1
|
Punnoy P, Siripongpreda T, Henry CS, Rodthongkum N, Potiyaraj P. Novel theranostic wounds dressing based on pH responsive alginate hydrogel/graphene oxide/levofloxacin modified silk. Int J Pharm 2024; 661:124406. [PMID: 38955240 DOI: 10.1016/j.ijpharm.2024.124406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024]
Abstract
Integrating pH sensor with controlled antibiotic release is fabricated on silk to create a theranostic wound dressing. Alginate (ALG) hydrogel and graphene oxide (GO) loaded with levofloxacin (LVX) and a pH indicator are applied to fabricate a pH-responsive theranostic wound dressing. The modified silk color changes from yellow to green in response to elevated skin pH, indicating the skin infection. The semi-quantitative analysis was conducted using ImageJ, revealing significant color changes across the wide range. At elevated pH levels, the ionization of the COOH bonds within ALG induces repulsion among the COO- groups, thereby accelerating the release of the incorporated drug compared to release under lower pH. At an infected pH of 8, ALG hydrogel triggers LVX releasing up to 135.86 ± 0.3 µg, while at a normal pH of 7, theranostic silk releases 123.13 ± 0.26 µg. Incorporating GO onto silk fibers enhances LVX loading and sustains LVX release. Furthermore, these modified silks possess antimicrobial abilities without causing irritation or allergies on the human skin. This theranostic silks represents a major step forward in smart wound care, introducing a versatile platform of smart wound care.
Collapse
Affiliation(s)
- Pornchanok Punnoy
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Soi Chula12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Tatiya Siripongpreda
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Thailand.
| | - Pranut Potiyaraj
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Soi Chula12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Thailand.
| |
Collapse
|
2
|
Asadi M, Ghorbani SH, Mahdavian L, Aghamohammadi M. Graphene-based hybrid composites for cancer diagnostic and therapy. J Transl Med 2024; 22:611. [PMID: 38956651 PMCID: PMC11218089 DOI: 10.1186/s12967-024-05438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
The application of graphene-based nanocomposites for therapeutic and diagnostic reasons has advanced considerably in recent years due to advancements in the synthesis and design of graphene-based nanocomposites, giving rise to a new field of nano-cancer diagnosis and treatment. Nano-graphene is being utilized more often in the field of cancer therapy, where it is employed in conjunction with diagnostics and treatment to address the complex clinical obstacles and problems associated with this life-threatening illness. When compared to other nanomaterials, graphene derivatives stand out due to their remarkable structural, mechanical, electrical, optical, and thermal capabilities. The high specific surface area of these materials makes them useful as carriers in controlled release systems that respond to external stimuli; these compounds include drugs and biomolecules like nucleic acid sequences (DNA and RNA). Furthermore, the presence of distinctive sheet-like nanostructures and the capacity for photothermal conversion have rendered graphene-based nanocomposites highly favorable for optical therapeutic applications, including photothermal treatment (PTT), photodynamic therapy (PDT), and theranostics. This review highlights the current state and benefits of using graphene-based nanocomposites in cancer diagnosis and therapy and discusses the obstacles and prospects of their future development. Then we focus on graphene-based nanocomposites applications in cancer treatment, including smart drug delivery systems, PTT, and PDT. Lastly, the biocompatibility of graphene-based nanocomposites is also discussed to provide a unique overview of the topic.
Collapse
Affiliation(s)
- Mahnaz Asadi
- Department of Chemistry, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | | | - Leila Mahdavian
- Department of Chemistry, Doroud Branch, Islamic Azad University, Doroud, Iran.
| | | |
Collapse
|
3
|
Sang Y, Gao J, Han X, Liang T, Chen T, Zhao Y. Preparation and sustained release of diatomite incorporated and Eudragit L100 coated hydroxypropyl cellulose/chitosan aerogel microspheres. Int J Biol Macromol 2024; 267:131447. [PMID: 38588843 DOI: 10.1016/j.ijbiomac.2024.131447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The drug encapsulation efficiency, release rate and time, sustained release, and stimulus-response of carriers are very important for drug delivery. However, these always cannot obtained for the carrier with a single component. To improve the comprehensive performance of chitosan-based carriers for 5-Fu delivery, diatomite-incorporated hydroxypropyl cellulose/chitosan (DE/HPC/CS) composite aerogel microspheres were fabricated for the release of 5-fluorouracil (5-Fu), and the release performance was regulated with the content of diatomite, pH value, and external coating material. Firstly, the 5-Fu loaded DE/HPC/CS composite aerogel microspheres and Eudragit L100 coated microspheres were prepared with cross-linking followed by freeze-drying, and characterized by SEM, EDS, FTIR, XRD, DSC, TG, and swelling. The obtained aerogel microspheres have a diameter of about 0.5 mm, the weight percentage of F and Si elements on the surface are 0.55 % and 0.78 % respectively. The glass transition temperature increased from 179 °C to 181 °C and 185 °C with the incorporation of DE and coating of Eudragit, and the equilibrium swelling percentage of DE/HPC/CS (1.5:3:2) carriers are 101.52 %, 45.27 %, 67.32 % at pH 1.2, 5.0, 7.4, respectively. Then, the effect of DE content on the drug loading efficiency of DE/HPC/CS@5-Fu was investigated, with the increase of DE content, the highest encapsulation efficiency was 82.6 %. Finally, the release behavior of DE incorporated and Eudragit L100 Coated microspheres were investigated under different pH values, and evaluated with four kinetic models. The results revealed that the release rate of 5-Fu decreased with the increase of DE content, sustained release with extending time and pH-responsive were observed for the Eudragit-coated aerogel microspheres.
Collapse
Affiliation(s)
- Yanan Sang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xiaobing Han
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Liang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuan Zhao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
4
|
Yazdani S, Mozaffarian M, Pazuki G, Hadidi N, Villate-Beitia I, Zárate J, Puras G, Pedraz JL. Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications. Pharmaceutics 2024; 16:288. [PMID: 38399344 PMCID: PMC10891563 DOI: 10.3390/pharmaceutics16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Gene therapeutics are promising for treating diseases at the genetic level, with some already validated for clinical use. Recently, nanostructures have emerged for the targeted delivery of genetic material. Nanomaterials, exhibiting advantageous properties such as a high surface-to-volume ratio, biocompatibility, facile functionalization, substantial loading capacity, and tunable physicochemical characteristics, are recognized as non-viral vectors in gene therapy applications. Despite progress, current non-viral vectors exhibit notably low gene delivery efficiency. Progress in nanotechnology is essential to overcome extracellular and intracellular barriers in gene delivery. Specific nanostructures such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), nanodiamonds (NDs), and similar carbon-based structures can accommodate diverse genetic materials such as plasmid DNA (pDNA), messenger RNA (mRNA), small interference RNA (siRNA), micro RNA (miRNA), and antisense oligonucleotides (AONs). To address challenges such as high toxicity and low transfection efficiency, advancements in the features of carbon-based nanostructures (CBNs) are imperative. This overview delves into three types of CBNs employed as vectors in drug/gene delivery systems, encompassing their synthesis methods, properties, and biomedical applications. Ultimately, we present insights into the opportunities and challenges within the captivating realm of gene delivery using CBNs.
Collapse
Affiliation(s)
- Sara Yazdani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
| | - Mehrdad Mozaffarian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Naghmeh Hadidi
- Department of Clinical Research and EM Microscope, Pasteur Institute of Iran (PII), Tehran P.O. Box 131694-3551, Iran;
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jon Zárate
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
5
|
Miao P, Gao J, Han X, Zhao Y, Chen T. Adsorption of Levofloxacin onto Graphene Oxide/Chitosan Composite Aerogel Microspheres. Gels 2024; 10:81. [PMID: 38275855 PMCID: PMC10815225 DOI: 10.3390/gels10010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
The removal of pharmaceutical residues from water resources using bio-based materials is very important for human safety and health. Bio-based graphene oxide/chitosan (GO/CS) aerogel microspheres were fabricated with emulsification and cross-linking, followed by freeze drying, and were used for the adsorption of levofloxacin (LOF). The obtained GO/CS aerogel microspheres were characterized with scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and thermogravimetry (TG). The effects of GO content, pH value, and temperature on their adsorption capacity were investigated. With the incorporation of 40 wt% GO, the adsorption capacity increased from 9.9 to 45.6 mg/g, and the highest adsorption capacity, 51.5 mg/g, was obtained at pH = 8 and T = 25 °C. In addition, to obtain deeper insight into the adsorption process, the thermodynamics and kinetics of the process were also investigated with four different models of LOF adsorption. The thermodynamic modeling results revealed that LOF adsorption is exothermic, and the kinetic investigation demonstrated that LOF adsorption is generally consistent with a pseudo-first-order rate law.
Collapse
Affiliation(s)
- Pengpai Miao
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China;
- School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (Y.Z.)
| | - Jie Gao
- School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (Y.Z.)
| | - Xiaobing Han
- School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (Y.Z.)
| | - Yuan Zhao
- School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (Y.Z.)
| | - Tao Chen
- School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (Y.Z.)
| |
Collapse
|
6
|
Xiao Y, Pang YX, Yan Y, Qian P, Zhao H, Manickam S, Wu T, Pang CH. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205292. [PMID: 36658693 PMCID: PMC10037997 DOI: 10.1002/advs.202205292] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Since its discovery in 2004, graphene is increasingly applied in various fields owing to its unique properties. Graphene application in the biomedical domain is promising and intriguing as an emerging 2D material with a high surface area, good mechanical properties, and unrivalled electronic and physical properties. This review summarizes six typical synthesis methods to fabricate pristine graphene (p-G), graphene oxide (GO), and reduced graphene oxide (rGO), followed by characterization techniques to examine the obtained graphene materials. As bare graphene is generally undesirable in vivo and in vitro, functionalization methods to reduce toxicity, increase biocompatibility, and provide more functionalities are demonstrated. Subsequently, in vivo and in vitro behaviors of various bare and functionalized graphene materials are discussed to evaluate the functionalization effects. Reasonable control of dose (<20 mg kg-1 ), sizes (50-1000 nm), and functionalization methods for in vivo application are advantageous. Then, the key biomedical applications based on graphene materials are discussed, coupled with the current challenges and outlooks of this growing field. In a broader sense, this review provides a comprehensive discussion on the synthesis, characterization, functionalization, evaluation, and application of p-G, GO, and rGO in the biomedical field, highlighting their recent advances and potential.
Collapse
Affiliation(s)
- Yuqin Xiao
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Yoong Xin Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
| | - Yuxin Yan
- College of Energy EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing100083P. R. China
- School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Haitao Zhao
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Sivakumar Manickam
- Petroleum and Chemical EngineeringFaculty of EngineeringUniversiti Teknologi BruneiBandar Seri BegawanBE1410Brunei Darussalam
| | - Tao Wu
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Key Laboratory for Carbonaceous Wastes Processing and ProcessIntensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Municipal Key Laboratory of Clean Energy Conversion TechnologiesUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| |
Collapse
|
7
|
Bellier N, Baipaywad P, Ryu N, Lee JY, Park H. Recent biomedical advancements in graphene oxide- and reduced graphene oxide-based nanocomposite nanocarriers. Biomater Res 2022; 26:65. [DOI: 10.1186/s40824-022-00313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/30/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractRecently, nanocarriers, including micelles, polymers, carbon-based materials, liposomes, and other substances, have been developed for efficient delivery of drugs, nucleotides, and biomolecules. This review focuses on graphene oxide (GO) and reduced graphene oxide (rGO) as active components in nanocarriers, because their chemical structures and easy functionalization can be valuable assets for in vitro and in vivo delivery. Herein, we describe the preparation, structure, and functionalization of GO and rGO. Additionally, their important properties to function as nanocarriers are presented, including their molecular interactions with various compounds, near-infrared light adsorption, and biocompatibility. Subsequently, their mechanisms and the most appealing examples of their delivery applications are summarized. Overall, GO- and rGO-based nanocomposites show great promise as multipurpose nanocarriers owing to their various potential applications in drug and gene delivery, phototherapy, bioimaging, biosensing, tissue engineering, and as antibacterial agents.
Collapse
|
8
|
Han X, Gao J, Chen T, Qian L, Xiong H, Chen Z. Application Progress of PALS in the Correlation of Structure and Properties for Graphene/Polymer Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4161. [PMID: 36500784 PMCID: PMC9738869 DOI: 10.3390/nano12234161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Giving a deep insight into the microstructure, and realizing the correlation between microstructure and properties is very important to the precise construction of high-performance graphene/polymer nanocomposites (GPN). For the promising application in microstructure characterization, much attention has been focused on the effective technique of positron annihilation lifetime spectroscopy (PALS). Based on the introduction of the basic principle, this review summarized the application progress of PALS in the correlation of microstructure and properties for GPN, especially for the characterization of free volume and interfacial interaction, and the correlation of these microstructures and properties.
Collapse
Affiliation(s)
| | - Jie Gao
- Correspondence: (J.G.); (Z.C.)
| | | | | | | | | |
Collapse
|
9
|
Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 2022; 350:26-59. [PMID: 35964787 DOI: 10.1016/j.jconrel.2022.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in nanotechnology have enabled us to develop sophisticated multifunctional nanoparticles or nanosystems for targeted diagnosis and treatment of several illnesses, including cancers. To effectively treat any solid tumor, the therapy should preferably target just the malignant cells/tissue with minor damage to normal cells/tissues. Graphene oxide (GO) nanoparticles have gained considerable interest owing to their two-dimensional planar structure, chemical/mechanical stability, excellent photosensitivity, superb conductivity, high surface area, and good biocompatibility in cancer therapy. Many compounds have been functionalized on the surface of GO to increase their biological applications and minimize cytotoxicity. The review presents an overview of the physicochemical characteristics, strategies for various modifications, toxicity and biocompatibility of graphene and graphene oxide, current trends in developing GO-based nano constructs as a drug delivery cargo and other biological applications, including chemo-photothermal therapy, chemo-photodynamic therapy, bioimaging, and theragnosis in cancer. Further, the review discusses the challenges and opportunities of GO, GO-based nanomaterials for the said applications. Overall, the review focuses on the therapeutic potential of strategically developed GO nanomedicines and comprehensively discusses their opportunities and challenges in cancer therapy.
Collapse
Affiliation(s)
- Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sree Lakshmi Vemula
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahima Tejasvni Gupta
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahesh Vilasrao Giram
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sangishetty Akhil Kumar
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
10
|
Sattar R, Shahzad F, Ishaq T, Mukhtar R, Naz A. Nano‐Drug Carriers: A Potential Approach towards Drug Delivery Methods. ChemistrySelect 2022. [DOI: 10.1002/slct.202200884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rabia Sattar
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Faisal Shahzad
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Tehmeena Ishaq
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Rubina Mukhtar
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Asima Naz
- Department of Chemistry Mirpur University of Science & Technology (MUST) 10250 Mirpur, Azad Jammu & Kashmir Pakistan
| |
Collapse
|
11
|
Han X, Chen T, Zhao Y, Gao J, Sang Y, Xiong H, Chen Z. Relationship between the Microstructure and Performance of Graphene/Polyethylene Composites Investigated by Positron Annihilation Lifetime Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2990. [PMID: 34835754 PMCID: PMC8619168 DOI: 10.3390/nano11112990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
The quantitative characterization of microstructure is most desirable for the establishment of structure-property relationships in polymer nanocomposites. In this work, the effects of graphene on the microstructure, mechanical, electrical, and thermal properties of the obtained graphene/polyethylene (PE) composites were investigated. In order to reveal the structure-performance relationship of graphene/PE composites, especially for the effects of the relative free volume fraction (fr) and interfacial interaction intensity (β), positron annihilation lifetime spectroscopy (PALS) was employed for its quantitative description. The relative free volume fraction fr gives a good explanation of the variation for surface resistivity, melting temperature, and thermal stability, and the variation of tensile strength and thermal conductivity agree well with the results of interfacial interaction intensity β. The results showed that fr and β have a significant effect on the properties of the obtained graphene/PE composites, and the effect on the properties was revealed.
Collapse
Affiliation(s)
| | | | | | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (T.C.); (Y.Z.); (Y.S.); (H.X.)
| | | | | | - Zhiyuan Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (T.C.); (Y.Z.); (Y.S.); (H.X.)
| |
Collapse
|
12
|
Díez-Pascual AM. State of the Art in the Antibacterial and Antiviral Applications of Carbon-Based Polymeric Nanocomposites. Int J Mol Sci 2021; 22:10511. [PMID: 34638851 PMCID: PMC8509077 DOI: 10.3390/ijms221910511] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
The development of novel approaches to prevent bacterial infection is essential for enhancing everyday life. Carbon nanomaterials display exceptional optical, thermal, and mechanical properties combined with antibacterial ones, which make them suitable for diverse fields, including biomedical and food applications. Nonetheless, their practical applications as antimicrobial agents have not been fully explored yet, owing to their relatively poor dispersibility, expensiveness, and scalability changes. To solve these issues, they can be integrated within polymeric matrices, which also exhibit antimicrobial activity in some cases. This review describes the state of the art in the antibacterial applications of polymeric nanocomposites reinforced with 0D fullerenes, 1D carbon nanotubes (CNTs), and 2D graphene (G) and its derivatives such as graphene oxide (GO) and reduced graphene oxide (rGO). Given that a large number of such nanocomposites are available, only the most illustrative examples are described, and their mechanisms of antimicrobial activity are discussed. Finally, some applications of these antimicrobial polymeric nanocomposites are reviewed.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
13
|
Han X, Kong H, Chen T, Gao J, Zhao Y, Sang Y, Hu G. Effect of π-π Stacking Interfacial Interaction on the Properties of Graphene/Poly(styrene- b-isoprene- b-styrene) Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2158. [PMID: 34578475 PMCID: PMC8468380 DOI: 10.3390/nano11092158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Interfacial interaction is one of the most important factors in the construction of high-performance graphene-based elastomer composites. In this paper, graphene/poly (styrene-b-isoprene-b-styrene) (SIS) composites were prepared with solution mixing followed by an evaporation-induced self-assembly process. Various techniques such as scanning electron microscopy, UV-vis absorption spectra, tensile testing, Shore A hardness, surface resistance, thermal conductivity, and thermogravimetric analysis were conducted to characterize the microstructure and properties of the obtained composites. The results showed that the π-π stacking interfacial interaction between phenyl groups of SIS and graphene play an important role in the properties' improvement, and the effect of interfacial interaction on the properties was revealed.
Collapse
Affiliation(s)
| | | | | | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (H.K.); (T.C.); (Y.Z.); (Y.S.)
| | | | | | - Guowen Hu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (H.K.); (T.C.); (Y.Z.); (Y.S.)
| |
Collapse
|
14
|
Fatima N, Qazi UY, Mansha A, Bhatti IA, Javaid R, Abbas Q, Nadeem N, Rehan ZA, Noreen S, Zahid M. Recent developments for antimicrobial applications of graphene-based polymeric composites: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Díez-Pascual AM, Luceño-Sánchez JA. Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers (Basel) 2021; 13:2105. [PMID: 34206821 PMCID: PMC8271513 DOI: 10.3390/polym13132105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
The incorporation of carbon-based nanostructures into polymer matrices is a relevant strategy for producing novel antimicrobial materials. By using nanofillers of different shapes and sizes, and polymers with different characteristics, novel antimicrobial nanocomposites with synergistic properties can be obtained. This article describes the state of art in the field of antimicrobial polymeric nanocomposites reinforced with graphene and its derivatives such as graphene oxide and reduced graphene oxide. Taking into account the vast number of articles published, only some representative examples are provided. A classification of the different nanocomposites is carried out, dividing them into acrylic and methacrylic matrices, biodegradable synthetic polymers and natural polymers. The mechanisms of antimicrobial activity of graphene and its derivatives are also reviewed. Finally, some applications of these antimicrobial nanocomposites are discussed. We aim to enhance understanding in the field and promote further work on the development of polymer-based antimicrobial nanocomposites incorporating graphene-based nanomaterials.
Collapse
Affiliation(s)
- Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain;
| | | |
Collapse
|
16
|
Jonoush ZA, Farahani M, Bohlouli M, Niknam Z, Golchin A, Hatamie S, Rezaei-Tavirani M, Omidi M, Zali H. Surface Modification of Graphene and its Derivatives for Drug Delivery Systems. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x17999200507093954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nowadays, carbon-based nanostructure materials are regarded as promising carriers for
drug delivery to improve the effective treatment of diseases. The formation of covalent and noncovalent
molecular bonds can be used for surface modification of nano-carriers in order to manipulate
their toxicity, water solubility, and cellular internalization. Graphene and its derivatives have
shown important potential in drug delivery systems. Among different graphene derivatives, Graphene
Oxide (GO) is the most extensively used derivative. GO sheets have possessed certain oxygen
functional groups including carboxylic acid groups at the edges, epoxy and hydroxyl groups on the
basal planes. The oxygen groups on the surface of GO sheets enhance their capabilities for functionalization
with chemical and bioactive molecules. In this review, we highlight the recent researches
about the effect of reactive sites on the surface of GO and its derivatives in drug delivery systems.
Therefore, the application of GO and its derivatives have been discussed as a delivery system in cancer
treatment, gene therapy, and combination therapy, followed by discussions on their related issues.
Finally, the review will provide a future perspective to the applications of GO-based materials as part
of drug delivery systems, and may open up new viewpoints to motivate broader interests across these
interdisciplinary fields.
Collapse
Affiliation(s)
- Zahra A. Jonoush
- Department of Immunology, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadie Hatamie
- Department of Power Mechanical Engineering National Tsing Hua University Hsinchu 30013, Taiwan
| | | | - Meisam Omidi
- School of Dentistry, Marquette University, Wisconsin, United States
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Bio-multifunctional noncovalent porphyrin functionalized carbon-based nanocomposite. Sci Rep 2021; 11:6604. [PMID: 33758300 PMCID: PMC7988124 DOI: 10.1038/s41598-021-86119-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/11/2021] [Indexed: 01/31/2023] Open
Abstract
Herein, in a one-pot method, the reduced graphene oxide layers with the assistance of multiwalled carbon nanotubes were decorated to provide a suitable space for the in situ growth of CoNi2S4, and the porphyrins were incorporated into the layers as well to increase the sensitivity of the prepared nanostructure. The prepared nanocomposite can establish π-π interactions between the genetic material and on the surface of porphyrin rings. Also, hydrogen bonds between genetic domains and the porphyrin' nitrogen and the surface hydroxyl groups are probable. Furthermore, the potential donor-acceptor relationship between the d7 transition metal, cobalt, and the genetic material provides a suitable way to increase the interaction and gene loading , and transfections. The reason for this phenomenon was optimized to increase the EGFP by up to 17.9%. Furthermore, the sensing ability of the nanocomposite towards H2O2 was investigated. In this regard, the limit of detection of the H2O2 obtained 10 µM. Also, the in situ biosensing ability in the HEK-293 and PC12 cell lines was evaluated by the addition of PMA. The nanocomposite showed the ability to detect the released H2O2 after adding the minimum amount of 120 ng/mL of the PMA.
Collapse
|
18
|
Chen Y, Wu W, Xu Z, Jiang C, Han S, Ruan J, Wang Y. Photothermal-assisted antibacterial application of graphene oxide-Ag nanocomposites against clinically isolated multi-drug resistant Escherichia coli. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192019. [PMID: 32874607 PMCID: PMC7428222 DOI: 10.1098/rsos.192019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/05/2020] [Indexed: 05/15/2023]
Abstract
In the field of public health, treatment of multidrug-resistant (MDR) bacterial infection is a great challenge. Herein, we provide a solution to this problem with the use of graphene oxide-silver (GO-Ag) nanocomposites as antibacterial agent. Following established protocols, silver nanoparticles were grown on graphene oxide sheets. Then, a series of in vitro studies were conducted to validate the antibacterial efficiency of the GO-Ag nanocomposites against clinical MDR Escherichia coli (E. coli) strains. GO-Ag nanocomposites showed the highest antibacterial efficiency among tested antimicrobials (graphene oxide, silver nanoparticles, GO-Ag), and synergetic antibacterial effect was observed in GO-Ag nanocomposites treated group. Treatment with 14.0 µg ml-1 GO-Ag could greatly inhibit bacteria growth; remaining bacteria viabilities were 4.4% and 4.1% for MDR-1 and MDR-2 E. coli bacteria, respectively. In addition, with assistance of photothermal effect, effective sterilization could be achieved using GO-Ag nanocomposites as low as 7.0 µg ml-1. Fluorescence imaging and morphology characterization uncovered that bacteria integrity was disrupted after GO-Ag nanocomposites treatment. Cytotoxicity results of GO-Ag using human-derived cell lines (HEK 293T, Hep G2) suggested more than 80% viability remained at 7.0 µg ml-1. All the results proved that GO-Ag nanocomposites are efficient antibacterial agent against multidrug-resistant E. coli.
Collapse
Affiliation(s)
- Yuqing Chen
- Children's ENT Department, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, 214122 Wuxi, People's Republic of China
| | - Wei Wu
- Cardiothoracic Surgery Department, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, 214002 Wuxi, People's Republic of China
| | - Zeqiao Xu
- Urology Surgery Department, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214122 Wuxi, People's Republic of China
| | - Cheng Jiang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214122 Wuxi, People's Republic of China
| | - Shuang Han
- School of Biotechnology, Jiangnan University, 214122 Wuxi, People's Republic of China
| | - Jun Ruan
- Urology Surgery Department, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214122 Wuxi, People's Republic of China
| | - Yong Wang
- Urology Surgery Department, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214122 Wuxi, People's Republic of China
| |
Collapse
|
19
|
Han X, Gao J, Chen Z, Tang X, Zhao Y, Chen T. Correlation between microstructure and properties of graphene oxide/waterborne polyurethane composites investigated by positron annihilation spectroscopy. RSC Adv 2020; 10:32436-32442. [PMID: 35516512 PMCID: PMC9056613 DOI: 10.1039/d0ra05872f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022] Open
Abstract
A quantitative description of microstructure is highly desirable for the precise construction of high performance graphene based polymer composites. In this paper, the effects of doping graphene oxide (GO) on the microstructure, thermal and mechanical properties of the obtained graphene oxide/waterborne polyurethane (GO/WPU) composites were systematically investigated. In order to give a deep insight into the microstructure of GO/WPU composites, especially for the relative free volume fraction (fr) and interfacial interaction intensity (β), positron annihilation lifetime spectroscopy (PALS) was employed for its quantitative characterization. With the increase of GO content, the fr decreased first and then increased, the lowest value was observed for the composites containing 0.5 wt% GO. This can be ascribed to the change in the dispersed state of GO and interfacial interactions, which agree well with the results of SEM. The correlation between microstructure and properties was established with the PALS results, the values of fr and β give a good explanation of the variation in glass transition temperature and tensile strength, respectively. Qualitative and quantitative descriptions of interfacial interactions for graphene oxide/waterborne polyurethane composites.![]()
Collapse
Affiliation(s)
- Xiaobing Han
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| | - Zhiyuan Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| | - Xiuqin Tang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| | - Yuan Zhao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| |
Collapse
|
20
|
Interfacial interaction and steric repulsion in polymer-assisted liquid exfoliation to produce high-quality graphene. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00928-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Kumar P, Huo P, Zhang R, Liu B. Antibacterial Properties of Graphene-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E737. [PMID: 31086043 PMCID: PMC6567318 DOI: 10.3390/nano9050737] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
Bacteria mediated infections may cause various acute or chronic illnesses and antibiotic resistance in pathogenic bacteria has become a serious health problem around the world due to their excessive use or misuse. Replacement of existing antibacterial agents with a novel and efficient alternative is the immediate demand to alleviate this problem. Graphene-based materials have been exquisitely studied because of their remarkable bactericidal activity on a wide range of bacteria. Graphene-based materials provide advantages of easy preparation, renewable, unique catalytic properties, and exceptional physical properties such as a large specific surface area and mechanical strength. However, several queries related to the mechanism of action, significance of size and composition toward bacterial activity, toxicity criteria, and other issues are needed to be addressed. This review summarizes the recent efforts that have been made so far toward the development of graphene-based antibacterial materials to face current challenges to combat against the bacterial targets. This review describes the inherent antibacterial activity of graphene-family and recent advances that have been made on graphene-based antibacterial materials covering the functionalization with silver nanoparticles, other metal ions/oxides nanoparticles, polymers, antibiotics, and enzymes along with their multicomponent functionalization. Furthermore, the review describes the biosafety of the graphene-based antibacterial materials. It is hoped that this review will provide valuable current insight and excite new ideas for the further development of safe and efficient graphene-based antibacterial materials.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Rongzhao Zhang
- Analysis and Testing Center, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|
22
|
Mousavi SM, Hashemi SA, Ghasemi Y, Amani AM, Babapoor A, Arjmand O. Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: review study. Drug Metab Rev 2019; 51:12-41. [PMID: 30741033 DOI: 10.1080/03602532.2018.1522328] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this Review article, recent progress in matter of graphene oxide (GO) synthesis and its functionalization via a vast range of materials, including small molecules, polymers, and biomolecules, were reported and systematically summarized in order to overcome the inherent drawbacks of GO nanocarriers and thereby make these nanocarriers suitable for delivering chemotherapeutic agents, genes, and short interfering RNAs. Briefly, this work describes current strategies for the large scale production of GO and modification of graphene-based nanocarriers surfaces through practical chemical approaches, improving their biocompatibility and declining their toxicity. It also describes the most relevant cases of study suitable to demonstrate the role of graphene and graphene derivatives (GD) as nanocarrier for anti-cancer drugs and genes (e.g. miRNAs). Moreover, the controlled release mechanisms within the cell compartments and blood pH for targeted therapeutics release in the acidic environment of tumor cells or in intracellular compartments are mentioned and explored.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Seyyed Alireza Hashemi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Younes Ghasemi
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ali Mohammad Amani
- a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Aziz Babapoor
- b Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,c Department of Chemical Engineering , University of Mohaghegh Ardabili (UMA) , Ardabil , Iran
| | - Omid Arjmand
- d Department of Chemical Engineering, South Tehran Branch , Islamic Azad University , Tehran , Iran
| |
Collapse
|
23
|
Wang L, He J, Zhu L, Wang Y, Feng X, Chang B, Karahan HE, Chen Y. Assembly of pi-functionalized quaternary ammonium compounds with graphene hydrogel for efficient water disinfection. J Colloid Interface Sci 2019; 535:149-158. [DOI: 10.1016/j.jcis.2018.09.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|
24
|
Kasprzak A, Zuchowska A, Poplawska M. Functionalization of graphene: does the organic chemistry matter? Beilstein J Org Chem 2018; 14:2018-2026. [PMID: 30202456 PMCID: PMC6122221 DOI: 10.3762/bjoc.14.177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/18/2018] [Indexed: 01/26/2023] Open
Abstract
Reactions applying amidation- or esterification-type processes and diazonium salts chemistry constitute the most commonly applied synthetic approaches for the modification of graphene-family materials. This work presents a critical assessment of the amidation and esterification methodologies reported in the recent literature, as well as a discussion of the reactions that apply diazonium salts. Common misunderstandings from the reported covalent functionalization methods are discussed, and a direct link between the reaction mechanisms and the basic principles of organic chemistry is taken into special consideration.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Agnieszka Zuchowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| |
Collapse
|
25
|
Fu J, Chang L. Fabrication of fasudil hydrochloride modified graphene oxide biocomposites and its defensive effect acute renal injury in septicopyemia rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:125-130. [PMID: 30036829 DOI: 10.1016/j.jphotobiol.2018.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022]
Abstract
This investigation aspired to the impacts of intraperitoneal injection of suspended graphene oxide-bovine serum albumin (GO-BSA) biocomposite blended in fasudil (FSD)-against intense renal damage in septicopyemia rodent's models. It was picked a model of acute renal injury by an intraperitoneal organization of fasudil. Our outcomes demonstrated that few markers of renal capacity, for example, blood urea nitrogen (BUN), creatinine (SC), and intratubular waste levels were altogether diminished essentially in fasudil blended GO-BSA intraperitoneally infusion groups during the first week, showing that GO-BSA has an uncommon ability to ensure FSD discharges. Additionally, surprisingly, while rats got GO-BSA intraperitoneally, biomedical examination demonstrated the fruitful decrease of blood urea nitrogen and creatinine blood factors showing that GO-BSA has an uncommon ability alone to repair the acute renal injury. It appears that GO-BSA can adsorb ECM proteins and encourages their exchange to the intense renal damage tissue and expands its repair speed, in addition, GO-BSA ensures the FSD and along these lines the helpful adequacy of the FSD in intense renal damage enhanced by the grip of living cells to GO-BSA biocomposites. It could be inferred that GO-BSA material improves the rate of achievement of FSD conveys in intense renal damage in septicopyemia animals.
Collapse
Affiliation(s)
- Jing Fu
- Emergency Department, Sichuan Province People's Hospital, Qingyang District, Chengdu, Sichuan, China
| | - Li Chang
- Department of Emergency Intensive Care Unit, Sichuan Province People's Hospital, Qingyang District, Chengdu, Sichuan, China..
| |
Collapse
|
26
|
Rao Z, Ge H, Liu L, Zhu C, Min L, Liu M, Fan L, Li D. Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system. Int J Biol Macromol 2018; 107:1184-1192. [DOI: 10.1016/j.ijbiomac.2017.09.096] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/24/2017] [Accepted: 09/23/2017] [Indexed: 12/12/2022]
|
27
|
De S, Patra K, Ghosh D, Dutta K, Dey A, Sarkar G, Maiti J, Basu A, Rana D, Chattopadhyay D. Tailoring the Efficacy of Multifunctional Biopolymeric Graphene Oxide Quantum Dot-Based Nanomaterial as Nanocargo in Cancer Therapeutic Application. ACS Biomater Sci Eng 2018; 4:514-531. [PMID: 33418741 DOI: 10.1021/acsbiomaterials.7b00689] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sriparna De
- Department
of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Kartick Patra
- Department
of Zoology, West Bengal State University, Barasat 700 126, West Bengal, India
| | - Debatri Ghosh
- Institute of Post Graduate Medical Education & Research (IPGMER), SSKM Hospital, Kolkata 700 020, India
| | - Koushik Dutta
- Department
of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Aditi Dey
- Immunology
and Microbiology Laboratory, Department of Human Physiology with Community
Health, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Gunjan Sarkar
- Department
of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Jyotirmay Maiti
- Department
of Zoology, West Bengal State University, Barasat 700 126, West Bengal, India
| | - Arijita Basu
- Department
of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Dipak Rana
- Department
of Chemical and Biological Engineering, Industrial Membrane Research
Institute, University of Ottawa, 161 Louis Pasteur Street, Ottawa ON K1N, Canada
| | - Dipankar Chattopadhyay
- Department
of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| |
Collapse
|
28
|
Park C, Park S, Lee D, Choi KS, Lim HP, Kim J. Graphene as an Enabling Strategy for Dental Implant and Tissue Regeneration. Tissue Eng Regen Med 2017; 14:481-493. [PMID: 30603503 PMCID: PMC6171627 DOI: 10.1007/s13770-017-0052-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/28/2022] Open
Abstract
Graphene-based approaches have been influential in the design and manipulation of dental implants and tissue regeneration to overcome the problems associated with traditional titanium-based dental implants, such as their low biological affinity. Here, we describe the current progress of graphene-based platforms, which have contributed to major advances for improving cellular functions in in vitro and in vivo applications of dental implants. We also present opinions on the principal challenges and future prospects for new graphene-based platforms for the development of advanced graphene dental implants and tissue regeneration.
Collapse
Affiliation(s)
- Chan Park
- Department of Prosthodontics, School of Dentistry, Dental Science Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Dohyeon Lee
- Department of Rural and Biosystems Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Kyoung Soon Choi
- Advanced Nano-Surface Research Group, Korea Basic Science Institute (KBSI), 70, Yuseong-daero 1689-gil, Yuseong-gu Daejeon, 34047 Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, School of Dentistry, Dental Science Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| |
Collapse
|
29
|
Wu D, Bäckström E, Hakkarainen M. Starch Derived Nanosized Graphene Oxide Functionalized Bioactive Porous Starch Scaffolds. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/06/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Duo Wu
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; SE-100 44 Stockholm Sweden
| | - Eva Bäckström
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; SE-100 44 Stockholm Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; SE-100 44 Stockholm Sweden
| |
Collapse
|
30
|
Rao CNR, Pramoda K, Kumar R. Covalent cross-linking as a strategy to generate novel materials based on layered (2D) and other low D structures. Chem Commun (Camb) 2017; 53:10093-10107. [DOI: 10.1039/c7cc05390h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covalent linking of 2D structures such as graphene, MoS2and C3N4by employing coupling reactions provides a strategy to generate a variety of materials with new or improved properties.
Collapse
Affiliation(s)
- C. N. R. Rao
- New Chemistry Unit
- Chemistry and Physics of Materials Unit
- CSIR Center of Excellence in Chemistry
- Sheik Saqr Laboratory and International Centre for Materials Science
- Jawaharlal Nehru Centre for Advanced Scientific Research
| | - K. Pramoda
- New Chemistry Unit
- Chemistry and Physics of Materials Unit
- CSIR Center of Excellence in Chemistry
- Sheik Saqr Laboratory and International Centre for Materials Science
- Jawaharlal Nehru Centre for Advanced Scientific Research
| | - Ram Kumar
- New Chemistry Unit
- Chemistry and Physics of Materials Unit
- CSIR Center of Excellence in Chemistry
- Sheik Saqr Laboratory and International Centre for Materials Science
- Jawaharlal Nehru Centre for Advanced Scientific Research
| |
Collapse
|
31
|
Fan L, Ge H, Zou S, Xiao Y, Wen H, Li Y, Feng H, Nie M. Sodium alginate conjugated graphene oxide as a new carrier for drug delivery system. Int J Biol Macromol 2016; 93:582-590. [DOI: 10.1016/j.ijbiomac.2016.09.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 11/26/2022]
|
32
|
Ji H, Sun H, Qu X. Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv Drug Deliv Rev 2016; 105:176-189. [PMID: 27129441 DOI: 10.1016/j.addr.2016.04.009] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 12/19/2022]
Abstract
Graphene has emerged as a novel green broad-spectrum antibacterial material, with little bacterial resistance and tolerable cytotoxic effect on mammalian cells. It exerts its antibacterial action via physical damages such as direct contact of its sharp edges with bacterial membranes and destructive extraction of lipid molecules. These damages also include wrapping and photothermal ablation mechanisms. Alternatively, chemical damage of bacteria is caused by oxidative stress with the generation of reactive oxygen species and charge transfer. Furthermore, graphene has been used as a support to disperse and stabilize various nanomaterials, such as metals, metal oxides, and polymers, with high antibacterial efficiency due to the synergistic effect. In addition, graphene-based antibiotic drug delivery platforms have been constructed. Due to the superior antibacterial properties and good biocompatibility, graphene-based nanocomposites have a wide range of applications, such as antibacterial packaging, wound dressing, and water disinfection. In this review, we highlight the antibacterial mechanism of graphene and summarize recent advances related to the antibacterial activity of graphene-based materials. Many of the recent application examples are further discussed. We hope that this review provides valuable insight, stimulates broader concerns, and spurs further developments in this promising field.
Collapse
|
33
|
Cai H, Bao F, Gao J, Chen T, Wang S, Ma R. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified Halloysite nanotubes. ENVIRONMENTAL TECHNOLOGY 2015; 36:1273-1280. [PMID: 25381878 DOI: 10.1080/09593330.2014.984772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
New nano-sized carbon dioxide (CO2) adsorbents based on Halloysite nanotubes impregnated with polyethylenimine (PEI) were designed and synthesized, which were excellent adsorbents for the capture of CO2 at room temperature and had relatively high CO2 adsorption capacity. The prepared adsorbents were characterized by various techniques such as Fourier transform infrared spectrometry, gel permeation chromatography, dynamic light scattering, thermogravimetry, thermogravimetry-Fourier transform-infrared spectrometry, scanning electron microscopy and transmission electron microscopy. The adsorption characteristics and capacity were studied at room temperature, the highest CO2 adsorption capacity of 156.6 mg/g-PEI was obtained and the optimal adsorption capacity can reach a maximum value of 54.8 mg/g-adsorbent. The experiment indicated that this kind of adsorbent has a high stability at 80°C and PEI-impregnated adsorbents showed good reversibility and stability during cyclic adsorption-regeneration tests.
Collapse
Affiliation(s)
- Haohao Cai
- a Department of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Hassanzadeh S, Adolfsson KH, Hakkarainen M. Controlling the cooperative self-assembly of graphene oxide quantum dots in aqueous solutions. RSC Adv 2015. [DOI: 10.1039/c5ra09704e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The 3D supramolecular association behavior of the synthesized 2D graphene oxide quantum dots (GOQDs) could be smartly controlled in dilute aqueous solutions to tune their final properties.
Collapse
Affiliation(s)
- Salman Hassanzadeh
- Department of Fibre and Polymer Technology
- School of Chemical Science and Engineering
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | - Karin H. Adolfsson
- Department of Fibre and Polymer Technology
- School of Chemical Science and Engineering
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology
- School of Chemical Science and Engineering
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| |
Collapse
|
35
|
Wang T, Zhang Z, Gao J, Yin J, Sun R, Bao F, Ma R. Synthesis of Graphene Oxide Modified Poly(sebacic anhydride) Hybrid Materials for Controlled Release Applications. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.869745] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites. Carbohydr Polym 2014; 103:70-80. [DOI: 10.1016/j.carbpol.2013.12.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/01/2013] [Accepted: 12/04/2013] [Indexed: 11/17/2022]
|
37
|
Xu G, Xu P, Shi D, Chen M. Modification of graphene oxide by a facile coprecipitation method and click chemistry for use as a drug carrier. RSC Adv 2014. [DOI: 10.1039/c4ra02219j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A graphene oxide based ternary composite was synthesized for targeted drug carrier.
Collapse
Affiliation(s)
- Guoqiang Xu
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi, China
| | - Pengwu Xu
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi, China
| | - Dongjian Shi
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi, China
| | - Mingqing Chen
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi, China
| |
Collapse
|
38
|
Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 2013; 9:9243-57. [PMID: 23958782 DOI: 10.1016/j.actbio.2013.08.016] [Citation(s) in RCA: 700] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 01/17/2023]
Abstract
The biomedical applications of graphene-based materials, including drug delivery, have grown rapidly in the past few years. Graphene and graphene oxide have been extensively explored as some of the most promising biomaterials for biomedical applications due to their unique properties: two-dimensional planar structure, large surface area, chemical and mechanical stability, superb conductivity and good biocompatibility. These properties result in promising applications for the design of advanced drug delivery systems and delivery of a broad range of therapeutics. In this review we present an overview of recent advances in this field of research. We briefly describe current methods for the surface modification of graphene-based nanocarriers, their biocompatibility and toxicity, followed by a summary of the most appealing examples demonstrated for the delivery of anti-cancer drugs and genes. Additionally, new drug delivery concepts based on controlling mechanisms, including targeting and stimulation with pH, chemical interactions, thermal, photo- and magnetic induction, are discussed. Finally the review is summarized, with a brief conclusion of future prospects and challenges in this field.
Collapse
|
39
|
Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 2013; 173:75-88. [PMID: 24161530 DOI: 10.1016/j.jconrel.2013.10.017] [Citation(s) in RCA: 661] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 01/18/2023]
Abstract
Nanomaterials offer interesting physicochemical and biological properties for biomedical applications due to their small size, large surface area and ability to interface/interact with the cells/tissues. Graphene-based nanomaterials are fast emerging as "two-dimensional wonder materials" due to their unique structure and excellent mechanical, optical and electrical properties and have been exploited in electronics and other fields. Emerging trends show that their exceptional properties can be exploited for biomedical applications, especially in drug delivery and tissue engineering. This article presents a comprehensive review of various types and properties of graphene family nanomaterials. We further highlight how these properties are being exploited for drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Sumit Goenka
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh 15261, USA
| | - Vinayak Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh 15261, USA; Department of Bioengineering, Pittsburgh 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh 15219, USA.
| |
Collapse
|
40
|
Moraes FC, Silva TA, Cesarino I, Lanza MRV, Machado SAS. Antibiotic Detection in Urine Using Electrochemical Sensors Based on Vertically Aligned Carbon Nanotubes. ELECTROANAL 2013. [DOI: 10.1002/elan.201300261] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Fan X, Jiao G, Zhao W, Jin P, Li X. Magnetic Fe3O4-graphene composites as targeted drug nanocarriers for pH-activated release. NANOSCALE 2013; 5:1143-1152. [PMID: 23288110 DOI: 10.1039/c2nr33158f] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A novel nanocarrier of magnetic Fe(3)O(4)-graphene nanocomposites (MGNs) was proposed as an effective drug delivery system for cancer treatment. The nanocarrier was synthesized by covalently attaching modified Fe(3)O(4) nanoparticles onto water-soluble graphene sheets via the formation of an amide bond with the aid of 1-ethyl-3-(3-dimethyaminopropyl) carbodiimide. The obtained MGNs exhibited excellent dispersibility and stability in aqueous solution and they also exhibited superparamagnetic properties with a saturation magnetization of 23.096 emu g(-1). An efficient loading of 5-fluorouracil (5-FU) on MGNs as high as 0.35 mg mg(-1) was obtained. Furthermore, the in vitro drug release of 5-FU was examined in pH 6.9 and pH 4.0 buffers at 37 °C, and showed strong pH dependence. Transmission electron microscope observations revealed that MGNs can be internalized efficiently by HepG2 cells. More importantly, the cytotoxicity evaluation shows that the resulting MGNs exhibit excellent biocompatibility. The as-prepared nanocarrier system combined the advantages of the superparamagnetic iron oxide nanoparticles and water-soluble graphene sheets, which will find many potential applications in biomedicine and biomaterials.
Collapse
Affiliation(s)
- Xiujuan Fan
- Department of Chemistry, Harbin Institute of Technology, Harbin 150090, China
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Wang Y, Zhang D, Bao Q, Wu J, Wan Y. Controlled drug release characteristics and enhanced antibacterial effect of graphene oxide–drug intercalated layered double hydroxide hybrid films. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm35144g] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|