1
|
Mahanty S, Majumder S, Paul R, Boroujerdi R, Valsami-Jones E, Laforsch C. A review on nanomaterial-based SERS substrates for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174252. [PMID: 38942304 DOI: 10.1016/j.scitotenv.2024.174252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
The agricultural sector plays a pivotal role in driving the economy of many developing countries. Any dent in this economical structure may have a severe impact on a country's population. With rising climate change and increasing pollution, the agricultural sector is experiencing significant damage. Over time this cumulative damage will affect the integrity of food crops and create food security issues around the world. Therefore, an early warning system is needed to detect possible stress on food crops. Here we present a review of the recent developments in nanomaterial-based Surface Enhanced Raman Spectroscopy (SERS) substrates which could be utilized to monitor agricultural crop responses to natural and anthropogenic stress. Initially, our review delves into diverse and cost-effective strategies for fabricating SERS substrates, emphasizing their intelligent utilization across various agricultural scenarios. In the second phase of our review, we spotlight the specific application of SERS in addressing critical food security issues. By detecting nutrients, hormones, and effector molecules in plants, SERS provides valuable insights into plant health. Furthermore, our exploration extends to the detection of contaminants, chemicals, and foodborne pathogens within plants, showcasing the versatility of SERS in ensuring food safety. The cumulative knowledge derived from these discussions illustrates the transformative potential of SERS in bolstering the agricultural economy. By enhancing precision in nutrient management, monitoring plant health, and enabling rapid detection of harmful substances, SERS emerges as a pivotal tool in promoting sustainable and secure agricultural practices. Its integration into agricultural processes not only augments productivity but also establishes a robust defence against potential threats to crop yield and food quality. As SERS continues to evolve, its role in shaping the future of agriculture becomes increasingly pronounced, promising a paradigm shift in how we approach and address challenges in food production and safety.
Collapse
Affiliation(s)
- Shouvik Mahanty
- Department of Atomic Energy, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhannagar, Kolkata 700064, West Bengal, India
| | - Santanu Majumder
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK.
| | - Richard Paul
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Ramin Boroujerdi
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Yan X, Kanike C, Lu Q, Li Y, Wu H, Niestanak VD, Maeda N, Atta A, Unsworth LD, Zhang X. Streamlined Flow Synthesis of Plasmonic Nanoparticles and SERS Detection of Uremic Toxins with Trace-Level Liquid Volumes in a Microchamber. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39512135 DOI: 10.1021/acsami.4c13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Rapid detection of uremic toxins is crucial due to their severe health risks, including oxidative stress, inflammation, neurotoxicity, cardiovascular complications, and progression of chronic kidney disease. Surface-enhanced Raman spectroscopy (SERS) may provide sensitive, fast, and clinical-grade real-time monitoring of these toxins, enabling effective management with timely dialysis treatments. This study introduces a 3D-printed microchamber that integrates the fabrication of plasmonic metal nanoparticles for the in-flow detection of biological toxins and pharmaceutical drugs using SERS, making it ideal for on-site diagnostics in clinical settings. The microchamber supports quantitative and highly reproducible detection with liquid volumes under 100 μL, which is crucial for trace-level biomarker detection and minimizing cross-contamination. It employs a tunable solvent exchange method for the in situ synthesis of silver nanoparticles (AgNPs) on flexible PDMS or rigid Si wafer substrates, avoiding costly nanofabrication techniques. Ultralow detection limits were achieved for two model compounds and three pharmaceutical drugs: 10-11 M for rhodamine 6G, 10-7 M for adenine, and 10-6 M for the pharmaceutical drugs. A total of 13 biological toxins, including three neurotransmitters, one neuromodulator, five amino acids, two polyamines, and two urea cycle metabolites, were detected with quantitative limits ranging from 10-3 to 10-6 M, all below permissible levels and aligning with physiological conditions. SERS detection within microchambers facilitates rapid on-site analysis, proving ideal for personalized health monitoring, point-of-care diagnostics, and environmental pollution assessment.
Collapse
Affiliation(s)
- Xiang Yan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chiranjeevi Kanike
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Qiuyun Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yanan Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongyan Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Vida Dehghan Niestanak
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta T6G 2G4, Canada
| | - Nobuo Maeda
- Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Arnab Atta
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
3
|
Bober S, Kurouski D. Elucidation of the Effect of Solar Light on the Near-Infrared Excitation Raman Spectroscopy-Based Analysis of Fabric Dyes. Molecules 2024; 29:5177. [PMID: 39519818 PMCID: PMC11547680 DOI: 10.3390/molecules29215177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Colored textiles are valuable physical evidence often found at crime scenes. Analysis of the chemical structure of textiles could be used to establish a connection between fabric found at a crime scene and suspect cloths. High-performance liquid chromatography (HPLC) and mass spectroscopy coupled HPLC are traditionally used for the identification of dyes in fabric. However, these techniques are invasive and destructive. A growing body of evidence indicates that near-infrared excitation (λ = 830 nm) Raman spectroscopy (NIeRS) could be used to probe the chemical signature of such colorants. At the same time, it remains unclear whether environmental factors, such as solar light could lower the accuracy of NIeRS-based identification of dyes in textiles. In this study, we exposed cotton fabric colored with six different dyes to light and investigated the extent to which colorants fade during seven weeks using NIeRS. We found a decrease in the intensities of all vibrational bands in the acquired spectra as the time of the exposition of fabric to light increased. Nevertheless, utilization of partial least-squared discriminant analysis (PLS-DA) enabled identification of the colorants at all eight weeks. These results indicate that the effect of light exposure should be strongly considered by forensic experts upon the NIeRS-based analysis of colored fabric.
Collapse
Affiliation(s)
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
4
|
Ramachandran T, Ali A, Butt H, Zheng L, Deader FA, Rezeq M. Gold on the horizon: unveiling the chemistry, applications and future prospects of 2D monolayers of gold nanoparticles (Au-NPs). NANOSCALE ADVANCES 2024; 6:d4na00666f. [PMID: 39450415 PMCID: PMC11495494 DOI: 10.1039/d4na00666f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Noble 2D monolayers of gold nanoparticles (Au-NPs) have garnered significant attention due to their unique physicochemical properties, which are instrumental in various technological applications. This review delves into the intricate physical chemistry underlying the formation of Au-NP monolayers, highlighting key interactions such as electrostatic forces, van der Waals attractions, and ligand-mediated stabilization. The discussion extends to the size- and shape-dependent assembly processes of these NP monolayers, elucidating how nanoparticle dimensions and morphologies influence monolayer formation and stability. Moreover, the review explores the diverse interfaces-solid, liquid, and air-where Au-NP monolayers are employed, each presenting distinct advantages and challenges. In the realm of applications, Au-NP monolayers have shown remarkable promises. In memory devices, their ability to facilitate high-density data storage through enhanced electron transport mechanisms is examined. Biosensing applications benefit from the monolayers' exceptional sensitivity and specificity, which are crucial for detecting biomolecular interactions. Furthermore, the role of Au-NP monolayers in electrocatalysis is explored, with a focus on their catalytic efficiency and stability in various electrochemical reactions. Despite their potential, the deployment of Au-NP monolayers faces several challenges. The review addresses current limitations such as scalability, reproducibility, and long-term stability, proposing potential strategies to overcome these hurdles. Future prospects are also discussed, including the development of multifunctional monolayers and integration with other nanomaterials to enhance performance across different applications. In conclusion, while significant strides have been made in understanding and utilizing 2D Au-NP monolayers, ongoing research is imperative to fully exploit their capabilities. Addressing existing challenges through innovative approaches will pave the way for their widespread adoption in advanced technological applications.
Collapse
Affiliation(s)
- Tholkappiyan Ramachandran
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Ashraf Ali
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Haider Butt
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Lianxi Zheng
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Firdous Ahmad Deader
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Moh'd Rezeq
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
- System on Chip Lab (SoCL), Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| |
Collapse
|
5
|
Shin DI, Kim J, Im SG, Kang T, Wang K, Lee G, Kwon SJ, Park S, Yi GR. Proximal High-Index Metamaterials based on a Superlattice of Gold Nanohexagons Targeting the Near-Infrared Band. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405650. [PMID: 39169743 DOI: 10.1002/adma.202405650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Plasmonic nanoparticles can be assembled into a superlattice, to form optical metamaterials, particularly targeting precise control of optical properties such as refractive index (RI). The superlattices exhibit enhanced near-field, given the sufficiently narrow gap between nanoparticles supporting multiple plasmonic resonance modes only realized in proximal environments. Herein, the planar superlattice of plasmonic Au nanohexagons (AuNHs) with precisely controlled geometries such as size, shape, and edge-gaps is reported. The proximal AuNHs superlattice realized over a large area with selective edge-to-edge assembly exhibited the highest-ever-recorded RI values in the near-infrared (NIR) band, surpassing the upper limit of the RI of the natural intrinsic materials (up to 10.04 at λ = 1.5 µm). The exceptionally enhanced RI is derived from intensified in-plane surface plasmon coupling across the superlattices. Precise control of the edge-gap of neighboring AuNHs systematically tuned the RI as confirmed by numerical analysis based on the plasmonic percolation model. Furthermore, a 1D photonic crystal, composed of alternating layers of AuNHs superlattices and low-index polymers, is constructed to enhance the selectivity of the reflectivity operating in the NIR band. It is expected that the proximal AuNHs superlattices can be used as new optical metamaterials that can be extended to the NIR range.
Collapse
Affiliation(s)
- Dong-In Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Suwon, 16419, Republic of Korea
- Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University College of Natural Science, Suwon, 16419, Republic of Korea
| | - Seong-Gyun Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taewoo Kang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ke Wang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 37673, Republic of Korea
- School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430000, China
| | - Gaehang Lee
- Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Seok Joon Kwon
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science & Technology (SIEST), Department of Semiconductor Convergence Engineering and Department of Future Energy Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
6
|
Ma L, Zhou K, Wang X, Wang J, Zhao R, Zhang Y, Cheng F. Recent Progress in the Synthesis of 3D Complex Plasmonic Intragap Nanostructures and Their Applications in Surface-Enhanced Raman Scattering. BIOSENSORS 2024; 14:433. [PMID: 39329807 PMCID: PMC11430147 DOI: 10.3390/bios14090433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Plasmonic intragap nanostructures (PINs) have garnered intensive attention in Raman-related analysis due to their exceptional ability to enhance light-matter interactions. Although diverse synthetic strategies have been employed to create these nanostructures, the emphasis has largely been on PINs with simple configurations, which often fall short in achieving effective near-field focusing. Three-dimensional (3D) complex PINs, distinguished by their intricate networks of internal gaps and voids, are emerging as superior structures for effective light trapping. These structures facilitate the generation of hot spots and hot zones that are essential for enhanced near-field focusing. Nevertheless, the synthesis techniques for these complex structures and their specific impacts on near-field focusing are not well-documented. This review discusses the recent advancements in the synthesis of 3D complex PINs and their applications in surface-enhanced Raman scattering (SERS). We begin by describing the foundational methods for fabricating simple PINs, followed by a discussion on the rational design strategies aimed at developing 3D complex PINs with superior near-field focusing capabilities. We also evaluate the SERS performance of various 3D complex PINs, emphasizing their advanced sensing capabilities. Lastly, we explore the future perspective of 3D complex PINs in SERS applications.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Keyi Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinyue Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiayue Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ruyu Zhao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yifei Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
7
|
Huang Z, Peng J, Xu L, Liu P. Development and Application of Surface-Enhanced Raman Scattering (SERS). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1417. [PMID: 39269079 PMCID: PMC11397088 DOI: 10.3390/nano14171417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Since the discovery of the phenomenon of surface-enhanced Raman scattering (SERS), it has gradually become an important tool for the analysis of material compositions and structures. The applications of SERS have been expanded from the fields of environmental and materials science to biomedicine due to the extremely high sensitivity and non-destructiveness of SERS-based analytical technology that even allows single-molecule detection. This article provides a comprehensive overview of the surface-enhanced Raman scattering (SERS) phenomenon. The content is divided into several main sections: basic principles and the significance of Raman spectroscopy; historical advancements and technological progress in SERS; and various practical applications across different fields. We also discuss how electromagnetic fields contribute to the SERS effect, the role of chemical interactions in enhancing Raman signals, a modeling and computational approaches to understand and predict SERS effects.
Collapse
Affiliation(s)
- Zhenkai Huang
- School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Jianping Peng
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Peijiang Liu
- Reliability Physics and Application Technology of Electronic Component Key Laboratory, The 5th Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China
| |
Collapse
|
8
|
Albarghouthi N, Chotoye SAB, Brosseau CL. An Exploration of Cysteamine as a Subphase Additive for the Fabrication of Uniform Gold Nanorod Arrays using Langmuir-Blodgett Deposition. Chemphyschem 2024; 25:e202400146. [PMID: 38712929 DOI: 10.1002/cphc.202400146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Gold nanorods (AuNRs) have attracted significant attention over the past several decades for a variety of applications and there has been steady progress with regards to their synthesis and modification. Despite these advances, the assembly of AuNRs into well-organized hierarchical assemblies remains a formidable challenge. Specifically, there is a need for tools that can fabricate assemblies of nanorods over large length scales at low cost with the potential for high-throughput manufacturing. Langmuir-Blodgettry is a monolayer deposition technique which has been primarily applied to amphiphilic molecules, but which has recently shown promise for the ordering of functionalized nanoparticles residing at the air-water interface. In this work, Langmuir-Blodgett deposition is explored for the formation of AuNR arrays for enhanced surface-enhanced Raman spectroscopy (SERS) sensing. In particular, both surface modification of the AuNRs as well as subphase modification with cysteamine were evaluated for AuNR array fabrication.
Collapse
Affiliation(s)
- N Albarghouthi
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - S A B Chotoye
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - C L Brosseau
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
9
|
Liu Z, Ng M, Srivastava S, Li T, Liu J, Phu TA, Mateescu B, Wang YT, Tsai CF, Liu T, Raffai RL, Xie YH. Label-free single-vesicle based surface enhanced Raman spectroscopy: A robust approach for investigating the biomolecular composition of small extracellular vesicles. PLoS One 2024; 19:e0305418. [PMID: 38889139 PMCID: PMC11185487 DOI: 10.1371/journal.pone.0305418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Small extracellular vesicles (sEVs) are cell-released vesicles ranging from 30-150nm in size. They have garnered increasing attention because of their potential for both the diagnosis and treatment of disease. The diversity of sEVs derives from their biological composition and cargo content. Currently, the isolation of sEV subpopulations is primarily based on bio-physical and affinity-based approaches. Since a standardized definition for sEV subpopulations is yet to be fully established, it is important to further investigate the correlation between the biomolecular composition of sEVs and their physical properties. In this study, we employed a platform combining single-vesicle surface-enhanced Raman spectroscopy (SERS) and machine learning to examine individual sEVs isolated by size-exclusion chromatography (SEC). The biomolecular composition of each vesicle examined was reflected by its corresponding SERS spectral features (biomolecular "fingerprints"), with their roots in the composition of their collective Raman-active bonds. Origins of the SERS spectral features were validated through a comparative analysis between SERS and mass spectrometry (MS). SERS fingerprinting of individual vesicles was effective in overcoming the challenges posed by EV population averaging, allowing for the possibility of analyzing the variations in biomolecular composition between the vesicles of similar and/or different sizes. Using this approach, we uncovered that each of the size-based fractions of sEVs contained particles with predominantly similar SERS spectral features. Indeed, more than 84% of the vesicles residing within a particular group were clearly distinguishable from that of the other EV sub-populations, despite some spectral variations within each sub-population. Our results suggest the possibility that size-based EV fractionation methods produce samples where similarly eluted sEVs are correlated with their respective biochemical contents, as reflected by their SERS spectra. Our findings therefore highlight the possibility that the biogenesis and respective biological functionalities of the various sEV fractions may be inherently different.
Collapse
Affiliation(s)
- Zirui Liu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Martin Ng
- Northern California Institute for Research and Education, San Francisco, California, United States of America
| | - Siddharth Srivastava
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tieyi Li
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jun Liu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tuan Anh Phu
- Northern California Institute for Research and Education, San Francisco, California, United States of America
| | - Bogdan Mateescu
- Brain Research Institute, University of Zürich, Zürich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Robert L. Raffai
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, California, United States of America
| | - Ya-Hong Xie
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Jafari M, Pedersen JO, Barhemat S, Ederth T. In Situ Surface-Enhanced Raman Spectroscopy on Organic Mixed Ionic-Electronic Conductors: Tracking Dynamic Doping in Light-Emitting Electrochemical Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28938-28948. [PMID: 38780164 PMCID: PMC11163397 DOI: 10.1021/acsami.4c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
In the domain of organic mixed ionic-electronic conductors (OMIECs), simultaneous transport and coupling of ionic and electronic charges are crucial for the function of electrochemical devices in organic electronics. Understanding conduction mechanisms and chemical reactions in operational devices is pivotal for performance enhancement and is necessary for the informed and systematic development of more promising materials. Surface-enhanced Raman spectroscopy (SERS) is a potent tool for monitoring electrochemical evolution and dynamic doping in operational devices, offering enhanced sensitivity to subtle spectral changes. We demonstrate the utility of SERS for in situ tracking of doping in OMIECs in an organic light-emitting electrochemical cell (LEC) containing a conjugated polymer (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]; MEH-PPV), a molecular anion (lithium triflate), and an electrolyte network (poly(ethylene oxide); PEO). SERS enhancement is achieved via an interleaved layer of gold particles formed by spontaneous breakup of a deposited thin gold film. The results successfully highlight the ability of SERS to unveil time-resolved MEH-PPV doping and polaron formation, elucidating the effects of triflate ion transfer in the operating device and validating the electrochemical doping model in LECs.
Collapse
Affiliation(s)
- Mohammad
Javad Jafari
- Division
of Biophysics and Bioengineering, IFM, Linköping
University, Linköping 581 83, Sweden
| | - Jonas Oshaug Pedersen
- Division
of Biophysics and Bioengineering, IFM, Linköping
University, Linköping 581 83, Sweden
| | - Samira Barhemat
- Department
of Vision Inspection, Mabema AB, Linköping 584 22, Sweden
| | - Thomas Ederth
- Division
of Biophysics and Bioengineering, IFM, Linköping
University, Linköping 581 83, Sweden
| |
Collapse
|
11
|
Song C, Li X, Jiang Z, Zhang S, Mao H, Zhao X, Lu H, Cao Z. Surface-Enhanced Raman Spectroscopy Substrate Time Stability Improvement Using an External Oxygen Barrier Method. APPLIED SPECTROSCOPY 2024; 78:289-295. [PMID: 38225204 DOI: 10.1177/00037028231220069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The poor time stability of surface-enhanced Raman scattering (SERS) substrates greatly limits their application potential. Although core-shell structures are commonly used to enhance stability, their complex preparation processes, high costs, and susceptibility under acidic or alkaline conditions result in serious disadvantages for practical applications. Here, we propose a new method of external oxygen barrier to improve spectral stability, in which SERS substrates are stored in an oxygen-free environment. Controlled experiments are carried out under air and vacuum. Raman spectrum intensity is measured 11 times within six months for each group. Using the attenuation formula, the Raman spectrum intensity decay results of each SERS substrate over time are obtained. The effectiveness of the external oxygen barrier method is demonstrated through curve fitting using the corresponding function. The substrate spectral attenuation rates of the vacuum group and the argon group within six months are <20%, proving the effectiveness of the external oxygen barrier method.
Collapse
Affiliation(s)
- Congxi Song
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Xiaoping Li
- Basic Department, Jiyuan Vocational and Technical College, Jiyuan, China
| | - Zhihui Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Shen Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Hongmin Mao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Xin Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Huanjun Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Zhaoliang Cao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
12
|
Yunusa U, Warren N, Schauer D, Srivastava P, Sprague-Klein E. Plasmon resonance dynamics and enhancement effects in tris(2,2'-bipyridine)ruthenium(II) gold nanosphere oligomers. NANOSCALE 2024. [PMID: 38411615 DOI: 10.1039/d3nr06129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ruthenium-based metal complexes are one of the most widely studied dyes because of their rich photochemistry and light-harvesting properties. Significant attention has been paid to the energy and charge transfer dynamics of these dyes on semiconductor substrates. However, studies on photophysical and photochemical properties of these dyes in plasmonic environments are rare. In this study, we report a plasmon-mediated resonance energy transfer in an optimized oligomer system that enhances the photoexcited population of the well known dye, tris(2,2'-bipyridine)ruthenium(II), [Ru(BPY)3]2+ adsorbed on gold nanosphere surfaces with a defluorescenced Raman signal. Structural and chemical information is collected using a range of techniques that include in situ time-resolved UV/VIS, DLS, SERS, and TA. The findings have great potential to impact nanoscience broadly with special emphasis on surface photocatalysis, redox chemistry, and solar energy harvesting.
Collapse
Affiliation(s)
- Umar Yunusa
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Natalie Warren
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - David Schauer
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
- ETH Zurich, Department of Chemistry and Applied Biosciences, LPC, Vladimir-Prelog-Weg 2, 8049 Zürich, Switzerland
| | | | - Emily Sprague-Klein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
13
|
Hao HL, Zhu J, Weng GJ, Li JJ, Guo YB, Zhao JW. Exclusive Core-Janus Satellite Assembly Based on Au-Ag Janus Self-Aligned Distributions with Abundant Hotspots for Ultrasensitive Detection of CA19-9. ACS Sens 2024; 9:942-954. [PMID: 38295764 DOI: 10.1021/acssensors.3c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The development of surface-enhanced Raman scattering (SERS) probes with high sensitivity and stability is imminent to improve the accuracy of cancer diagnosis. Here, an exclusive core-Janus satellite (CJS) assembly was constructed by a hierarchical assembly strategy in which the Au-Ag Janus satellite is vertically self-aligned on the core surface. In the process, a silica shell template was ingeniously employed to asymmetrically mask the presatellites for the in situ formation of the Janus structure, and a series of Janus satellites with different morphologies were developed by regulating the encapsulated area of the presatellites. The ordered-oriented arrangement of Au-Ag Janus and unique heterojunction morphology permit CJS assemblies, featuring two types of plasmonic nanogaps, including intrananocrevices for individual Janus and internanogaps between neighboring Janus, thereby multiplying the "hotspots" compared to conventional core-monotonous satellites, which contributes to superior SERS activity. As anticipated, the enhancement factor of CJS assemblies was as high as 3.8 × 108. Moreover, it is intriguing that the directional distribution and head physically immobilized by Janus provided uniform and stable SERS signals. The SERS probe based on the CJS assembly for the detection of carbohydrate antigen 19-9 resulted in an ultrahigh sensitivity with a limit of detection of 3.7 × 10-5 IU·mL-1, which is nearly 10 times lower than other SERS probes, and a wide detection range of 3 × 10-5 to 1 × 104 IU·mL-1. The CJS assembly with excellent SERS performance is promising to advance further development of the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Hui-Li Hao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu-Bo Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Peng W, Zhou JW, Li ML, Sun L, Zhang YJ, Li JF. Construction of nanoparticle-on-mirror nanocavities and their applications in plasmon-enhanced spectroscopy. Chem Sci 2024; 15:2697-2711. [PMID: 38404398 PMCID: PMC10882497 DOI: 10.1039/d3sc05722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 02/27/2024] Open
Abstract
Plasmonic nanocavities exhibit exceptional capabilities in visualizing the internal structure of a single molecule at sub-nanometer resolution. Among these, an easily manufacturable nanoparticle-on-mirror (NPoM) nanocavity is a successful and powerful platform for demonstrating various optical phenomena. Exciting advances in surface-enhanced spectroscopy using NPoM nanocavities have been developed and explored, including enhanced Raman, fluorescence, phosphorescence, upconversion, etc. This perspective emphasizes the construction of NPoM nanocavities and their applications in achieving higher enhancement capabilities or spatial resolution in dark-field scattering spectroscopy and plasmon-enhanced spectroscopy. We describe a systematic framework that elucidates how to meet the requirements for studying light-matter interactions through the creation of well-designed NPoM nanocavities. Additionally, it provides an outlook on the challenges, future development directions, and practical applications in the field of plasmon-enhanced spectroscopy.
Collapse
Affiliation(s)
- Wei Peng
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jing-Wen Zhou
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Mu-Lin Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Lan Sun
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yue-Jiao Zhang
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian-Feng Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University Zhangzhou 363000 China
| |
Collapse
|
15
|
Yang J, Zhang X, Geng L, Xia C, Chen X, Yang W, Xu H, Lin Z. Nanogap engineering of 3D nanoraspberries into 2D plasmonic nanoclusters toward improved SERS performance. NANOSCALE 2024; 16:2877-2882. [PMID: 38235598 DOI: 10.1039/d3nr05989h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
3D raspberry-like core/satellite nanostructures were prepared by controlled surface functionalization of silica spheres using crosslinked poly(4-vinylpyridine) (P4VP) chains with known binding affinity for gold nanoparticles (AuNPs). The 3D SiO2-g-P(4VP-co-DVB)/AuNP nanoraspberries can be further transformed into 2D plasmonic nanoclusters by etching the silica core with hydrofluoric acid (HF). After the transformation, the interparticle distance between the AuNPs dramatically reduced from a 10 nm scale to sub 2 nm. Owing to the strong electromagnetic field generated by the plasmonic coupling between AuNPs in very close proximity, the established P(4VP-co-DVB)/AuNP nanoclusters provided strong and undisturbed Raman signals as a SERS substrate. In addition, benefiting from the stabilizing effect of the crosslinked P(4VP-co-DVB) network, the prepared SERS substrate has the advantages of good uniformity, stability and reproducibility, as well as strong SERS enhancement, endowing it with great potential for rapid and efficient SERS detection.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xinxing Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lin Geng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Chao Xia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xin Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Wenzhong Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hui Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zhiqun Lin
- Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore.
| |
Collapse
|
16
|
Evtushenko EG, Gavrilina ES, Vasilyeva AD, Yurina LV, Kurochkin IN. Highly Sensitive Measurement of Horseradish Peroxidase Using Surface-Enhanced Raman Scattering of 2,3-Diaminophenazine. Molecules 2024; 29:793. [PMID: 38398545 PMCID: PMC10891785 DOI: 10.3390/molecules29040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The development of various enzyme-linked immunosorbent assays (ELISAs) coupled with surface-enhanced Raman scattering (SERS) detection is a growing area in analytical chemistry due to their potentially high sensitivity. A SERS-based ELISA with horseradish peroxidase (HRP) as an enzymatic label, an o-phenylenediamine (oPD) substrate, and a 2,3-diaminophenazine (DAP) enzymatic product was one of the first examples of such a system. However, the full capabilities of this long-known approach have yet to be revealed. The current study addresses a previously unrecognized problem of SERS detection stage performance. Using silver nanoparticles and model mixtures of oPD and DAP, the effects of the pH, the concentration of the aggregating agent, and the particle surface chloride stabilizer were extensively evaluated. At the optimal mildly acidic pH of 3, a 0.93 to 1 M citrate buffer, and AgNPs stabilized with 20 mM chloride, a two orders of magnitude advantage in the limits of detection (LODs) for SERS compared to colorimetry was demonstrated for both DAP and HRP. The resulting LOD for HRP of 0.067 pmol/L (1.3 amol per assay) underscores that the developed approach is a highly sensitive technique. We suppose that this improved detection system could become a useful tool for the development of SERS-based ELISA protocols.
Collapse
Affiliation(s)
- Evgeniy G. Evtushenko
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elizaveta S. Gavrilina
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Alexandra D. Vasilyeva
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Lyubov V. Yurina
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Ilya N. Kurochkin
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
17
|
Dzhagan V, Mazur N, Kapush O, Skoryk M, Pirko Y, Yemets A, Dzhahan V, Shepeliavyi P, Valakh M, Yukhymchuk V. Self-Organized SERS Substrates with Efficient Analyte Enrichment in the Hot Spots. ACS OMEGA 2024; 9:4819-4830. [PMID: 38313516 PMCID: PMC10832017 DOI: 10.1021/acsomega.3c08393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
One of the requirements of an efficient surface-enhanced Raman spectroscopy (SERS) substrate is a developed surface morphology with a high density of "hot spots", nm-scale spacings between plasmonic nanoparticles. Of particular interest are plasmonic architectures that could enable self-localization (enrichment) of the analyte in the hot spots. We report a straightforward method of fabrication of efficient SERS substrates that comply with these requirements. The basis of the substrate is a large-area film of tightly packed SiO2 spheres formed by their quick self-assembling upon drop casting from the solution. Thermally evaporated thin Ag layer is converted by quick thermal annealing into nanoparticles (NPs) self-assembled in the trenches between the silica spheres, i.e., in the places where the analyte molecules get localized upon deposition from solution and drying. Therefore, the obtained substrate morphology enables an efficient enrichment of the analyte in the hot spots formed by the densely arranged plasmonic NPs. The high efficiency of the developed SERS substrates is demonstrated by the detection of Rhodamine 6G down to 10-13 mol/L with an enhancement factor of ∼108, as well as the detection of low concentrations of various nonresonant analytes, both small dye molecules and large biomolecules. The developed approach to SERS substrates is very straightforward for implementation and can be further extended to using gold or other plasmonic NPs.
Collapse
Affiliation(s)
- Volodymyr Dzhagan
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
- Physics
Department, Taras Shevchenko National University
of Kyiv, Kyiv 01601, Ukraine
| | - Nazar Mazur
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Olga Kapush
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Mykola Skoryk
- G. V.
Kurdyumov Institute for Metal Physics, National
Academy of Sciences of Ukraine, Kyiv 03142, Ukraine
| | - Yaroslav Pirko
- Institute
of Food Biotechnology and Genomics, National
Academy of Sciences of Ukraine, Kyiv 04123, Ukraine
| | - Alla Yemets
- Institute
of Food Biotechnology and Genomics, National
Academy of Sciences of Ukraine, Kyiv 04123, Ukraine
| | - Vladyslav Dzhahan
- Physics
Department, Taras Shevchenko National University
of Kyiv, Kyiv 01601, Ukraine
| | - Petro Shepeliavyi
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Mykhailo Valakh
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Volodymyr Yukhymchuk
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| |
Collapse
|
18
|
Butler M, Hrncirova J, Clark M, Dutta S, Cooper JB. Quantification of Antiviral Drug Tenofovir (TFV) by Surface-Enhanced Raman Spectroscopy (SERS) Using Cumulative Distribution Functions (CDFs). ACS OMEGA 2024; 9:1310-1319. [PMID: 38222633 PMCID: PMC10785616 DOI: 10.1021/acsomega.3c07641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive spectroscopic technique that generates signal-enhanced fingerprint vibrational spectra of small molecules. However, without rigorous control of SERS substrate active sites, geometry, surface area, or surface functionality, SERS is notoriously irreproducible, complicating the consistent quantitative analysis of small molecules. While evaporatively prepared samples yield significant SERS enhancement resulting in lower detection limits, the distribution of these enhancements along the SERS surface is inherently stochastic. Acquiring spatially resolved SERS spectra of these dried surfaces, we have shown that this enhancement is governed by a power law as a function of analyte concentration. Consequently, by definition, there is no true mean of SERS enhancement, requiring an alternative approach to achieve reproducible quantitative results. In this study, we introduce a new method of analysis of SERS data using a cumulative distribution function (CDF). The antiviral drug tenofovir (TFV) in an aqueous matrix was quantified down to a clinically relevant concentration of 25 ng/mL using hydroxylamine-reduced silver colloids evaporated to dryness. The data presented in this study provide a rationale for the benefits of combining a novel statistical approach using CDFs with simple and inexpensive experimental techniques to increase the precision, accuracy, and analytical sensitivity of aqueous TFV quantification by SERS. TFV calibration curves generated using CDF analysis showed higher analytical sensitivity (in the form of a normalized calibration curve average slope increase of 0.25) compared to traditional SERS intensity calculations. A second aliquot of nanoparticles and analyte dried on the SERS surface followed by CDF analysis showed further analytical sensitivity with a normalized calibration curve slope increase of 0.23 and decreased variation among replicates represented by an average standard deviation decrease of 0.02 with a second aliquot. The quantitative analysis of SERS data using CDFs presented here shows promise to be a reproducible method for quantitative analysis of SERS data, a significant step toward implementing SERS as an analytical method in clinical and industrial settings.
Collapse
Affiliation(s)
- Marguerite
R. Butler
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Jana Hrncirova
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
- Department
of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Meredith Clark
- Department
of Obstetrics and Gynecology, Eastern Virginia
Medical School, Norfolk, Virginia 23507, United States
| | - Sucharita Dutta
- Department
of Obstetrics and Gynecology, Eastern Virginia
Medical School, Norfolk, Virginia 23507, United States
| | - John B. Cooper
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| |
Collapse
|
19
|
Dey P. Aiming for Maximized and Reproducible Enhancements in the Obstacle Race of SERS. ACS MEASUREMENT SCIENCE AU 2023; 3:434-443. [PMID: 38145020 PMCID: PMC10740126 DOI: 10.1021/acsmeasuresciau.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 12/26/2023]
Abstract
Surface enhanced Raman scattering (SERS), since its discovery in the mid-1970s, has taken on many roles in the world of analytical measurement science. From identifying known and unknown chemicals in mixtures such as pharmaceutical and environmental samples to enabling qualitative and quantitative analysis of biomolecules and biomedical disease markers (or biomarkers), furthermore expanding to tracking nanostructures in vivo for medical diagnosis and therapy. This is because SERS combines the inherent power of Raman scattering capable of molecular species identification, topped with tremendous amplification in the Raman signal intensity when the molecule of interest is positioned near plasmonic nanostructures. The higher the SERS signal amplification, the lower the limit of detection (LOD) that could be achieved for the above applications. Therefore, improving SERS sensing efficiencies is vital. The signal reproducibility and SERS enhancement factor (EF) heavily rely on plasmonic nanostructure design, which has led to tremendous work in the field. But SERS signal and EF reproducibility remain key limitations for its wider market usability. This Review will scrutinize factors, some recognized and some often overlooked, that dictate the SERS signal and are of utmost importance to enable reproducible SERS EFs. Most of the factors pertain to colloidal labeled SERS. Some critically reviewed factors include the nanostructure's surface area as a limiting factor, SERS hot-spots including optimizing the SERS EF within the hot-spot volume and positioning labels, properties of label molecules governing molecule orientation in hot-spots, and resonance effects. A better understanding of these factors will enable improved optimization and control of the experimental SERS, enabling extremely sensitive LODs without overestimating the SERS EFs. These are crucial steps toward identification and reproducible quantification in SERS sensing.
Collapse
Affiliation(s)
- Priyanka Dey
- School of Pharmacy and Biomedical
Sciences, University of Portsmouth, Portsmouth PO1 2UP, U.K.
| |
Collapse
|
20
|
Si Y, Wang H, Yan Y, Li B, Ni Z, Shi H. Ag@AuNP-Functionalized Capillary-Based SERS Sensing Platform for Interference-Free Detection of Glucose in Urine Using SERS Tags with Built-In Nitrile Signal. Molecules 2023; 28:7939. [PMID: 38138429 PMCID: PMC10745321 DOI: 10.3390/molecules28247939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
A Ag@AuNP-functionalized capillary-based surface-enhanced Raman scattering (SERS) sensing platform for the interference-free detection of glucose using SERS tags with a built-in nitrile signal has been proposed in this work. Capillary-based SERS capture substrates were prepared by connecting 4-mercaptophenylboronic acid (MBA) to the surface of the Ag@AuNP layer anchored on the inner wall of the capillaries. The SERS tags with a built-in interference-free signal could then be fixed onto the Ag@AuNP layer of the capillary-based capture substrate based on the distinguished feature of glucose, which can form a bidentate glucose-boronic complex. Thus, many "hot spots" were formed, which produced an improved SERS signal. The quantitative analysis of glucose levels was realized using the interference-free SERS intensity of nitrile at 2222 cm-1, with a detection limit of about 0.059 mM. Additionally, the capillary-based disposable SERS sensing platform was successfully employed to detect glucose in artificial urine, and the new strategy has great potential to be further applied in the diagnosis and control of diabetes.
Collapse
Affiliation(s)
- Yanmei Si
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Hua Wang
- School of Life Science, Huzhou University, Huzhou 313000, China
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining 272067, China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zeyun Ni
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Hongrui Shi
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
21
|
Li Z, Rigor J, Ehtesabi S, Gojare S, Kupfer S, Gräfe S, Large N, Kurouski D. Role of Plasmonic Antenna in Hot Carrier-Driven Reactions on Bimetallic Nanostructures. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:22635-22645. [PMID: 38357685 PMCID: PMC10863061 DOI: 10.1021/acs.jpcc.3c06520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 02/16/2024]
Abstract
Noble metal nanostructures can efficiently harvest electromagnetic radiation, which, in turn, is used to generate localized surface plasmon resonances. Surface plasmons decay, producing hot carriers, that is, short-lived species that can trigger chemical reactions on metallic surfaces. However, noble metal nanostructures catalyze only a very small number of chemical reactions. This limitation can be overcome by coupling such nanostructures with catalytic-active metals. Although the role of such catalytically active metals in plasmon-driven catalysis is well-understood, the mechanistics of a noble metal antenna in such chemistry remains unclear. In this study, we utilize tip-enhanced Raman spectroscopy, an innovative nanoscale imaging technique, to investigate the rates and yields of plasmon-driven reactions on mono- and bimetallic gold- and silver-based nanostructures. We found that silver nanoplates (AgNPs) demonstrate a significantly higher yield of 4-nitrobenzenehtiol to p,p'-dimercaptoazobisbenzene (DMAB) reduction than gold nanoplates (AuNPs). We also observed substantially greater yields of DMAB on silver-platinum and silver-palladium nanoplates (Ag@PtNPs and Ag@PdNPs) compared to their gold analogues, Au@PtNPs and Au@PdNPs. Furthermore, Ag@PtNPs exhibited enhanced reactivity in 4-mercatophenylmethanol to 4-mercaptobenzoic acid oxidation compared to Au@PtNPs. These results showed that silver-based bimetallic nanostructures feature much greater reactivity compared to their gold-based analogues.
Collapse
Affiliation(s)
- Zhandong Li
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Joel Rigor
- Department
of Physics and Astronomy, The University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Sadaf Ehtesabi
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Siddhi Gojare
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stephan Kupfer
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Gräfe
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Nicolas Large
- Department
of Physics and Astronomy, The University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- The
Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
22
|
Dzhagan V, Smirnov O, Kovalenko M, Gudymenko O, Mazur N, Kapush O, Skoryk M, Pirko Y, Yemets A, Valakh M, Shepeliavyi P, Yukhymchuk V. SERS-substrates based on ZnO nanoflowers prepared by green synthesis. Anal Biochem 2023; 681:115328. [PMID: 37722524 DOI: 10.1016/j.ab.2023.115328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
ZnO nanoparticles (NPs) with a flower-like morphology, synthesized by an affordable colloidal route using an aqueous fungi extract of Ganoderma lucidum as a reducing agent and stabilizer, are investigated as SERS-substrate. Each "flower" has large effective surface that is preserved at packing particles into a dense film and thus exhibits an advantageous property for SERS and similar sensing applications. The mycoextract used in our low-cost and green synthesis as surface stabilizer allows subsequent deposition of metal NPs or layers. One type of SERS substrates studied here was ZnO NPs decorated in situ in the solution by Ag NPs, another type was prepared by thermally evaporating Ag layer on the ZnO NP film on a substrate. A huge difference in the enhancement of the same analyte in the solution and in the dried form is found and discussed. Detection down to 10-7 M of standard dye analytes such as rhodamine 6G and methylene blue was achieved without additional optimization of the SERS substrates. The observed SERS-activity demonstrate the potential of both the free-standing flower-like ZnO NPs and thereof made dense films also for other applications where large surface area accessible for the external agent is crucial, such as catalysis or sensing.
Collapse
Affiliation(s)
- Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine; Physics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
| | - Oleksandr Smirnov
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mariia Kovalenko
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Oleksandr Gudymenko
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nazar Mazur
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olga Kapush
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mykola Skoryk
- G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav Pirko
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mykhailo Valakh
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Petro Shepeliavyi
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Volodymyr Yukhymchuk
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
23
|
Warkentin CL, Frontiera RR. Quantifying the ultrafast and steady-state molecular reduction potential of a plasmonic photocatalyst. Proc Natl Acad Sci U S A 2023; 120:e2305932120. [PMID: 37874859 PMCID: PMC10623017 DOI: 10.1073/pnas.2305932120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Plasmonic materials are promising photocatalysts as they are well suited to convert light into hot carriers and heat. Hot electron transfer is suggested as the driving force in many plasmon-driven reactions. However, to date, there are no direct molecular measures of the rate and yield of plasmon-to-molecule electron transfer or energy of these electrons on the timescale of plasmon decay. Here, we use ultrafast and spectroelectrochemical surface-enhanced Raman spectroscopy to quantify electron transfer from a plasmonic substrate to adsorbed methyl viologen molecules. We observe a reduction yield of 2.4 to 3.5% on the picosecond timescale, with plasmon-induced potentials ranging from [Formula: see text]3.1 to [Formula: see text]4.5 mV. Excitingly, some of these reduced species are stabilized and persist for tens of minutes. This work provides concrete metrics toward optimizing material-molecule interactions for efficient plasmon-driven photocatalysis.
Collapse
|
24
|
Pei H, Zhao J, Peng W, Dai Q, Wei Y. Enhancement and quenching of plasmon-enhanced spectroscopy of single molecule confined in metallic nanoparticle dimers. NANOTECHNOLOGY 2023; 35:015001. [PMID: 37769644 DOI: 10.1088/1361-6528/acfe15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
We present a theoretical analysis of plasmon-enhanced fluorescence (PEF) and Raman scattering (PERS) spectroscopy of a single molecule confined in the laser-irradiated metallic nanoparticles (NPs) dimer, focusing on the origin of the spectral enhancement and quenching effects. The theoretical method ofD-parameters has been used to calculate the dimer distance-dependent nonlocal dielectric effect in Ag and Au NPs. Meanwhile, other damping rates and electric field enhancements are quantitatively computed by finite element method. Moreover, PEF and PERS spectra of rhodamine 6G are obtained within the density-functional theory. Our calculated results show that the PERS mainly depend on the excitation and emission field enhancements, and thus it occurs at the narrower dimer gap due to the stronger localized plasmon coupling. The PEF is related to fluorescence rate caused by the competition between excitation electric field and quantum efficiency, and the increase of former may enhance the fluorescence intensity while the lower latter lead to reduce the intensity as decreasing the dimer distance. The contribution of nonlocal dielectric effect can significantly reduce the quantum efficiency at smaller distance so that it overcomes the excitation field enhancement, leading to the fluorescence quenching for Au NPs dimer. Furthermore, by optimizing the dimer distance and NPs size, the maximum PERS and PEF cross sections reach 10-14and 10-15under 2.45 eV laser excitation for Ag NPs dimer, and 10-18for Au NPs. Our study finely explains the experiment results showed either fluorescence enhancement or quenching with the change of molecule-NPs distance, and better guidance for optimizing the experiments.
Collapse
Affiliation(s)
- Huan Pei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Jiaxin Zhao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Weifeng Peng
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Qiyuan Dai
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Yong Wei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| |
Collapse
|
25
|
Cho YW, Park JH, Kang MJ, Kim TH. Crater-like nanoelectrode arrays for electrochemical detection of dopamine release from neuronal cells. Biomed Mater 2023; 18:065015. [PMID: 37769679 DOI: 10.1088/1748-605x/acfe69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Stem cell therapy has shown great potential in treating various incurable diseases using conventional chemotherapy. Parkinson's disease (PD)-a neurodegenerative disease-has been reported to be caused by quantitative loss or abnormal functionality of dopaminergic neurons (DAnergic neurons). To date, stem cell therapies have shown some potential in treating PD throughex vivoengraftment of stem-cell-derived neurons. However, accurately identifying the differentiation and non-invasively evaluating the functionality and maturity of DAnergic neurons are formidable challenges in stem cell therapies. These strategies are important in enhancing the efficacy of stem cell therapies. In this study, we report a novel cell cultivation platform, that is, a nanocrater-like electrochemical nanoelectrode array (NCENA) for monitoring dopamine (DA) release from neurons to detect exocytotic DA release from DAnergic neurons. In particular, the developed NCENA has a nanostructure in which three-dimensional porous gold nanopillars are uniformly arranged on conductive electrodes. The developed NCENA exhibited great DA sensing capabilities with a linear range of 0.39-150μM and a limit of detection of 1.16μM. Furthermore, the nanotopographical cues provided by the NCENA are suitable for cell cultivation with enhanced cellular adhesion. Finally, we successfully analysed the functionality and maturity of differentiated neurons on the NCENA through its excellent sensing ability for exocytotic DA.
Collapse
Affiliation(s)
- Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Min-Ji Kang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
26
|
Kozisek J, Slouf M, Sloufova I. Factor analysis of the time series of SERS spectra reveals water arrangement and surface plasmon changes in Ag nanoparticle systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122454. [PMID: 36780740 DOI: 10.1016/j.saa.2023.122454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The enhancement of Raman signals of molecules localized in the vicinity of plasmonic nanoparticles, known as surface-enhanced Raman scattering (SERS) effect, is strongly influenced by the selected excitation wavelength. The optimal excitation wavelength in SERS measurements is given by the position of the surface plasmon extinction (SPE) band of the studied system. Even a small change of the SPE band intensity, position and/or shape during the measurement may influence the SERS signal significantly. In this work, we prepared several systems of Ag nanoparticles, which were used for the demonstration how the information about SPE changes can be obtained by multivariate statistical analysis (factor analysis; FA) from SERS spectral sets, and employed in more precise and more comprehensive interpretation of the results. In non-aggregated Ag colloidal systems measured at the excitation wavelength of 445 nm, SPE band changes could be monitored by the analysis of water stretching vibration together with the vibrations in the fingerprint region. The FA of the water stretching band region was shown to provide unique information on both arrangement and disarrangement of water molecules in the vicinity of Ag NPs during the time evolution of these SERS active systems. In addition, the FA of the fingerprint region helped to monitor a rapid metalation of meso-tetrakis(N-methyl-4-pyridyl)porphine in etched SERS systems with Ag+ ions released from the NPs surface. In aggregated Ag colloidal systems measured at the excitation wavelength of 785 nm, the FA of SERS spectral sets enabled us to reveal the contribution of the 2nd electromagnetic enhancement to the overall SERS signal. The reliability of our conclusions was verified by comparing the results obtained from FA of SERS spectral sets with the data obtained from the parallel SPE measurements of the studied systems.
Collapse
Affiliation(s)
- Jan Kozisek
- Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Ivana Sloufova
- Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
27
|
Cheng J, Zhang Z, Zhang L, Miao J, Chen Y, Zhao R, Liu M, Chen L, Wang X. Size-controllable colloidal Ag nano-aggregates with long-time SERS detection window for on-line high-throughput detection. Talanta 2023; 257:124358. [PMID: 36821962 DOI: 10.1016/j.talanta.2023.124358] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
Making metal nanoparticle aggregates is a common way to improve surface-enhanced Raman scattering (SERS) enhancement via the formation of hot spots between nanoparticles. Here, we propose a "freeze-thaw-ultrasonication" method to obtain stable colloidal Ag nano-aggregates (AgNAs) with controllable sizes, which can remain stable for a few days. Compared with other method using aggregation reagents (e.g., organic molecules and salt), this method can maintain metal surface charges and adsorption affinity, which ensures the excellent SERS stability and sensitivity. The SERS detection window during the experiment can reach more than 25 min, which makes it a prerequisite for accurate SERS detection during a long-time range. Combining the obtained stable AgNAs with microfluidic devices, we established a sequential SERS on-line continuous detection method for the high-throughput detection of multiplex samples. The UV-Fenton degradation process of methylene blue (MB) is continuously on-line monitored through this platform, which is more sensitive than the UV-Vis Spectrum. Moreover, we have realized the sensitive and accurate detection of 5-nitro-8-hydroxyquinoline (5-NQ) with antibacterial and anticancer activities based on chloride-functionalized silver, which paved a way for SERS high-throughput analysis in bioanalysis and other fields.
Collapse
Affiliation(s)
- Jianxia Cheng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Longfei Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Jiaqi Miao
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yan Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongfang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Meichun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
28
|
Yu H, Yang Z, Fu S, Zhang Y, Panneerselvamc R, Li B, Zhang L, Chen Z, Wang X, Li J. Intelligent convolution neural network-assisted SERS to realize highly accurate identification of six pathogenic Vibrio. Chem Commun (Camb) 2023; 59:5779-5782. [PMID: 37096554 DOI: 10.1039/d3cc01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Based on label-free SERS technology, the relationship between the Raman signals of pathogenic Vibrio microorganisms and purine metabolites was analyzed in detail. A deep learning CNN model was successfully developed, achieving a high accuracy rate of 99.7% in the identification of six typical pathogenic Vibrio species within 15 minutes, providing a new method for pathogen identification.
Collapse
Affiliation(s)
- Hui Yu
- College of Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, School of Aerospace Engineering, Xiamen University, Xiamen 361005, China.
| | - Zhilan Yang
- College of Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, School of Aerospace Engineering, Xiamen University, Xiamen 361005, China.
| | - Shiying Fu
- College of Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, School of Aerospace Engineering, Xiamen University, Xiamen 361005, China.
| | - Yuejiao Zhang
- College of Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, School of Aerospace Engineering, Xiamen University, Xiamen 361005, China.
| | | | - Baoqiang Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Zehui Chen
- Xiamen City Center for Disease Control and Prevention, Xiamen 361005, China.
| | - Xin Wang
- College of Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, School of Aerospace Engineering, Xiamen University, Xiamen 361005, China.
| | - Jianfeng Li
- College of Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, School of Aerospace Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
29
|
Badillo-Ramírez I, Landeros-Rivera B, Saniger JM, Popp J, Cialla-May D. SERS-based detection of 5- S-cysteinyl-dopamine as a novel biomarker of Parkinson's disease in artificial biofluids. Analyst 2023; 148:1848-1857. [PMID: 36939184 DOI: 10.1039/d3an00027c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The early detection of Parkinson's disease (PD) can significantly improve treatment and quality of life in patients. 5-S-Cysteinyl-dopamine (CDA) is a key metabolite of high relevance for the early detection of PD. Therefore, its sensitive detection with fast and robust methods can improve its use as a biomarker. In this work we show the potentialities of label-free SERS spectroscopy in detecting CDA in aqueous solutions and artificial biofluids, with a simple, fast and sensitive approach. We present a detailed experimental SERS band assignment of CDA employing silver nanoparticle (AgNP) substrates in aqueous media, which was supported by theoretical calculations and simulated Raman and SERS spectra. The tentative orientation of CDA over the AgNP was also studied, indicating that catechol and carboxylic acid play a key role in the metallic surface adsorption. Moreover, we showed that SERS can allow us to identify CDA in aqueous media at low concentration, leading to the identification of some of its characteristic bands in pure water and in synthetic cerebrospinal fluid (SCSF) below 1 × 10-8 M, while its band identification in simulated urine (SUR) can be reached at 1 × 10-7 M. In conclusion, we show that CDA can be suitably detected by means of label-free SERS spectroscopy, which can significantly improve its sensitive detection for further analytical studies as a novel biomarker and further clinical diagnosis in PD patients.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Bruno Landeros-Rivera
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - José M Saniger
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Dana Cialla-May
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| |
Collapse
|
30
|
Steczkowski M, Kurouski D. Elucidation of the effect of heat exposure on hair colored by permanent and semipermanent colorants using surface-enhanced Raman spectroscopy. J Forensic Sci 2023; 68:807-814. [PMID: 36920026 DOI: 10.1111/1556-4029.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
Confirmatory identification of hair colorants can be used to establish a connection between a suspect and the crime science or demonstrate the absence of such connections. A growing body of evidence shows that surface-enhanced Raman spectroscopy (SERS) could be a confirmatory, minimally destructive, and fully noninvasive analysis of hair colorants. In SERS, a signal that provide the information about the chemical structure of both permanent and semipermanent dyes present on hair is enhanced by a million-fold using noble metal nanostructures. However, it is unclear whether the information of hair colorants can be revealed if hair was contaminated or exposed to harsh environments such as sunlight and heat. In this work, we determine the effect of a short- and long-term heat exposure on SERS-based analysis of hair colored with blue and red permanent and semipermanent dyes. We found that short and especially long-term heat exposure at 220°C could alter chemical structure, and consequently SERS spectra, of permanent and semipermanent colorants. This thermal degradation of permanent dyes complicates their direct identification using SERS. We also found that partial least squares discriminant analysis can be used to overcome this issue allowing for highly accurate identification of both permanent and semipermanent dyes on colored hair that was exposed to 220°C for 6-12 min. These results show that heat exposure of colored hair should be strongly considered upon their SERS-based examination to avoid both false positive or false negative identification of chemical dyes.
Collapse
Affiliation(s)
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
31
|
Wang J, Fu J, Chen H, Wang A, Ma Y, Yan H, Li Y, Yu D, Gao F, Li S. Trimer structures formed by target-triggered AuNPs self-assembly inducing electromagnetic hot spots for SERS-fluorescence dual-signal detection of intracellular miRNAs. Biosens Bioelectron 2023; 224:115051. [PMID: 36621084 DOI: 10.1016/j.bios.2022.115051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Accurate quantitative, in situ and temporal tracking imaging of tumor-associated miRNAs in living cells could provide a basis for cancer diagnosis and prognosis. In this strategy, a surface-enhanced Raman scattering (SERS)-fluorescence (FL) dual-spectral sensor (DSS) was constructed based on the nanoscale photophysical properties of AuNPs, mediated by functionalized DNA, to achieve rapid imaging of FL and accurate SERS quantification of intracellular miRNAs. The dual-spectrum sensor in the strategy is highly sensitive, specific and reproducibly stable. The LOD values of the dual spectra were 3.58 pM (SERS) as well as 11.8 pM (FL) with RSD values less than 2.69%. The bispectral sensor self-assembled into a trimer by the lapidation of Y-type DNA under the excitation of the target, generating a stable enhanced electric field coupling; and selected adenine located in the enhanced electric field as the reporter molecule, simplifying the labeling process and variables of the Raman reporter molecule, distinguishing it from other traditional methods. This strategy successfully achieved accurate tracking and quantification of miR-21 in cancer cells and showed good stability in the cells. The reported probes are potential tools for reliable monitoring of biomolecular dynamics in living cells.
Collapse
Affiliation(s)
- Jiwei Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Department of Blood Transfusion, Xuzhou Central Hospital, Jiangsu, 221004, Xuzhou, China
| | - Jingjing Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Jiangsu, 221116, Xuzhou, China
| | - Han Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu, Xuzhou, 221004, China
| | - Ali Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Yuting Ma
- Department of Blood Transfusion, Xuzhou Central Hospital, Jiangsu, 221004, Xuzhou, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Dehong Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; The Affiliated Pizhou Hospital of Xuzhou Medical University, Xuzhou, 221399, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China.
| | - Shibao Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Medical Laboratory Department, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, Xuzhou, China.
| |
Collapse
|
32
|
Liu L, Ma W, Wang X, Li S. Recent Progress of Surface-Enhanced Raman Spectroscopy for Bacteria Detection. BIOSENSORS 2023; 13:350. [PMID: 36979564 PMCID: PMC10046079 DOI: 10.3390/bios13030350] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
There are various pathogenic bacteria in the surrounding living environment, which not only pose a great threat to human health but also bring huge losses to economic development. Conventional methods for bacteria detection are usually time-consuming, complicated and labor-intensive, and cannot meet the growing demands for on-site and rapid analyses. Sensitive, rapid and effective methods for pathogenic bacteria detection are necessary for environmental monitoring, food safety and infectious bacteria diagnosis. Recently, benefiting from its advantages of rapidity and high sensitivity, surface-enhanced Raman spectroscopy (SERS) has attracted significant attention in the field of bacteria detection and identification as well as drug susceptibility testing. Here, we comprehensively reviewed the latest advances in SERS technology in the field of bacteria analysis. Firstly, the mechanism of SERS detection and the fabrication of the SERS substrate were briefly introduced. Secondly, the label-free SERS applied for the identification of bacteria species was summarized in detail. Thirdly, various SERS tags for the high-sensitivity detection of bacteria were also discussed. Moreover, we emphasized the application prospects of microfluidic SERS chips in antimicrobial susceptibility testing (AST). In the end, we gave an outlook on the future development and trends of SERS in point-of-care diagnoses of bacterial infections.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrui Ma
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang Wang
- Department of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
33
|
Ge S, Chen G, Cao D, Lin H, Liu Z, Yu M, Wang S, Wang Z, Zhou M. Au/SiNCA-based SERS analysis coupled with machine learning for the early-stage diagnosis of cisplatin-induced liver injury. Anal Chim Acta 2023; 1254:341113. [PMID: 37005023 DOI: 10.1016/j.aca.2023.341113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Cisplatin has been widely applied in the clinical treatment of various cancers, whereas liver injury induced by its hepatotoxicity is still a severe issue. Reliable identification of early-stage cisplatin-induced liver injury (CILI) can improve clinical care and help to streamline drug development. Traditional methods, however, cannot achieve enough information at the subcellular level due to the requirement of the labeling process and low sensitivity. To overcome these, we designed an Au-coated Si nanocone array (Au/SiNCA) to fabricate the microporous chip as the surface-enhanced Raman scattering (SERS) analysis platform for the early diagnosis of CILI. A CILI rat model was established, and the exosome spectra were obtained. The principal component analysis (PCA)-representation coefficient-based k-nearest centroid neighbor (RCKNCN) classification algorithm was proposed as the multivariate analysis method to build the diagnosis and staging model. The PCA-RCKNCN model has been validated to achieve a satisfactory result, with accuracy and AUC of over 97.5%, and sensitivity and specificity of over 95%, indicating that SERS combined with the PCA-RCKNCN analysis platform can be a promising tool for clinical applications.
Collapse
|
34
|
Wang X, Wang Y, He Y, Liu L, Wang X, Jiang S, Yang N, Shi N, Li Y. A versatile technique for indiscriminate detection of unlabeled biomolecules via double-enhanced Raman scattering. Int J Biol Macromol 2023; 228:615-623. [PMID: 36581033 DOI: 10.1016/j.ijbiomac.2022.12.241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Surface-enhanced Raman scattering is a rapid, highly sensitive and non-destructive technique, whereas, it was still limited to designing different types of enhancing substrates or using probe molecules to only identify single biomolecules. Especially, some special biomolecules have weak Raman signals in solid state, so it is a huge challenge to obtain their enhanced Raman signals in liquid. To solve the problem, a double-enhanced Raman scattering (DERS) detection platform was developed in this study based on silver nanoparticles that were prepared by using an appropriate amount of sodium borohydride and guided by calcium ions to form good "hot spots". This enabled one to successfully obtain fingerprints of various types of biomolecules under the identical experimental conditions. The addition of sodium borohydride as reducing agent could protect silver nanoparticles from oxidation, and biomolecules were adsorbed on the exposed silver surface and demonstrated their initially enhanced Raman signals. Furthermore, the "hot spots" formed by silver nanoparticles without silver oxide coating could further enhance the Raman signal of biomolecules, making the enhancement factor up to 10 [8]. To sum up, the possibility of fast identification of different species of biomolecules via DERS has wide application prospects in the fields of biomarker detection and medical diagnosis.
Collapse
Affiliation(s)
- Xiaotong Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Yunpeng Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Department of Inorganic Chemistry and Physical Chemistry, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Yingying He
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Ling Liu
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Guizhou University, Guizhou 550000, PR China
| | - Shen Jiang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Ni Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guizhou 550000, PR China
| | - Na Shi
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Jilin 130000, PR China
| | - Yang Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| |
Collapse
|
35
|
Liu W, Li Y, Li Z, Du X, Xie S, Liu C, Jiang S, Li Z. 3D flexible compositing resonant cavity system for high-performance SERS sensing. OPTICS EXPRESS 2023; 31:6925-6937. [PMID: 36823938 DOI: 10.1364/oe.481784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Arrayed resonant cavity with outstanding optical trapping ability have received increasing attention in surface-enhanced Raman spectroscopy (SERS). Here, a three-dimensional (3D) composite AgNPs-Al2O3/Au/inverted patterned sapphire substrate PMMA (IPSSPMMA) flexible resonant cavity system is theoretically and experimentally investigated as a flexible SERS sensor. With the help of an effective plasma coupling (localized surface plasmons (LSPs) and surface plasmon polaritons (SPPs)), as shown by the Finite Element Method, a resonant cavity between IPSSPMMA and a particle-film nanostructure is created. Moreover, the proposed fabrication scheme can be easily used for large-scale fabrication. To measure the performance of IPSSPMMA, Rhodamine 6 G (R6G) and Crystalline violet (CV) were used as probe molecules with limit of detection (LOD) of 6.01 × 10-12 M and 5.36 × 10-10 M, respectively, and enhancement factors (EF) of R6G up to 8.6 × 109. Besides, in-situ detection of CV on the surface of aquatic products with a LOD of 3.96 × 10-5 M, enables highly sensitive in-situ detection of surface analytes. The Raman performance and in-situ detection results demonstrate that the proposed flexible compositing resonant cavity system has the advantages of ultra-sensitivity, stability, uniformity, and reproducibility, and has great potential for applications in the food safety field.
Collapse
|
36
|
Awasthi V, Malik P, Goel R, Srivastava P, Dubey SK. Nanogap-Rich Surface-Enhanced Raman Spectroscopy-Active Substrate Based on Double-Step Deposition and Annealing of the Au Film over the Back Side of Polished Si. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10250-10260. [PMID: 36757206 DOI: 10.1021/acsami.2c21378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and rapid detection technique that is used for detection of various analytes in trace quantities. We present a sensitive, large-area, and nanogap-rich SERS-active substrate by altering a thin gold (Au) film on the unpolished side of a single-side polished silicon wafer by repeated thermal deposition and annealing in an argon environment. The repeated thermal deposition and annealing process was compared on both sides of a one-side-polished silicon wafer; however, the rear side (etched/unpolished side) demonstrated a more enhanced Raman signal owing to the larger effective area. The proposed substrate can be fabricated easily, having a high density of hotspots distributed uniformly all over the substrate. This ensures easy, rapid, and sensitive detection of analytes with a high degree of reproducibility, repeatability, and acceptable uniformity. The optimized substrate shows a high degree of stability with time when exposed to the ambient environment for a longer duration of 148 days. The reported substrate can detect up to 10-11 M concentrations of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT), with limits of detection (LODs) of 1.22 and 1.26 ng/L, respectively. This work not only presents the efficient and sensitive SERS-active substrate but also shows the advantages of using the rear side of a one-side-polished silicon substrate as a SERS-active chip.
Collapse
Affiliation(s)
- Vimarsh Awasthi
- SeNSE Centre, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Pariksha Malik
- Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Richa Goel
- SeNSE Centre, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Pankaj Srivastava
- Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, Delhi 110016, India
| | | |
Collapse
|
37
|
Mrđenović D, Cai ZF, Pandey Y, Bartolomeo GL, Zenobi R, Kumar N. Nanoscale chemical analysis of 2D molecular materials using tip-enhanced Raman spectroscopy. NANOSCALE 2023; 15:963-974. [PMID: 36541047 PMCID: PMC9851175 DOI: 10.1039/d2nr05127c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/01/2022] [Indexed: 05/10/2023]
Abstract
Two-dimensional (2D) molecular materials have attracted immense attention due to their unique properties, promising a wide range of exciting applications. To understand the structure-property relationship of these low-dimensional materials, sensitive analytical tools capable of providing structural and chemical characterisation at the nanoscale are required. However, most conventional analytical techniques fail to meet this challenge, especially in a label-free and non-destructive manner under ambient conditions. In the last two decades, tip-enhanced Raman spectroscopy (TERS) has emerged as a powerful analytical technique for nanoscale chemical characterisation by combining the high spatial resolution of scanning probe microscopy and the chemical sensitivity and specificity of surface-enhanced Raman spectroscopy. In this review article, we provide an overview of the application of TERS for nanoscale chemical analysis of 2D molecular materials, including 2D polymers, biomimetic lipid membranes, biological cell membranes, and 2D reactive systems. The progress in the structural and chemical characterisation of these 2D materials is demonstrated with key examples from our as well as other laboratories. We highlight the unique information that TERS can provide as well as point out the common pitfalls in experimental work and data interpretation and the possible ways of averting them.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Zhen-Feng Cai
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
38
|
Gu MM, Guan PC, Xu SS, Li HM, Kou YC, Lin XD, Kathiresan M, Song Y, Zhang YJ, Jin SZ, Li JF. Ultrasensitive detection of SARS-CoV-2 S protein with aptamers biosensor based on surface-enhanced Raman scattering. J Chem Phys 2023; 158:024203. [PMID: 36641419 DOI: 10.1063/5.0130011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A rapid and accurate diagnostic modality is essential to prevent the spread of SARS-CoV-2. In this study, we proposed a SARS-CoV-2 detection sensor based on surface-enhanced Raman scattering (SERS) to achieve rapid and ultrasensitive detection. The sensor utilized spike protein deoxyribonucleic acid aptamers with strong affinity as the recognition entity to achieve high specificity. The spherical cocktail aptamers-gold nanoparticles (SCAP) SERS substrate was used as the base and Au nanoparticles modified with the Raman reporter molecule that resonates with the excitation light and spike protein aptamers were used as the SERS nanoprobe. The SCAP substrate and SERS nanoprobes were used to target and capture the SARS-CoV-2 S protein to form a sandwich structure on the Au film substrate, which can generate ultra-strong "hot spots" to achieve ultrasensitive detection. Analysis of SARS-CoV-2 S protein was performed by monitoring changes in SERS peak intensity on a SCAP SERS substrate-based detection platform. This assay detects S protein with a LOD of less than 0.7 fg mL-1 and pseudovirus as low as 0.8 TU mL-1 in about 12 min. The results of the simulated oropharyngeal swab system in this study indicated the possibility of it being used for clinical detection, providing a potential option for rapid and accurate diagnosis and more effective control of SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Man-Man Gu
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Peng-Cheng Guan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Shan-Shan Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hong-Mei Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yi-Chuan Kou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Dong Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Murugavel Kathiresan
- Electro-Organic Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| | - Yanling Song
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Shang-Zhong Jin
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Jian-Feng Li
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
39
|
Xie L, Gong K, Liu Y, Zhang L. Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:25-43. [PMID: 36576086 DOI: 10.1021/acs.est.2c07416] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoplastics (<1000 nm) have been evidenced to be universal in a variety of environmental media. They pose a potential cytotoxicity and health risk due to their tiny size, which allows them to easily penetrate biological barriers and enter cells. Here, we briefly review the various prevalent analytical techniques or tools for identifying nanoplastics, and further move to focus on their advantages and disadvantages. Surface-enhanced Raman spectroscopy (SERS) has been implemented for the identification of individual nanoparticles because of its high sensitivity to molecules and ease of rapid characterization. Therefore, we introduce the SERS technique in the following aspects, (1) principles of SERS; (2) strategies and advances in SERS detection of nanoplastics; and (3) applying SERS to real environmental samples. We put our effort into the summarization of efficient SERS substrates that essentially enable the better detection of nanoplastics, and extend to discuss how the reported nanoplastics pretreatment methodologies can bring SERS analysis to practical applications. A further step moving forward is to investigate the problems and challenges of currently applied SERS detection methods and to look at future research needs in nanoplastics detection employing SERS analysis.
Collapse
Affiliation(s)
- Lifang Xie
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Kedong Gong
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Yangyang Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| | - Liwu Zhang
- Department of Environmental Science & Engineering, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, Peoples' Republic of China
| |
Collapse
|
40
|
Juarez I, Kurouski D. Effects of crime scene contaminants on surface-enhanced Raman analysis of hair. J Forensic Sci 2023; 68:113-118. [PMID: 36317752 DOI: 10.1111/1556-4029.15165] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
Forensic analysis of hair is important as hair is one of the most commonly examined forms of trace evidence found at crime scenes. A growing body of evidence suggests that surface-enhanced Raman spectroscopy (SERS), a label-free and non-destructive analytical technique, can be used to detect and identify artificial colorants present on hair. However, hair collected at crime scenes is often contaminated by substances of biological and non-biological origin present at such locations. In this study, we investigate the extent to which four contaminants, saliva, blood, dirt, and bleach can alter the accuracy of SERS-based detection and identification of both permanent and semi-permanent colorants present on hair. Our findings show that saliva and dirt reduce the intensity of the colorants' signals but do not obscure their detection and identification. At the same time, an exposure of the colored hair to bleach or the presence of blood eliminates SERS-based analysis of artificial dyes present on such samples. We identified the procedure that can be used to remove blood contamination, which, in turn, enables identification of the hair colorants on such pre-cleaned samples. However, bleach treatment irreversibly eliminates SERS-based detection of artificial colorants on hair. These findings expand our understandings about the potential of SERS in forensic investigation of colorants on trace hair evidence.
Collapse
Affiliation(s)
- Isaac Juarez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
41
|
Dowek A, Voisin F, Le L, Tan C, Mallet J, Carn F, Caudron E. Self-assembly of gold nanoparticles by chitosan for improved epinephrine detection using a portable surface enhanced Raman scattering device. Talanta 2023; 251:123752. [DOI: 10.1016/j.talanta.2022.123752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
|
42
|
Becerril-Castro IB, Calderon I, Ockova J, Liebel M, van Hulst NF, Giannini V, Alvarez-Puebla RA. Direct Modular Printing of Plasmonic Chemosensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57165-57170. [PMID: 36516398 PMCID: PMC9801379 DOI: 10.1021/acsami.2c17202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here, we present and implement a new approach for producing modular inkjet-printable surface-enhanced Raman scattering (SERS) chemosensors. These sensors, combined with a rapid large field-of-view imaging system allow for fast imaging of the chemical characteristics of a sample. The performance of these materials is illustrated by printing a pH sensor on paper and interrogating aqueous solutions at different pH values. Results show single-shot images exceeding 9 mm2 which are readily read out via SERS imaging.
Collapse
Affiliation(s)
- I. Brian Becerril-Castro
- Department
of Inorganic and Physical Chemistry, Universitat
Rovira i Virgili, Marcel·lí Domingo SN (Edificio N5), 43007 Tarragona, Spain
| | - Irene Calderon
- Department
of Inorganic and Physical Chemistry, Universitat
Rovira i Virgili, Marcel·lí Domingo SN (Edificio N5), 43007 Tarragona, Spain
| | - Jana Ockova
- ICFO, Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain
| | - Matz Liebel
- ICFO, Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain
| | - Niek F. van Hulst
- ICFO, Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Vincenzo Giannini
- Instituto
de Estructura de la Materia (IEM), Consejo
Superior de Investigaciones Científicas (CSIC), Serrano 121, 28006 Madrid, Spain
- Technology
Innovation Institute, Masdar City 50819, Abu Dhabi, United Arab Emirates
- Centre of
Excellence ENSEMBLE3 sp. z o.o., Wolczynska 133, 01-919 Warsaw, Poland
| | - Ramon A. Alvarez-Puebla
- Department
of Inorganic and Physical Chemistry, Universitat
Rovira i Virgili, Marcel·lí Domingo SN (Edificio N5), 43007 Tarragona, Spain
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
43
|
Fujita T, Shibamoto K. Formation and Characterization of 2D Closely Packed Arrays of Bare Gold Nanoparticles without Aggregation. ACS OMEGA 2022; 7:44711-44719. [PMID: 36530303 PMCID: PMC9753115 DOI: 10.1021/acsomega.2c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Uniform 2D arrays of metal nanoparticles (NPs) have received significant attention in the field of molecular sensing using localized surface plasmon resonance. Generally, metal NPs bear organic surface-modifying molecules to prevent aggregation and form 2D metal NP arrays. However, surface-modifying molecules negatively affect molecular sensing. Previously, we developed a technique for forming a 2D bare metal NP array, denoted the sandwich (SW) technique. However, the formation mechanism of these 2D metal NP arrays remains unknown and therefore the experimental conditions of the SW technique are not optimized. Here, we observed the formation of a 2D Au NP (d: 60 nm) array using the SW technique with an optical microscope. Moderate drying conditions of the colloidal droplets sandwiched between two parallel substrates were necessary for forming 2D Au NP arrays. We then optimized the drying conditions and obtained a 2D Au NP array. This array was uniform, and the Au NPs were arranged at distances of 4.5 nm with hexagonal periodicity, without aggregation. Further, the 2D Au NP arrays exhibited excellent spot-to-spot reproducibility in surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Takashi Fujita
- Department
of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1401-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Kohei Shibamoto
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 Japan
| |
Collapse
|
44
|
Wang D, Zhao Y, Zhang S, Bao L, Li H, Xu J, He B, Hou X. Reporter Molecules Embedded Au@Ag Core-Shell Nanospheres as SERS Nanotags for Cardiac Troponin I Detection. BIOSENSORS 2022; 12:1108. [PMID: 36551074 PMCID: PMC9775458 DOI: 10.3390/bios12121108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Rapid and accurate detection of acute myocardial infarction can improve patients' chances of survival. Cardiac troponin I (cTn I) is an important diagnostic biomarker for acute myocardial infarction. However, current immunoassays are insufficient to accurately measure cTn I, as they have limited detection sensitivity and are time-consuming. Surface-enhanced Raman scattering (SERS) is a brilliant fingerprints diagnostic technique characterised by ultrasensitivity, fast response, and qualitative and quantitative analysis capabilities. In this study, reporter molecules (4-Mercaptobenzoic acid, 4-MBA) embedded Au@Ag core-shell nanospheres as SERS nanotags were prepared for the detection of cTn I. As the Raman reporters were embedded between the core and the shell, they could be protected from the external environment and nanoparticle aggregation. Excellent SERS performances were obtained due to the enhanced local electromagnetic field in the gap of core and shell metals. In a standard phosphate buffered saline (PBS) environment, the limit of detection for cTn I was 0.0086 ng mL-1 (8.6 ppt) with a good linear relationship. The excellent Raman detection performance was attributed to the localized surface plasmon resonance effect and strong electromagnetic field enhancement effect produced by the gap between the Au core and the Ag shell. The SERS nanotags we prepared were facile to synthesize, and the analysis procedure could be completed quickly (15 min), which made the detection of cTn I faster. Therefore, the proposed SERS nanotags have significant potential to be a faster and more accurate tool for acute myocardial infarction diagnostics.
Collapse
Affiliation(s)
- Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yiru Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shen Zhang
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Liping Bao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huijun Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xumin Hou
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
45
|
Cao J, Yang J, Wang Q, Yuan X, Liu H, Pang Z, Liu K, Cai S, Ren X. A robust, flexible adhesive tape-based SERS substrate fabricated by polymer etching and subsequent Au coating on the exposed SiO 2 nanosphere monolayer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121626. [PMID: 35868055 DOI: 10.1016/j.saa.2022.121626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of trace detection, high-performance flexible surface-enhanced Raman scattering (SERS) substrates have enjoyed steady growth of interest. In this paper, a facile method to improve the robustness of the flexible SERS substrate via the synergistic effect of rigid SiO2 nanospheres and flexible tape was demonstrated for the first time. In detail, the spin-coated SiO2 nanosphere monolayer was transferred from the host silicon wafer into the tape by peeling-off process, followed by O2 plasma etching of tape polymer to expose the nanospheres, and final Au coating to form plentiful SERS "hotspots". The as-prepared SERS sample shows a detection limit of Rhodamine 6G (R6G) down to 10-10 M and can afford a 500 times bending-releasing cyclic test. Our research provides a promising strategy to prepare robust SERS substrates which exhibit good potential in practical molecule detection on curved surfaces.
Collapse
Affiliation(s)
- Junming Cao
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Jiewen Yang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China.
| | - Xueguang Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Hao Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Zhenqi Pang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Kai Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Shiwei Cai
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xiaomin Ren
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China; School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| |
Collapse
|
46
|
Streletskiy O, Zavidovskiy I, Yakubovsky D, Doroshina N, Syuy A, Lebedinskij Y, Markeev A, Arsenin A, Volkov V, Novikov S. Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7721. [PMID: 36363312 PMCID: PMC9659245 DOI: 10.3390/ma15217721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The possibility of controlled scalable nanostructuring of surfaces by the formation of the plasmonic nanoparticles is very important for the development of sensors, solar cells, etc. In this work, the formation of the ensembles of silver nanoparticles on silicon and glass substrates by the magnetron deposition technique and the subsequent low-energy Ar+ ion irradiation was studied. The possibility of controlling the sizes, shapes and aerial density of the nanoparticles by the variation of the deposition and irradiation parameters was systematically investigated. Scanning electron microscopy studies of the samples deposited and irradiated in different conditions allowed for analysis of the morphological features of the nanoparticles and the distribution of their sizes and allowed for determination of the optimal parameters for the formation of the plasmonic-active structures. Additionally, the plasmonic properties of the resulting nanoparticles were characterized by means of linear spectroscopy and surface-enhanced Raman spectroscopy. Hereby, in this work, we demonstrate the possibility of the fabrication of silver nanoparticles with a widely varied range of average sizes and aerial density by means of a post-deposition ion irradiation technique to form nanostructured surfaces which can be applied in sensing technologies and surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Oleg Streletskiy
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Ilya Zavidovskiy
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Dmitry Yakubovsky
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Natalia Doroshina
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Alexander Syuy
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 690091 Vladivostok, Russia
| | - Yury Lebedinskij
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Andrey Markeev
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Aleksey Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Valentyn Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Sergey Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| |
Collapse
|
47
|
Lee CH, Fang JKH. The onset of surface-enhanced Raman scattering for single-particle detection of submicroplastics. J Environ Sci (China) 2022; 121:58-64. [PMID: 35654516 DOI: 10.1016/j.jes.2021.08.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 06/15/2023]
Abstract
Microplastics represent an emerging environmental problem worldwide, raising ecological and food safety concerns. Compared to microplastics, there is growing evidence of an even higher abundance of submicro- and nanoplastics in the environment, but a reliable monitoring method for detecting these smaller-sized plastics is lacking. Herein we presented the application of surface-enhanced Raman scattering (SERS) for this purpose. Particles of polystyrene (PS; 600 nm) were used as the probe analyte. Gold nanourchins (AuNU; 50 nm), i.e. urchin-shaped nanoparticles with irregular spikes around the core, were used as the SERS-active substrate. The effectiveness of SERS on PS was evaluated at a single-particle level with different numbers of AuNU in order to determine the minimum conditions required for the onset of the SERS effect. Our findings suggest that SERS of a single particle of PS can be induced by as few as 1-5 particles of AuNU, and that the use of excitation wavelength at 785 nm is appropriate to meet the red-shifted surface plasmon resonance of AuNU upon aggregation. These specifications provide additional information for the development of SERS-based tools for detecting plastic particles < 1 µm in food and environmental samples.
Collapse
Affiliation(s)
- Cheng-Hao Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - James Kar-Hei Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
48
|
Li Z, Kurouski D. Can Light Alter the Yield of Plasmon-Driven Reactions on Gold and Gold-Palladium Nanoplates? NANO LETTERS 2022; 22:7484-7491. [PMID: 36122388 DOI: 10.1021/acs.nanolett.2c02428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Noble-metal nanostructures, as well as their bimetallic analogues, catalyze a broad spectrum of plasmon-driven reactions. Catalytic properties of such nanostructures arise from light-generated surface plasmon resonances that decay forming transient hot electrons and holes. Hot carriers with "slower" dissipation rates accumulate on nanostructures generating an electrostatic potential. In this study, we examine whether light intensity can alter the electrostatic potential of mono- and bimetallic nanostructures changing yields of plasmon-driven reactions. Using tip-enhanced Raman spectroscopy (TERS), we quantified the yield of plasmon-driven transformations of 4-nitrobenzenethiol (4-NBT) and 3-mercaptobenzoic acid (3-MBA) on gold and gold-palladium nanoplates (AuNPs and Au@PdNPs, respectively). We found that on AuNPs 3-MBA decarboxylated forming thiophenol (TP), whereas 4-NBT was reduced to DMAB. The yield of both TP and DMAB gradually increased with increasing light intensity. On Au@PdNPs, 3-MBA could be reduced to 3-mercaptophenylmethanol (3-MPM), the yield of which was also directly dependent on the light intensity.
Collapse
Affiliation(s)
- Zhandong Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- The Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
49
|
Liu Z, Li T, Wang Z, Liu J, Huang S, Min BH, An JY, Kim KM, Kim S, Chen Y, Liu H, Kim Y, Wong DT, Huang TJ, Xie YH. Gold Nanopyramid Arrays for Non-Invasive Surface-Enhanced Raman Spectroscopy-Based Gastric Cancer Detection via sEVs. ACS APPLIED NANO MATERIALS 2022; 5:12506-12517. [PMID: 36185166 PMCID: PMC9513748 DOI: 10.1021/acsanm.2c01986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/12/2022] [Indexed: 05/05/2023]
Abstract
Gastric cancer (GC) is one of the most common and lethal types of cancer affecting over one million people, leading to 768,793 deaths globally in 2020 alone. The key for improving the survival rate lies in reliable screening and early diagnosis. Existing techniques including barium-meal gastric photofluorography and upper endoscopy can be costly and time-consuming and are thus impractical for population screening. We look instead for small extracellular vesicles (sEVs, currently also referred as exosomes) sized ⌀ 30-150 nm as a candidate. sEVs have attracted a significantly higher level of attention during the past decade or two because of their potentials in disease diagnoses and therapeutics. Here, we report that the composition information of the collective Raman-active bonds inside sEVs of human donors obtained by surface-enhanced Raman spectroscopy (SERS) holds the potential for non-invasive GC detection. SERS was triggered by the substrate of gold nanopyramid arrays we developed previously. A machine learning-based spectral feature analysis algorithm was developed for objectively distinguishing the cancer-derived sEVs from those of the non-cancer sub-population. sEVs from the tissue, blood, and saliva of GC patients and non-GC participants were collected (n = 15 each) and analyzed. The algorithm prediction accuracies were reportedly 90, 85, and 72%. "Leave-a-pair-of-samples out" validation was further performed to test the clinical potential. The area under the curve of each receiver operating characteristic curve was 0.96, 0.91, and 0.65 in tissue, blood, and saliva, respectively. In addition, by comparing the SERS fingerprints of individual vesicles, we provided a possible way of tracing the biogenesis pathways of patient-specific sEVs from tissue to blood to saliva. The methodology involved in this study is expected to be amenable for non-invasive detection of diseases other than GC.
Collapse
Affiliation(s)
- Zirui Liu
- Department
of Materials Science and Engineering, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Tieyi Li
- Department
of Materials Science and Engineering, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Zeyu Wang
- Department
of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| | - Jun Liu
- Department
of Materials Science and Engineering, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Shan Huang
- Department
of Materials Science and Engineering, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Byoung Hoon Min
- Department
of Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710, Korea
| | - Ji Young An
- Department
of Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710, Korea
| | - Kyoung Mee Kim
- Department
of Pathology and Translational Genomics, Sungkyunkwan University School
of Medicine, Samsung Medical Center, Seoul 135-710, Korea
| | - Sung Kim
- Department
of Surgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710, Korea
| | - Yiqing Chen
- Department
of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Huinan Liu
- Department
of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Yong Kim
- UCLA
School of Dentistry, 10833 Le Conte Ave. Box 951668, Los Angeles, California 90095-1668, United States
| | - David T.W. Wong
- UCLA
School of Dentistry, 10833 Le Conte Ave. Box 951668, Los Angeles, California 90095-1668, United States
| | - Tony Jun Huang
- Department
of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| | - Ya-Hong Xie
- Department
of Materials Science and Engineering, University
of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
50
|
Markina NE, Goryacheva IY, Markin AV. Surface-Enhanced Raman Spectroscopy for the Determination of Medical and Narcotic Drugs in Human Biofluids. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s106193482208007x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|