1
|
Jiang Y, Chen K, He J, Sun Y, Zhang X, Yang X, Xie H, Liu J. A self-healing composite solid electrolyte with dynamic three-dimensional inorganic/organic hybrid network for flexible all-solid-state lithium metal batteries. J Colloid Interface Sci 2025; 678:200-209. [PMID: 39293364 DOI: 10.1016/j.jcis.2024.09.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Composite solid electrolytes (CSEs), which combine the advantages of solid polymer electrolytes and inorganic solid electrolytes, are considered to be promising electrolytes for all-solid-state lithium metal batteries. However, the current CSEs suffer from defects such as poor inorganic/organic interface compatibility, lithium dendrite growth, and easy damage of electrolyte membrane, which hinder the practical application of CSEs. Herein, a CSE (PBHL@LLZTO@DDB) with polyurethane (PBHL) as the polymer matrix and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) modified by silane coupling agent (DDB) as inorganic fillers (LLZTO@DDB) has been prepared. Disulfide bond exchange reactions between PBHL and LLZTO@DDB enable PBHL@LLZTO@DDB to form a dynamic three-dimensional (3D) inorganic/organic hybrid network, which promotes the uniform dispersion of LLZTO in PBHL@LLZTO@DDB, improves the Li+ conductivity (1.24 ± 0.08 × 10-4 S cm-1 at 30 ℃), and broadens the electrochemical stability window (5.16 V vs. Li+/Li). Moreover, a combination of hydrogen bonds and disulfide bonds endows PBHL@LLZTO@DDB with excellent self-healing properties. As such, both all-solid-state symmetric and full cells exhibit excellent cycle performance at ambient temperature. More importantly, the healed PBHL@LLZTO@DDB can almost completely restore its original electrochemical properties, indicating its application potential in flexible electronic products.
Collapse
Affiliation(s)
- Ying Jiang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Kai Chen
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jinping He
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yuxue Sun
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaorong Zhang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoxing Yang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiming Xie
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Jun Liu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Hong H, Wang Y, Zhang Y, Han B, Li Q, Guo X, Guo Y, Chen A, Wei Z, Huang Z, Zhao Y, Fan J, Zhi C. Hydrogen-Bonded Ionic Co-Crystals for Fast Solid-State Zinc Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407150. [PMID: 39370569 DOI: 10.1002/adma.202407150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Indexed: 10/08/2024]
Abstract
The development of new ionic conductors meeting the requirements of current solid-state devices is imminent but still challenging. Hydrogen-bonded ionic co-crystals (HICs) are multi-component crystals based on hydrogen bonding and Coulombic interactions. Due to the hydrogen bond network and unique features of ionic crystals, HICs have flexible skeletons. More importantly, anion vacancies on their surface can potentially help dissociate and adsorb excess anions, forming cation transport channels at grain boundaries. Here, it is demonstrated that a HIC optimized by adjusting the ratio of zinc salt and imidazole can construct grain boundary-based fast Zn2+ transport channels. The as-obtained HIC solid electrolyte possesses an unprecedentedly high ionic conductivity at room and low temperatures (≈11.2 mS cm-1 at 25 °C and ≈2.78 mS cm-1 at -40 °C) with ultra-low activation energy (≈0.12 eV), while restraining dendrite growth and exhibiting low overpotential even at a high current density (<200 mV at 5.0 mA cm-2) during Zn symmetric cell cycling. This HIC also allows solid-state Zn||covalent organic framework full cells to work at low temperatures, providing superior stability. More importantly, the HIC can even support zinc-ion hybrid supercapacitors to work, achieving extraordinary rate capability and a power density comparable to aqueous solution-based supercapacitors. This work provides a path for designing facilely prepared, low-cost, and environmentally friendly ionic conductors with extremely high ionic conductivity and excellent interface compatibility.
Collapse
Affiliation(s)
- Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yu Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yaqin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Bing Han
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R. China
| | - Qing Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xun Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ying Guo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Ao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhaodong Huang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Sha Tin, NT, Hong Kong SAR, 999077, China
| | - Yuwei Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Sha Tin, NT, Hong Kong SAR, 999077, China
| |
Collapse
|
3
|
Chen J, Feng S, Lai H, Lu Y, Liu W, Wu X, Wen Z. Interface Ionic/Electronic Redistribution Driven by Conversion-Alloy Reaction for High-Performance Solid-State Sodium Batteries. SMALL METHODS 2024; 8:e2301201. [PMID: 38169106 DOI: 10.1002/smtd.202301201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Indexed: 01/05/2024]
Abstract
NASICON-type Na+ conductors show a great potential to realize high performance and safety for solid-state sodium metal batteries (SSSMBs) owing to their superior ionic conductivity, high chemical stability, and low cost. However, the interfacial incompatibility and sodium dendrite hazards still hinder its applications. Herein, a conversion-alloy reaction-induced interface ionic/electronic redistribution strategy, constructing a gradient sodiophilic and electron-blocking interphase consisting of sodium-tin (Na-Sn) alloy and sodium fluoride (NaF) between NASICON ceramic electrolyte and Na anode is proposed. The NaxSny alloy-rich layer near the side of the sodium electrode acts as a superior conductor to enhance the anodic sodium-ion transport dynamics while the NaF-rich layer near the side of the ceramic electrolyte serves as an electron insulator to confine the interfacial electron turning ability, achieving uniform and dendrite-free Na deposition during the cycling. Profiting from the synergistic effect of the gradient interphase, the critical current density (CCD) of the assembled Na symmetric cell is significantly increased to 1.7 mA cm-2 and the cycling stability of that is as high as 1200 h at 0.5 mA cm-2. Moreover, quasi-solid-state sodium batteries with both Na3V2(PO4)3 and NaNi1/3Fe1/3Mn1/3O2 cathode display outstanding electrochemical performance.
Collapse
Affiliation(s)
- Jiayu Chen
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Feng
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Hongjian Lai
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yan Lu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wuhan Liu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xiangwei Wu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyin Wen
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Liu J, Yin F, Mao Y, Sun C. Fluorine-Doped Li 7La 3Zr 2O 12 Fiber-Based Composite Electrolyte for Solid-State Lithium Batteries with Enhanced Electrochemical Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31191-31200. [PMID: 38842130 DOI: 10.1021/acsami.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Garnet-based electrolytes with high ionic conductivity and excellent stability against lithium metal anodes are promising for commercial applications in solid-state lithium batteries (SSLBs). However, the further development of SSLBs is inhibited by issues such as low ionic conductivity and uncontrolled lithium dendrite growth. Herein, we report the synthesis of fluorine-doped Li7La3Zr2O12 (LLZO-F0.2) fibers by electrospinning and the subsequent calcination at high temperatures. The solid composite electrolyte with LLZO-F0.2 exhibits an ionic conductivity of 5.37 × 10-4 S cm-1 and a high lithium-ion transference number of 0.61 at room temperature. Meanwhile, it exhibits lower resistance and more uniform lithium metal stripping and deposition in symmetric cells. The full cell with LiFePO4 cathode exhibits excellent rate capability and cycling stability for 800 cycles at 0.5 C with a discharge specific capacity retention of 97.7%. This fluorine-doped fibrous garnet-type electrolyte provides a viable option for preparing high-performance SSLBs.
Collapse
Affiliation(s)
- Jilong Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, P. R. China
| | - Fusheng Yin
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, P. R. China
| | - Yuezhen Mao
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, P. R. China
| | - Chunwen Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, P. R. China
| |
Collapse
|
5
|
Bumberger AE, Nenning A, Fleig J. Transmission line revisited - the impedance of mixed ionic and electronic conductors. Phys Chem Chem Phys 2024; 26:15068-15089. [PMID: 38752774 DOI: 10.1039/d4cp00975d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
This contribution provides a comprehensive guide for evaluating the one-dimensional impedance response of dense mixed ionic and electronic conductors based on a physically derived transmission line model. While mass and charge transport through the bulk of a mixed conductor is always described by three fundamental parameters (chemical capacitance, ionic conductivity and electronic conductivity), it is the nature of the contact interfaces that largely determines the observed impedance response. Thus, to allow an intuitive adaptation of the transmission line model for any specific measurement situation, the physical meanings of terminal impedance elements at the ionic and electronic rail ends are explicitly discussed. By distinguishing between charge transfer terminals and electrochemical reaction terminals, the range of possible measurement configurations is categorized into symmetrical, SOFC-type and battery-type setups, all of which are explored on the basis of practical examples from the literature. Also, the transformation of an SOFC electrode into a battery electrode and the relevance of side reactions for the impedance of battery electrodes is discussed.
Collapse
Affiliation(s)
| | - Andreas Nenning
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria.
| | - Juergen Fleig
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria.
| |
Collapse
|
6
|
Jia Z, Shen H, Kou J, Zhang T, Wang Z, Tang W, Doeff M, Chiang CY, Chen K. Solid Electrolyte Bimodal Grain Structures for Improved Cycling Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309019. [PMID: 38262625 DOI: 10.1002/adma.202309019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The application of solid-state electrolytes in Li batteries is hampered by the occurrence of Li-dendrite-caused short circuits. To avoid cell failure, the electrolytes can only be stressed with rather low current densities, severely restricting their performance. As grain size and pore distributions significantly affect dendrite growth in ceramic electrolytes such as Li7La3Zr2O12 and its variants; here, a "detour and buffer" strategy to bring the superiority of both coarse and fine grains into play, is proposed. To validate the mechanism, a coarse/fine bimodal grain microstructure is obtained by seeding unpulverized large particles in the green body. The rearrangement of coarse grains and fine pores is fine-tuned by changing the ratio of pulverized and unpulverized powders. The optimized bimodal microstructure, obtained when the two powders are equally mixed, allows, without extra interface decoration, cycling for over 2000 h as the current density is increased from 1.0 mA·cm-2, and gradually, up to 2.0 mA·cm-2. The "detour and buffer" effects are confirmed from postmortem analysis. The complex grain boundaries formed by fine grains discourage the direct infiltration of Li. Simultaneously, the coarse grains further increase the tortuosity of the Li path. This study sheds light on the microstructure optimization for the polycrystalline solid-state electrolytes.
Collapse
Affiliation(s)
- Zhanhui Jia
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hao Shen
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiawei Kou
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Tianyi Zhang
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhen Wang
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wei Tang
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Marca Doeff
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ching-Yu Chiang
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan, 30076, ROC
| | - Kai Chen
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
7
|
Chen Y, Lun Z, Zhao X, Koirala KP, Li L, Sun Y, O'Keefe CA, Yang X, Cai Z, Wang C, Ji H, Grey CP, Ouyang B, Ceder G. Unlocking Li superionic conductivity in face-centred cubic oxides via face-sharing configurations. NATURE MATERIALS 2024; 23:535-542. [PMID: 38308087 PMCID: PMC10990923 DOI: 10.1038/s41563-024-01800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/06/2024] [Indexed: 02/04/2024]
Abstract
Oxides with a face-centred cubic (fcc) anion sublattice are generally not considered as solid-state electrolytes as the structural framework is thought to be unfavourable for lithium (Li) superionic conduction. Here we demonstrate Li superionic conductivity in fcc-type oxides in which face-sharing Li configurations have been created through cation over-stoichiometry in rocksalt-type lattices via excess Li. We find that the face-sharing Li configurations create a novel spinel with unconventional stoichiometry and raise the energy of Li, thereby promoting fast Li-ion conduction. The over-stoichiometric Li-In-Sn-O compound exhibits a total Li superionic conductivity of 3.38 × 10-4 S cm-1 at room temperature with a low migration barrier of 255 meV. Our work unlocks the potential of designing Li superionic conductors in a prototypical structural framework with vast chemical flexibility, providing fertile ground for discovering new solid-state electrolytes.
Collapse
Affiliation(s)
- Yu Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhengyan Lun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinye Zhao
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Krishna Prasad Koirala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Linze Li
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yingzhi Sun
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Xiaochen Yang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zijian Cai
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Huiwen Ji
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Bin Ouyang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
| | - Gerbrand Ceder
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
8
|
Lou C, Zhang W, Liu J, Gao Y, Sun X, Fu J, Shi Y, Xu L, Luo H, Chen Y, Gao X, Kuang X, Su L, Tang M. The glass phase in the grain boundary of Na 3Zr 2Si 2PO 12, created by gallium modulation. Chem Sci 2024; 15:3988-3995. [PMID: 38487237 PMCID: PMC10935661 DOI: 10.1039/d3sc06578b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024] Open
Abstract
Na3Zr2Si2PO12 has been proven to be a promising electrolyte for solid-state sodium batteries. However, its poor conductivity prevents application, caused by the large ionic resistance created by the grain boundary. Herein, we propose an additional glass phase (Na-Ga-Si-P-O phase) to connect the grain boundary via Ga ion introduction, resulting in enhanced sodium-ion conduction and electrochemical performance. The optimized Na3Zr2Si2PO12-0.15Ga electrolyte exhibits Na+ conductivity of 1.65 mS cm-1 at room temperature and a low activation energy of 0.16 eV, with 20% newly formed glass phase enclosing the grain boundary. Temperature-dependent NMR line shapes and spin-lattice relaxation were used to estimate the Na self-diffusion and Na ion hopping. The dense glass-ceramic electrolyte design strategy and the structure-dynamics-property correlation from NMR, can be extended to the optimization of other materials.
Collapse
Affiliation(s)
- Chenjie Lou
- Center for High Pressure Science and Technology Advanced Research Beijing 100193 China
| | - Wenda Zhang
- Center for High Pressure Science and Technology Advanced Research Beijing 100193 China
- College of Materials Science and Engineering, Guilin University of Technology Guilin 541004 China
| | - Jie Liu
- Center for High Pressure Science and Technology Advanced Research Beijing 100193 China
| | - Yanan Gao
- Center for High Pressure Science and Technology Advanced Research Beijing 100193 China
| | - Xuan Sun
- Center for High Pressure Science and Technology Advanced Research Beijing 100193 China
- China Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University Hangzhou 310018 China
| | - Jipeng Fu
- China Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University Hangzhou 310018 China
- Narada Power Source Co., Ltd. Hangzhou 311305 China
| | - Yongchao Shi
- Center for High Pressure Science and Technology Advanced Research Beijing 100193 China
| | - Ligang Xu
- Center for High Pressure Science and Technology Advanced Research Beijing 100193 China
| | - Huajie Luo
- University of Science and Technology Beijing Beijing 100083 China
| | - Yongjin Chen
- Center for High Pressure Science and Technology Advanced Research Beijing 100193 China
| | - Xiang Gao
- Center for High Pressure Science and Technology Advanced Research Beijing 100193 China
| | - Xiaojun Kuang
- College of Materials Science and Engineering, Guilin University of Technology Guilin 541004 China
| | - Lei Su
- Center for High Pressure Science and Technology Advanced Research Beijing 100193 China
| | - Mingxue Tang
- Center for High Pressure Science and Technology Advanced Research Beijing 100193 China
- University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
9
|
El-Shinawi H, El-Dafrawy SM, Tarek M, Molouk AFS, Cussen EJ, Cussen SA. Stabilization of the cubic, fast-ion conducting phase of Li 7La 3Sn 2O 12 garnet by gallium doping. RSC Adv 2024; 14:7557-7563. [PMID: 38440277 PMCID: PMC10910459 DOI: 10.1039/d3ra08968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
All-solid-state batteries present promising high-energy-density alternatives to conventional Li-ion chemistries, and Li-stuffed garnets based on Li7La3Zr2O12 (LLZO) remain a forerunner for candidate solid-electrolytes. One route to access fast-ion conduction in LLZO phases is to stabilize the cubic LLZO phase by doping on the Li sites with aliovalent ions such as Al3+ or Ga3+. Despite prior attempts, the stabilization of the cubic phase of isostructural Li7La3Sn2O12 (LLSO) by doping on the Li sites has up to now not been realised. Here, we report a novel cubic fast-ion conducting Li7La3Sn2O12-type phase stabilized by doping Ga3+ in place of Li. 0.3 mole of gallium per formula unit of LLSO were needed to fully stabilize the cubic garnet, allowing structural and electrochemical characterizations of the new material. A modified sol-gel synthesis approach is introduced in this study to realise Ga-doping in LLSO, which offers a viable route to preparing new Sn-based candidate solid-electrolytes for all-solid-state battery applications.
Collapse
Affiliation(s)
- Hany El-Shinawi
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
- Department of Materials Science and Engineering, University of Sheffield Sir Robert Hadfield Building Sheffield S1 3JD UK
| | - Shady M El-Dafrawy
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Mahmoud Tarek
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Ahmed F S Molouk
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Edmund J Cussen
- Department of Materials Science and Engineering, University of Sheffield Sir Robert Hadfield Building Sheffield S1 3JD UK
| | - Serena A Cussen
- Department of Materials Science and Engineering, University of Sheffield Sir Robert Hadfield Building Sheffield S1 3JD UK
| |
Collapse
|
10
|
Song M, Zhang X, Wan S, Wang G, Liu J, Li W, Dong H, Lou C, Chen Z, Chen B, Zhang H. Electrical Conductivities and Conduction Mechanism of Lithium-Doped High-Entropy Oxides at Different Temperature and Pressure Conditions. JACS AU 2024; 4:592-606. [PMID: 38425908 PMCID: PMC10900490 DOI: 10.1021/jacsau.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
Li-doped high-entropy oxides (Li-HEO) are promising electrode materials for Li-ion batteries. However, their electrical conduction in a wide range of temperatures and/or at high pressure is unknown, hindering their applications under extreme conditions. Especially, a clear understanding of the conduction mechanism is needed. In this work, we determined the carrier type of several Li-doped (MgCoNiCuZn)O semiconductor compounds and measured their electrical conduction at temperatures 79-773 K and/or at pressures up to 50 GPa. Three optical band gaps were uncovered from the UV-vis-NIR absorption measurements, unveiling the existence of defect energy levels near the valence band of p-type semiconductors. The Arrhenius-like plot of the electrical conductivity data revealed the electronic conduction in three temperature regions, i.e., the ionization region from 79 to 170 K, the extrinsic region from ∼170 to 300 K, and the intrinsic region at ≥300 K. The closeness of the determined electronic band gap and the second optical band gap suggests that the conduction electrons in the intrinsic region originate from a thermal excitation from the defect energy levels to the conduction band, which determines the electronic conductivity. It was also found that at or above room temperature, ionic conduction coexists with electronic conduction with a comparable magnitude at ambient pressure and that the intrinsic conduction mechanism also operates at high pressures. These findings provide us a fundamental understanding of the band structure and conduction mechanism of Li-HEO, which would be indispensable to their applications in new technical areas.
Collapse
Affiliation(s)
- Meng Song
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Xiaoliang Zhang
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Shun Wan
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Gui Wang
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Junxiu Liu
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Weiwei Li
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Hongliang Dong
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Chenjie Lou
- Center
for High Pressure Science and Technology Advanced Research, Beijing 100193, China
| | - Zhiqiang Chen
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Bin Chen
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Hengzhong Zhang
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| |
Collapse
|
11
|
Yang H, Jing M, Wang L, Xu H, Yan X, He X. PDOL-Based Solid Electrolyte Toward Practical Application: Opportunities and Challenges. NANO-MICRO LETTERS 2024; 16:127. [PMID: 38381226 PMCID: PMC10881957 DOI: 10.1007/s40820-024-01354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/07/2024] [Indexed: 02/22/2024]
Abstract
Polymer solid-state lithium batteries (SSLB) are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety. Ion conductivity, interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB. As the main component of SSLB, poly(1,3-dioxolane) (PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid electrolyte, for their high ion conductivity at room temperature, good battery electrochemical performances, and simple assembly process. This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB. The focuses include exploring the polymerization mechanism of DOL, the performance of PDOL composite electrolytes, and the application of PDOL. Furthermore, we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB. The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.
Collapse
Affiliation(s)
- Hua Yang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Maoxiang Jing
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xiaohong Yan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
12
|
Zhou H, Zhou Y, Li X, Huang X, Tian B. Li 5AlO 4-Assisted Low-Temperature Sintering of Dense Li 7La 3Zr 2O 12 Solid Electrolyte with High Critical Current Density. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5989-5998. [PMID: 38271587 DOI: 10.1021/acsami.3c17606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In recent years, solid electrolytes (SEs) have been developed a lot due to the superior safety of solid-state batteries (SSBs) upon liquid electrolyte-based commercial batteries. Among them, garnet-type Li7La3Zr2O12 (LLZO) is one of the few SEs that is stable to lithium anode with high Li+ conductivity and the feasibility of preparation under ambient air, which makes it a promising candidate for fabricating SSBs. However, high sintering temperature (>1200 °C) prevents its large-scale production, further hindering its application. In this work, the Li5AlO4 sintering aid is proposed to decrease the sintering temperature and modify the grain boundaries of LLZO ceramics. Li5AlO4 generates in situ Li2O atmosphere and molten Li-Al-O compounds at relatively low temperatures to facilitate the gas-liquid-solid material transportation among raw LLZO grains, which decreases the densification temperature over 150 °C and strengthens the grain boundaries against lithium dendrites. As an example, Ta-doped LLZO ceramics without excessive Li sintered with 2 wt % Li5AlO4 at 1050 °C delivered high relative density > 94%, an ionic conductivity of 6.7 × 10-4 S cm-1, and an excellent critical current density (CCD) of 1.5 mA cm-2 at room temperature. In comparison, Ta-doped LLZO with 15% excessive Li sintered at 1200 °C delivered low relative density < 89%, a low ionic conductivity of ∼2 × 10-4 S cm-1, and a poor CCD of 0.5 mA cm-2. Li symmetric cells and Li-LFP full cells fabricated with Li5AlO4-assised ceramics were stably cycled at 0.2 mA cm-2 over 2000 h and at 0.8C over 100 cycles, respectively.
Collapse
Affiliation(s)
- Hao Zhou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yongjian Zhou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyi Li
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiao Huang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Bingbing Tian
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
Gu Z, Wang K, Rao Y, Nan P, Cheng L, Ge B, Zhang W, Ma C. Atomic-Resolution Electron Microscopy Unravelling the Role of Unusual Asymmetric Twin Boundaries in the Electron-Beam-Sensitive NASICON-Type Solid Electrolyte. NANO LETTERS 2023; 23:11818-11826. [PMID: 38078871 DOI: 10.1021/acs.nanolett.3c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
An atomic-scale understanding of the role of nonperiodic features is essential to the rational design of highly Li-ion-conductive solid electrolytes. Unfortunately, most solid electrolytes are easily damaged by the intense electron beam needed for atomic-resolution electron microscopy observation, so the reported in-depth atomic-scale studies are limited to Li0.33La0.56TiO3- and Li7La3Zr2O12-based materials. Here, we observe on an atomic scale a third type of solid electrolyte, Li1.3Al0.3Ti1.7(PO4)3 (LATP), through minimization of damage induced by specimen preparation. With this capability, LATP is found to contain large amounts of twin boundaries with an unusual asymmetric atomic configuration. On the basis of the experimentally determined structure, the theoretical calculations suggest that such asymmetric twin boundaries may considerably promote Li-ion transport. This discovery identifies a new entry point for optimizing ionic conductivity, and the method presented here will also greatly benefit the mechanistic study of solid electrolytes.
Collapse
Affiliation(s)
- Zhenqi Gu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Materials & Energy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yifei Rao
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengfei Nan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Lixun Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wenhua Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cheng Ma
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Peng J, Peng H, Shi CG, Huang L, Sun SG. Surface Passivation of LiCoO 2 by Solid Electrolyte Nanoshell for High Interfacial Stability and Conductivity. CHEMSUSCHEM 2023; 16:e202300715. [PMID: 37661195 DOI: 10.1002/cssc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
The practical application of lithium cobalt oxide (LiCoO2 ) cathodes at high voltages is hindered by the instability of the surface structure and side reactions with the electrolyte. Herein, we prepared a multifunctional hierarchical core@double-shell structured LiCoO2 (MS-LCO) cathode material using a scalable sol-gel method. The MS-LCO cathode material comprised an outer shell with fast lithium-ion conductivity, a La/Zr co-doped inner shell, and a bulk LiCoO2 core. The outermost shell prevented direct contact between the electrolyte and LiCoO2 core, which alleviated the electrolyte decomposition and loss of active cobalt, while the La/Zr co-doped shell improved the structural stability at higher voltages in a half-cell with a liquid electrolyte. The MS-LCO cathode exhibited a stable capacity of 163.1 mAh g-1 after 500 cycles at 0.5 C, and a high specific capacity of 166.8 mAh g-1 at 2 C. In addition, a solid lithium battery with the surface-passivated MS-LCO cathode and a polyethylene oxide (PEO)-based inorganic/organic composite electrolyte retained 85.8 % of its initial discharge capacity after 150 cycles at a charging cutoff voltage of 4.3 V. Thus, the introduction of a surface-passivating shell can effectively suppress the decomposition of PEO caused by highly reactive oxygen species in LiCoO2 at high voltages.
Collapse
Affiliation(s)
- Jun Peng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
- Tianmu Lake Institute of Advanced Energy Storage Technologies, China
| | - Hao Peng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Chen-Guang Shi
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Ling Huang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Shi-Gang Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
15
|
Vema S, Berge AH, Nagendran S, Grey CP. Clarifying the Dopant Local Structure and Effect on Ionic Conductivity in Garnet Solid-State Electrolytes for Lithium-Ion Batteries. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9632-9646. [PMID: 38047184 PMCID: PMC10687891 DOI: 10.1021/acs.chemmater.3c01831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 12/05/2023]
Abstract
The high Li-ion conductivity and wide electrochemical stability of Li-rich garnets (Li7La3Zr2O12) make them one of the leading solid electrolyte candidates for solid-state batteries. Dopants such as Al and Ga are typically used to enable stabilization of the high Li+ ion-conductive cubic phase at room temperature. Although numerous studies exist that have characterized the electrochemical properties, structure, and lithium diffusion in Al- and Ga-LLZO, the local structure and site occupancy of dopants in these compounds are not well understood. Two broad 27Al or 69,71Ga resonances are often observed with chemical shifts consistent with tetrahedrally coordinated Al/Ga in the magic angle spinning nuclear magnetic resonance (MAS NMR) spectra of both Al- and Ga-LLZO, which have been assigned to either Al and/or Ga occupying 24d and 96h/48g sites in the LLZO lattice or the different Al/Ga configurations that arise from different arrangements of Li around these dopants. In this work, we unambiguously show that the side products γ-LiAlO2 and LiGaO2 lead to the high frequency resonances observed by NMR spectroscopy and that both Al and Ga only occupy the 24d site in the LLZO lattice. Furthermore, it was observed that the excess Li often used during synthesis leads to the formation of these side products by consuming the Al/Ga dopants. In addition, the consumption of Al/Ga dopants leads to the tetragonal phase formation commonly observed in the literature, even after careful mixing of precursors. The side-products can exist even after sintering, thereby controlling the Al/Ga content in the LLZO lattice and substantially influencing the lithium-ion conductivity in LLZO, as measured here by electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Sundeep Vema
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell Campus, Didcot OX11 0RA, U.K.
| | - Astrid H. Berge
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Supreeth Nagendran
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell Campus, Didcot OX11 0RA, U.K.
| |
Collapse
|
16
|
Liao YK, Liu RS, Yao ST, Hu SF. In Situ and Low-Cost Improvement of the Lithium Anode Interface in Garnet-Type Solid-State Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38016108 DOI: 10.1021/acsami.3c13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
In recent years, the development of electric vehicles and environmental concerns have made necessary improvements in the energy density and safety of lithium-ion batteries. Therefore, the development of all-solid-state lithium-ion batteries (ASSLIBs) has become imperative. One advantage of ASSLIBs is their potential for downsizing with the use of lithium metal as the anode. However, in this study, a garnet-type solid electrolyte (Li6.75La3Zr1.75Ta0.25O12) was used, which has low reactivity with lithium metal. Thus, interface modification using CaCl2 was employed to form a Li-Ca-Cl composite anode. The interfacial resistance was remarkably reduced to 7 Ω cm2, and the symmetric cell exhibited stable cycling for 1200 h at room temperature and a current density of 0.1 mA cm-2. The voltage ranged from ±15 to ±16 mV. The full cell demonstrated a high initial discharge capacity of 149.2 mA h g-1 and a Coulombic efficiency of 98.0% while maintaining a discharge capacity retention of 91.3% after 100 cycles. These findings lay a solid foundation for future commercial applications as interface modification was achieved through a simple spin-coating process using low-cost CaCl2 (0.7 USD g-1).
Collapse
Affiliation(s)
- Yu-Kai Liao
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | | | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| |
Collapse
|
17
|
Holland J, Demeyere T, Bhandari A, Hanke F, Milman V, Skylaris CK. A Workflow for Identifying Viable Crystal Structures with Partially Occupied Sites Applied to the Solid Electrolyte Cubic Li 7La 3Zr 2O 12. J Phys Chem Lett 2023; 14:10257-10262. [PMID: 37939005 PMCID: PMC10686666 DOI: 10.1021/acs.jpclett.3c02064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
To date, experimental and theoretical works have been unable to uncover the ground-state configuration of the solid electrolyte cubic Li7La3Zr2O12 (c-LLZO). Computational studies rely on an initial low-energy structure as a reference point. Here, we present a methodology for identifying energetically favorable configurations of c-LLZO for a crystallographically predicted structure. We begin by eliminating structures that involve overlapping Li atoms based on nearest neighbor counts. We further reduce the configuration space by eliminating symmetry images from all remaining structures. Then, we perform a machine learning-based energetic ordering of all remaining structures. By considering the geometrical constraints that emerge from this methodology, we determine that a large portion of previously reported structures may not be feasible or stable. The method developed here could be extended to other ion conductors. We provide a database containing all of the generated structures with the aim of improving accuracy and reproducibility in future c-LLZO research.
Collapse
Affiliation(s)
- Julian Holland
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
- The
Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11, U.K.
| | - Tom Demeyere
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Arihant Bhandari
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
- The
Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11, U.K.
| | - Felix Hanke
- BIOVIA, 22 Cambridge Science Park, Milton
Road, Cambridge CB4 0FJ, U.K.
| | - Victor Milman
- BIOVIA, 22 Cambridge Science Park, Milton
Road, Cambridge CB4 0FJ, U.K.
| | - Chris-Kriton Skylaris
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
- The
Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11, U.K.
| |
Collapse
|
18
|
Zhu Y, Chon M, Thompson CV, Rupp JLM. Time-Temperature-Transformation (TTT) Diagram of Battery-Grade Li-Garnet Electrolytes for Low-Temperature Sustainable Synthesis. Angew Chem Int Ed Engl 2023; 62:e202304581. [PMID: 37723932 DOI: 10.1002/anie.202304581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Efficient and affordable synthesis of Li+ functional ceramics is crucial for the scalable production of solid electrolytes for batteries. Li-garnet Li7 La3 Zr2 O12-d (LLZO), especially its cubic phase (cLLZO), attracts attention due to its high Li+ conductivity and wide electrochemical stability window. However, high sintering temperatures raise concerns about the cathode interface stability, production costs, and energy consumption for scalable manufacture. We show an alternative "sinter-free" route to stabilize cLLZO as films at half of its sinter temperature. Specifically, we establish a time-temperature-transformation (TTT) diagram which captures the amorphous-to-crystalline LLZO transformation based on crystallization enthalpy analysis and confirm stabilization of thin-film cLLZO at record low temperatures of 500 °C. Our findings pave the way for low-temperature processing via TTT diagrams, which can be used for battery cell design targeting reduced carbon footprints in manufacturing.
Collapse
Affiliation(s)
- Yuntong Zhu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Chon
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carl V Thompson
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jennifer L M Rupp
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Technical University Munich, Garching, 85748, Germany
- TUMint. Energy Research GmbH, Lichtenbergstr. 4, Garching, 85747, Germany
- Department of Electrical and Computer Engineering, Technical University Munich, 80333, Munich, Germany
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Sun G, Lou C, Yi B, Jia W, Wei Z, Yao S, Lu Z, Chen G, Shen Z, Tang M, Du F. Electrochemically induced crystalline-to-amorphization transformation in sodium samarium silicate solid electrolyte for long-lasting sodium metal batteries. Nat Commun 2023; 14:6501. [PMID: 37845205 PMCID: PMC10579357 DOI: 10.1038/s41467-023-42308-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
Exploiting solid electrolyte (SE) materials with high ionic conductivity, good interfacial compatibility, and conformal contact with electrodes is essential for solid-state sodium metal batteries (SSBs). Here we report a crystalline Na5SmSi4O12 SE which features high room-temperature ionic conductivity of 2.9 × 10-3 S cm-1 and a low activation energy of 0.15 eV. All-solid-state symmetric cell with Na5SmSi4O12 delivers excellent cycling life over 800 h at 0.15 mA h cm-2 and a high critical current density of 1.4 mA cm-2. Such excellent electrochemical performance is attributed to an electrochemically induced in-situ crystalline-to-amorphous (CTA) transformation propagating from the interface to the bulk during repeated deposition and stripping of sodium, which leads to faster ionic transport and superior interfacial properties. Impressively, the Na|Na5SmSi4O12|Na3V2(PO4)3 sodium metal batteries achieve a remarkable cycling performance over 4000 cycles (6 months) with no capacity loss. These results not only identify Na5SmSi4O12 as a promising SE but also emphasize the potential of the CTA transition as a promising mechanism towards long-lasting SSBs.
Collapse
Affiliation(s)
- Ge Sun
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China
| | - Chenjie Lou
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 100193, Beijing, China
| | - Boqian Yi
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China
| | - Wanqing Jia
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China
| | - Zhixuan Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China
| | - Shiyu Yao
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China.
| | - Ziheng Lu
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Gang Chen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China
| | - Zexiang Shen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China
| | - Mingxue Tang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 100193, Beijing, China.
| | - Fei Du
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China.
| |
Collapse
|
20
|
Mi J, Chen L, Ma J, Yang K, Hou T, Liu M, Lv W, He YB. Defect Strategy in Solid-State Lithium Batteries. SMALL METHODS 2023:e2301162. [PMID: 37821415 DOI: 10.1002/smtd.202301162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Solid-state lithium batteries (SSLBs) have great development prospects in high-security new energy fields, but face major challenges such as poor charge transfer kinetics, high interface impedance, and unsatisfactory cycle stability. Defect engineering is an effective method to regulate the composition and structure of electrodes and electrolytes, which plays a crucial role in dominating physical and electrochemical performance. It is necessary to summarize the recent advances regarding defect engineering in SSLBs and analyze the mechanism, thus inspiring future work. This review systematically summarizes the role of defects in providing storage sites/active sites, promoting ion diffusion and charge transport of electrodes, and improving structural stability and ionic conductivity of solid-state electrolytes. The defects greatly affect the electronic structure, chemical bond strength and charge transport process of the electrodes and solid-state electrolytes to determine their electrochemical performance and stability. Then, this review presents common defect fabrication methods and the specific role mechanism of defects in electrodes and solid-state electrolytes. At last, challenges and perspectives of defect strategies in high-performance SSLBs are proposed to guide future research.
Collapse
Affiliation(s)
- Jinshuo Mi
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Likun Chen
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiabin Ma
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ke Yang
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Tingzheng Hou
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ming Liu
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wei Lv
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yan-Bing He
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
21
|
Eckhardt JK, Kremer S, Fuchs T, Minnmann P, Schubert J, Burkhardt S, Elm MT, Klar PJ, Heiliger C, Janek J. Influence of Microstructure on the Material Properties of LLZO Ceramics Derived by Impedance Spectroscopy and Brick Layer Model Analysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47260-47277. [PMID: 37751537 DOI: 10.1021/acsami.3c10060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Variants of garnet-type Li7La3Zr2O12 are being intensively studied as separator materials in solid-state battery research. The material-specific transport properties, such as bulk and grain boundary conductivity, are of prime interest and are mostly investigated by impedance spectroscopy. Data evaluation is usually based on the one-dimensional (1D) brick layer model, which assumes a homogeneous microstructure of identical grains. Real samples show microstructural inhomogeneities in grain size and porosity due to the complex behavior of grain growth in garnets that is very sensitive to the sintering protocol. However, the true microstructure is often omitted in impedance data analysis, hindering the interlaboratory reproducibility and comparability of results reported in the literature. Here, we use a combinatorial approach of structural analysis and three-dimensional (3D) transport modeling to explore the effects of microstructure on the derived material-specific properties of garnet-type ceramics. For this purpose, Al-doped Li7La3Zr2O12 pellets with different microstructures are fabricated and electrochemically characterized. A machine learning-assisted image segmentation approach is used for statistical analysis and quantification of the microstructural changes during sintering. A detailed analysis of transport through statistically modeled twin microstructures demonstrates that the transport parameters derived from a 1D brick layer model approach show uncertainties up to 150%, only due to variations in grain size. These uncertainties can be even larger in the presence of porosity. This study helps to better understand the role of the microstructure of polycrystalline electroceramics and its influence on experimental results.
Collapse
Affiliation(s)
- Janis K Eckhardt
- Institute for Theoretical Physics, Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen D-35392, Germany
- Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Sascha Kremer
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen D-35392, Germany
- Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Till Fuchs
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen D-35392, Germany
- Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Philip Minnmann
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen D-35392, Germany
- Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Johannes Schubert
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen D-35392, Germany
- Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Simon Burkhardt
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen D-35392, Germany
- Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Matthias T Elm
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen D-35392, Germany
- Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
- Institute of Experimental Physics I, Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Peter J Klar
- Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
- Institute of Experimental Physics I, Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Christian Heiliger
- Institute for Theoretical Physics, Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
- Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| | - Jürgen Janek
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen D-35392, Germany
- Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
| |
Collapse
|
22
|
Wu JF, Zou Z, Pu B, Ladenstein L, Lin S, Xie W, Li S, He B, Fan Y, Pang WK, Wilkening HMR, Guo X, Xu C, Zhang T, Shi S, Liu J. Liquid-Like Li-Ion Conduction in Oxides Enabling Anomalously Stable Charge Transport across the Li/Electrolyte Interface in All-Solid-State Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303730. [PMID: 37358065 DOI: 10.1002/adma.202303730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The softness of sulfur sublattice and rotational PS4 tetrahedra in thiophosphates result in liquid-like ionic conduction, leading to enhanced ionic conductivities and stable electrode/thiophosphate interfacial ionic transport. However, the existence of liquid-like ionic conduction in rigid oxides remains unclear, and modifications are deemed necessary to achieve stable Li/oxide solid electrolyte interfacial charge transport. In this study, by combining the neutron diffraction survey, geometrical analysis, bond valence site energy analysis, and ab initio molecular dynamics simulation, 1D liquid-like Li-ion conduction is discovered in LiTa2 PO8 and its derivatives, wherein Li-ion migration channels are connected by four- or five-fold oxygen-coordinated interstitial sites. This conduction features a low activation energy (0.2 eV) and short mean residence time (<1 ps) of Li ions on the interstitial sites, originating from the Li-O polyhedral distortion and Li-ion correlation, which are controlled by doping strategies. The liquid-like conduction enables a high ionic conductivity (1.2 mS cm-1 at 30 °C), and a 700 h anomalously stable cycling under 0.2 mA cm-2 for Li/LiTa2 PO8 /Li cells without interfacial modifications. These findings provide principles for the future discovery and design of improved solid electrolytes that do not require modifications to the Li/solid electrolyte interface to achieve stable ionic transport.
Collapse
Affiliation(s)
- Jian-Fang Wu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, P. R. China
| | - Zheyi Zou
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Bowei Pu
- School of Materials Science and Engineering, Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Lukas Ladenstein
- Institute of Chemistry and Technology of Materials, Christian Doppler Laboratory for Lithium Batteries, Graz University of Technology (NAWI Graz), Graz, 8010, Austria
| | - Shen Lin
- School of Materials Science and Engineering, Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenjing Xie
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Shen Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Bing He
- School of Materials Science and Engineering, Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Yameng Fan
- Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Wei Kong Pang
- Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - H Martin R Wilkening
- Institute of Chemistry and Technology of Materials, Christian Doppler Laboratory for Lithium Batteries, Graz University of Technology (NAWI Graz), Graz, 8010, Austria
| | - Xin Guo
- State Key Laboratory of Material Processing and Die & Mould Technology, Laboratory of Solid State Ionics, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chaohe Xu
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Tao Zhang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Siqi Shi
- School of Materials Science and Engineering, Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
23
|
Campanella D, Zhu W, Girard G, Savoie S, Kaboli S, Feng Z, Guerfi A, Romio M, Molaiyan P, Bélanger D, Paolella A. Hexavalent Ions Insertion in Garnet Li 7 La 3 Zr 2 O 12 Toward a Low Temperature Densification Reaction. CHEMSUSCHEM 2023; 16:e202300399. [PMID: 37171048 DOI: 10.1002/cssc.202300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Nowadays, solid electrolytes are considered the main alternative to conventional liquid electrolytes in lithium batteries. The fabrication of these materials is however limited by the strict synthesis conditions, requiring high temperatures which can negatively impact the final performances. Here, it is shown that a modification of garnet-based Li7 La3 Zr2 O12 (LLZO) and the incorporation of tellurium can accelerate the synthesis process by lowering the formation temperature of cubic LLZO at temperatures below 700 °C. Optimized synthesis at 750 °C showed a decrease in particle size and cell parameter for samples with higher amounts of Te and the evaluation of electrochemical performances reported for LLZO Te0.25 a value of ionic conductivity of 5,15×10-5 S cm-1 after hot-pressing at 700 °C, two orders of magnitude higher than commercial Al-LLZO undergoing the same working conditions, and the highest value at this densification temperature. Partial segregation of Te-rich phases occurs for high-temperature densification. Our study shows the advantages of Te insertion on the sintering process of LLZO garnet and demonstrates the achievement of highly conductive LLZO with a low-temperature treatment.
Collapse
Affiliation(s)
- Daniele Campanella
- Centre d'Excellence en Électrification des Transports et Stockage d'Energie (CEETSE), Hydro-Québec, Varennes, Québec, J3X 1S1, Canada
- Département de Chimie, Université du Québec à Montréal (UQAM), 2101 Rue Jeanne-Mance, Montréal, Québec, H3C 3P8, Canada
| | - Wen Zhu
- Centre d'Excellence en Électrification des Transports et Stockage d'Energie (CEETSE), Hydro-Québec, Varennes, Québec, J3X 1S1, Canada
| | - Gabriel Girard
- Centre d'Excellence en Électrification des Transports et Stockage d'Energie (CEETSE), Hydro-Québec, Varennes, Québec, J3X 1S1, Canada
| | - Sylvio Savoie
- Centre d'Excellence en Électrification des Transports et Stockage d'Energie (CEETSE), Hydro-Québec, Varennes, Québec, J3X 1S1, Canada
| | - Shirin Kaboli
- Centre d'Excellence en Électrification des Transports et Stockage d'Energie (CEETSE), Hydro-Québec, Varennes, Québec, J3X 1S1, Canada
| | - Zimin Feng
- Centre d'Excellence en Électrification des Transports et Stockage d'Energie (CEETSE), Hydro-Québec, Varennes, Québec, J3X 1S1, Canada
| | - Abdelbast Guerfi
- Centre d'Excellence en Électrification des Transports et Stockage d'Energie (CEETSE), Hydro-Québec, Varennes, Québec, J3X 1S1, Canada
| | - Martina Romio
- Austrian Institute of Technology (AIT), Battery Tecnologies, Giefinggasse 2, 1210 Wien, Austria
| | - Palanivel Molaiyan
- Austrian Institute of Technology (AIT), Battery Tecnologies, Giefinggasse 2, 1210 Wien, Austria
| | - Daniel Bélanger
- Département de Chimie, Université du Québec à Montréal (UQAM), 2101 Rue Jeanne-Mance, Montréal, Québec, H3C 3P8, Canada
| | - Andrea Paolella
- Austrian Institute of Technology (AIT), Battery Tecnologies, Giefinggasse 2, 1210 Wien, Austria
- Department of Inorganic Chemistry-Functional Materials, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| |
Collapse
|
24
|
Sun Z, Liang J, Liu K, Feng X, Wu Y, Zhao Y, Liang Q, Wu J, Li H, Zhai T. Building intercalation structure for high ionic conductivity via aliovalent substitution. Sci Bull (Beijing) 2023; 68:1134-1142. [PMID: 37211492 DOI: 10.1016/j.scib.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Two-dimensional (2D) materials, which possess robust nanochannels, high flux and allow scalable fabrication, provide new platforms for nanofluids. Highly efficient ionic conductivity can facilitate the application of nanofluidic devices for modern energy conversion and ionic sieving. Herein, we propose a novel strategy of building an intercalation crystal structure with negative surface charge and mobile interlamellar ions via aliovalent substitution to boost ionic conductivity. The Li2xM1-xPS3 (M = Cd, Ni, Fe) crystals obtained by the solid-state reaction exhibit distinct capability of water absorption and apparant variation of interlayer spacing (from 0.67 to 1.20 nm). The assembled membranes show the ultrahigh ionic conductivity of 1.20 S/cm for Li0.5Cd0.75PS3 and 1.01 S/cm for Li0.6Ni0.7PS3. This facile strategy may inspire the research in other 2D materials with higher ionic transport performance for nanofluids.
Collapse
Affiliation(s)
- Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianing Liang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qi Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
25
|
Jin Y, Lu H, Lyu N, Jiang X, Zhang D, Zhang Z, Xu J, Sun B, Liu K, Wu H. Bonding Lithium Metal with Garnet Electrolyte by Interfacial Lithiophobicity/Lithiophilicity Transition Mechanism over 380 °C. SMALL METHODS 2023; 7:e2201140. [PMID: 36808501 DOI: 10.1002/smtd.202201140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/05/2022] [Indexed: 06/18/2023]
Abstract
Garnet electrolytes, possessing high ionic conductivity (10-4 -10-3 S cm-1 at room temperature) and excellent chemical/electrochemical compatibility with lithium metal, are expected to be used in solid-state lithium metal batteries. However, the poor solid-solid interfacial contact between lithium and garnet leads to high interfacial resistance, reducing the battery power capability and cyclability. Garnet electrolytes are commonly believed to be intrinsically lithiophilic, and lithiophobic Li2 CO3 on the garnet surface accounted for the poor interfacial contact. Here, it is proposed that the interfacial lithiophobicity/lithiophilicity of garnets (LLZO, LLZTO) can be transformed above a temperature of ≈380 °C. This transition mechanism is also suitable for other materials such as Li2 CO3 , Li2 O, stainless steel, and Al2 O3 . By using this transition mechanism, uniform and even lithium can be strongly bonded no-surface-treated garnet electrolytes with various shapes. The Li-LLZTO interfacial resistance can be reduced to ≈3.6 Ω cm2 and sustainably withstood lithium extraction and insertion for up to 2000 h at 100 µA cm-2 . This high-temperature lithiophobicity/lithiophilicity transition mechanism can help improve the understanding of lithium-garnet interfaces and build practical lithium-garnet solid-solid interfaces.
Collapse
Affiliation(s)
- Yang Jin
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hongfei Lu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Nawei Lyu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xin Jiang
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Di Zhang
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zili Zhang
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jing Xu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Bin Sun
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kai Liu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| | - Hui Wu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
26
|
Zhu C, Fuchs T, Weber SAL, Richter FH, Glasser G, Weber F, Butt HJ, Janek J, Berger R. Understanding the evolution of lithium dendrites at Li 6.25Al 0.25La 3Zr 2O 12 grain boundaries via operando microscopy techniques. Nat Commun 2023; 14:1300. [PMID: 36894536 PMCID: PMC9998873 DOI: 10.1038/s41467-023-36792-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
The growth of lithium dendrites in inorganic solid electrolytes is an essential drawback that hinders the development of reliable all-solid-state lithium metal batteries. Generally, ex situ post mortem measurements of battery components show the presence of lithium dendrites at the grain boundaries of the solid electrolyte. However, the role of grain boundaries in the nucleation and dendritic growth of metallic lithium is not yet fully understood. Here, to shed light on these crucial aspects, we report the use of operando Kelvin probe force microscopy measurements to map locally time-dependent electric potential changes in the Li6.25Al0.25La3Zr2O12 garnet-type solid electrolyte. We find that the Galvani potential drops at grain boundaries near the lithium metal electrode during plating as a response to the preferential accumulation of electrons. Time-resolved electrostatic force microscopy measurements and quantitative analyses of lithium metal formed at the grain boundaries under electron beam irradiation support this finding. Based on these results, we propose a mechanistic model to explain the preferential growth of lithium dendrites at grain boundaries and their penetration in inorganic solid electrolytes.
Collapse
Affiliation(s)
- Chao Zhu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Till Fuchs
- Institute of Physical Chemistry & Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff Ring 17, 35392, Giessen, Germany
| | - Stefan A L Weber
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Felix H Richter
- Institute of Physical Chemistry & Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff Ring 17, 35392, Giessen, Germany
| | - Gunnar Glasser
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Franjo Weber
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jürgen Janek
- Institute of Physical Chemistry & Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff Ring 17, 35392, Giessen, Germany.
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
27
|
Chen C, Wang K, He H, Hanc E, Kotobuki M, Lu L. Processing and Properties of Garnet-Type Li 7 La 3 Zr 2 O 12 Ceramic Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205550. [PMID: 36534920 DOI: 10.1002/smll.202205550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Garnet-type solid electrolyte Li7 La3 Zr2 O12 (LLZO) is widely considered as one of the most promising candidates for solid state batteries (SSBs) owing to its high ionic conductivity and good electrochemical stability. Since its discovery in 2007, great progress has been made in terms of crystal chemistry, chemical and electrochemical properties, and battery application. Nonetheless, reliable and controllable preparation of LLZO ceramics with desirable properties still remains as big challenges. Herein, this review summarizes various synthetic routes of LLZO ceramics and examines the influence of various key processing parameters on the chemical and electrochemical properties. Focusing on correlation of processing parameters and properties, this review aims to provide new insights on a reliable and controllable production of high-quality LLZO ceramic electrolytes for SSB application.
Collapse
Affiliation(s)
- Chao Chen
- National University of Singapore Chongqing Research Institute, Chongqing, 401123, China
- Department of Mechanical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 117575, Singapore
| | - Kexin Wang
- National University of Singapore Chongqing Research Institute, Chongqing, 401123, China
- Department of Mechanical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 117575, Singapore
| | - Hongying He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Emil Hanc
- Mineral and Energy Economy Research Institute, Polish Academy of Science, Krakow, 31-261, Poland
| | - Masashi Kotobuki
- Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gungjuan Road, Taishan Dist. New Taipei City, New Taipei City, 243, Taiwan
| | - Li Lu
- National University of Singapore Chongqing Research Institute, Chongqing, 401123, China
- Department of Mechanical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 117575, Singapore
| |
Collapse
|
28
|
Li J, Luo H, Liu K, Zhang J, Zhai H, Su X, Wu J, Tang X, Tan G. Excellent Stability of Ga-Doped Garnet Electrolyte against Li Metal Anode via Eliminating LiGaO 2 Precipitates for Advanced All-Solid-State Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7165-7174. [PMID: 36701379 DOI: 10.1021/acsami.2c21603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ga-doped garnet-type Li7La3Zr2O12 (Ga-LLZO) ceramics have long been recognized as ideal electrolyte candidates for all-solid-state lithium batteries (ASSLBs). However, in this study, it is shown that Ga-LLZO easily and promptly cracks in contact with molten lithium during the ASSLB assembly. This can be mainly ascribed to two aspects: (i) lithium captures O atoms and reduces Ga ions of the Ga-LLZO matrix, leading to a band-gap closure from >5 to <2 eV and a structural collapse from cubic to tetrahedral; and (ii) the in situ-formed LiGaO2 impurity phase has severe side reactions with lithium, resulting in huge stress release along the grain boundaries. It is also revealed that, while the former process consumes hours to take effect, the latter one is immediate and accounts for the crack propagation of Ga-LLZO electrolytes. A minute SiO2 is preadded during the synthesis of Ga-LLZO and found effective in eliminating the LiGaO2 impurity phase. The SiO2-modified Ga-LLZO solid electrolytes display excellent thermomechanical and electrochemical stabilities against lithium metals and well-reserved ionic conductivities, which was further confirmed by half-cells and full batteries. This study contributes to the understanding of the stability of garnet electrolytes and promotes their potential commercial applications in ASSLBs.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Hao Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- Nanostructure Research Center, Wuhan University of Technology, Wuhan430070, China
| | - Keke Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Jiaxu Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
| | - Huiyu Zhai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
| | - Xianli Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- Nanostructure Research Center, Wuhan University of Technology, Wuhan430070, China
| | - Xinfeng Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Gangjian Tan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| |
Collapse
|
29
|
Zou J, Gao X, Zhou X, Yang J, Tang J, Kou H, Chang R, Zhang Y. Al and Ta co-doped LLZO as active filler with enhanced Li +conductivity for PVDF-HFP composite solid-state electrolyte. NANOTECHNOLOGY 2023; 34:155402. [PMID: 36649649 DOI: 10.1088/1361-6528/acb3cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Battery safety calls for solid state batteries and how to prepare solid electrolytes with excellent performance are of significant importance. In this study, hybrid solid electrolytes combined with organic PVDF-HFP and inorganic active fillers are studied. The modified active fillers of Li7-x-3yAlyLa3Zr2-xTaxO12are obtained by co-element doping with Al and Ta when LLZO is synthesized by calcination. And an high room temperature ionic conductivity of 5.357 × 10-4S cm-1is exhibited by ATLLZO ceramic sheet. The composite solid electrolyte PVDF-HFP/LiTFSI/ATLLZO (PHL-ATLLZO) is prepared by solution casting method, and its electrochemical properties are investigated. The results show that when the contents of lithium salt LiTFSI and active filler ATLLZO are controlled at 40 wt% and 10%, respectively, the ionic conductivity of the resulting composite solid electrolyte is as high as 2.686 × 10-4S cm-1at room temperature, and a wide electrochemical window of 4.75 V is exhibited. The LiFePO4/PHL-ATLLZO/Li all-solid-state battery assembled based on the composite solid-state electrolyte exhibits excellent cycling stability at room temperature. The cell assembled by casting the composite solid-state electrolyte on the cathode surface shows a discharge specific capacity of 134.3 mAh g-1and 96.2% capacity retention after 100 cycles at 0.2 C. The prepared composite solid-state electrolyte demonstrates excellent electrochemical performance.
Collapse
Affiliation(s)
- Jianxun Zou
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, People's Republic of China
| | - Xinlong Gao
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, People's Republic of China
| | - Xiangyang Zhou
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, People's Republic of China
| | - Juan Yang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, People's Republic of China
| | - Jingjing Tang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, People's Republic of China
| | - Huaishuo Kou
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, People's Republic of China
| | - Ruirui Chang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, People's Republic of China
| | - Yaguang Zhang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
30
|
Tang J, Niu Y, Zhou Y, Chen S, Yang Y, Huang X, Tian B. H 3PO 4-Induced Nano-Li 3PO 4 Pre-reduction Layer to Address Instability between the Nb-Doped Li 7La 3Zr 2O 12 Electrolyte and Metallic Li Anode. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5345-5356. [PMID: 36657037 DOI: 10.1021/acsami.2c21133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solid-state batteries based on a metallic Li anode and nonflammable solid electrolytes (SEs) are anticipated to achieve high energy and power densities with absolute safety. In particular, cubic garnet-type Nb-doped Li7La3Zr2O12 (Nb-LLZO) SEs possess superior ionic conductivity, are feasible to prepare under ambient conditions, have strong thermal stability, and are of low cost. However, the interfacial compatibility with Li metal and Li dendrite hazards still hinder the applications of Nb-LLZO. Herein, a quick and efficient solution was applied to address this issue, generating a nano-Li3PO4 pre-reduction layer from the reaction of H3PO4 with the ion-exchanged passivation layer (Li2CO3/LiOH) on the surface of Nb-LLZO. A lithiophilic, electrically insulating interlayer is in situ created when the Li3PO4 modified layer interacts with molten Li, successfully preventing the reduction of Nb5+. The interlayer, which mostly consists of Li3P and Li3PO4, also has a high shear modulus and relatively high Li+ conductivity, which effectively inhibit the growth of Li dendrites. The Li|Li3PO4|Nb-LLZO|Li3PO4|Li symmetric cells stably cycled for over 5000 h at 0.05 mA cm-2 and over 1000 h at a high rate of 0.15 mA cm-2 without any short circuits. The LiFePO4 and S/C hybrid solid-state batteries using the modified Nb-LLZO electrolyte also demonstrated good electrochemical performances, confirming the practical application of this interfacial engineering in various solid-state battery systems. This work offers an efficient solution to the instability issue between the Nb-LLZO SE and metallic Li anode.
Collapse
Affiliation(s)
- Jiawen Tang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen518060, China
| | - Yajun Niu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen518060, China
| | - Yongjian Zhou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen518060, China
| | - Shuqing Chen
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen518060, China
| | - Yan Yang
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian116026, China
| | - Xiao Huang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen518060, China
| | - Bingbing Tian
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
31
|
Enkhbayar E, Kim J. Study of Codoping Effects of Ta 5+ and Ga 3+ on Garnet Li 7La 3Zr 2O 12. ACS OMEGA 2022; 7:47265-47273. [PMID: 36570224 PMCID: PMC9773338 DOI: 10.1021/acsomega.2c06544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Garnet Li7La3Zr2O12 (LLZO) is a promising solid electrolyte for all-solid-state Li-ion batteries because of its outstanding performance. However, LLZO exists in two polymorphic phases, tetragonal (∼10-3 mS cm-1) and cubic (1-10-1 mS cm-1), where the cubic phase exhibits higher Li-ion conductivity but is thermodynamically unstable at ambient room temperature. To stabilize the cubic phase with high ionic conductivity, we fabricated mono- and codoped garnet with Ta5+ and Ga3+ (Li7-3x-z=6.4Ga x La3Zr2-z Ta z O12) and investigated the doping effects. The doping effects on the crystal structure and ionic conductivity were systematically investigated using X-ray diffraction, Raman scattering, scanning electron microscopy, alternative current (AC) impedance, and direct current (DC) polarization methods. The characterization results revealed that Ta-doping favors higher occupation of Li-ions on the mobile octahedral (LiO6) site and improves ionic conductivity of the grain boundary. However, it showed poor total ionic conductivity (2.044 × 10-4 S cm-1 at 1100 °C for 12 h) due to the low sinterability [relative density (RD): ∼80.3%]. On the other hand, Ga-doping provides better sinterability (RD: ∼93.1%) and bulk conductivity. Considering the beneficial effects of Ga- and Ta-doping, codoped Li6.4Ga0.133La3Zr1.8Ta0.2O12 garnet with enhanced ionic conductivity (6.141 × 10-4 S cm-1) and improved high-density microstructure (RD: ∼95.7%) was obtained.
Collapse
|
32
|
Jung SK, Gwon H, Kim H, Yoon G, Shin D, Hong J, Jung C, Kim JS. Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries. Nat Commun 2022; 13:7638. [PMID: 36496481 PMCID: PMC9741625 DOI: 10.1038/s41467-022-35287-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Garnet-type Li7La3Zr2O12 (LLZO) solid electrolytes (SE) demonstrates appealing ionic conductivity properties for all-solid-state lithium metal battery applications. However, LLZO (electro)chemical stability in contact with the lithium metal electrode is not satisfactory for developing practical batteries. To circumvent this issue, we report the preparation of various doped cubic-phase LLZO SEs without vacancy formation (i.e., Li = 7.0 such as Li7La3Zr0.5Hf0.5Sc0.5Nb0.5O12 and Li7La3Zr0.4Hf0.4Sn0.4Sc0.4Ta0.4O12). The entropy-driven synthetic approach allows access to hidden chemical space in cubic-phase garnet and enables lower solid-state synthesis temperature as the cubic-phase nucleation decreases from 750 to 400 °C. We demonstrate that the SEs with Li = 7.0 show better reduction stability against lithium metal compared to SE with low lithium contents and identical atomic species (i.e., Li = 6.6 such as Li6.6La3Zr0.4Hf0.4Sn0.4Sc0.2Ta0.6O12). Moreover, when a Li7La3Zr0.4Hf0.4Sn0.4Sc0.4Ta0.4O12 pellet is tested at 60 °C in coin cell configuration with a Li metal negative electrode, a LiNi1/3Co1/3Mn1/3O2-based positive electrode and an ionic liquid-based electrolyte at the cathode|SE interface, discharge capacity retention of about 92% is delivered after 700 cycles at 0.8 mA/cm2 and 60 °C.
Collapse
Affiliation(s)
- Sung-Kyun Jung
- grid.419666.a0000 0001 1945 5898Battery Material Lab, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678 Republic of Korea ,grid.42687.3f0000 0004 0381 814XSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST‐gil, Ulsan, 44919 Republic of Korea
| | - Hyeokjo Gwon
- grid.419666.a0000 0001 1945 5898Battery Material Lab, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678 Republic of Korea
| | - Hyungsub Kim
- grid.418964.60000 0001 0742 3338Neutron Science Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok‐daero 989 Beon‐Gil, Yuseong‐gu, Daejeon 34057 Republic of Korea
| | - Gabin Yoon
- grid.419666.a0000 0001 1945 5898Battery Material Lab, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678 Republic of Korea
| | - Dongki Shin
- grid.35541.360000000121053345Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Jihyun Hong
- grid.35541.360000000121053345Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Changhoon Jung
- grid.419666.a0000 0001 1945 5898Analytical Engineering Group, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678 Republic of Korea
| | - Ju-Sik Kim
- grid.419666.a0000 0001 1945 5898Battery Material Lab, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678 Republic of Korea
| |
Collapse
|
33
|
Hu Y, Feng T, Xu L, Zhang L, Luo L. Probing the Phase Transition during the Formation of Lithium Lanthanum Zirconium Oxide Solid Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41978-41987. [PMID: 36094174 DOI: 10.1021/acsami.2c09660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lithium lanthanum zirconium oxide (LLZO) has long been considered as a promising solid electrolyte for all-solid-state lithium (Li) metal batteries because of its interfacial stability when coupled with a Li metal anode. However, the cubic phase of LLZO (c-LLZO) with a higher Li-ion conductivity has a complex atomic structure and is subject to complicated phase transition during its processing and working conditions, which remain largely elusive. Here, we reveal the phase transition process during the formation of c-LLZO nanotubes through detailed microscopic characterization by scanning and transmission electron microscopy as well as X-ray diffraction. We find four typical stages during the formation of c-LLZO along with several intermediate phases including lanthanum (La)-rich cubic lanthanum zirconium oxide (La-rich c-LZO), c-LZO, and La-rich c-LLZO. We also reveal the role of m-Li2CO3 and h-Li2O2 as the "phase mediator".
Collapse
Affiliation(s)
- Yubing Hu
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Tianshi Feng
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Lei Xu
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
34
|
Miao X, Guan S, Ma C, Li L, Nan CW. Role of Interfaces in Solid-State Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206402. [PMID: 36062873 DOI: 10.1002/adma.202206402] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Solid-state batteries (SSBs) are considered as one of the most promising candidates for the next-generation energy-storage technology, because they simultaneously exhibit high safety, high energy density, and wide operating temperature range. The replacement of liquid electrolytes with solid electrolytes produces numerous solid-solid interfaces within the SSBs. A thorough understanding on the roles of these interfaces is indispensable for the rational performance optimization. In this review, the interface issues in the SSBs, including internal buried interfaces within solid electrolytes and composite electrodes, and planar interfaces between electrodes and solid electrolyte separators or current collectors are discussed. The challenges and future directions on the investigation and optimization of these solid-solid interfaces for the production of the SSBs are also assessed.
Collapse
Affiliation(s)
- Xiang Miao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shundong Guan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Cheng Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liangliang Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
35
|
Nguyen MH, Park S. Synergetic Effect of Li-Ion Concentration and Triple Doping on Ionic Conductivity of Li 7La 3Zr 2O 12 Solid Electrolyte. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2946. [PMID: 36079983 PMCID: PMC9457903 DOI: 10.3390/nano12172946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Li7La3Zr2O12 (LLZO) is a promising and safe solid electrolyte for all-solid-state batteries. To achieve high ionic conductivity of LLZO, stabilizing the cubic phase and reducing Li loss during the sintering process is essential. Therefore, reducing the sintering temperature, which increases the sintering time for high-density pellets, is necessary. Herein, we investigate the change in the crystal structure, morphology, and Li ionic conductivity of LLZO pellets by triple doping with Al, Ga, and Ta and modulating the variation in initial Li concentrations. Interestingly, the proportion of the conductive cubic phase increased with increasing Li stoichiometry by 1.1 times, and this tendency was further accelerated by triple doping. The synergetic effects of triple doping and Li concentration also minimized Li loss during sintering. Accordingly, it provided a high-quality LLZO pellet with good ionic conductivity (3.6 × 10-4 S cm-1) and high relative density (97.8%). Notably, the LLZO pellet was obtained using a very short sintering process (40 min). Considering that the most time-consuming step is the sintering process for LLZO, this study can provide guidelines for the fast production and commercialization of LLZO electrolytes with high ionic conductivity.
Collapse
|
36
|
Inorganic–Organic Hybrid Electrolytes Based on Al-Doped Li7La3Zr2O12 and Ionic Liquids. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Organic–inorganic hybrid electrolytes based on Al-doped Li7La3Zr2O12 (LLZO) and two different ionic liquids (ILs), namely N-ethoxyethyl-N-methylpiperidinium bis(fluorosulfonyl)imide (FSI IL) and N-ethoxyethyl-N-methylpiperidinium difluoro(oxalato)borate (DFOB IL), were prepared with the aim of improvement of inherent flexibilities of inorganic solid electrolytes. The composites were evaluated in terms of thermal, spectroscopical, and electrochemical properties. In the impedance spectra of LLZO composites with 15 wt% ILs, a semi-circle due to grain boundary resistances was not observed. With the sample merely pressed with 1 ton, without any high-temperature sintering process, the ionic conductivity of 10−3 S cm−1 was achieved at room temperature. Employing a ternary composite of LLZO, FSI IL, and LiFSI as an electrolyte, all-solid-state lithium metal batteries having LiFePO4 as a cathode were assembled. The cell exhibited a capacity above 100 mAh g−1 throughout the course of charge–discharge cycle at C/20. This confirms that FSI IL is an effective additive for inorganic solid electrolytes, which can guarantee the ion conduction.
Collapse
|
37
|
Strangmüller S, Avdeev M, Baran V, Walke P, Kirchberger A, Nilges T, Senyshyn A. Energy landscape for Li-ion diffusion in the garnet-type solid electrolyte Li 6.5La 3Zr 1.5Nb 0.5O 12 (LLZO-Nb). ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A comprehensive understanding of the nexus of diffusion mechanisms on the atomic scale as well as structural influences on the ionic motion in solid electrolytes is key for further development of high-performing all-solid-state batteries. Therefore, current research not only focuses on the search for innovative materials, but also on the study of diffusion pathways and ion dynamics in ionic conductors. In this context, we report on the extended characterization of the ionic electrolyte Li6.5La3Zr1.5Nb0.5O12 (LLZO-Nb). The commercially available material is analyzed by a combination of powder X-ray (either lab- or synchrotron-based) and neutron diffraction. Details of lithium disorder were obtained from high-resolution neutron diffraction data, from which the ionic transport of Li ions was determined by applying the maximum entropy method in combination with the one-particle potential formalism.
Collapse
Affiliation(s)
- Stefan Strangmüller
- Research Neutron Source Heinz Maier-Leibnitz (FRM II), Technical University of Munich , Lichtenbergstrasse 1, 85748 Garching , Germany
| | - Maxim Avdeev
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation , New Illawarra Rd, Lucas Heights NSW 2234 , Sydney , Australia
- School of Chemistry , University of Sydney , NSW 2006 , Sydney , Australia
| | - Volodymyr Baran
- Deutsches Elektronen-Synchrotron (DESY) , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Patrick Walke
- Department of Chemistry , Synthesis and Characterization of Innovative Materials Group, Technical University of Munich , Lichtenbergstrasse 4 , 85748 Garching , Germany
| | - Anna Kirchberger
- Department of Chemistry , Synthesis and Characterization of Innovative Materials Group, Technical University of Munich , Lichtenbergstrasse 4 , 85748 Garching , Germany
| | - Tom Nilges
- Department of Chemistry , Synthesis and Characterization of Innovative Materials Group, Technical University of Munich , Lichtenbergstrasse 4 , 85748 Garching , Germany
| | - Anatoliy Senyshyn
- Research Neutron Source Heinz Maier-Leibnitz (FRM II), Technical University of Munich , Lichtenbergstrasse 1, 85748 Garching , Germany
| |
Collapse
|
38
|
Zhang L, Xu L, Nian Y, Wang W, Han Y, Luo L. Atomic Defect Mediated Li-Ion Diffusion in a Lithium Lanthanum Titanate Solid-State Electrolyte. ACS NANO 2022; 16:6898-6905. [PMID: 35404580 DOI: 10.1021/acsnano.2c02250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lithium lanthanum titanium oxide (LLTO) as a fast Li-ion conductor is a promising candidate for future all-solid-state Li batteries. Fundamental understanding of the microstructure of LLTO and its effect on the Li+ diffusion mechanism, especially across different length scales and interfaces, is a prerequisite to improving the material design and processing development of oxide-based solid electrolytes. Herein, through detailed structural analysis of LLTO ceramic pellets by aberration-corrected transmission electron microscopy, we discovered previously unreported intrinsic planar defects in LLTO single-crystal grains. These planar defects feature an antiphase boundary along specific crystal planes with a "rock-salt" structure enriched by Li within a few atomic layers. Corroborated by density-functional-theory-based calculations, we show an increased diffusion barrier across these planar defects inevitably lowers the bulk Li+ diffusivity of the oxide electrolyte.
Collapse
Affiliation(s)
- Lifeng Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| | - Lei Xu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| | - Yao Nian
- School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
| | - Weizhen Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - You Han
- School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
| | - Langli Luo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
| |
Collapse
|
39
|
Chen B, Sarkar S, Palakkathodi Kammampata S, Zhou C, Thangadurai V. Li-stuffed garnet electrolytes: structure, ionic conductivity, chemical stability, interface, and applications. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current lithium-ion batteries have been widely used in portable electronic devices, electric vehicles, and peak power demand. However, the organic liquid electrolytes used in the lithium-ion battery are flammable and not stable in contact with elemental lithium and at a higher voltage. To eliminate the safety and instability issues, solid-state (ceramic) electrolytes have attracted enormous interest worldwide, owing to their thermal and high voltage stability. Among all the solid-state electrolytes known today, the Li-stuffed garnet is one of the most promising electrolytes due to its physical and chemical properties such as high total Li-ion conductivity at room temperature, chemical stability with elemental lithium and high voltage lithium cathodes, and high electrochemical stability window (6 V vs. Li+/Li). In this short review, we provide an overview of Li-stuffed garnet electrolytes with a focus on their structure, ionic conductivity, transport mechanism, chemical stability, and battery applications.
Collapse
Affiliation(s)
- Bowen Chen
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Subhajit Sarkar
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Sanoop Palakkathodi Kammampata
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Chengtian Zhou
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Venkataraman Thangadurai
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
40
|
Kim S, Kim JS, Miara L, Wang Y, Jung SK, Park SY, Song Z, Kim H, Badding M, Chang J, Roev V, Yoon G, Kim R, Kim JH, Yoon K, Im D, Kang K. High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility. Nat Commun 2022; 13:1883. [PMID: 35388012 PMCID: PMC8986853 DOI: 10.1038/s41467-022-29531-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/14/2022] [Indexed: 01/01/2023] Open
Abstract
Lithium metal batteries using solid electrolytes are considered to be the next-generation lithium batteries due to their enhanced energy density and safety. However, interfacial instabilities between Li-metal and solid electrolytes limit their implementation in practical batteries. Herein, Li-metal batteries using tailored garnet-type Li7-xLa3-aZr2-bO12 (LLZO) solid electrolytes is reported, which shows remarkable stability and energy density, meeting the lifespan requirements of commercial applications. We demonstrate that the compatibility between LLZO and lithium metal is crucial for long-term stability, which is accomplished by bulk dopant regulating and dopant-specific interfacial treatment using protonation/etching. An all-solid-state with 5 mAh cm-2 cathode delivers a cumulative capacity of over 4000 mAh cm-2 at 3 mA cm-2, which to the best of our knowledge, is the highest cycling parameter reported for Li-metal batteries with LLZOs. These findings are expected to promote the development of solid-state Li-metal batteries by highlighting the efficacy of the coupled bulk and interface doping of solid electrolytes.
Collapse
Affiliation(s)
- Sewon Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Battery Material Lab, Samsung Advanced Institute of Technology, Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Ju-Sik Kim
- Battery Material Lab, Samsung Advanced Institute of Technology, Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
| | - Lincoln Miara
- Advanced Materials Lab, Samsung Advanced Institute of Technology-America, Samsung Semiconductor, Inc., Cambridge, 02138, MA, USA
| | - Yan Wang
- Advanced Materials Lab, Samsung Advanced Institute of Technology-America, Samsung Semiconductor, Inc., Cambridge, 02138, MA, USA
| | - Sung-Kyun Jung
- Battery Material Lab, Samsung Advanced Institute of Technology, Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seong Yong Park
- Analytical Engineering Group, Samsung Advanced Institute of Technology, Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Zhen Song
- Sullivan Park Campus, Corning Incorporated, 21 Lynn Morse Rd, Painted Post, NY, 14870, USA
| | - Hyungsub Kim
- Korea Atomic Energy Research Institute, Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejon, 34507, Republic of Korea
| | - Michael Badding
- Sullivan Park Campus, Corning Incorporated, 21 Lynn Morse Rd, Painted Post, NY, 14870, USA
| | - JaeMyung Chang
- Sullivan Park Campus, Corning Incorporated, 21 Lynn Morse Rd, Painted Post, NY, 14870, USA
| | - Victor Roev
- Battery Material Lab, Samsung Advanced Institute of Technology, Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Gabin Yoon
- Battery Material Lab, Samsung Advanced Institute of Technology, Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Ryounghee Kim
- Battery Material Lab, Samsung Advanced Institute of Technology, Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jung-Hwa Kim
- Analytical Engineering Group, Samsung Advanced Institute of Technology, Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Kyungho Yoon
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dongmin Im
- Battery Material Lab, Samsung Advanced Institute of Technology, Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
| | - Kisuk Kang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Center for Nanoparticle Research, Institute of Basic Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
41
|
Stockham MP, Dong B, Slater PR. High entropy lithium garnets – Testing the compositional flexibility of the lithium garnet system. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Influence of P and Ti on Phase Formation at Solidification of Synthetic Slag Containing Li, Zr, La, and Ta. MINERALS 2022. [DOI: 10.3390/min12030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the future, it will become increasingly important to recover critical elements from waste materials. For many of these elements, purely mechanical processing is not efficient enough. An already established method is pyrometallurgical processing, with which many of the technologically important elements, such as Cu or Co, can be recovered in the metal phase. Ignoble elements, such as Li, are known to be found in the slag. Even relatively base or highly redox-sensitive elements, such as Zr, REEs, or Ta, can be expected to accumulate in the slag. In this manuscript, the methods for determining the phase formation and the incorporation of these elements were developed and optimized, and the obtained results are discussed. For this purpose, oxide slags were synthesized with Al, Si, Ca, and the additives, P and Ti. To this synthetic slag were added the elements, Zr and La (which can be considered proxies for the light REEs), as well as Ta. On the basis of the obtained results, it can be concluded that Ti or P can have strong influences on the phase formation. In the presence of Ti, La, and Ta, predominantly scavenged by perovskite (Ca1-wLa2/3wTi1-(x+y+z)Al4/3xZryTa4/5zO3), and Zr predominantly as zirconate (Ca1-wLa2/3wZr4-(x+y+z)Al4/3xTiyTa4/5zO9), with the P having no effect on this behavior. Without Ti, the Zr and Ta are incorporated into the pyrochlore (La2-xCa3/2x-yZr2+2/4y-zTa4/5zO7), regardless of the presence of phosphorus. In addition to pyrochlore, La accumulates primarily in britholite-type La oxy- or phosphosilicates. Without P and Ti, similar behavior is observed, except that the britholite-like La silicates do not contain P, and the scavenging of La is less efficient. Lithium, on the other hand, forms its own compounds, such as LiAlO2(Si), LiAl5O8, eucryptite, and Li silicate. Additionally, in the presence of P, Li3PO4 is formed, and the eucryptite incorporates P, which indicates an additional P-rich eutectic melt.
Collapse
|
43
|
Bashiri P, Nazri G. Solid state lithium ion conductors for lithium batteries. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Lithium ion batteries will play a significant role in the future of energy generation. The need for polymer electrolytes will be critical as such batteries are developed and implemented. The use of inorganic solid electrolytes likewise will be critical in the development of this emerging technology.
Collapse
Affiliation(s)
- Parisa Bashiri
- Physics Department , Wayne State University , Detroit , MI , USA
| | - Gholamabbas Nazri
- Physics Department , Wayne State University , Detroit , MI , USA
- Department of Electrical and Computer Engineering , Wayne State University , Detroit , MI , USA
| |
Collapse
|
44
|
Kravchyk KV, Karabay DT, Kovalenko MV. On the feasibility of all-solid-state batteries with LLZO as a single electrolyte. Sci Rep 2022; 12:1177. [PMID: 35064183 PMCID: PMC8782839 DOI: 10.1038/s41598-022-05141-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/07/2022] [Indexed: 01/18/2023] Open
Abstract
Replacement of Li-ion liquid-state electrolytes by solid-state counterparts in a Li-ion battery (LIB) is a major research objective as well as an urgent priority for the industry, as it enables the use of a Li metal anode and provides new opportunities to realize safe, non-flammable, and temperature-resilient batteries. Among the plethora of solid-state electrolytes (SSEs) investigated, garnet-type Li-ion electrolytes based on cubic Li7La3Zr2O12 (LLZO) are considered the most appealing candidates for the development of future solid-state batteries because of their low electronic conductivity of ca. 10−8 S cm−1 (RT) and a wide electrochemical operation window of 0–6 V vs. Li+/Li. However, high LLZO density (5.1 g cm−3) and its lower level of Li-ion conductivity (up to 1 mS cm−1 at RT) compared to liquid electrolytes (1.28 g cm−3; ca. 10 mS cm−1 at RT) still raise the question as to the feasibility of using solely LLZO as an electrolyte for achieving competitive energy and power densities. In this work, we analyzed the energy densities of Li-garnet all-solid-state batteries based solely on LLZO SSE by modeling their Ragone plots using LiCoO2 as the model cathode material. This assessment allowed us to identify values of the LLZO thickness, cathode areal capacity, and LLZO content in the solid-state cathode required to match the energy density of conventional lithium-ion batteries (ca. 180 Wh kg−1 and 497 Wh L−1) at the power densities of 200 W kg−1 and 600 W L−1, corresponding to ca. 1 h of battery discharge time (1C). We then discuss key challenges in the practical deployment of LLZO SSE in the fabrication of Li-garnet all-solid-state batteries.
Collapse
|
45
|
Hogrefe K, Minafra N, Hanghofer I, Banik A, Zeier WG, Wilkening HMR. Opening Diffusion Pathways through Site Disorder: The Interplay of Local Structure and Ion Dynamics in the Solid Electrolyte Li6+xP1–xGexS5I as Probed by Neutron Diffraction and NMR. J Am Chem Soc 2022; 144:1795-1812. [PMID: 35057616 PMCID: PMC8815078 DOI: 10.1021/jacs.1c11571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Solid electrolytes
are at the heart of future energy storage systems.
Li-bearing argyrodites are frontrunners in terms of Li+ ion conductivity. Although many studies have investigated the effect
of elemental substitution on ionic conductivity, we still do not fully
understand the various origins leading to improved ion dynamics. Here,
Li6+xP1–xGexS5I served as an
application-oriented model system to study the effect of cation substitution
(P5+ vs Ge4+) on Li+ ion dynamics.
While Li6PS5I is a rather poor ionic conductor
(10–6 S cm–1, 298 K), the Ge-containing
samples show specific conductivities on the order of 10–2 S cm–1 (330 K). Replacing P5+ with
Ge4+ not only causes S2–/I– anion site disorder but also reveals via neutron diffraction that
the Li+ ions do occupy several originally empty sites between
the Li rich cages in the argyrodite framework. Here, we used 7Li and 31P NMR to show that this Li+ site disorder has a tremendous effect on both local ion dynamics
and long-range Li+ transport. For the Ge-rich samples,
NMR revealed several new Li+ exchange processes, which
are to be characterized by rather low activation barriers (0.1–0.3
eV). Consequently, in samples with high Ge-contents, the Li+ ions have access to an interconnected network of pathways allowing
for rapid exchange processes between the Li cages. By (i) relating
the changes of the crystal structure and (ii) measuring the dynamic
features as a function of length scale, we were able to rationalize
the microscopic origins of fast, long-range ion transport in this
class of electrolytes.
Collapse
Affiliation(s)
- Katharina Hogrefe
- Institute of Chemistry and Technology of Materials, Graz University of Technology (NAWI Graz), Stremayrgasse 9, A-8010 Graz, Austria
| | - Nicolò Minafra
- Institute of Inorganic and Analytical Chemistry, University of Münster, Correnstrasse 30, D-48149 Münster, Germany
| | - Isabel Hanghofer
- Institute of Chemistry and Technology of Materials, Graz University of Technology (NAWI Graz), Stremayrgasse 9, A-8010 Graz, Austria
| | - Ananya Banik
- Institute of Inorganic and Analytical Chemistry, University of Münster, Correnstrasse 30, D-48149 Münster, Germany
| | - Wolfgang G. Zeier
- Institute of Inorganic and Analytical Chemistry, University of Münster, Correnstrasse 30, D-48149 Münster, Germany
- Institut für Energie- und Klimaforschung (IEK), IEK-12: Helmholtz-Institut Münster, Forschungszentrum Jülich, Corrensstrasse 46, 48149 Münster, Germany
| | - H. Martin R. Wilkening
- Institute of Chemistry and Technology of Materials, Graz University of Technology (NAWI Graz), Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
46
|
Ma X, Xu Y. Efficient Anion Fluoride-Doping Strategy to Enhance the Performance in Garnet-Type Solid Electrolyte Li 7La 3Zr 2O 12. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2939-2948. [PMID: 34991309 DOI: 10.1021/acsami.1c21951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Garnet-type solid-state electrolyte Li7La3Zr2O12 (LLZO) is expected to realize the next generation of high-energy-density lithium-ion batteries. However, the severe dendrite penetration at the pores and grain boundaries inside the solid electrolyte hinders the practical application of LLZO. Here, it is reported that the desirable quality and dense garnet Li6.8Al0.2La3Zr2O11.80F0.20 can be obtained by fluoride anion doping, which can effectively facilitate grain nucleation and refine the grain; thereby, the ionic conductivity increased to 7.45 × 10-4 at 30 °C and the relative density reached to 95.4%. At the same time, we introduced a transition layer to build the Li6.8Al0.2La3Zr2O11.80F0.20-t electrolyte in order to supply a stable contact; as a result, the interface resistance of Li|Li6.8Al0.2La3Zr2O11.80F0.20-t decreases to 12.8 Ω cm2. The Li|Li6.8Al0.2La3Zr2O11.80F0.20-t|Li symmetric cell achieved a critical current density of 1.0 mA cm-2 at 25 °C, which could run stably for 1000 h without a short circuit at 0.3 mA cm-2 and 25 °C. Moreover, the Li|LiFePO4 battery exhibited a high Coulombic efficiency (>99.5%), an excellent rate capability, and a great capacity retention (123.7 mA h g-1, ≈80%) over 500 cycles at 0.3C and 25 °C. The Li|LiNi0.8Co0.1Mn0.1O2 cell operated well at 0.2C and 25 °C and delivered a high initial discharge capacity of 151.4 mA h g-1 with a good capacity retention (70%) after 195 cycles. This work demonstrates that the anion doping in LLZO is an effective method to prepare a dense garnet ceramic for the high-performance lithium batteries.
Collapse
Affiliation(s)
- Xiaoning Ma
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China
- Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, China
| | - Youlong Xu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China
- Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, China
| |
Collapse
|
47
|
Kravchyk KV, Kovalenko MV. Perspective on design and technical challenges of Li-garnet solid-state batteries. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:2018919. [PMID: 35069012 PMCID: PMC8774065 DOI: 10.1080/14686996.2021.2018919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Solid-state Li-ion batteries based on Li-garnet Li7La3Zr2O12 (LLZO) electrolyte have seen rapid advances in recent years. These solid-state systems are poised to address the urgent need for safe, non-flammable, and temperature-tolerant energy storage batteries that concomitantly possess improved energy densities and the cycle life as compared to conventional liquid-electrolyte-based counterparts. In this vision article, we review present research pursuits and discuss the limitations in the employment of LLZO solid-state electrolyte (SSE) for solid-state Li-ion batteries. Particular emphasis is given to the discussion of pros and cons of current methodologies in the fabrication of solid-state cathodes, LLZO SSE, and Li metal anode layers. Furthermore, we discuss the contributions of the LLZO thickness, cathode areal capacity, and LLZO content in the solid-state cathode on the energy density of Li-garnet solid-state batteries, summarizing their required values for matching the energy densities of conventional Li-ion systems. Finally, we highlight challenges that must be addressed in the move towards eventual commercialization of Li-garnet solid-state batteries.
Collapse
Affiliation(s)
- Kostiantyn V. Kravchyk
- Laboratory for Thin Films and Photovoltaics, Department of Advanced Materials and Surfaces, Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Maksym V. Kovalenko
- Laboratory for Thin Films and Photovoltaics, Department of Advanced Materials and Surfaces, Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
48
|
Redhammer GJ, Tippelt G, Rettenwander D. Deep hydration of an Li 7-3xLa 3Zr 2M IIIxO 12 solid-state electrolyte material: a case study on Al- and Ga-stabilized LLZO. Acta Crystallogr C Struct Chem 2022; 78:1-6. [PMID: 34982043 PMCID: PMC8725724 DOI: 10.1107/s2053229621012250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Single crystals of an Li-stuffed, Al- and Ga-stabilized garnet-type solid-state electrolyte material, Li7La3Zr2O12 (LLZO), have been analysed using single-crystal X-ray diffraction to determine the pristine structural state immediately after synthesis via ceramic sintering techniques. Hydrothermal treatment at 150 °C for 28 d induces a phase transition in the Al-stabilized compound from the commonly observed cubic Ia-3d structure to the acentric I-43d subtype. LiI ions at the interstitial octahedrally (4 + 2-fold) coordinated 48e site are most easily extracted and AlIII ions order onto the tetrahedral 12a site. Deep hydration induces a distinct depletion of LiI at this site, while the second tetrahedral site, 12b, suffers only minor LiI loss. Charge balance is maintained by the incorporation of HI, which is bonded to an O atom. Hydration of Ga-stabilized LLZO induces similar effects, with complete depletion of LiI at the 48e site. The LiI/HI exchange not only leads to a distinct increase in the unit-cell size, but also alters some bonding topology, which is discussed here.
Collapse
Affiliation(s)
- Günther J. Redhammer
- Chemistry and Physics of Materials, University of Salzburg, Jakob Haringerstrasse 2A, 5020 Salzburg, Austria
| | - Gerold Tippelt
- Chemistry and Physics of Materials, University of Salzburg, Jakob Haringerstrasse 2A, 5020 Salzburg, Austria
| | - Daniel Rettenwander
- Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
49
|
Influence of Powder Milling and Annealing Parameters on the Formation of Cubic Li 7La 3Zr 2O 12 Compound. MATERIALS 2021; 14:ma14247633. [PMID: 34947228 PMCID: PMC8707787 DOI: 10.3390/ma14247633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
Abstract
Li-ion batteries are widely used as energy storage devices due to their excellent electrochemical performance. The cubic Li7La3Zr2O12 (c-LLZO) compound is regarded as a promising candidate as a solid-state electrolyte for lithium-ion batteries due to its high bulk Li-ion conductivity, excellent thermal performance, and chemical stability. The standard manufacturing procedure involves the high-temperature and lengthy annealing of powders. However, the formation of the tetragonal modification of LLZO and other undesired side phases results in the deterioration of electrochemical properties. The mechanical milling of precursor powders can enhance the powders’ reactivity and can result in an easier formation of c-LLZO. The aim of this work was to study the influence of selected milling and annealing parameters on c-LLZO compound formation. The starting powders of La(OH)3, Li2CO3, and ZrO2 were subjected to milling in various ball mills, under different milling conditions. The powders were then annealed at various temperatures for different lengths of times. These studies showed that the phase transformation processes of the powders were not very sensitive to the milling parameters. On the other hand, the final phase composition and microstructure strongly depended on heat treatment conditions. Low temperature annealing (750 °C) for 3 h produced 90% of c-LLZO in the powder structure.
Collapse
|
50
|
Liao YK, Tong Z, Fang CC, Liao SC, Chen JM, Liu RS, Hu SF. Extensively Reducing Interfacial Resistance by the Ultrathin Pt Layer between the Garnet-Type Solid-State Electrolyte and Li-Metal Anode. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56181-56190. [PMID: 34784188 DOI: 10.1021/acsami.1c16922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
All-solid-state Li-ion batteries (ASSLIBs), also known as next-generation batteries, have attracted much attention due to their high energy density and safety. The best advantage of ASSLIBs is the Li-metal anodes that could be used without safety issues. In this study, a highly conductive garnet solid electrolyte (Li6.75La3Zr1.75Ta0.25O12, LLZTO) was used in the ASSLIB, and a Pt film was used to modify the surface of LLZTO to prove the solution of the Li-metal anode for LLZTO. Li-Pt alloy was synthesized to improve the wettability and contact of the interface. The interfacial resistance was reduced by 21 times, at only 9 Ω cm2. The symmetric cell could stably cycle over 3500 h at a current density of 0.1 mA cm-2. The full cell of Li|Li-Pt|LLZTO|LiFePO4 and Li|Li-Pt|LLZTO|LiMn0.8Fe0.2PO4 achieved high stability in terms of battery performance. Point-to-point contact transformed into homogeneous surface contact made the Li-ion flux faster and more stable. This surface modification method could provide researchers with a new choice for fixing interface issues and promoting the application of high-performance ASSLIBs in the future.
Collapse
Affiliation(s)
- Yu-Kai Liao
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Zizheng Tong
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Chen Fang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - Shih-Chieh Liao
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - Jin-Ming Chen
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| |
Collapse
|