1
|
Aqilah Zahirah Norazmi N, Hafizah Mukhtar N, Ravindar L, Suhaily Saaidin A, Huda Abd Karim N, Hamizah Ali A, Kartini Agustar H, Ismail N, Yee Ling L, Ebihara M, Izzaty Hassan N. Exploring antimalarial potential: Conjugating organometallic moieties with organic fragments for enhanced efficacy. Bioorg Chem 2024; 149:107510. [PMID: 38833991 DOI: 10.1016/j.bioorg.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
In the search for novel ligands with efficacy against various diseases, particularly parasitic diseases, molecular hybridization of organometallic units into biologically active scaffolds has been hailed as an appealing strategy in medicinal chemistry. The conjugation to organometallic fragments can be achieved by an appropriate linker or by directly coordinating the existing drugs to a metal. The success of Ferroquine (FQ, SR97193), an effective chloroquine-ferrocene conjugate currently undergoing the patient-exploratory phase as a combination therapy with the novel triaminopyrimidine ZY-19489 for malaria, has sparked intense interest in organometallic compound drug discovery. We present the evolution of organometallic antimalarial agents over the last decade, focusing on the parent moiety's class and the type of organometallics involved. Four main organometallic antimalarial compounds have been chosen based on conjugated organic moieties: existing antimalarial drugs, other clinical drugs, hybrid drugs, and promising scaffolds of thiosemicarbazones, benzimidazoles, and chalcones, in particular. The presented insights contribute to the ongoing discourse on organometallic compound drug development for malaria diseases.
Collapse
Affiliation(s)
- Nur Aqilah Zahirah Norazmi
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nur Hafizah Mukhtar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Aimi Suhaily Saaidin
- Center of Foundation Studies, Universiti Teknologi Mara, 43800 Dengkil, Selangor, Malaysia
| | - Nurul Huda Abd Karim
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medicinal Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Masahiro Ebihara
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
2
|
Xu X, Dai F, Mao Y, Zhang K, Qin Y, Zheng J. Metallodrugs in the battle against non-small cell lung cancer: unlocking the potential for improved therapeutic outcomes. Front Pharmacol 2023; 14:1242488. [PMID: 37727388 PMCID: PMC10506097 DOI: 10.3389/fphar.2023.1242488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality worldwide. Platinum-based chemotherapy is standard-of-care but has limitations including toxicity and resistance. Metal complexes of gold, ruthenium, and other metals have emerged as promising alternatives. This review provides a comprehensive analysis of metallodrugs for NSCLC. Bibliometric analysis reveals growing interest in elucidating mechanisms, developing targeted therapies, and synergistic combinations. Classification of metallodrugs highlights platinum, gold, and ruthenium compounds, as well as emerging metals. Diverse mechanisms include DNA damage, redox modulation, and immunomodulation. Preclinical studies demonstrate cytotoxicity and antitumor effects in vitro and in vivo, providing proof-of-concept. Clinical trials indicate platinums have utility but resistance remains problematic. Non-platinum metallodrugs exhibit favorable safety but modest single agent efficacy to date. Drug delivery approaches like nanoparticles show potential to enhance therapeutic index. Future directions include optimization of metal-based complexes, elucidation of resistance mechanisms, biomarker development, and combination therapies to fully realize the promise of metallodrugs for NSCLC.
Collapse
Affiliation(s)
- Xianzhi Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Feng Dai
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yiting Mao
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Kai Zhang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Ying Qin
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Jiwei Zheng
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Ugwu DI, Conradie J. Metal complexes derived from bidentate ligands: Synthesis, catalytic and biological applications. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Sumithaa C, Ganeshpandian M. Half-Sandwich Ruthenium Arene Complexes Bearing Clinically Approved Drugs as Ligands: The Importance of Metal-Drug Synergism in Metallodrug Design. Mol Pharm 2023; 20:1453-1479. [PMID: 36802711 DOI: 10.1021/acs.molpharmaceut.2c01027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A novel strategy in metallodrug discovery today is incorporating clinically approved drugs into metal complexes as coordinating ligands. Using this strategy, various drugs have been repurposed to prepare organometallic complexes to overcome the resistance of drugs and to design promising alternatives to currently available metal-based drugs. Notably, the combination of organoruthenium moiety and clinical drug in a single molecule has been shown, in some instances, to enhance pharmacological activity and reduce toxicity in comparison to the parent drug. Thus, for the past two decades, there has been increasing interest in exploiting metal-drug synergism to develop multifunctional organoruthenium drug candidates. Herein, we summarized the recent reports of rationally designed half-sandwich Ru(arene) complexes containing different FDA-approved drugs. This review also focuses on the mode of coordination of drugs, ligand-exchange kinetics, mechanism of action, and structure-activity relationship of organoruthenated complexes containing drugs. We hope this discussion may serve to shed light on future developments in ruthenium-based metallopharmaceuticals.
Collapse
Affiliation(s)
- Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| |
Collapse
|
5
|
Abid M, Singh S, Egan TJ, Joshi MC. Structural activity relationship of metallo-aminoquines as a next generation antimalarials. Curr Top Med Chem 2022; 22:436-472. [PMID: 34986771 DOI: 10.2174/1568026622666220105103751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Apicomplexian parasite of the genus Plasmodium is the causative agent of malaria, one of the most devastating, furious and common infectious disease throughout the world. According to the latest World malaria report, there were 229 million cases of malaria in 2019 majorly consisting of children under 5 years of age. Some of known analogues viz. quinine, quinoline-containing compounds have been used for last century in the clinical treatment of malaria. Past few decades have witnessed the emergence of multi-drug resistance (MDR) strains of Plasmodium species to existing antimalarials pressing the need for new drug candidates. For the past few decades bioorganometallic approach to malaria therapy has been introduced which led to the discovery of noval metalcontaining aminoquinolines analogues viz. ferroquine (FQ or 1), Ruthenoquine (RQ or 2) and other related potent metal-analogues. It observed that some metal containing analogues (Fe-, Rh-, Ru-, Re-, Au-, Zn-, Cr-, Pd-, Sn-, Cd-, Ir-, Co-, Cu-, and Mn-aminoquines) were more potent; however, some were equally potent as Chloroquine (CQ) and 1. This is probably due to the intertion of metals in the CQ via various approaches, which might be a very attractive strategy to develop a SAR of novel metal containing antimalarials. Thus, this review aims to summarize the SAR of metal containing aminoquines towards the discovery of potent antimalarial hybrids to provide an insight for rational designs of more effective and less toxic metal containing amoniquines.
Collapse
Affiliation(s)
- Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia University, Jamia Nagar, New Delhi-110025, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Mehroli Road, New Delhi-110067, India
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town-7700, South Africa
| | - Mukesh C Joshi
- Dept. of Chemistry, Motilal Nehru College, University of Delhi, Benito Juarez marg, South Campus, New Delhi-110021. India
| |
Collapse
|
6
|
Patel D, Athar M, Jha PC. Exploring Ruthenium‐Based Organometallic Inhibitors against Plasmodium falciparum Calcium Dependent Kinase 2 (PfCDPK2): A Combined Ensemble Docking, QM/MM and Molecular Dynamics Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202101801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dhaval Patel
- Department of Biological Sciences and Biotechnology Institute of Advanced Research Gujarat 382426 India
| | - Mohd Athar
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
- Center for Chemical Biology and Therapeutics InStem Bangalore 560065 Karnataka India
| | - Prakash C. Jha
- School of Applied Material Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| |
Collapse
|
7
|
Redesigning Nature: Ruthenium Flavonoid Complexes with Antitumour, Antimicrobial and Cardioprotective Activities. Molecules 2021; 26:molecules26154544. [PMID: 34361697 PMCID: PMC8347471 DOI: 10.3390/molecules26154544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Flavonoids are a class of natural polyphenolic compounds sharing a common 2-phenyl-3,4-dihydro-2H-1-benzopyran (flavan) backbone. Typically known for their antioxidant activity, flavonoids are also being investigated regarding antitumour and antimicrobial properties. In this review, we report on the complexation of both natural and synthetic flavonoids with ruthenium as a strategy to modulate the biological activity. The ruthenoflavonoid complexes are divided into three subclasses, according to their most prominent bioactivity: antitumour, antimicrobial, and protection of the cardiovascular system. Whenever possible the activity of the ruthenoflavonoids is compared with that of commercial drugs for a critical assessment of the feasibility of using them in future clinical applications.
Collapse
|
8
|
Le TM, Huynh T, Bamou FZ, Szekeres A, Fülöp F, Szakonyi Z. Novel (+)-Neoisopulegol-Based O-Benzyl Derivatives as Antimicrobial Agents. Int J Mol Sci 2021; 22:5626. [PMID: 34073167 PMCID: PMC8198684 DOI: 10.3390/ijms22115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Discovery of novel antibacterial agents with new structures, which combat pathogens is an urgent task. In this study, a new library of (+)-neoisopulegol-based O-benzyl derivatives of aminodiols and aminotriols was designed and synthesized, and their antimicrobial activity against different bacterial and fungal strains were evaluated. The results showed that this new series of synthetic O-benzyl compounds exhibit potent antimicrobial activity. Di-O-benzyl derivatives showed high activity against Gram-positive bacteria and fungi, but moderate activity against Gram-negative bacteria. Therefore, these compounds may serve a good basis for antibacterial and antifungal drug discovery. Structure-activity relationships were also studied from the aspects of stereochemistry of the O-benzyl group on cyclohexane ring and the substituent effects on the ring system.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Thu Huynh
- Department of Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (T.H.); (A.S.)
- Department of Biotecnology, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72607, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 71351, Vietnam
| | - Fatima Zahra Bamou
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
| | - András Szekeres
- Department of Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (T.H.); (A.S.)
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| |
Collapse
|
9
|
Bokosi FRB, Beteck RM, Mbaba M, Mtshare TE, Laming D, Hoppe HC, Khanye SD. Design, synthesis and biological evaluation of mono- and bisquinoline methanamine derivatives as potential antiplasmodial agents. Bioorg Med Chem Lett 2021; 38:127855. [PMID: 33609655 DOI: 10.1016/j.bmcl.2021.127855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Several classes of antimalarial drugs are currently available, although issues of toxicity and the emergence of drug resistant malaria parasites have reduced their overall therapeutic efficiency. Quinoline based antiplasmodial drugs have unequivocally been long-established and continue to inspire the design of new antimalarial agents. Herein, a series of mono- and bisquinoline methanamine derivatives were synthesised through sequential steps; Vilsmeier-Haack, reductive amination, and nucleophilic substitution, and obtained in low to excellent yields. The resulting compounds were investigated for in vitro antiplasmodial activity against the 3D7 chloroquine-sensitive strain of Plasmodium falciparum, and compounds 40 and 59 emerged as the most promising with IC50 values of 0.23 and 0.93 µM, respectively. The most promising compounds were also evaluated in silico by molecular docking protocols for binding affinity to the {001} fast-growing face of a hemozoin crystal model.
Collapse
Affiliation(s)
- Fostino R B Bokosi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa.
| | - Richard M Beteck
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa; Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa; Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa
| | - Thanduxolo E Mtshare
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa
| | - Heinrich C Hoppe
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda 6140, South Africa
| | - Setshaba D Khanye
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa; Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
10
|
Marinho JA, Martins Guimarães DS, Glanzmann N, de Almeida Pimentel G, Karine da Costa Nunes I, Gualberto Pereira HM, Navarro M, de Pilla Varotti F, David da Silva A, Abramo C. In vitro and in vivo antiplasmodial activity of novel quinoline derivative compounds by molecular hybridization. Eur J Med Chem 2021; 215:113271. [PMID: 33596489 DOI: 10.1016/j.ejmech.2021.113271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
Chloroquine (CQ) has been the main treatment for malaria in regions where there are no resistant strains. Molecular hybridization techniques have been used as a tool in the search for new drugs and was implemented in the present study in an attempt to produce compound candidates to treat malarial infections by CQ-resistant strains. Two groups of molecules were produced from the 4-aminoquinoline ring in conjugation to hydrazones (HQ) and imines (IQ). Physicochemical and pharmacokinetic properties were found to be favorable when analyzed in silico and cytotoxicity and antiplasmodial activity were assayed in vitro and in vivo showing low cytotoxicity and selectiveness to the parasites. Candidates IQ5 and IQ6 showed important values of parasite growth inhibition in vivo on the 5th day after infection (IQ5 15 mg/kg = 72.64% and IQ6 15 mg/kg = 71.15% and 25 mg/kg = 93.7%). IQ6 also showed interaction with ferriprotoporphyrin IX similarly to CQ. The process of applying condensation reactions to yield imines is promising and capable of producing molecules with antiplasmodial activity.
Collapse
Affiliation(s)
- Juliane Aparecida Marinho
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| | - Daniel Silqueira Martins Guimarães
- Núcleo de Pesquisa Em Química Biológica, Universidade Federal de São João Del Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG, 35501-296, Brazil.
| | - Nícolas Glanzmann
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| | - Giovana de Almeida Pimentel
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| | - Izabelle Karine da Costa Nunes
- Laboratório de Apoio Ao Desenvolvimento Tecnológico, LADETEC/IQ, Universidade Federal Do Rio de Janeiro, Av. Horácio Macedo, 1281 - Polo de Química, Cidade Universitária, Ilha Do Fundão, RJ, 21941-598, Brazil.
| | - Henrique Marcelo Gualberto Pereira
- Laboratório de Apoio Ao Desenvolvimento Tecnológico, LADETEC/IQ, Universidade Federal Do Rio de Janeiro, Av. Horácio Macedo, 1281 - Polo de Química, Cidade Universitária, Ilha Do Fundão, RJ, 21941-598, Brazil.
| | - Maribel Navarro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| | - Fernando de Pilla Varotti
- Núcleo de Pesquisa Em Química Biológica, Universidade Federal de São João Del Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG, 35501-296, Brazil.
| | - Adilson David da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| | - Clarice Abramo
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP: 36036-900, Brazil.
| |
Collapse
|
11
|
de Souza Pereira C, Costa Quadros H, Magalhaes Moreira DR, Castro W, Santos De Deus Da Silva RI, Botelho Pereira Soares M, Fontinha D, Prudêncio M, Schmitz V, Dos Santos HF, Gendrot M, Fonta I, Mosnier J, Pradines B, Navarro M. A Novel Hybrid of Chloroquine and Primaquine Linked by Gold(I): Multitarget and Multiphase Antiplasmodial Agent. ChemMedChem 2020; 16:662-678. [PMID: 33231370 DOI: 10.1002/cmdc.202000653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/02/2020] [Indexed: 12/23/2022]
Abstract
Plasmodium parasites kill 435 000 people around the world every year due to unavailable vaccines, a limited arsenal of antimalarial drugs, delayed treatment, and the reduced clinical effectiveness of current practices caused by drug resistance. Therefore, there is an urgent need to discover and develop new antiplasmodial candidates. In this work, we present a novel strategy to develop a multitarget metallic hybrid antimalarial agent with possible dual efficacy in both sexual and asexual erythrocytic stages. A hybrid of antimalarial drugs (chloroquine and primaquine) linked by gold(I) was synthesized and characterized by spectroscopic and analytical techniques. The CQPQ-gold(I) hybrid molecule affects essential parasite targets, it inhibits β-hematin formation and interacts moderately with the DNA minor groove. Its interaction with PfTrxR was also examined in computational modeling studies. The CQPQ-gold(I) hybrid displayed an excellent in vitro antimalarial activity against the blood-stage of Plasmodium falciparum and liver-stage of Plasmodium berghei and efficacy in vivo against P. berghei, thereby demonstrating its multiple-stage antiplasmodial activity. This metallic hybrid is a promising chemotherapeutic agent that could act in the treatment, prevention, and transmission of malaria.
Collapse
Affiliation(s)
- Caroline de Souza Pereira
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Helenita Costa Quadros
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Av. Waldemar Falcão, 121, Candeal, Salvador, Bahia, Brasil
| | | | - William Castro
- Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Química, Carretera Panamericana, Km 11, Altos de Pipe, San Antonio de los Altos Miranda, 1020-A, Caracas, Venezuela
| | | | | | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa <, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa <, Lisboa, Portugal
| | - Vinicius Schmitz
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Hélio F Dos Santos
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Mathieu Gendrot
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Maribel Navarro
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| |
Collapse
|
12
|
Mbaba M, Golding TM, Smith GS. Recent Advances in the Biological Investigation of Organometallic Platinum-Group Metal (Ir, Ru, Rh, Os, Pd, Pt) Complexes as Antimalarial Agents. Molecules 2020; 25:molecules25225276. [PMID: 33198217 PMCID: PMC7698227 DOI: 10.3390/molecules25225276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023] Open
Abstract
In the face of the recent pandemic and emergence of infectious diseases of viral origin, research on parasitic diseases such as malaria continues to remain critical and innovative methods are required to target the rising widespread resistance that renders conventional therapies unusable. The prolific use of auxiliary metallo-fragments has augmented the search for novel drug regimens in an attempt to combat rising resistance. The development of organometallic compounds (those containing metal-carbon bonds) as antimalarial drugs has been exemplified by the clinical development of ferroquine in the nascent field of Bioorganometallic Chemistry. With their inherent physicochemical properties, organometallic complexes can modulate the discipline of chemical biology by proffering different modes of action and targeting various enzymes. With the beneficiation of platinum group metals (PGMs) in mind, this review aims to describe recent studies on the antimalarial activity of PGM-based organometallic complexes. This review does not provide an exhaustive coverage of the literature but focusses on recent advances of bioorganometallic antimalarial drug leads, including a brief mention of recent trends comprising interactions with biomolecules such as heme and intracellular catalysis. This resource can be used in parallel with complementary reviews on metal-based complexes tested against malaria.
Collapse
|
13
|
Milheiro SA, Gonçalves J, Lopes RMRM, Madureira M, Lobo L, Lopes A, Nogueira F, Fontinha D, Prudêncio M, M Piedade MF, Pinto SN, Florindo PR, Moreira R. Half-Sandwich Cyclopentadienylruthenium(II) Complexes: A New Antimalarial Chemotype. Inorg Chem 2020; 59:12722-12732. [PMID: 32838513 DOI: 10.1021/acs.inorgchem.0c01795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A small library of "half-sandwich" cyclopentadienylruthenium(II) compounds of the general formula [(η5-C5R5)Ru(PPh3)(N-N)][PF6], a scaffold hitherto absent from the toolbox of antiplasmodials, was screened for activity against the blood stage of CQ-sensitive 3D7-GFP, CQ-resistant Dd2, and artemisinin-resistant IPC5202 Plasmodium falciparum strains and the liver stage of Plasmodium berghei. The best-performing compounds displayed dual-stage activity, with single-digit nanomolar IC50 values against blood-stage malaria parasites, nanomolar activity against liver-stage parasites, and residual cytotoxicity against HepG2 and Huh7 mammalian cells. The parasitic absorption/distribution of 7-nitrobenzoxadiazole-appended fluorescent compounds Ru4 and Ru5 was investigated by confocal fluorescence microscopy, revealing parasite-selective absorption in infected erythrocytes and nuclear accumulation of both compounds. The lead compound Ru2 impaired asexual parasite differentiation, exhibiting fast parasiticidal activity against both ring and trophozoite stages of a synchronized culture of the P. falciparum 3D7 strain. These results point to cyclopentadienylruthenium(II) complexes as a highly promising chemotype for the development of dual-stage antiplasmodials.
Collapse
Affiliation(s)
- Sofia A Milheiro
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana Gonçalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ricardo M R M Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida Madureira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Lis Lobo
- Department of Medical Parasitology, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Andreia Lopes
- Department of Medical Parasitology, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Fátima Nogueira
- Department of Medical Parasitology, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - M Fátima M Piedade
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro R Florindo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
14
|
Štarha P, Hošek J, Trávníček Z, Dvořák Z. Cytotoxic dimeric half‐sandwich Ru(II), Os(II) and Ir(III) complexes containing the 4,4′‐biphenyl‐based bridging ligands. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pavel Štarha
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University in Olomouc Šlechtitelů 27 Olomouc 783 71 Czech Republic
| | - Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University in Olomouc Šlechtitelů 27 Olomouc 783 71 Czech Republic
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University in Olomouc Šlechtitelů 27 Olomouc 783 71 Czech Republic
| | - Zdeněk Dvořák
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University in Olomouc Šlechtitelů 27 Olomouc 783 71 Czech Republic
- Department of Cell Biology and Genetics, Faculty of SciencePalacký University in Olomouc Šlechtitelů 27 Olomouc 783 71 Czech Republic
| |
Collapse
|
15
|
Gozzi M, Murganic B, Drača D, Popp J, Coburger P, Maksimović‐Ivanić D, Mijatović S, Hey‐Hawkins E. Quinoline-Conjugated Ruthenacarboranes: Toward Hybrid Drugs with a Dual Mode of Action. ChemMedChem 2019; 14:2061-2074. [PMID: 31675152 PMCID: PMC6973020 DOI: 10.1002/cmdc.201900349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/19/2019] [Indexed: 12/26/2022]
Abstract
The role of autophagy in cancer is often complex, ranging from tumor-promoting to -suppressing effects. In this study, two novel hybrid molecules were designed, containing a ruthenacarborane fragment conjugated with a known modulator of autophagy, namely a quinoline derivative. The complex closo-[3-(η6 -p-cymene)-1-(quinolin-8-yl-acetate)-3,1,2-RuC2 B9 H10 ] (4) showed a dual mode of action against the LN229 (human glioblastoma) cell line, where it inhibited tumor-promoting autophagy, and strongly inhibited cell proliferation, de facto blocking cellular division. These results, together with the tendency to spontaneously form nanoparticles in aqueous solution, make complex 4 a very promising drug candidate for further studies in vivo, for the treatment of autophagy-prone glioblastomas.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Blagoje Murganic
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Dijana Drača
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - John Popp
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Peter Coburger
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Danijela Maksimović‐Ivanić
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Sanja Mijatović
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
16
|
Ruthenium arene complexes with mono-carbonyl analogues of curcumin as pendant or bridging ligands: Synthesis, anti-cancer activity and interaction with quadruplex DNA. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Honorato J, Colina-Vegas L, Correa RS, Guedes APM, Miyata M, Pavan FR, Ellena J, Batista AA. Esterification of the free carboxylic group from the lutidinic acid ligand as a tool to improve the cytotoxicity of Ru(ii) complexes. Inorg Chem Front 2019. [DOI: 10.1039/c8qi00941d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The esterification of the free carboxyl group in ruthenium complexes improves the complex interactions with biomolecules, lipophilicity, and cellular uptake, making them more selective against tumor cells than cisplatin.
Collapse
Affiliation(s)
- João Honorato
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- Brazil
| | - Legna Colina-Vegas
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- Brazil
| | - Rodrigo S. Correa
- Departamento de Química
- ICEB
- Universidade Federal de Ouro Preto – UFOP
- Ouro Preto MG
- Brazil
| | - Adriana P. M. Guedes
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- Brazil
| | - Marcelo Miyata
- Faculdade de Ciências Farmacêuticas
- Universidade Estadual Paulista – UNESP
- Araraquara
- Brazil
| | - Fernando R. Pavan
- Faculdade de Ciências Farmacêuticas
- Universidade Estadual Paulista – UNESP
- Araraquara
- Brazil
| | - Javier Ellena
- Instituto de Física de São Carlos
- Universidade de São Paulo – USP
- São Carlos
- Brazil
| | - Alzir A. Batista
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- Brazil
- Instituto de Química
| |
Collapse
|
18
|
Zanon VS, Lima JA, Cuya T, Lima FRS, da Fonseca ACC, Gomez JG, Ribeiro RR, França TCC, Vargas MD. In-vitro evaluation studies of 7-chloro-4-aminoquinoline Schiff bases and their copper complexes as cholinesterase inhibitors. J Inorg Biochem 2018; 191:183-193. [PMID: 30530179 DOI: 10.1016/j.jinorgbio.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common age-related neurodegenerative disorders. Aggregation of amyloid-β peptide into extracellular plaques with incorporation of metal ions, such as Cu2+, and reduction of the neurotransmitter acetylcholine levels are among the factors associated to the AD brain. Hence, a series of 7-chloro-4-aminoquinoline Schiff bases (HLa-e) were synthesized and their cytotoxicity and anti-cholinesterase activity, assessed for Alzheimer's disease. The intrinsic relationship between Cu2+ and the amyloidogenic plaques encouraged us to investigate the chelating ability of HLa-e. Dimeric tetracationic compounds, [Cu2(NHLa-e)4]Cl4, containing quinoline protonated ligands were isolated from the reactions with CuCl2·2H2O and fully characterized in the solid state, including an X ray diffraction study, whereas EPR data showed that the complexes exist as monomers in DMSO solution. The inhibitory activity of all compounds was evaluated by Ellman's spectrophotometric method in acetylcholinesterase (AChE) from Electrophorus electricus and butyrylcholinesterase (BChE) from equine serum. HLa-e and [Cu(NHLd)2]Cl2 were selective for AChE (IC50 = 4.61-9.31 μM) and were not neurotoxic in primary brain cultures. Docking and molecular dynamics studies of HLa-e inside AChE were performed and the results suggested that these compounds are able to bind inside AChE similarly to other AChE inhibitors, such as donepezil. Studies of the affinity of HLd for Cu2+ in DMSO/HEPES at pH 6.6 and pH 7.4 in μM concentrations showed formation of analogous 1:2 Cu2+/ligand complexes, which may suggest that in the AD-affected brain HLd may scavenge Cu2+ and the complex, also inhibit AChE.
Collapse
Affiliation(s)
- Vanessa S Zanon
- Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-141 Niterói, RJ, Brazil
| | - Josélia A Lima
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, RJ, Brazil; Laboratório de Modelagem Aplicada a Defesa Química e Biológica (LMDQB), Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ, Brazil
| | - Teobaldo Cuya
- Faculdade de Tecnologia, Departamento de Matemática, Física e Computação, Universidade do Estado do Rio de Janeiro, 27537-000 Resende, RJ, Brazil
| | - Flavia R S Lima
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Anna C C da Fonseca
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Javier G Gomez
- Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-141 Niterói, RJ, Brazil
| | - Ronny R Ribeiro
- Departamento de Química, Universidade Federal do Paraná, CP 19081, 81531-990 Curitiba, PR, Brazil
| | - Tanos C C França
- Laboratório de Modelagem Aplicada a Defesa Química e Biológica (LMDQB), Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ, Brazil
| | - Maria D Vargas
- Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-141 Niterói, RJ, Brazil.
| |
Collapse
|
19
|
Novel multi-target compounds in the quest for new chemotherapies against Alzheimer’s disease: An experimental and theoretical study. Bioorg Med Chem 2018; 26:4823-4840. [DOI: 10.1016/j.bmc.2018.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 01/05/2023]
|
20
|
Abstract
Ruthenium is seldom mentioned in microbiology texts, due to the fact that this metal has no known, essential roles in biological systems, nor is it generally considered toxic. Since the fortuitous discovery of cisplatin, first as an antimicrobial agent and then later employed widely as an anticancer agent, complexes of other platinum group metals, such as ruthenium, have attracted interest for their medicinal properties. Here, we review at length how ruthenium complexes have been investigated as potential antimicrobial, antiparasitic and chemotherapeutic agents, in addition to their long and well-established roles as biological stains and inhibitors of calcium channels. Ruthenium complexes are also employed in a surprising number of biotechnological roles. It is in the employment of ruthenium complexes as antimicrobial agents and alternatives or adjuvants to more traditional antibiotics, that we expect to see the most striking developments in the future. Such novel contributions from organometallic chemistry are undoubtedly sorely needed to address the antimicrobial resistance crisis and the slow appearance on the market of new antibiotics.
Collapse
|
21
|
Synthesis and Assessment of Antibacterial Activities of Ruthenium(III) Mixed Ligand Complexes Containing 1,10-Phenanthroline and Guanide. Bioinorg Chem Appl 2016; 2016:3607924. [PMID: 27833473 PMCID: PMC5090073 DOI: 10.1155/2016/3607924] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022] Open
Abstract
In this work, two complexes of ruthenium(III) ([Ru(phen)2Cl2]Cl·2H2O and [Ru(phen)2(G)Cl]2Cl·H2O) were synthesized from 1,10-phenanthroline alone as well as from both 1,10-phenanthroline and guanide. The synthesis was checked using halide test, conductance measurement, and spectroscopic (ICP-OES, FTIR, and UV/Vis) analysis. Their in vitro antibacterial activities were also investigated on two Gram-positive (Staphylococcus aureus (S. aureus) and methicillin resistant Staphylococcus aureus (MRSA)) and two Gram-negative (Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)) bacteria. These complexes showed wide-range better activities than the commercially available controls (Chloramphenicol and Ciprofloxacin) against even the most drug resistant K. pneumoniae. [Ru(phen)2(G)Cl]2Cl·H2O inhibited S. aureus, MRSA, E. coli, and K. pneumoniae by 17.5%, 27.4%, 16%, and 52%, respectively, better than Chloramphenicol. It also inhibited these pathogens by 5.9%, 5.1%, 2.3%, and 17.2%, respectively, better than Ciprofloxacin. Similarly, [Ru(Phen)2(Cl)2]Cl·2H2O inhibited these pathogens by 11%, 8.7%, 0.1%, and 31.2%, respectively, better than Chloramphenicol. Therefore, after in vivo cytotoxicity investigations, these compounds can be considered as potential antibiotic drugs.
Collapse
|
22
|
Chloroquine-containing organoruthenium complexes are fast-acting multistage antimalarial agents. Parasitology 2016; 143:1543-56. [PMID: 27439976 DOI: 10.1017/s0031182016001153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report the pharmacological activity of organoruthenium complexes containing chloroquine (CQ) as a chelating ligand. The complexes displayed intraerythrocytic activity against CQ-sensitive 3D7 and CQ-resistant W2 strains of Plasmodium falciparum, with potency and selectivity indexes similar to those of CQ. Complexes displayed activity against all intraerythrocytic stages, but moderate activity against Plasmodium berghei liver stages. However, unlike CQ, organoruthenium complexes impaired gametocyte viability and exhibited fast parasiticidal activity against trophozoites for P. falciparum. This functional property results from the ability of complexes to quickly induce oxidative stress. The parasitaemia of P. berghei-infected mice was reduced by treatment with the complex. Our findings demonstrated that using chloroquine for the synthesis of organoruthenium complexes retains potency and selectivity while leading to an increase in the spectrum of action and parasite killing rate relative to CQ.
Collapse
|
23
|
Păunescu E, McArthur S, Soudani M, Scopelliti R, Dyson PJ. Nonsteroidal Anti-inflammatory—Organometallic Anticancer Compounds. Inorg Chem 2016; 55:1788-808. [PMID: 26824462 DOI: 10.1021/acs.inorgchem.5b02690] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Emilia Păunescu
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sarah McArthur
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mylène Soudani
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Ekengard E, Kumar K, Fogeron T, de Kock C, Smith PJ, Haukka M, Monari M, Nordlander E. Pentamethylcyclopentadienyl-rhodium and iridium complexes containing (N^N and N^O) bound chloroquine analogue ligands: synthesis, characterization and antimalarial properties. Dalton Trans 2016; 45:3905-17. [DOI: 10.1039/c5dt03739e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodium and iridium cyclopentadienyl complexes have been examined for anti-malarial activity. Three rhodium complexes are especially active.
Collapse
Affiliation(s)
- Erik Ekengard
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Kamlesh Kumar
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Thibault Fogeron
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Carmen de Kock
- Division of Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- Observatory 7925
- South Africa
| | - Peter J. Smith
- Division of Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- Observatory 7925
- South Africa
| | - Matti Haukka
- Department of Chemistry
- University of Jyväskylä
- Jyväskylä
- Finland
| | - Magda Monari
- Dipartimento di Chimica “G. Ciamician”
- Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| |
Collapse
|
25
|
Pitchaimani J, Charan Raja MR, Sujatha S, Kar Mahapatra S, Moon D, Anthony SP, Madhu V. Arene ruthenium(ii) complexes with chalcone, aminoantipyrine and aminopyrimidine based ligands: synthesis, structure and preliminary evaluation of anti-leukemia activity. RSC Adv 2016. [DOI: 10.1039/c6ra18504e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of arene ruthenium(ii) complexes with N-monodentate (AAP) and N,O- and N,N-bidentate chelating ligands (AAPS, ADABS, AAPPA and P2P) have been synthesized and evaluated for preliminary antileukemia activity against K562 (Human chronic myeloid leukemia cell line).
Collapse
Affiliation(s)
| | - Mamilla R. Charan Raja
- Department of Biotechnology
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | - Srinivasan Sujatha
- Department of Biotechnology
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | - Santanu Kar Mahapatra
- Department of Biotechnology
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | - Dohyun Moon
- Beamline Department
- Pohang Accelerator Laboratory
- Pohang
- Korea
| | | | - Vedichi Madhu
- Department of Chemistry
- Karunya University
- Coimbatore-641 114
- India
| |
Collapse
|
26
|
Souza NBD, Aguiar ACC, Oliveira ACD, Top S, Pigeon P, Jaouen G, Goulart MOF, Krettli AU. Antiplasmodial activity of iron(II) and ruthenium(II) organometallic complexes against Plasmodium falciparum blood parasites. Mem Inst Oswaldo Cruz 2015; 110:981-8. [PMID: 26602875 PMCID: PMC4708017 DOI: 10.1590/0074-02760150163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022] Open
Abstract
This work reports the in vitro activity against Plasmodium
falciparumblood forms (W2 clone, chloroquine-resistant) of
tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl
(ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human
hepatoma cells. Surprisingly with these series, results indicate that the biological
activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like
compounds. The synthesis of a new metal-based compound is also described. It was
shown, for the first time, that ruthenocifens are good antiplasmodial prototypes.
Further studies will be conducted aiming at a better understanding of their mechanism
of action and at obtaining new compounds with better therapeutic profile.
Collapse
Affiliation(s)
| | | | | | - Siden Top
- Université Pierre-et-Marie-Curie, Sorbonne Universités, Paris, France
| | - Pascal Pigeon
- Université Pierre-et-Marie-Curie, Sorbonne Universités, Paris, France
| | - Gérard Jaouen
- Université Pierre-et-Marie-Curie, Sorbonne Universités, Paris, France
| | | | | |
Collapse
|
27
|
Synthesis of New 4-Aminoquinolines and Evaluation of Their In Vitro Activity against Chloroquine-Sensitive and Chloroquine-Resistant Plasmodium falciparum. PLoS One 2015; 10:e0140878. [PMID: 26473363 PMCID: PMC4608832 DOI: 10.1371/journal.pone.0140878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
The efficacy of chloroquine, once the drug of choice in the fight against Plasmodium falciparum, is now severely limited due to widespread resistance. Amodiaquine is one of the most potent antimalarial 4-aminoquinolines known and remains effective against chloroquine-resistant parasites, but toxicity issues linked to a quinone-imine metabolite limit its clinical use. In search of new compounds able to retain the antimalarial activity of amodiaquine while circumventing quinone-imine metabolite toxicity, we have synthesized five 4-aminoquinolines that feature rings lacking hydroxyl groups in the side chain of the molecules and are thus incapable of generating toxic quinone-imines. The new compounds displayed high in vitro potency (low nanomolar IC50), markedly superior to chloroquine and comparable to amodiaquine, against chloroquine-sensitive and chloroquine-resistant strains of P. falciparum, accompanied by low toxicity to L6 rat fibroblasts and MRC5 human lung cells, and metabolic stability comparable or higher than that of amodiaquine. Computational studies indicate a unique mode of binding of compound 4 to heme through the HOMO located on a biphenyl moeity, which may partly explain the high antiplasmodial activity observed for this compound.
Collapse
|
28
|
Adams M, de Kock C, Smith PJ, Land KM, Liu N, Hopper M, Hsiao A, Burgoyne AR, Stringer T, Meyer M, Wiesner L, Chibale K, Smith GS. Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes. Dalton Trans 2015; 44:2456-68. [PMID: 25559246 DOI: 10.1039/c4dt03234a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A series of ferrocenyl- and aryl-functionalised organosilane thiosemicarbazone compounds was obtained via a nucleophilic substitution reaction with an amine-terminated organosilane. The thiosemicarbazone (TSC) ligands were further reacted with either a ruthenium dimer [(η(6-i)PrC6H4Me)Ru(μ-Cl)Cl]2 or a rhodium dimer [(Cp*)Rh(μ-Cl)Cl]2 to yield a series of cationic mono- and binuclear complexes. The thiosemicarbazone ligands, as well as their metal complexes, were characterised using NMR and IR spectroscopy, and mass spectrometry. The molecular structure of the binuclear ruthenium(ii) complex was determined by single-crystal X-ray diffraction analysis. The thiosemicarbazones and their complexes were evaluated for their in vitro antiplasmodial activities against the chloroquine-sensitive (NF54) and chloroquine-resistant (Dd2) Plasmodium falciparum strains, displaying activities in the low micromolar range. Selected compounds were screened for potential β-haematin inhibition activity, and it was found that two Rh(iii) complexes exhibited moderate to good inhibition. Furthermore, the compounds were screened for their antitrichomonal activities against the G3 Trichomonas vaginalis strain, revealing a higher percentage of growth inhibition for the ruthenium and rhodium complexes over their corresponding ligand.
Collapse
Affiliation(s)
- Muneebah Adams
- Department of Chemistry, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ghebreyessus K, Peralta A, Katdare M, Prabhakaran K, Paranawithana S. Ruthenium(II)-arene complexes with naphthalimide-tagged N,O- and N,N-chelating ligands: Synthesis and biological evaluation. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Nikolić S, Opsenica DM, Filipović V, Dojčinović B, Aranđelović S, Radulović S, Grgurić-Šipka S. Strong in Vitro Cytotoxic Potential of New Ruthenium–Cymene Complexes. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stefan Nikolić
- Faculty
of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dejan M. Opsenica
- Institute
of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Vuk Filipović
- Institute
of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Biljana Dojčinović
- Institute
of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Sandra Aranđelović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Sanja Grgurić-Šipka
- Faculty
of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
31
|
Rodríguez Arce E, Sarniguet C, Moraes TS, Vieites M, Tomaz AI, Medeiros A, Comini MA, Varela J, Cerecetto H, González M, Marques F, García MH, Otero L, Gambino D. A new ruthenium cyclopentadienyl azole compound with activity on tumor cell lines and trypanosomatid parasites. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1062480] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Esteban Rodríguez Arce
- Facultad de Química, Departamento Estrella Campos, Cátedra de Química Inorgánica, Universidad de la República, Montevideo, Uruguay
| | - Cynthia Sarniguet
- Facultad de Química, Departamento Estrella Campos, Cátedra de Química Inorgánica, Universidad de la República, Montevideo, Uruguay
| | - Tania S. Moraes
- Faculdade de Ciências da, Universidade de Lisboa, CCMM, Lisbon, Portugal
| | - Marisol Vieites
- Facultad de Química, Departamento Estrella Campos, Cátedra de Química Inorgánica, Universidad de la República, Montevideo, Uruguay
| | - A. Isabel Tomaz
- Faculdade de Ciências da, Universidade de Lisboa, CCMM, Lisbon, Portugal
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo A. Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Javier Varela
- Facultad de Ciencias, Grupo de Química Medicinal, Laboratorio de Química Orgánica, Universidad de la República, Montevideo, Uruguay
| | - Hugo Cerecetto
- Facultad de Ciencias, Grupo de Química Medicinal, Laboratorio de Química Orgánica, Universidad de la República, Montevideo, Uruguay
| | - Mercedes González
- Facultad de Ciencias, Grupo de Química Medicinal, Laboratorio de Química Orgánica, Universidad de la República, Montevideo, Uruguay
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M. Helena García
- Faculdade de Ciências da, Universidade de Lisboa, CCMM, Lisbon, Portugal
| | - Lucía Otero
- Facultad de Química, Departamento Estrella Campos, Cátedra de Química Inorgánica, Universidad de la República, Montevideo, Uruguay
| | - Dinorah Gambino
- Facultad de Química, Departamento Estrella Campos, Cátedra de Química Inorgánica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
32
|
Fernández M, Arce ER, Sarniguet C, Morais TS, Tomaz AI, Azar CO, Figueroa R, Diego Maya J, Medeiros A, Comini M, Helena Garcia M, Otero L, Gambino D. Novel ruthenium(II) cyclopentadienyl thiosemicarbazone compounds with antiproliferative activity on pathogenic trypanosomatid parasites. J Inorg Biochem 2015; 153:306-314. [PMID: 26275470 DOI: 10.1016/j.jinorgbio.2015.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Searching for new prospective antitrypanosomal agents, three novel Ru(II)-cyclopentadienyl compounds, [Ru(η(5)-C5H5)(PPh3)L], with HL=bioactive 5-nitrofuryl containing thiosemicarbazones were synthesized and characterized in the solid state and in solution. The compounds were evaluated in vitro on the blood circulating trypomastigote form of Trypanosoma cruzi (Dm28c strain), the infective form of Trypanosoma brucei brucei (strain 427) and on J774 murine macrophages and human-derived EA.hy926 endothelial cells. The compounds were active against both parasites with IC50 values in the micromolar or submicromolar range. Interestingly, they are much more active on T. cruzi than previously developed Ru(II) classical and organometallic compounds with the same bioactive ligands. The new compounds showed moderate to very good selectivity towards the parasites in respect to mammalian cells. The global results point at [RuCp(PPh3)L2] (L2=N-methyl derivative of 5-nitrofuryl containing thiosemicarbazone and Cp=cyclopentadienyl) as the most promising compound for further developments (IC50T. cruzi=0.41μM; IC50T. brucei brucei=3.5μM). Moreover, this compound shows excellent selectivity towards T. cruzi (SI>49) and good selectivity towards T. brucei brucei (SI>6). In order to get insight into the mechanism of antiparasitic action, the intracellular free radical production capacity of the new compounds was assessed by ESR. DMPO (5,5-dimethyl-1-pirroline-N-oxide) spin adducts related to the bioreduction of the complexes and to redox cycling processes were characterized. In addition, DNA competitive binding studies with ethidium bromide by fluorescence measurements showed that the compounds interact with this biomolecule.
Collapse
Affiliation(s)
- Mariana Fernández
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Esteban Rodríguez Arce
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cynthia Sarniguet
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Tânia S Morais
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Claudio Olea Azar
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Roberto Figueroa
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - J Diego Maya
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Medeiros
- Institut Pasteur de Montevideo, Group Redox Biology of Trypanosomes, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Comini
- Institut Pasteur de Montevideo, Group Redox Biology of Trypanosomes, Montevideo, Uruguay
| | - M Helena Garcia
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Lucía Otero
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
33
|
Momcilovic M, Eichhorn T, Blazevski J, Schmidt H, Kaluđerović GN, Stosic-Grujicic S. In vitro effects of binuclear (η (6)-p-cymene)ruthenium(II) complex containing bridging bis(nicotinate)-polyethylene glycol ester ligand on differentiation pathways of murine Th lymphocytes activated by T cell mitogen. J Biol Inorg Chem 2015; 20:575-83. [PMID: 25827592 DOI: 10.1007/s00775-015-1242-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/19/2015] [Indexed: 12/24/2022]
Abstract
T cell differentiation into distinct T helper (Th) subpopulations is crucial in governing acquired immune responses as well as some inflammatory and autoimmune disorders. This study investigated potential of the novel neutral binuclear ruthenium(II) complexes 1-8 with general formula [{RuCl2(η(6)-p-cym)}2μ-(N(∩)N)] (N(∩)N = bis(nicotinate)- and bis(iso-nicotinate)-polyethylene glycol esters; (3-py)COO(CH2CH2O) n CO(3-py) and (4-py)COO(CH2CH2O) n CO(4-py); n = 1-4), as well as [RuCl2(η(6)-p-cym)(nic)] (R1, nic = nicotinate) and [RuCl2(η(6)-p-cym)(inic)] (R2, inic = isonicotinate) as an immunomodulatory agents capable to direct Th cell differentiation. From all investigated complexes, [{RuCl2(η(6)-p-cym)}2μ-{(3-py)COO(CH2CH2O)4CO(3-py)}] (4) was selected for further study because it did not affect splenocyte viability (in concentration up to 50 μM), but significantly reduced secretion of representative Th1 cytokine, IFN-γ induced by T cell mitogen. Besides IFN-γ, 4 inhibited dose dependently expression and production of representative Th17 cytokine, IL-17, in these cells. Otherwise, the production of anti-inflammatory cytokines IL-4 and IL-10 was upregulated. Also, 4 significantly increased CD4(+)CD25(+)FoxP3(+) Treg cell frequency in the activated splenocytes. Moreover, ConA-induced expression of Th1 transcription factors, T-bet and STAT1, as well as of Th17-related protein STAT3 was attenuated upon exposure to 4, while the expression of Th2-related transcription factor GATA3 remained stable. In conclusion, ruthenium(II) complex 4 modulates immune system cell functions in vitro by inhibiting T cell differentiation towards pathogenic Th1/Th17 phenotype and inducing a regulatory phenotype characterized by IL-10 and IL-4 production, which may provide novel therapeutic opportunities for immune-inflammatory and/or autoimmune disorders.
Collapse
Affiliation(s)
- Miljana Momcilovic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11060, Belgrade, Serbia,
| | | | | | | | | | | |
Collapse
|
34
|
Ekengard E, Glans L, Cassells I, Fogeron T, Govender P, Stringer T, Chellan P, Lisensky GC, Hersh WH, Doverbratt I, Lidin S, de Kock C, Smith PJ, Smith GS, Nordlander E. Antimalarial activity of ruthenium(ii) and osmium(ii) arene complexes with mono- and bidentate chloroquine analogue ligands. Dalton Trans 2015; 44:19314-29. [DOI: 10.1039/c5dt02410b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thirteen new ruthenium and osmium half-sandwich complexes with chloroquine analogue ligands have been synthesized and evaluated for anti-malarial properties.
Collapse
|
35
|
Stringer T, Taylor D, Guzgay H, Shokar A, Au A, Smith PJ, Hendricks DT, Land KM, Egan TJ, Smith GS. Polyamine quinoline rhodium complexes: synthesis and pharmacological evaluation as antiparasitic agents against Plasmodium falciparum and Trichomonas vaginalis. Dalton Trans 2015. [DOI: 10.1039/c5dt02378e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salicylaldimine ligands and their corresponding Rh(i) complexes were prepared and evaluated as antiparasitic agents.
Collapse
Affiliation(s)
- Tameryn Stringer
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
| | - Dale Taylor
- Division of Clinical Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- South Africa
| | - Hajira Guzgay
- Division of Medical Biochemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
| | - Ajit Shokar
- Department of Biological Sciences
- University of the Pacific
- Stockton
- USA
| | - Aaron Au
- Department of Biological Sciences
- University of the Pacific
- Stockton
- USA
| | - Peter J. Smith
- Division of Clinical Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- South Africa
| | - Denver T. Hendricks
- Division of Medical Biochemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
| | - Kirkwood M. Land
- Department of Biological Sciences
- University of the Pacific
- Stockton
- USA
| | - Timothy J. Egan
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
| | - Gregory S. Smith
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
| |
Collapse
|
36
|
Metal-chloroquine derivatives as possible anti-malarial drugs: evaluation of anti-malarial activity and mode of action. Malar J 2014; 13:471. [PMID: 25470995 PMCID: PMC4289335 DOI: 10.1186/1475-2875-13-471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/29/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Malaria still has significant impacts on the world; particularly in Africa, South America and Asia where spread over several millions of people and is one of the major causes of death. When chloroquine diphosphate (CQDP) lost its efficiency as a first-line anti-malarial drug, this was a major setback in the effective control of malaria. Currently, malaria is treated with a combination of two or more drugs with different modes of action to provide an adequate cure rate and delay the development of resistance. Clearly, a new effective and non-toxic anti-malarial drug is urgently needed. METHODS All metal-chloroquine (CQ) and metal-CQDP complexes were synthesized under N(2) using Schlenk techniques. Their interactions with haematin and the inhibition of β-haematin formation were examined, in both aqueous medium and near water/n-octanol interfaces at pH 5. The anti-malarial activities of these metal- CQ and metal-CQDP complexes were evaluated in vitro against two strains, the CQ-susceptible strain (CQS) 3D7 and the CQ-resistant strain (CQR) W2. RESULTS The previously synthesized Au(CQ)(Cl) (1), Au(CQ)(TaTg) (2), Pt(CQDP)(2)Cl(2) (3), Pt(CQDP)(2)I(2) (4), Pd(CQ)(2)Cl(2) (5) and the new one Pd(CQDP)(2)I(2) (6) showed better anti-malarial activity than CQ, against the CQS strain; moreover, complexes 2, 3 and 4 were very active against CQR strain. These complexes (1-6) interacted with haem and inhibited β-haematin formation both in aqueous medium and near water/n-octanol interfaces at pH 5 to a greater extent than chloroquine diphosphate (CQDP) and other known metal-based anti-malarial agents. CONCLUSIONS The high anti-malarial activity displayed for these metal-CQ and metal-CQDP complexes (1-6) could be attributable to their effective interaction with haem and the inhibition of β-haematin formation in both aqueous medium and near water/n-octanol interfaces at pH 5.
Collapse
|
37
|
Singh AK, Pandey DS, Xu Q, Braunstein P. Recent advances in supramolecular and biological aspects of arene ruthenium(II) complexes. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.09.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Unsolvated ruthenium(II) benzene dichloride: The beta polymorph. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Kljun J, Scott AJ, Lanišnik Rižner T, Keiser J, Turel I. Synthesis and Biological Evaluation of Organoruthenium Complexes with Azole Antifungal Agents. First Crystal Structure of a Tioconazole Metal Complex. Organometallics 2014. [DOI: 10.1021/om401096y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jakob Kljun
- Faculty
of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva
5, SI-1000 Ljubljana, Slovenia
- EN→FIST
Centre of Excellence, Dunajska 156, SI-1000 Ljubljana, Slovenia
| | - Antony James Scott
- The University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, U.K
| | - Tea Lanišnik Rižner
- Institute
of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov
trg 2, SI-1000 Ljubljana, Slovenia
| | - Jennifer Keiser
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, CH−4002 Basel, Switzerland
- University of Basel, P.O. Box, CH−4003 Basel, Switzerland
| | - Iztok Turel
- Faculty
of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva
5, SI-1000 Ljubljana, Slovenia
- EN→FIST
Centre of Excellence, Dunajska 156, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
Nazarov AA, Hartinger CG, Dyson PJ. Opening the lid on piano-stool complexes: An account of ruthenium(II)–arene complexes with medicinal applications. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.09.016] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Chellan P, Land KM, Shokar A, Au A, An SH, Taylor D, Smith PJ, Chibale K, Smith GS. Di- and Trinuclear Ruthenium-, Rhodium-, and Iridium-Functionalized Pyridyl Aromatic Ethers: A New Class of Antiparasitic Agents. Organometallics 2013. [DOI: 10.1021/om400493k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Prinessa Chellan
- Department
of Chemistry, University of Cape Town,
Private Bag, Rondebosch 7701, South Africa
| | - Kirkwood M. Land
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Ajit Shokar
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Aaron Au
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Seung Hwan An
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Dale Taylor
- Division of Pharmacology, Department
of Medicine, University of Cape Town, K45,
OMB, Groote Schuur Hospital, Observatory, 7925, South Africa
| | - Peter J. Smith
- Division of Pharmacology, Department
of Medicine, University of Cape Town, K45,
OMB, Groote Schuur Hospital, Observatory, 7925, South Africa
| | - Kelly Chibale
- Department
of Chemistry, University of Cape Town,
Private Bag, Rondebosch 7701, South Africa
- Institute of Infectious Disease and
Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gregory S. Smith
- Department
of Chemistry, University of Cape Town,
Private Bag, Rondebosch 7701, South Africa
| |
Collapse
|
42
|
Dubar F, Slomianny C, Khalife J, Dive D, Kalamou H, Guérardel Y, Grellier P, Biot C. The Ferroquine Antimalarial Conundrum: Redox Activation and Reinvasion Inhibition. Angew Chem Int Ed Engl 2013; 52:7690-3. [DOI: 10.1002/anie.201303690] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 11/08/2022]
|
43
|
Dubar F, Slomianny C, Khalife J, Dive D, Kalamou H, Guérardel Y, Grellier P, Biot C. The Ferroquine Antimalarial Conundrum: Redox Activation and Reinvasion Inhibition. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 487] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Ru(II)–arene complexes with N-substituted 3,4-dihydroquinazoline ligands and catalytic activity for transfer hydrogenation reaction. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Gupta RK, Pandey R, Sharma G, Prasad R, Koch B, Srikrishna S, Li PZ, Xu Q, Pandey DS. DNA Binding and Anti-Cancer Activity of Redox-Active Heteroleptic Piano-Stool Ru(II), Rh(III), and Ir(III) Complexes Containing 4-(2-Methoxypyridyl)phenyldipyrromethene. Inorg Chem 2013; 52:3687-98. [DOI: 10.1021/ic302196v] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | | | | | - Pei-Zhou Li
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka
563-8577, Japan
| | - Qiang Xu
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka
563-8577, Japan
| | | |
Collapse
|
47
|
Li Y, de Kock C, Smith PJ, Guzgay H, Hendricks DT, Naran K, Mizrahi V, Warner DF, Chibale K, Smith GS. Synthesis, Characterization, and Pharmacological Evaluation of Silicon-Containing Aminoquinoline Organometallic Complexes As Antiplasmodial, Antitumor, and Antimycobacterial Agents. Organometallics 2012. [DOI: 10.1021/om300945c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yiqun Li
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Carmen de Kock
- Division of Pharmacology, Department
of Medicine, University of Cape Town, K45,
OMB, Groote Schuur Hospital, Observatory 7925, South Africa
| | - Peter J. Smith
- Division of Pharmacology, Department
of Medicine, University of Cape Town, K45,
OMB, Groote Schuur Hospital, Observatory 7925, South Africa
| | - Hajira Guzgay
- Division of Medical Biochemistry, Department
of Clinical and Laboratory Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Denver T. Hendricks
- Division of Medical Biochemistry, Department
of Clinical and Laboratory Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Krupa Naran
- MRC/NHLS/UCT Molecular Mycobacteriology Research
Unit, DST/NRF Centre of Excellence for Biomedical TB Research, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research
Unit, DST/NRF Centre of Excellence for Biomedical TB Research, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Digby F. Warner
- MRC/NHLS/UCT Molecular Mycobacteriology Research
Unit, DST/NRF Centre of Excellence for Biomedical TB Research, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gregory S. Smith
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
48
|
Gambino D, Otero L. Perspectives on what ruthenium-based compounds could offer in the development of potential antiparasitic drugs. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.05.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Platinum(II) and gold(I) complexes based on 1,1′-bis(diphenylphosphino)metallocene derivatives: Synthesis, characterization and biological activity of the gold complexes. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Anchuri SS, Thota S, Bongoni RN, Yerra R, Reddy RN, Dhulipala S. Antimicrobial and Antimalarial Activity of Novel Synthetic Mononuclear Ruthenium(II) Compounds. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201200301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|