: 35302355 PMCID: PMC9445936 DOI: 10.1021/acsinfecdis.2c00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial cell envelope glycans are compelling antibiotic targets as they are critical for strain fitness and pathogenesis yet are virtually absent from human cells. However, systematic study and perturbation of bacterial glycans remains challenging due to their utilization of rare deoxy amino l-sugars, which impede traditional glycan analysis and are not readily available from natural sources. The development of chemical tools to study bacterial glycans is a crucial step toward understanding and altering these biomolecules. Here we report an expedient methodology to access azide-containing analogues of a variety of unusual deoxy amino l-sugars starting from readily available l-rhamnose and l-fucose. Azide-containing l-sugar analogues facilitated metabolic profiling of bacterial glycans in a range of Gram-negative bacteria and revealed differential utilization of l-sugars in symbiotic versus pathogenic bacteria. Further application of these probes will refine our knowledge of the glycan repertoire in diverse bacteria and aid in the design of novel antibiotics.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Antara Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Karen D. Moulton
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| |
Collapse
|
21
|
Marando VM, Kim DE, Kiessling LL. Biosynthetic incorporation for visualizing bacterial glycans. Methods Enzymol 2022; 665:135-151. [PMID: 35379432 DOI: 10.1016/bs.mie.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cell-surface glycans are central to many biological processes, yet methods for their site-selective modification are limited. Strategies for interrogating the structure and function of proteins have been enabled by chemoselective reactions of sidechain functionality for covalent modification, capture, or imaging. However, unlike protein sidechains, glycan building blocks lack distinguishing reactivity. Moreover, glycans are not primary gene products, so encoding glycan variants through genetic manipulation is challenging. Reactive functional groups can be introduced into glycans through metabolic engineering, which involves the generation of modified nucleotide-sugar building blocks. Lipid-linked building blocks, which are also used in glycan biosynthesis, have the advantage that they can be delivered directly to glycosyltransferases to function as surrogate substrates. This process, termed "biosynthetic incorporation," takes advantage of the properties of bacterial glycosyltransferase: they are selective for the products they generate yet promiscuous in their donor preferences. We describe how this strategy can be implemented to label arabinofuranose-containing glycans on the surface of mycobacterial cells. We anticipate that this platform can be expanded to develop chemoselective labeling agents for other important bacterial monosaccharides.
Collapse
Affiliation(s)
- Victoria M Marando
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daria E Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
22
|
Structural Elucidation and genetic identification of the O-antigen from a novel serogroup of Escherichia coli strain 2017LL031. Carbohydr Res 2022; 517:108577. [DOI: 10.1016/j.carres.2022.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
|
23
|
Oinam L, Minoshima F, Tateno H. Glycan profiling of the gut microbiota by Glycan-seq. ISME COMMUNICATIONS 2022; 2:1. [PMID: 37938656 PMCID: PMC9723764 DOI: 10.1038/s43705-021-00084-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 05/07/2023]
Abstract
Bacterial glycans modulate the cross talk between the gut microbiota and its host. However, little is known about these glycans because of the lack of appropriate technology to study them. In this study, we applied Glycan-seq technology for glycan profiling of the intact gut microbiota of mice. The evaluation of cultured gram-positive (Deinococcus radiodurans) and gram-negative (Escherichia coli) bacteria showed significantly distinct glycan profiles between these bacteria, which were selected and further analyzed by flow cytometry. The results of flow cytometry agreed well with those obtained by Glycan-seq, indicating that Glycan-seq can be used for bacterial glycan profiling. We thus applied Glycan-seq for comparative glycan profiling of pups and adult mice gut microbiotas. The glycans of the pups and adult microbiotas had significantly distinct glycan profiles, which reflect the different bacterial compositions of pups and adult gut microbiotas based on 16S rRNA gene sequencing.α2-6Sia-binders bound specifically to the pups microbiota. Lectin pull-down followed by 16S rRNA gene sequencing of the pups microbiota identified Lactobacillaceae as the most abundant bacterial family with glycans reacting with α2-6Sia-binders. The Glycan-seq system can reveal the glycan profile of the intact bacterial gut microbiota.
Collapse
Affiliation(s)
- Lalhaba Oinam
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Fumi Minoshima
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
- AMED-Prime, AMED, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
24
|
Richards SJ, Gibson MI. Toward Glycomaterials with Selectivity as Well as Affinity. JACS AU 2021; 1:2089-2099. [PMID: 34984416 PMCID: PMC8717392 DOI: 10.1021/jacsau.1c00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/08/2023]
Abstract
Multivalent glycosylated materials (polymers, surfaces, and particles) often show high affinity toward carbohydrate binding proteins (e.g., lectins) due to the nonlinear enhancement from the cluster glycoside effect. This affinity gain has potential in applications from diagnostics, biosensors, and targeted delivery to anti-infectives and in an understanding of basic glycobiology. This perspective highlights the question of selectivity, which is less often addressed due to the reductionist nature of glycomaterials and the promiscuity of many lectins. The use of macromolecular features, including architecture, heterogeneous ligand display, and the installation of non-natural glycans, to address this challenge is discussed, and examples of selectivity gains are given.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
25
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
26
|
Plazinski W, Roslund MU, Säwén E, Engström O, Tähtinen P, Widmalm G. Tautomers of N-acetyl-d-allosamine: an NMR and computational chemistry study. Org Biomol Chem 2021; 19:7190-7201. [PMID: 34382051 DOI: 10.1039/d1ob01139a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
d-Allosamine is a rare sugar in Nature but its pyranoid form has been found α-linked in the core region of the lipopolysaccharide from the Gram-negative bacterium Porphyromonas gingivalis and in the chitanase inhibitor allosamidin, then β-linked and N-acetylated. In water solution the monosaccharide N-acetyl-d-allosamine (d-AllNAc) shows a significant presence of four tautomers arising from pyranoid and furanoid ring forms and anomeric configurations. The furanoid ring forms both showed 3JH1,H2≈ 4.85 Hz and to differentiate the anomeric configurations a series of chemical shift anisotropy/dipole-dipole cross-correlated relaxation NMR experiments was performed in which the α-anomeric form showed notable different relaxation rates for its components of the H1 doublet, thereby making it possible to elucidate the anomeric configuration of each of the furanoses. The conformational preferences of the different forms of d-AllNAc were investigated by 3JHH, 2JCH and 3JCH coupling constants from NMR experiments, molecular dynamics simulations and density functional theory calculations. The pyranose form resides in the 4C1 conformation and the furanose ring form has the majority of its conformers located on the South-East region of the pseudorotation wheel, with a small population in the Northern hemisphere. The tautomeric equilibrium was quite sensitive to changes in temperature, where the β-anomer of the pyranoid ring form decreased upon a temperature increase while the other forms increased.
Collapse
Affiliation(s)
- Wojciech Plazinski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
27
|
Biswas S, Ghotekar BK, Kulkarni SS. Total Synthesis of the All-Rare Sugar-Containing Pentasaccharide Repeating Unit of the O-Polysaccharide of Plesiomonas shigelloides Strain 302-73 (Serotype O1). Org Lett 2021; 23:6137-6142. [PMID: 34291950 DOI: 10.1021/acs.orglett.1c02239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
First total synthesis of the conjugation-ready pentasaccharide repeating unit of Plesiomonas shigelloides strain 302-73 (serotype O1) is reported. The complex target pentasaccharide is composed of all-rare amino sugars such as orthogonally functionalized d-bacillosamine, l-fucosamine, and l-pneumosamine linked through four consecutive α-linkages. The poor nucleophilicity of axial 4-OH of l-fucosamine and stereoselective glycosylations are the key challenges in the total synthesis, which was completed via a longest linear sequence of 27 steps in 3% overall yield.
Collapse
Affiliation(s)
- Sayantan Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Balasaheb K Ghotekar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
28
|
Identification of Biomolecules Involved in the Adaptation to the Environment of Cold-Loving Microorganisms and Metabolic Pathways for Their Production. Biomolecules 2021; 11:biom11081155. [PMID: 34439820 PMCID: PMC8393263 DOI: 10.3390/biom11081155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/22/2022] Open
Abstract
Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.
Collapse
|
29
|
Ho JS, Gharbi A, Schindler B, Yeni O, Brédy R, Legentil L, Ferrières V, Kiessling LL, Compagnon I. Distinguishing Galactoside Isomers with Mass Spectrometry and Gas-Phase Infrared Spectroscopy. J Am Chem Soc 2021; 143:10509-10513. [PMID: 34236183 PMCID: PMC9867933 DOI: 10.1021/jacs.0c11919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sequencing glycans is demanding due to their structural diversity. Compared to mammalian glycans, bacterial glycans pose a steeper challenge because they are constructed from a larger pool of monosaccharide building blocks, including pyranose and furanose isomers. Though mammalian glycans incorporate only the pyranose form of galactose (Galp), many pathogens, including Mycobacterium tuberculosis and Klebsiella pneumoniae, contain galactofuranose (Galf) residues in their cell envelope. Thus, glycan sequencing would benefit from methods to distinguish between pyranose and furanose isomers of different anomeric configurations. We used infrared multiple photon dissociation (IRMPD) spectroscopy with mass spectrometry (MS-IR) to differentiate between pyranose- and furanose-linked galactose residues. These targets pose a challenge for MS-IR because the saccharides lack basic groups, and galactofuranose residues are highly flexible. We postulated cationic groups that could complex through hydrogen bonding would offer a solution. Here, we present the first MS-IR analysis of hexose ammonium adducts. We compared their IR fingerprints with those of lithium adducts. We determined the diagnostic MS-IR signatures of the α- and β-anomers of galactose in furanose and pyranose forms. We also showed these signatures could be applied to disaccharides to assign galactose ring size. Our findings highlight the utility of MS-IR for analyzing the unique substructures that occur in bacterial glycans.
Collapse
Affiliation(s)
| | | | - Baptiste Schindler
- Univ. Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Oznur Yeni
- Univ. Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Richard Brédy
- Univ. Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Laurent Legentil
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, F-35000 Rennes, France
| | - Vincent Ferrières
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, F-35000 Rennes, France
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Isabelle Compagnon
- Univ. Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| |
Collapse
|
30
|
Vibhute AM, Tamai H, Logviniuk D, Jones PG, Fridman M, Werz DB. Azide-Functionalized Derivatives of the Virulence-Associated Sugar Pseudaminic Acid: Chiral Pool Synthesis and Labeling of Bacteria. Chemistry 2021; 27:10595-10600. [PMID: 33769621 PMCID: PMC8360151 DOI: 10.1002/chem.202100443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/19/2022]
Abstract
Pseudaminic acid (Pse) is a significant prokaryotic monosaccharide found in important Gram-negative and Gram-positive bacteria. This unique sugar serves as a component of cell-surface-associated glycans or glycoproteins and is associated with their virulence. We report the synthesis of azidoacetamido-functionalized Pse derivatives as part of a search for Pse-derived metabolic labeling reagents. The synthesis was initiated with d-glucose (Glc), which served as a cost-effective chiral pool starting material. Key synthetic steps involve the conversion of C1 of Glc into the terminal methyl group of Pse, and inverting deoxyaminations at C3 and C5 of Glc followed by backbone elongation with a three-carbon unit using the Barbier reaction. Metabolic labeling experiments revealed that, of the four Pse derivatives, ester-protected C5 azidoacetamido-Pse successfully labeled cells of Pse-expressing Gram-positive and Gram-negative strains. No labeling was observed in cells of non-Pse-expressing strains. The ester-protected and C5 azidoacetamido-functionalized Pse is thus a useful reagent for the identification of bacteria expressing this unique virulence-associated nonulosonic acid.
Collapse
Affiliation(s)
- Amol M Vibhute
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Hideki Tamai
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Dana Logviniuk
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Peter G Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Micha Fridman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
31
|
Rai D, Sanapala SR, Kulkarni SS. Serendipitous one-pot synthesis of chiral dienes from pyranosidic 2,4-bistriflates. Carbohydr Res 2021; 505:108351. [PMID: 34044223 DOI: 10.1016/j.carres.2021.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022]
Abstract
Attempted nucleophilic displacements of l-rhamnosyl 2,4-bistriflates led to serendipitous formation of a chiral diene via competing cascade eliminations. The reaction also followed the same pathway with d-rhamnosyl and d-mannosyl 2,4-bistriflates substrates providing access to dienes with opposite stereochemistry. The reaction presumably proceeds through E2 elimination of C2 triflate followed by allylic rearrangement. The easily accessible chiral dienes would be useful in the synthesis of natural products.
Collapse
Affiliation(s)
- Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
32
|
Paul A, Kulkarni SS. Synthesis of L-hexoses: an Update. CHEM REC 2021; 21:3224-3237. [PMID: 34075685 DOI: 10.1002/tcr.202100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Over the years, carbohydrates have increasingly become an important class of compounds contributing significantly to the target specific drug discovery and vaccine development. Several oligosaccharides contain L-hexoses that are biologically relevant as therapeutic and diagnostic tools. Since, L-hexoses and deoxy L-hexoses are not readily available in large amount and pure form, attention is drawn towards development of cost effective and high yielding synthetic routes for their procurement. In this review we give an update on the recent developments in strategies for synthesis of L-hexoses and deoxy L-hexoses.
Collapse
Affiliation(s)
- Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
33
|
Mancuso E, Romanò C, Trattnig N, Gritsch P, Kosma P, Clausen MH. Rhamnogalacturonan II: Chemical Synthesis of a Substructure Including α-2,3-Linked Kdo*. Chemistry 2021; 27:7099-7102. [PMID: 33769639 DOI: 10.1002/chem.202100837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 11/09/2022]
Abstract
The synthesis of a fully deprotected Kdo-containing rhamnogalacturonan II pentasaccharide is described. The strategy relies on the preparation of a suitably protected homogalacturonan tetrasaccharide backbone, through a post-glycosylation oxidation approach, and its stereoselective glycosylation with a Kdo fluoride donor.
Collapse
Affiliation(s)
- Enzo Mancuso
- Department of Chemistry, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, 2800, Kgs., Lyngby, Denmark
| | - Cecilia Romanò
- Department of Chemistry, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, 2800, Kgs., Lyngby, Denmark
| | - Nino Trattnig
- Department of Chemistry, University of Natural Resources and Life Sciences, 18 Muthgasse, 1190, Vienna, Austria
| | - Philipp Gritsch
- Institute of Applied Synthetic Chemistry TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, 18 Muthgasse, 1190, Vienna, Austria
| | - Mads H Clausen
- Department of Chemistry, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, 2800, Kgs., Lyngby, Denmark
| |
Collapse
|
34
|
Seeberger PH. Discovery of Semi- and Fully-Synthetic Carbohydrate Vaccines Against Bacterial Infections Using a Medicinal Chemistry Approach. Chem Rev 2021; 121:3598-3626. [PMID: 33794090 PMCID: PMC8154330 DOI: 10.1021/acs.chemrev.0c01210] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/13/2022]
Abstract
The glycocalyx, a thick layer of carbohydrates, surrounds the cell wall of most bacterial and parasitic pathogens. Recognition of these unique glycans by the human immune system results in destruction of the invaders. To elicit a protective immune response, polysaccharides either isolated from the bacterial cell surface or conjugated with a carrier protein, for T-cell help, are administered. Conjugate vaccines based on isolated carbohydrates currently protect millions of people against Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitides infections. Active pharmaceutical ingredients (APIs) are increasingly discovered by medicinal chemistry and synthetic in origin, rather than isolated from natural sources. Converting vaccines from biologicals to pharmaceuticals requires a fundamental understanding of how the human immune system recognizes carbohydrates and could now be realized. To illustrate the chemistry-based approach to vaccine discovery, I summarize efforts focusing on synthetic glycan-based medicinal chemistry to understand the mammalian antiglycan immune response and define glycan epitopes for novel synthetic glycoconjugate vaccines against Streptococcus pneumoniae, Clostridium difficile, Klebsiella pneumoniae, and other bacteria. The chemical tools described here help us gain fundamental insights into how the human system recognizes carbohydrates and drive the discovery of carbohydrate vaccines.
Collapse
|
35
|
Axer A, Jumde RP, Adam S, Faust A, Schäfers M, Fobker M, Koehnke J, Hirsch AKH, Gilmour R. Enhancing glycan stability via site-selective fluorination: modulating substrate orientation by molecular design. Chem Sci 2020; 12:1286-1294. [PMID: 34163891 PMCID: PMC8179167 DOI: 10.1039/d0sc04297h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Single site OH → F substitution at the termini of maltotetraose leads to significantly improved hydrolytic stability towards α-amylase and α-glucosidase relative to the natural compound. To explore the effect of molecular editing, selectively modified oligosaccharides were prepared via a convergent α-selective strategy. Incubation experiments in purified α-amylase and α-glucosidase, and in human and murine blood serum, provide insight into the influence of fluorine on the hydrolytic stability of these clinically important scaffolds. Enhancements of ca. 1 order of magnitude result from these subtle single point mutations. Modification at the monosaccharide furthest from the probable enzymatic cleavage termini leads to the greatest improvement in stability. In the case of α-amylase, docking studies revealed that retentive C2-fluorination at the reducing end inverts the orientation in which the substrate is bound. A co-crystal structure of human α-amylase revealed maltose units bound at the active-site. In view of the evolving popularity of C(sp3)–F bioisosteres in medicinal chemistry, and the importance of maltodextrins in bacterial imaging, this discovery begins to reconcile the information-rich nature of carbohydrates with their intrinsic hydrolytic vulnerabilities. Single site OH → F substitution at the termini of maltotetraose leads to significantly improved hydrolytic stability towards α-amylase and α-glucosidase relative to the natural compound.![]()
Collapse
Affiliation(s)
- Alexander Axer
- Organisch Chemisches Institut, WWU Münster Corrensstraße 36 48149 Münster Germany
| | - Ravindra P Jumde
- Department of Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) University Campus E8.1 66123 Saarbrücken Germany
| | - Sebastian Adam
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Institute for Infection Research (HZI) University Campus E8.1 66123 Saarbrücken Germany
| | - Andreas Faust
- European Institute for Molecular Imaging Münster Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging Münster Germany.,Department of Nuclear Medicine, University Hospital (UKM) Münster Germany
| | - Manfred Fobker
- Center for Laboratory Medicine, WWU Münster Münster Germany
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Institute for Infection Research (HZI) University Campus E8.1 66123 Saarbrücken Germany.,Department of Pharmacy, Saarland University 66123 Saarbrücken Germany
| | - Anna K H Hirsch
- Department of Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) University Campus E8.1 66123 Saarbrücken Germany.,Department of Pharmacy, Saarland University 66123 Saarbrücken Germany
| | - Ryan Gilmour
- Organisch Chemisches Institut, WWU Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
36
|
Qin C, Liu Z, Ding M, Cai J, Fu J, Hu J, Seeberger PH, Yin J. Chemical synthesis of the Pseudomonas aeruginosa O11 O-antigen trisaccharide based on neighboring electron-donating effect. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1839479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhonghua Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meiru Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Department of Biomolecular Systems, Max-Plank Institute of Colloids and Interfaces, Potsdam, Germany
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max-Plank Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
37
|
Vong K, Yamamoto T, Tanaka K. Artificial Glycoproteins as a Scaffold for Targeted Drug Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906890. [PMID: 32068952 DOI: 10.1002/smll.201906890] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Akin to a cellular "fingerprint," the glycocalyx is a glycan-enriched cellular coating that plays a crucial role in mediating cell-to-cell interactions. To gain a better understanding of the factors that govern in vivo recognition, artificial glycoproteins were initially created to probe changes made to the accumulation and biodistribution of specific glycan assemblies through biomimicry. As a result, the organ-specific accumulation for a variety of glycoproteins decorated with simple and/or complex glycans was identified. Additionally, binding trends with regard to cancer cell selectivity were also investigated. To exploit the knowledge gained from these studies, numerous groups thus became engaged in developing targeted drug methodologies based on the use of artificial glycoproteins. This has either been done through adopting the glycoprotein scaffold as a drug carrier, or to directly glycosylate therapeutic proteins/enzymes to localize their biological activity. The principle aim of this Review is to present the foundational research that has driven artificial glycoprotein-based targeting and subsequent adaptations with potential therapeutic applications.
Collapse
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
38
|
Jaiman A, Thattai M. Golgi compartments enable controlled biomolecular assembly using promiscuous enzymes. eLife 2020; 9:49573. [PMID: 32597757 PMCID: PMC7360365 DOI: 10.7554/elife.49573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/28/2020] [Indexed: 12/31/2022] Open
Abstract
The synthesis of eukaryotic glycans - branched sugar oligomers attached to cell-surface proteins and lipids - is organized like a factory assembly line. Specific enzymes within successive compartments of the Golgi apparatus determine where new monomer building blocks are linked to the growing oligomer. These enzymes act promiscuously and stochastically, causing microheterogeneity (molecule-to-molecule variability) in the final oligomer products. However, this variability is tightly controlled: a given eukaryotic protein type is typically associated with a narrow, specific glycan oligomer profile. Here, we use ideas from the mathematical theory of self-assembly to enumerate the enzymatic causes of oligomer variability and show how to eliminate each cause. We rigorously demonstrate that cells can specifically synthesize a larger repertoire of glycan oligomers by partitioning promiscuous enzymes across multiple Golgi compartments. This places limits on biomolecular assembly: glycan microheterogeneity becomes unavoidable when the number of compartments is limited, or enzymes are excessively promiscuous.
Collapse
Affiliation(s)
- Anjali Jaiman
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Mukund Thattai
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
39
|
Ahadi S, Awan SI, Werz DB. Total Synthesis of Tri-, Hexa- and Heptasaccharidic Substructures of the O-Polysaccharide of Providencia rustigianii O34. Chemistry 2020; 26:6264-6270. [PMID: 32092205 PMCID: PMC7318715 DOI: 10.1002/chem.202000496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Indexed: 12/22/2022]
Abstract
A general and efficient strategy for synthesis of tri-, hexa- and heptasaccharidic substructures of the lipopolysaccharide of Providencia rustigianii O34 is described. For the heptasaccharide seven different building blocks were employed. Special features of the structures are an α-linked galactosamine and the two embedded α-fucose units, which are either branched at positions-3 and -4 or further linked at their 2-position. Convergent strategies focused on [4+3], [3+4], and [4+2+1] couplings. Whereas the [4+3] and [3+4] coupling strategies failed the [4+2+1] strategy was successful. As monosaccharidic building blocks trichloroacetimidates and phosphates were employed. Global deprotection of the fully protected structures was achieved by Birch reaction.
Collapse
Affiliation(s)
- Somayeh Ahadi
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Shahid I. Awan
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstraße 237077GöttingenGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
40
|
Maghembe R, Damian D, Makaranga A, Nyandoro SS, Lyantagaye SL, Kusari S, Hatti-Kaul R. Omics for Bioprospecting and Drug Discovery from Bacteria and Microalgae. Antibiotics (Basel) 2020; 9:antibiotics9050229. [PMID: 32375367 PMCID: PMC7277505 DOI: 10.3390/antibiotics9050229] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
"Omics" represent a combinatorial approach to high-throughput analysis of biological entities for various purposes. It broadly encompasses genomics, transcriptomics, proteomics, lipidomics, and metabolomics. Bacteria and microalgae exhibit a wide range of genetic, biochemical and concomitantly, physiological variations owing to their exposure to biotic and abiotic dynamics in their ecosystem conditions. Consequently, optimal conditions for adequate growth and production of useful bacterial or microalgal metabolites are critically unpredictable. Traditional methods employ microbe isolation and 'blind'-culture optimization with numerous chemical analyses making the bioprospecting process laborious, strenuous, and costly. Advances in the next generation sequencing (NGS) technologies have offered a platform for the pan-genomic analysis of microbes from community and strain downstream to the gene level. Changing conditions in nature or laboratory accompany epigenetic modulation, variation in gene expression, and subsequent biochemical profiles defining an organism's inherent metabolic repertoire. Proteome and metabolome analysis could further our understanding of the molecular and biochemical attributes of the microbes under research. This review provides an overview of recent studies that have employed omics as a robust, broad-spectrum approach for screening bacteria and microalgae to exploit their potential as sources of drug leads by focusing on their genomes, secondary metabolite biosynthetic pathway genes, transcriptomes, and metabolomes. We also highlight how recent studies have combined molecular biology with analytical chemistry methods, which further underscore the need for advances in bioinformatics and chemoinformatics as vital instruments in the discovery of novel bacterial and microalgal strains as well as new drug leads.
Collapse
Affiliation(s)
- Reuben Maghembe
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
| | - Donath Damian
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
| | - Abdalah Makaranga
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- International Center for Genetic Engineering and Biotechnology (ICGEB), Omics of Algae Group, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Stephen Samwel Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania;
| | - Sylvester Leonard Lyantagaye
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biochemistry, Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O. Box 608, Mbeya, Tanzania
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| |
Collapse
|
41
|
Hayashi T, Axer A, Kehr G, Bergander K, Gilmour R. Halogen-directed chemical sialylation: pseudo-stereodivergent access to marine ganglioside epitopes. Chem Sci 2020; 11:6527-6531. [PMID: 34094118 PMCID: PMC8152791 DOI: 10.1039/d0sc01219j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sialic acids are conspicuous structural components of the complex gangliosides that regulate cellular processes. Their importance in molecular recognition manifests itself in drug design (e.g. Tamiflu®) and continues to stimulate the development of effective chemical sialylation strategies to complement chemoenzymatic technologies. Stereodivergent approaches that enable the α- or β-anomer to be generated at will are particularly powerful to attenuate hydrogen bond networks and interrogate function. Herein, we demonstrate that site-selective halogenation (F and Br) at C3 of the N-glycolyl units common to marine Neu2,6Glu epitopes enables pseudo-stereodivergent sialylation. α-Selective sialylation results from fluorination, whereas traceless bromine-guided sialylation generates the β-adduct. This concept is validated in the synthesis of HLG-1 and Hp-s1 analogues. Sialic acids are conspicuous structural components of the complex gangliosides that regulate cellular processes.![]()
Collapse
Affiliation(s)
- Taiki Hayashi
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Alexander Axer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| |
Collapse
|
42
|
Bera M, Mukhopadhyay B. Synthesis of the tetrasaccharide repeating unit of the O-antigen from Pseudomonas putida BIM B-1100 having rare D-Quip3NAc. Carbohydr Res 2020; 489:107955. [DOI: 10.1016/j.carres.2020.107955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 11/28/2022]
|
43
|
Suzuki N. Glycan diversity in the course of vertebrate evolution. Glycobiology 2020; 29:625-644. [PMID: 31287538 DOI: 10.1093/glycob/cwz038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 11/12/2022] Open
Abstract
Vertebrates are estimated to have arisen over 500 million years ago in the Cambrian Period. Species that survived the Big Five extinction events at a global scale underwent repeated adaptive radiations along with habitat expansions from the sea to the land and sky. The development of the endoskeleton and neural tube enabled more complex body shapes. At the same time, vertebrates became suitable for the invasion and proliferation of foreign organisms. Adaptive immune systems were acquired for responses to a wide variety of pathogens, and more sophisticated systems developed during the evolution of mammals and birds. Vertebrate glycans consist of common core structures and various elongated structures, such as Neu5Gc, Galα1-3Gal, Galα1-4Gal, and Galβ1-4Gal epitopes, depending on the species. During species diversification, complex glycan structures were generated, maintained or lost. Whole-genome sequencing has revealed that vertebrates harbor numerous and even redundant glycosyltransferase genes. The production of various glycan structures is controlled at the genetic level in a species-specific manner. Because cell surface glycans are often targets of bacterial and viral infections, glycan structural diversity is presumed to be protective against infections. However, the maintenance of apparently redundant glycosyltransferase genes and investment in species-specific glycan structures, even in higher vertebrates with highly developed immune systems, are not well explained. This fact suggests that glycans play important roles in unknown biological processes.
Collapse
Affiliation(s)
- Noriko Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
44
|
Gray CJ, Migas LG, Barran PE, Pagel K, Seeberger PH, Eyers CE, Boons GJ, Pohl NLB, Compagnon I, Widmalm G, Flitsch SL. Advancing Solutions to the Carbohydrate Sequencing Challenge. J Am Chem Soc 2019; 141:14463-14479. [PMID: 31403778 DOI: 10.1021/jacs.9b06406] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbohydrates possess a variety of distinct features with stereochemistry playing a particularly important role in distinguishing their structure and function. Monosaccharide building blocks are defined by a high density of chiral centers. Additionally, the anomericity and regiochemistry of the glycosidic linkages carry important biological information. Any carbohydrate-sequencing method needs to be precise in determining all aspects of this stereodiversity. Recently, several advances have been made in developing fast and precise analytical techniques that have the potential to address the stereochemical complexity of carbohydrates. This perspective seeks to provide an overview of some of these emerging techniques, focusing on those that are based on NMR and MS-hybridized technologies including ion mobility spectrometry and IR spectroscopy.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Lukasz G Migas
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Perdita E Barran
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Kevin Pagel
- Institute for Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Peter H Seeberger
- Biomolecular Systems Department , Max Planck Institute for Colloids and Interfaces , Am Muehlenberg 1 , 14476 Potsdam , Germany
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology , University of Liverpool , Crown Street , Liverpool L69 7ZB , U.K
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Nicola L B Pohl
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Isabelle Compagnon
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS , Université de Lyon , 69622 Villeurbanne Cedex , France.,Institut Universitaire de France IUF , 103 Blvd St Michel , 75005 Paris , France
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , S-106 91 Stockholm , Sweden
| | - Sabine L Flitsch
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|
45
|
Bacterial carbohydrate diversity - a Brave New World. Curr Opin Chem Biol 2019; 53:1-8. [PMID: 31176085 DOI: 10.1016/j.cbpa.2019.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Glycans and glycoconjugates feature on the 'front line' of bacterial cells, playing critical roles in the mechanical and chemical stability of the microorganisms, and orchestrating interactions with the environment and all other living organisms. To negotiate such central tasks, bacterial glycomes incorporate a dizzying array of carbohydrate building blocks and non-carbohydrate modifications, which create opportunities for infinite structural variation. This review highlights some of the challenges and opportunities for the chemical biology community in the field of bacterial glycobiology.
Collapse
|
46
|
Calabretta PJ, Hodges HL, Kraft MB, Marando VM, Kiessling LL. Bacterial Cell Wall Modification with a Glycolipid Substrate. J Am Chem Soc 2019; 141:9262-9272. [PMID: 31081628 DOI: 10.1021/jacs.9b02290] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the ubiquity and importance of glycans in biology, methods to probe their structures in cells are limited. Mammalian glycans can be modulated using metabolic incorporation, a process in which non-natural sugars are taken up by cells, converted to nucleotide-sugar intermediates, and incorporated into glycans via biosynthetic pathways. These studies have revealed that glycan intermediates can be shunted through multiple pathways, and this complexity can be heightened in bacteria, as they can catabolize diverse glycans. We sought to develop a strategy that probes structures recalcitrant to metabolic incorporation and that complements approaches focused on nucleotide sugars. We reasoned that lipid-linked glycans, which are intermediates directly used in glycan biosynthesis, would offer an alternative. We generated synthetic arabinofuranosyl phospholipids to test this strategy in Corynebacterium glutamicum and Mycobacterium smegmatis, organisms that serve as models of Mycobacterium tuberculosis. Using a C. glutamicum mutant that lacks arabinan, we identified synthetic glycosyl donors whose addition restores cell wall arabinan, demonstrating that non-natural glycolipids can serve as biosynthetic intermediates and function in chemical complementation. The addition of an isotopically labeled glycan substrate facilitated cell wall characterization by NMR. Structural analysis revealed that all five known arabinofuranosyl transferases could process the exogenous lipid-linked sugar donor, allowing for the full recovery of the cell envelope. The lipid-based probe could also rescue wild-type cells treated with an inhibitor of cell wall biosynthesis. Our data indicate that surrogates of natural lipid-linked glycans can intervene in the cell's traditional workflow, indicating that biosynthetic incorporation is a powerful strategy for probing glycan structure and function.
Collapse
Affiliation(s)
- Phillip J Calabretta
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | | - Victoria M Marando
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Laura L Kiessling
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
47
|
Altman MO, Gagneux P. Absence of Neu5Gc and Presence of Anti-Neu5Gc Antibodies in Humans-An Evolutionary Perspective. Front Immunol 2019; 10:789. [PMID: 31134048 PMCID: PMC6524697 DOI: 10.3389/fimmu.2019.00789] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022] Open
Abstract
The glycocalyx of human cells differs from that of many other mammals by the lack of the sialic acid N-glycolylneuraminic acid (Neu5Gc) and increased abundance of its precursor N-acetylneuraminic acid (Neu5Ac). Most humans also have circulating antibodies specifically targeting the non-human sialic acid Neu5Gc. Recently, several additional mammalian species have been found to also lack Neu5Gc. In all cases, loss-of-function mutations in the gene encoding the sialic acid-modifying enzyme CMAH are responsible for the drastic change in these species. Unlike other glycan antigens, Neu5Gc apparently cannot be produced by microbes, raising the question about the origin of these antibodies in humans. Dietary exposure and presentation on bacteria coating themselves with Neu5Gc from the diet are distinct possibilities. However, the majority of the non-human species that lack Neu5Gc do not consume diets rich in Neu5Gc, making it unlikely that they will have been immunized against this sialic acid. A notable exception are mustelids (ferrets, martens and their relatives) known for preying on various small mammal species rich in Neu5Gc. No studies exist on levels of anti-Neu5Gc antibodies in non-human species. Evolutionary scenarios for the repeated, independent fixation of CMAH loss-of-function mutations at various time points in the past include strong selection by parasites, especially enveloped viruses, stochastic effects of genetic drift, and directional selection via female immunity to paternal Neu5Gc. Convergent evolution of losses of the vertebrate-specific self-glycan Neu5Gc are puzzling and may represent a prominent way in which glycans become agents of evolutionary change in their own right. Such change may include the reconfiguration of innate immune lectins that use self-sialic acids as recognition patterns.
Collapse
Affiliation(s)
- Meghan O Altman
- Department of Pathology, Biomedical Research and Training Facility 2, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| | - Pascal Gagneux
- Department of Pathology, Biomedical Research and Training Facility 2, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States.,Department of Anthropology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
48
|
Purcell SC, Godula K. Synthetic glycoscapes: addressing the structural and functional complexity of the glycocalyx. Interface Focus 2019; 9:20180080. [PMID: 30842878 PMCID: PMC6388016 DOI: 10.1098/rsfs.2018.0080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
The glycocalyx is an information-dense network of biomacromolecules extensively modified through glycosylation that populates the cellular boundary. The glycocalyx regulates biological events ranging from cellular protection and adhesion to signalling and differentiation. Owing to the characteristically weak interactions between individual glycans and their protein binding partners, multivalency of glycan presentation is required for the high-avidity interactions needed to trigger cellular responses. As such, biological recognition at the glycocalyx interface is determined by both the structure of glycans that are present as well as their spatial distribution. While genetic and biochemical approaches have proven powerful in controlling glycan composition, modulating the three-dimensional complexity of the cell-surface 'glycoscape' at the sub-micrometre scale remains a considerable challenge in the field. This focused review highlights recent advances in glycocalyx engineering using synthetic nanoscale glycomaterials, which allows for controlled de novo assembly of complexity with precision not accessible with traditional molecular biology tools. We discuss several exciting new studies in the field that demonstrate the power of precision glycocalyx editing in living cells in revealing and controlling the complex mechanisms by which the glycocalyx regulates biological processes.
Collapse
Affiliation(s)
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA
| |
Collapse
|
49
|
Hayashi T, Kehr G, Bergander K, Gilmour R. Stereospecific α‐Sialylation by Site‐Selective Fluorination. Angew Chem Int Ed Engl 2019; 58:3814-3818. [DOI: 10.1002/anie.201812963] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Taiki Hayashi
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
50
|
Hayashi T, Kehr G, Bergander K, Gilmour R. Stereospecific α‐Sialylation by Site‐Selective Fluorination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Taiki Hayashi
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|