1
|
Song D, Liu Y, Husari A, Kotz‐Helmer F, Tomakidi P, Rapp BE, Rühe J. Generation of Tailored Multi-Material Microstructures Through One-Step Direct Laser Writing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405586. [PMID: 39235375 PMCID: PMC11600689 DOI: 10.1002/smll.202405586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Direct laser writing has gained remarkable popularity by offering architectural control of 3D objects at submicron scales. However, it faces limitations when the fabrication of microstructures comprising multiple materials is desired. The generation processes of multi-material microstructures are often very complex, requiring meticulous alignment, as well as a series of step-and-repeat writing and development of the materials. Here, a novel material system based on multilayers of chemically tailored polymers containing anthraquinone crosslinker units is demonstrated. Upon two-photon excitation, the crosslinkers only require nearby aliphatic C,H units as reaction partners to form a crosslinked network. The desired structure can be written into a solid multi-layered material system, wherein the properties of each material can be designed at the molecular level. In this way, C,H insertion crosslinking (CHic) of the polymers within each layer, along with simultaneous reaction at their interfaces, is performed, leading to the one-step fabrication of multi-material microstructures. A multi-material 3D scaffold with a sixfold symmetry is produced to precisely control the adhesion of cells both concerning surface chemistry and topology. The demonstrated material system shows great promise for the fabrication of 3D microstructures with high precision, intricate geometries and customized functionalities.
Collapse
Affiliation(s)
- Dan Song
- Cluster of Excellence livMatS @ FIT – Freiburg Center of Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Köhler‐Allee 10579110FreiburgGermany
- Laboratory of Chemistry & Physics of Interfaces (CPI)Department of Microsystems Engineering (IMTEK)University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
| | - Yizheng Liu
- Laboratory of Chemistry & Physics of Interfaces (CPI)Department of Microsystems Engineering (IMTEK)University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
| | - Ayman Husari
- Division of Oral BiotechnologyUniversity Medical Center FreiburgFaculty of MedicineUniversity of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Frederik Kotz‐Helmer
- Laboratory of Process Technology (NeptunLab)Department of Microsystems Engineering (IMTEK)University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
| | - Pascal Tomakidi
- Division of Oral BiotechnologyUniversity Medical Center FreiburgFaculty of MedicineUniversity of FreiburgHugstetter Str. 5579106FreiburgGermany
| | - Bastian E. Rapp
- Cluster of Excellence livMatS @ FIT – Freiburg Center of Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Köhler‐Allee 10579110FreiburgGermany
- Laboratory of Process Technology (NeptunLab)Department of Microsystems Engineering (IMTEK)University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
| | - Jürgen Rühe
- Cluster of Excellence livMatS @ FIT – Freiburg Center of Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Köhler‐Allee 10579110FreiburgGermany
- Laboratory of Chemistry & Physics of Interfaces (CPI)Department of Microsystems Engineering (IMTEK)University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
| |
Collapse
|
2
|
Witzdam L, White T, Rodriguez-Emmenegger C. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromol Biosci 2024; 24:e2400152. [PMID: 39072925 DOI: 10.1002/mabi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Tom White
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
3
|
Gandin A, Torresan V, Panciera T, Brusatin G. A Scalable Method to Fabricate 2D Hydrogel Substrates for Mechanobiology Studies with Independent Tuning of Adhesiveness and Stiffness. Methods Protoc 2024; 7:75. [PMID: 39452789 PMCID: PMC11510107 DOI: 10.3390/mps7050075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Mechanical signals from the extracellular matrix are crucial in guiding cellular behavior. Two-dimensional hydrogel substrates for cell cultures serve as exceptional tools for mechanobiology studies because they mimic the biomechanical and adhesive characteristics of natural environments. However, the interdisciplinary knowledge required to synthetize and manipulate these biomaterials typically restricts their widespread use in biological laboratories, which may not have the material science expertise or specialized instrumentation. To address this, we propose a scalable method that requires minimal setup to produce 2D hydrogel substrates with independent modulation of the rigidity and adhesiveness within the range typical of natural tissues. In this method, norbornene-terminated 8-arm polyethylene glycol is stoichiometrically functionalized with RGD peptides and crosslinked with a di-cysteine terminated peptide via a thiol-ene click reaction. Since the synthesis process significantly influences the final properties of the hydrogels, we provide a detailed description of the chemical procedure to ensure reproducibility and high throughput results. We demonstrate examples of cell mechanosignaling by monitoring the activation state of the mechanoeffector proteins YAP/TAZ. This method effectively dissects the influence of biophysical and adhesive cues on cell behavior. We believe that our procedure will be easily adopted by other cell biology laboratories, improving its accessibility and practical application.
Collapse
Affiliation(s)
- Alessandro Gandin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy; (A.G.); (V.T.)
- Consorzio INSTM, Padova RU, Via Marzolo 9, 35131 Padova, PD, Italy
| | - Veronica Torresan
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy; (A.G.); (V.T.)
- Consorzio INSTM, Padova RU, Via Marzolo 9, 35131 Padova, PD, Italy
| | - Tito Panciera
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, PD, Italy;
| | - Giovanna Brusatin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy; (A.G.); (V.T.)
- Consorzio INSTM, Padova RU, Via Marzolo 9, 35131 Padova, PD, Italy
| |
Collapse
|
4
|
Barz M, Parak WJ, Zentel R. Concepts and Approaches to Reduce or Avoid Protein Corona Formation on Nanoparticles: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402935. [PMID: 38976560 PMCID: PMC11425909 DOI: 10.1002/advs.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Indexed: 07/10/2024]
Abstract
This review describes the formation of a protein corona (or its absence) on different classes of nanoparticles, its basic principles, and its consequences for nanomedicine. For this purpose, it describes general concepts to control (guide/minimize) the interaction between artificial nanoparticles and plasma proteins to reduce protein corona formation. Thereafter, methods for the qualitative or quantitative determination of protein corona formation are presented, as well as the properties of nanoparticle surfaces, which are relevant for protein corona prevention (or formation). Thereby especially the role of grafting density of hydrophilic polymers on the surface of the nanoparticle is discussed to prevent the formation of a protein corona. In this context also the potential of detergents (surfactants) for a temporary modification as well as grafting-to and grafting-from approaches for a permanent modification of the surface are discussed. The review concludes by highlighting several promising avenues. This includes (i) the use of nanoparticles without protein corona for active targeting, (ii) the use of synthetic nanoparticles without protein corona formation to address the immune system, (iii) the recollection of nanoparticles with a defined protein corona after in vivo application to sample the blood proteome and (iv) further concepts to reduce protein corona formation.
Collapse
Affiliation(s)
- Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, NL-2333 CC, Netherlands
| | - Wolfgang J Parak
- Institut für Nanostruktur- und Festkörperphysik, Universität Hamburg, Luruper Chaussee 149, D-22761, Hamburg, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
5
|
Zhang Y, Sun C. Current status, challenges and prospects of antifouling materials for oncology applications. Front Oncol 2024; 14:1391293. [PMID: 38779096 PMCID: PMC11109453 DOI: 10.3389/fonc.2024.1391293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Targeted therapy has become crucial to modern translational science, offering a remedy to conventional drug delivery challenges. Conventional drug delivery systems encountered challenges related to solubility, prolonged release, and inadequate drug penetration at the target region, such as a tumor. Several formulations, such as liposomes, polymers, and dendrimers, have been successful in advancing to clinical trials with the goal of improving the drug's pharmacokinetics and biodistribution. Various stealth coatings, including hydrophilic polymers such as PEG, chitosan, and polyacrylamides, can form a protective layer over nanoparticles, preventing aggregation, opsonization, and immune system detection. As a result, they are classified under the Generally Recognized as Safe (GRAS) category. Serum, a biological sample, has a complex composition. Non-specific adsorption of chemicals onto an electrode can lead to fouling, impacting the sensitivity and accuracy of focused diagnostics and therapies. Various anti-fouling materials and procedures have been developed to minimize the impact of fouling on specific diagnoses and therapies, leading to significant advancements in recent decades. This study provides a detailed analysis of current methodologies using surface modifications that leverage the antifouling properties of polymers, peptides, proteins, and cell membranes for advanced targeted diagnostics and therapy in cancer treatment. In conclusion, we examine the significant obstacles encountered by present technologies and the possible avenues for future study and development.
Collapse
Affiliation(s)
| | - Congcong Sun
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Say S, Suzuki M, Hashimoto Y, Kimura T, Kishida A. Investigation of anti-adhesion ability of 8-arm PEGNHS-modified porcine pericardium. Biomed Mater 2024; 19:035012. [PMID: 38422523 DOI: 10.1088/1748-605x/ad2ed3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In post-adhesion surgery, there is a clinical need for anti-adhesion membranes specifically designed for the liver, given the limited efficacy of current commercial products. To address this demand, we present a membrane suitable for liver surgery applications, fabricated through the modification of decellularized porcine pericardium with 20 KDa hexaglycerol octa (succinimidyloxyglutaryl) polyoxyethylene (8-arm PEGNHS). We also developed an optimized modification procedure to produce a high-performance anti-adhesion barrier. The modified membrane significantly inhibited fibroblast cell adherence while maintaining minimal levels of inflammation. By optimizing the modification ratio, we successfully controlled post-adhesion formation. Notably, the 8-arm PEG-modified pericardium with a molar ratio of 5 exhibited the ability to effectively prevent post-adhesion formation on the liver compared to both the control and Seprafilm®, with a low adhesion score of 0.5 out of 3.0. Histological analysis further confirmed its potential for easy separation. Furthermore, the membrane demonstrated regenerative capabilities, as evidenced by the proliferation of mesothelial cells on its surface, endowing anti-adhesion properties between the abdominal wall and liver. These findings highlight the membrane's potential as a reliable barrier for repeated liver resection procedures that require the removal of the membrane multiple times.
Collapse
Affiliation(s)
- Sreypich Say
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Mika Suzuki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| |
Collapse
|
7
|
Say S, Suzuki M, Hashimoto Y, Kimura T, Kishida A. Effect of multi arm-PEG-NHS (polyethylene glycol n-hydroxysuccinimide) branching on cell adhesion to modified decellularized bovine and porcine pericardium. J Mater Chem B 2024; 12:1244-1256. [PMID: 38168715 DOI: 10.1039/d3tb01661g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Implanting physical barrier materials to separate wounds from their surroundings is a promising strategy for preventing postoperative adhesions. Herein, we develop a material that switches from an anti-adhesive surface to an adhesive surface, preventing adhesion in the early stage of transplantation and then promoting recellularization. In this study, 2-arm, 4-arm, and 8-arm poly(ethylene glycol) succinimidyl glutarate (2-, 4-, 8-arm PEG-NHS) were used to modify the surface of decellularized porcine and bovine pericardium. The number of free amines on the surface of each material significantly decreased following modification regardless of the reaction molar ratio of NH2 and NHS, the number of PEG molecule branches, and the animal species of the decellularized tissue. The structure and mechanical properties of the pericardium were maintained after modification with PEG molecules. The time taken for the PEG molecules to detach through hydrolysis of the ester bonds differed between the samples, which resulted in different cell repulsion periods. By adjusting the reaction molar ratio, the number of PEG molecule branches, and the animal species of the decellularized pericardium, the duration of cell repulsion can be controlled and is expected to provide an anti-adhesion material for a variety of surgical procedures.
Collapse
Affiliation(s)
- Sreypich Say
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Mika Suzuki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| |
Collapse
|
8
|
Englert J, Palà M, Witzdam L, Rayatdoost F, Grottke O, Lligadas G, Rodriguez-Emmenegger C. Green Solvent-Based Antifouling Polymer Brushes Demonstrate Excellent Hemocompatibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18476-18485. [PMID: 38048267 DOI: 10.1021/acs.langmuir.3c02765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Medical devices are crucial for patient care, yet even the best biomaterials lead to infections and unwanted activation of blood coagulation, potentially being life-threatening. While hydrophilic polymer brushes are the best coatings to mitigate these issues, their reliance on fossil raw materials underscores the urgency of bio-based alternatives. In this work, we introduce polymer brushes of a green solvent-based monomer, prohibiting protein adsorption, bacterial colonization, and blood clot formation at the same level as fossil-based polymer brushes. The polymer brushes are composed of N,N-dimethyl lactamide acrylate (DMLA), can be polymerized in a controlled manner, and show strong hydrophilicity as determined by thermodynamic analysis of the surface tension components. The contact of various challenging protein solutions results in repellency on the poly(DMLA) brushes. Furthermore, the poly(DMLA) brushes completely prevent the adhesion and colonization of Escherichia coli. Remarkably, upon blood contact, the poly(DMLA) brushes successfully prevent the formation of a fibrin network and leukocyte adhesion on the surface. While showcasing excellent antifouling properties similar to those of N-hydroxypropyl methacrylamide (HPMA) polymer brushes as one of the best antifouling coatings, the absence of hydroxyl groups prevents activation of the complement system in blood. We envision the polymer brushes to contribute to the future of hemocompatible coatings.
Collapse
Affiliation(s)
- Jenny Englert
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Chair of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc Palà
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Lena Witzdam
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Farahnaz Rayatdoost
- Department of Anesthesiology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Oliver Grottke
- Department of Anesthesiology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Cesar Rodriguez-Emmenegger
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Peng K, Wang R, Zhou J. One-step fabrication of three-dimensional macropore copolymer-modified polycarbonate array by photo-crosslinking for protein immunoassay. RSC Adv 2023; 13:6936-6946. [PMID: 36865573 PMCID: PMC9973421 DOI: 10.1039/d3ra00696d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
A photocross-linked copolymer was prepared, and could rapidly form a macropore structure in phosphate buffer solution (PBS) without the addition of porogen. The photo-crosslinking process contained the crosslinking of the copolymer itself and that with the polycarbonate substrate. The three-dimensional (3D) surface was achieved through one-step photo-crosslinking of the macropore structure. The macropore structure can be finely regulated by multiple dimensions, including monomer structure of the copolymer, PBS and copolymer concentration. Compared with the two-dimensional (2D) surface, the 3D surface has a controllable structure, a high loading capacity (59 μg cm-2) and immobilization efficiency (92%), and the effect of inhibiting the coffee ring for protein immobilization. Immunoassay results show that a 3D surface immobilized by IgG has high sensitivity (LOD value of 5 ng mL-1) and broader dynamic range (0.005-50 μg mL-1). This simple and structure-controllable method for preparing 3D surfaces modified by macropore polymer has great potential applications in the fields of biochips and biosensing.
Collapse
Affiliation(s)
- Kaimei Peng
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities Duyun 558000 China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province School of Biomedical Engineering, Sun Yat-sen University Guangzhou 510275 China
| | - Runping Wang
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities Duyun 558000 China
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province School of Biomedical Engineering, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
10
|
Zinggeler M, Schär S, Kurth F. Printed Antifouling Electrodes for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56578-56584. [PMID: 36513371 PMCID: PMC9802209 DOI: 10.1021/acsami.2c17557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Biosensors based on miniaturized, functional electrodes are of high potential for various biosensing applications, especially at the point-of-care setting among others. However, the sensor performance of such electrochemical devices is still strongly limited, especially due to surface fouling in complex sample fluids, such as blood serum. Electrode coatings based on conductive nanomaterials embedded in antifouling matrices offer a promising strategy to overcome this limitation. However, known composite coatings require long (typically >24 h) and complex fabrication processes, which pose a strong barrier for cost-effective mass manufacturing and successful commercialization. Here, we describe a novel polymer/carbon nanotube (CNT) composite coating that can be produced from an ink containing a photoreactive and antifouling copolymer as well as conductive CNTs using fast and highly scalable printing processes. Coatings were prepared on screen-printed electrodes and characterized using cyclic voltammetry (CV) and protein fouling experiments. The coatings offered an electroactive surface area (EASA) comparable to uncoated screen-printed electrodes and retained >90% of initial EASA after 1 h of exposure to concentrated bovine serum albumin solution, while uncoated electrodes decreased to <20% of initial EASA after the same treatment. Utilizing the universal crosslinking reaction of the polymer coating, antibodies against the inflammatory biomarker C-reactive protein (CRP) were photochemically immobilized on the electrodes. Functionalized electrodes were fabricated in <2 h and were successfully used to quantify nanogram-range concentrations of CRP spiked in undiluted human blood serum using a sandwich-immunoassay with electrochemical read-out, demonstrating the high potential of the platform for biosensing applications.
Collapse
|
11
|
Vahabi H, Vallabhuneni S, Hedayati M, Wang W, Krapf D, Kipper MJ, Miljkovic N, Kota AK. Designing Non-Textured, All-Solid, Slippery Hydrophilic Surfaces. MATTER 2022; 5:4502-4512. [PMID: 36569514 PMCID: PMC9784614 DOI: 10.1016/j.matt.2022.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Slippery surfaces are sought after due to their wide range of applications in self-cleaning, drag reduction, fouling-resistance, enhanced condensation, biomedical implants etc. Recently, non-textured, all-solid, slippery surfaces have gained significant attention because of their advantages over super-repellent surfaces and lubricant-infused surfaces. Currently, almost all non-textured, all-solid, slippery surfaces are hydrophobic. In this work, we elucidate the systematic design of non-textured, all-solid, slippery hydrophilic (SLIC) surfaces by covalently grafting polyethylene glycol (PEG) brushes to smooth substrates. Furthermore, we postulate a plateau in slipperiness above a critical grafting density, which occurs when the tethered brush size is equal to the inter-tether distance. Our SLIC surfaces demonstrate exceptional performance in condensation and fouling-resistance compared to non-slippery hydrophilic surfaces and slippery hydrophobic surfaces. Based on these results, SLIC surfaces constitute an emerging class of surfaces with the potential to benefit multiple technological landscapes ranging from thermofluidics to biofluidics.
Collapse
Affiliation(s)
- Hamed Vahabi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- These authors contributed equally
| | - Sravanthi Vallabhuneni
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- These authors contributed equally
| | - Mohammadhasan Hedayati
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Wei Wang
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, Department of Electrical and Computer Engineering, Materials Research Laboratory, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA
- International Institute of Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukoka 819-0395, Japan
| | - Arun K. Kota
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Lead contact
| |
Collapse
|
12
|
Song D, Kotz-Helmer F, Rapp B, Rühe J. Substrate-Independent Maskless Writing of Functionalized Microstructures Using CHic Chemistry and Digital Light Processing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50288-50295. [PMID: 36288785 PMCID: PMC9650689 DOI: 10.1021/acsami.2c12000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Maskless photolithography based on digital light processing (DLP) is an attractive technique for the rapid, flexible, and cost-effective fabrication of complex structures with arbitrary surface profiles on the microscale. In this work, we introduce a new material system for structure formation by DLP that is based on photoreactive polymers for the local and light-induced C,H-insertion cross-linking (CHic). This approach allows a simple and versatile generation of microstructures with a broad spectrum of geometries and chemistries irrespective of the nature of the chosen substrates and thus allows direct writing of surface functionalization patterns with high spatial control. The CHicable prepolymer is first coated on a substrate to form a solvent-free (glassy) film, and then the DLP system patterns the light with arbitrary shape to induce local cross-linking of the prepolymer. Using this method, the desired structures with complex features with a lateral resolution of several microns and a topography of tens of nanometers could be fabricated within 30 s. Furthermore, the universal applicability of the CHic reaction enables the printing on a wide variety of substrates, which greatly broadens the using scenarios of this printing approach.
Collapse
Affiliation(s)
- Dan Song
- livMatS
@ Freiburg Center for Interactive Materials and Bioinspired Technologies
(FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| | - Frederik Kotz-Helmer
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| | - Bastian Rapp
- livMatS
@ Freiburg Center for Interactive Materials and Bioinspired Technologies
(FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| | - Jürgen Rühe
- livMatS
@ Freiburg Center for Interactive Materials and Bioinspired Technologies
(FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| |
Collapse
|
13
|
Chan D, Chien JC, Axpe E, Blankemeier L, Baker SW, Swaminathan S, Piunova VA, Zubarev DY, Maikawa CL, Grosskopf AK, Mann JL, Soh HT, Appel EA. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022. [PMID: 35390209 DOI: 10.1101/2020.05.25.115675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered "gold-standard" device coatings to reduce biofouling. To discover novel anti-biofouling materials, a combinatorial library of polyacrylamide-based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet-rich plasma in a high-throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti-biofouling properties over current gold-standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti-biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small-molecule drug in vivo better than gold-standard coatings. The novel methodology described enables the discovery of anti-biofouling materials that can extend the lifetime of real-time in vivo sensing devices.
Collapse
Affiliation(s)
- Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Jun-Chau Chien
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Eneko Axpe
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Louis Blankemeier
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Samuel W Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Department of Pediatrics - Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Chan D, Chien JC, Axpe E, Blankemeier L, Baker SW, Swaminathan S, Piunova VA, Zubarev DY, Maikawa CL, Grosskopf AK, Mann JL, Soh HT, Appel EA. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109764. [PMID: 35390209 PMCID: PMC9793805 DOI: 10.1002/adma.202109764] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/04/2022] [Indexed: 05/29/2023]
Abstract
Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered "gold-standard" device coatings to reduce biofouling. To discover novel anti-biofouling materials, a combinatorial library of polyacrylamide-based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet-rich plasma in a high-throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti-biofouling properties over current gold-standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti-biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small-molecule drug in vivo better than gold-standard coatings. The novel methodology described enables the discovery of anti-biofouling materials that can extend the lifetime of real-time in vivo sensing devices.
Collapse
Affiliation(s)
- Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Jun-Chau Chien
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Eneko Axpe
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Louis Blankemeier
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Samuel W Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Department of Pediatrics - Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
15
|
Zhang L, Tang H, Xiahou Z, Zhang J, She Y, Zhang K, Hu X, Yin J, Chen C. Solid multifunctional granular bioink for constructing chondroid basing on stem cell spheroids and chondrocytes. Biofabrication 2022; 14. [PMID: 35378518 DOI: 10.1088/1758-5090/ac63ee] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/04/2022] [Indexed: 11/11/2022]
Abstract
Stem cell spheroids are advanced building blocks to produce chondroid. However, the multi-step operations including spheroids preparation, collection and transfer, the following 3D printing and shaping limit their application in 3D printing. The present study fabricates an "ALL-IN-ONE" bioink based on granular hydrogel to not only produce adipose derived stem cell (ASC) spheroids, but also realize the further combination of chondrocytes and the subsequent 3D printing. Microgels (6-10 μm) grafted with β-cyclodextrin (β-CD) (MGβ-CD) were assembled and crosslinked by in-situ polymerized poly (N-isopropylacrylamide) (PNIPAm) to form bulk granular hydrogel. The host-guest action between β-CD of microgels and PNIPAm endows the hydrogel with stable, shear-thinning and self-healing properties. After creating caves, ASCs aggregate spontaneously to form numerous spheroids with diameter of 100-200 μm inside the hydrogel. The thermosensitive porous granular hydrogel exhibits volume change under different temperature, realizing further adsorbing chondrocytes. Then, the granular hydrogel carrying ASC spheroids and chondrocytes is extruded by 3D printer at room temperature to form a tube, which can shrink at cell culture tempreature to enhance the resolution. The subsequent ASC spheroids/chondrocytes co-culture forms cartilage-like tissue at 21 d in vitro, which further matures subcutaneously in vivo, indicating the application potential of the fully synthetic granular hydrogel ink towards organoid culture.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Thoracic Surgery, Tongji University Affiliated Shanghai Pulmonary Hospital, 507 Zhengmin Road, Yangpu District, Shanghai, 200433, CHINA
| | - Hai Tang
- Department of Thoracic Surgery, Tongji University Affiliated Shanghai Pulmonary Hospital, 507 Zhengmin Road, Yangpu District, Shanghai, 200433, CHINA
| | - Zijie Xiahou
- Department of Polymer Materials, Shanghai University School of Materials Science and Engineering, 99 Shangda Road, Baoshan District, Shanghai, 200072, CHINA
| | - Jiahui Zhang
- Department of Polymer Materials, Shanghai University School of Materials Science and Engineering, 99 Shangda Road, Baoshan District, Shanghai, 200072, CHINA
| | - Yunlang She
- Department of Thoracic Surgery, Tongji University Affiliated Shanghai Pulmonary Hospital, 507 Zhengmin Road, Yangpu District, Shanghai, 200433, CHINA
| | - Kunxi Zhang
- Department of Polymer Materials, Shanghai University School of Materials Science and Engineering, 99 Shangda Road, Baoshan District, Shanghai, 200072, CHINA
| | - Xuefei Hu
- Department of Thoracic Surgery, Tongji University Affiliated Shanghai Pulmonary Hospital, 507 Zhengmin Road, Yangpu District, Shanghai, 200433, CHINA
| | - Jingbo Yin
- Department of Polymer Materials, Shanghai University School of Materials Science and Engineering, 99 Shangda Road, Baoshan District, Shanghai, 200072, CHINA
| | - Chang Chen
- Department of Thoracic Surgery, Tongji University Affiliated Shanghai Pulmonary Hospital, 507 Zhengmin Road, Yangpu District, Shanghai, 200433, CHINA
| |
Collapse
|
16
|
Misiura A, Dutta C, Leung W, Zepeda O J, Terlier T, Landes CF. The competing influence of surface roughness, hydrophobicity, and electrostatics on protein dynamics on a self-assembled monolayer. J Chem Phys 2022; 156:094707. [DOI: 10.1063/5.0078797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Surface morphology, in addition to hydrophobic and electrostatic effects, can alter how proteins interact with solid surfaces. Understanding the heterogeneous dynamics of protein adsorption on surfaces with varying roughness is experimentally challenging. In this work, we use single-molecule fluorescence microscopy to study the adsorption of α-lactalbumin protein on the glass substrate covered with a self-assembled monolayer (SAM) with varying surface concentrations. Two distinct interaction mechanisms are observed: localized adsorption/desorption and continuous-time random walk (CTRW). We investigate the origin of these two populations by simultaneous single-molecule imaging of substrates with both bare glass and SAM-covered regions. SAM-covered areas of substrates are found to promote CTRW, whereas glass surfaces promote localized motion. Contact angle measurements and atomic force microscopy imaging show that increasing SAM concentration results in both increasing hydrophobicity and surface roughness. These properties lead to two opposing effects: increasing hydrophobicity promotes longer protein flights, but increasing surface roughness suppresses protein dynamics resulting in shorter residence times. Our studies suggest that controlling hydrophobicity and roughness, in addition to electrostatics, as independent parameters could provide a means to tune desirable or undesirable protein interactions with surfaces.
Collapse
Affiliation(s)
| | - Chayan Dutta
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Wesley Leung
- Applied Physics Graduate Program, Rice University, Houston, Texas 77005, USA
| | - Jorge Zepeda O
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, Texas 77005, USA
| | - Christy F. Landes
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
- Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
17
|
Witzdam L, Meurer YL, Garay-Sarmiento M, Vorobii M, Söder D, Quandt J, Haraszti T, Rodriguez-Emmenegger C. Brush-Like Interface on Surface-Attached Hydrogels Repels Proteins and Bacteria. Macromol Biosci 2022; 22:e2200025. [PMID: 35170202 DOI: 10.1002/mabi.202200025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Indexed: 11/10/2022]
Abstract
Interfacing artificial materials with biological tissues remains a challenge. The direct contact of their surface with the biological milieu results in multiscale interactions, in which biomacromolecules adsorb and act as transducers mediating the interactions with cells and tissues. So far, only antifouling polymer brushes have been able to conceal the surface of synthetic materials. However, their complex synthesis has precluded their translation to applications. Here, we show that ultra-thin surface-attached hydrogel coatings of N-(2-hydroxypropyl) methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) provided the same level of protection as brushes. In spite of being readily applicable, these coatings prevented the fouling from whole blood plasma and provided a barrier to the adhesion of Gram positive and negative bacteria. The analysis of the components of the surface free energy and nanoindentation experiments revealed that the excellent antifouling properties stem from the strong surface hydrophilicity and the presence of a brush-like structure at the water interface. Moreover, these coatings could be functionalized to achieve antimicrobial activity while remaining stealth and non-cytotoxic to eukaryotic cells. Such level of performance was previously only achieved with brushes. Thus, we anticipate that this readily applicable strategy is a promising route to enhance the biocompatibility of real biomedical devices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lena Witzdam
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Yannick L Meurer
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany.,Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, 79110, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Chair of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen, 52074, Germany
| | - Mariia Vorobii
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Dominik Söder
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Jonas Quandt
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Tamás Haraszti
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | | |
Collapse
|
18
|
Nagy B, Campana M, Khaydukov YN, Ederth T. Structure and pH-Induced Swelling of Polymer Films Prepared from Sequentially Grafted Polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1725-1737. [PMID: 35081310 PMCID: PMC8830213 DOI: 10.1021/acs.langmuir.1c02784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/13/2022] [Indexed: 05/16/2023]
Abstract
We have prepared a series of ampholytic polymer films, using a self-initiated photografting and photopolymerization (SI-PGP) method to sequentially polymerize first anionic (deuterated methacrylic acid (dMAA)) and thereafter cationic (2-aminoethyl methacrylate (AEMA)) monomers to investigate the SI-PGP grafting process. Dry films were investigated by ellipsometry, X-ray, and neutron reflectometry, and their swelling was followed over a pH range from 4.5 to 10.5 with spectroscopic ellipsometry. The deuterated monomer allows us to separate the distributions of the two components by neutron reflectometry. Growth of both polymers proceeds via grafting of solution-polymerized fragments to the surface, and also the second layer is primarily grafted to the substrate and not as a continuation of the existing chains. The polymer films are stratified, with one layer of near 1:1 composition and the other layer enriched in one component and located either above or below the former layer. The ellipsometry results show swelling transitions at low and high pH but with no systematic variation in the pH values where these transitions occur. The results suggest that grafting density in SI-PGP-prepared homopolymers could be increased via repeated polymerization steps, but that this process does not necessarily increase the average chain length.
Collapse
Affiliation(s)
- Béla Nagy
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Mario Campana
- ISIS
Facility, Rutherford Appleton Laboratory,
STFC, Chilton, Didcot, Oxon OX11
0QX, U.K.
| | - Yury N. Khaydukov
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
- Max
Planck Society Outstation at the Heinz Maier-Leibnitz Zentrum (MLZ), D-85748 Garching, Germany
| | - Thomas Ederth
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
19
|
Thomas OS, Rebmann B, Tonn M, Schirmeister IC, Wehrle S, Becker J, Zea Jimenez GJ, Hook S, Jäger S, Klenzendorf M, Laskowski M, Kaier A, Pütz G, Zurbriggen MD, Weber W, Hörner M, Wagner HJ. Reversible Shielding and Immobilization of Liposomes and Viral Vectors by Tailored Antibody-Ligand Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105157. [PMID: 34859962 DOI: 10.1002/smll.202105157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Controlling the time and dose of nanoparticulate drug delivery by administration of small molecule drugs holds promise for efficient and safer therapies. This study describes a versatile approach of exploiting antibody-ligand interactions for the design of small molecule-responsive nanocarrier and nanocomposite systems. For this purpose, antibody fragments (scFvs) specific for two distinct small molecule ligands are designed. Subsequently, the surface of nanoparticles (liposomes or adeno-associated viral vectors, AAVs) is modified with these ligands, serving as anchor points for scFv binding. By modifying the scFvs with polymer tails, they can act as a non-covalently bound shielding layer, which is recruited to the anchor points on the nanoparticle surface and prevents interactions with cultured mammalian cells. Administration of an excess of the respective ligand triggers competitive displacement of the shielding layer from the nanoparticle surface and restores nanoparticle-cell interactions. The same principle is applied for developing hydrogel depots that can release integrated AAVs or liposomes in response to small molecule ligands. The liberated nanoparticles subsequently deliver their cargoes to cells. In summary, the utilization of different antibody-ligand interactions, different nanoparticles, and different release systems validates the versatility of the design concept described herein.
Collapse
Affiliation(s)
- Oliver S Thomas
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Balder Rebmann
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Matthias Tonn
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Ivo C Schirmeister
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Sarah Wehrle
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Jan Becker
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Gabriel J Zea Jimenez
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Sebastian Hook
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Sarah Jäger
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Melissa Klenzendorf
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Mateo Laskowski
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Alexander Kaier
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Gerhard Pütz
- University Medical Center Freiburg, Institute for Clinical Chemistry, 79106, Freiburg, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wilfried Weber
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Maximilian Hörner
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Hanna J Wagner
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Department of Biosystems Science and Engineering - D-BSSE, ETH Zurich, Basel, 4058, Switzerland
| |
Collapse
|
20
|
Metal-free, in bulk synthesis of highly hydrophilic polyester bearing pyrrolidone pendants and its diblock copolymers with UCST-type phase transition in water. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Gandin A, Torresan V, Ulliana L, Panciera T, Contessotto P, Citron A, Zanconato F, Cordenonsi M, Piccolo S, Brusatin G. Broadly Applicable Hydrogel Fabrication Procedures Guided by YAP/TAZ-Activity Reveal Stiffness, Adhesiveness, and Nuclear Projected Area as Checkpoints for Mechanosensing. Adv Healthc Mater 2022; 11:e2102276. [PMID: 34825526 DOI: 10.1002/adhm.202102276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Indexed: 11/12/2022]
Abstract
Mechanical signals are pivotal ingredients in how cells perceive and respond to their microenvironments, and to synthetic biomaterials that mimic them. In spite of increasing interest in mechanobiology, probing the effects of physical cues on cell behavior remains challenging for a cell biology laboratory without experience in fabrication of biocompatible materials. Hydrogels are ideal biomaterials recapitulating the physical cues that natural extracellular matrices (ECM) deliver to cells. Here, protocols are streamlined for the synthesis and functionalization of cell adhesive polyacrylamide-based (PAA-OH) and fully-defined polyethyleneglycol-based (PEG-RGD) hydrogels tuned at various rigidities for mechanobiology experiments, from 0.3 to >10 kPa. The mechanosignaling properties of these hydrogels are investigated in distinct cell types by monitoring the activation state of YAP/TAZ. By independently modulating substrate stiffness and adhesiveness, it is found that although ECM stiffness represents an overarching mechanical signal, the density of adhesive sites does impact on cellular mechanosignaling at least at intermediate rigidity values, corresponding to normal and pathological states of living tissues. Using these tools, it is found that YAP/TAZ nuclear accumulation occurs when the projected area of the nucleus surpasses a critical threshold of approximatively 150 µm2 . This work suggests the existence of distinct checkpoints for cellular mechanosensing.
Collapse
Affiliation(s)
- Alessandro Gandin
- Department of Industrial Engineering University of Padova and INSTM via Marzolo 9 Padova 35131 Italy
| | - Veronica Torresan
- Department of Industrial Engineering University of Padova and INSTM via Marzolo 9 Padova 35131 Italy
| | - Lorenzo Ulliana
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Tito Panciera
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Paolo Contessotto
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Anna Citron
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Francesca Zanconato
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | | | - Stefano Piccolo
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
- IFOM the FIRC Institute of Molecular Oncology Milan Italy
| | - Giovanna Brusatin
- Department of Industrial Engineering University of Padova and INSTM via Marzolo 9 Padova 35131 Italy
| |
Collapse
|
22
|
Ahmed ST, Madinya JJ, Leckband DE. Ionic strength dependent forces between end-grafted Poly(sulfobetaine) films and mica. J Colloid Interface Sci 2022; 606:298-306. [PMID: 34392027 DOI: 10.1016/j.jcis.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
The molecular surface properties of zwitterionic polymer coatings are central to their ultra-low fouling properties and effectiveness as steric stabilizers in concentrated salt solutions. Here, Surface Force Apparatus measurements quantified the molecular forces between end-grafted poly(sulfobetaine) methacrylate thin films and mica, as a function of the chain grafting density and ionic strength. These results demonstrate that, at the ionic strengths considered, end-grafted poly(sulfobetaine) films can be described by models for polymers in good solvent. Parameters determined from data fits to the Milner-Witten-Cates or Dolan and Edwards models for dense or dilute chains, respectively, varied with ionic strength, in ways that reflect poly(sulfobetaine) swelling and the increased excluded volume strength of chain segments. These force measurements provide new insight into how polymer coverage and salt cooperate to regulate repulsive poly(sulfobetaine) steric barriers. These findings have implications for the design of grafted poly(sulfobetaine) as colloidal stabilizers or nonfouling surface coatings.
Collapse
Affiliation(s)
- Syeda Tajin Ahmed
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Jason J Madinya
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA.
| |
Collapse
|
23
|
von Stockert AR, Luongo A, Langhans M, Brandstetter T, Rühe J, Meckel T, Biesalski M. Reducing Unspecific Protein Adsorption in Microfluidic Papers Using Fiber-Attached Polymer Hydrogels. SENSORS 2021; 21:s21196348. [PMID: 34640668 PMCID: PMC8512548 DOI: 10.3390/s21196348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/24/2022]
Abstract
Microfluidic paper combines pump-free water transport at low cost with a high degree of sustainability, as well as good availability of the paper-forming cellulosic material, thus making it an attractive candidate for point-of-care (POC) analytics and diagnostics. Although a number of interesting demonstrators for such paper devices have been reported to date, a number of challenges still exist, which limit a successful transfer into marketable applications. A strong limitation in this respect is the (unspecific) adsorption of protein analytes to the paper fibers during the lateral flow assay. This interaction may significantly reduce the amount of analyte that reaches the detection zone of the microfluidic paper-based analytical device (µPAD), thereby reducing its overall sensitivity. Here, we introduce a novel approach on reducing the nonspecific adsorption of proteins to lab-made paper sheets for the use in µPADs. To this, cotton linter fibers in lab-formed additive-free paper sheets are modified with a surrounding thin hydrogel layer generated from photo-crosslinked, benzophenone functionalized copolymers based on poly-(oligo-ethylene glycol methacrylate) (POEGMA) and poly-dimethyl acrylamide (PDMAA). This, as we show in tests similar to lateral flow assays, significantly reduces unspecific binding of model proteins. Furthermore, by evaporating the transport fluid during the microfluidic run at the end of the paper strip through local heating, model proteins can almost quantitatively be accumulated in that zone. The possibility of complete, almost quantitative protein transport in a µPAD opens up new opportunities to significantly improve the signal-to-noise (S/N) ratio of paper-based lateral flow assays.
Collapse
Affiliation(s)
- Alexander Ritter von Stockert
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
| | - Anna Luongo
- Laboratory of Chemistry and Physics of Interfaces, Institute for Microsystems Technology, Technical Faculty, University of Freiburg, 79110 Freiburg, Germany; (A.L.); (T.B.)
| | - Markus Langhans
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
| | - Thomas Brandstetter
- Laboratory of Chemistry and Physics of Interfaces, Institute for Microsystems Technology, Technical Faculty, University of Freiburg, 79110 Freiburg, Germany; (A.L.); (T.B.)
| | - Jürgen Rühe
- Laboratory of Chemistry and Physics of Interfaces, Institute for Microsystems Technology, Technical Faculty, University of Freiburg, 79110 Freiburg, Germany; (A.L.); (T.B.)
- Correspondence: (J.R.); (M.B.)
| | - Tobias Meckel
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
| | - Markus Biesalski
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
- Correspondence: (J.R.); (M.B.)
| |
Collapse
|
24
|
Fosso Tene PL, Weltin A, Tritz F, Defeu Soufo HJ, Brandstetter T, Rühe J. Cryogel Monoliths for Analyte Enrichment by Capture and Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11041-11048. [PMID: 34506153 DOI: 10.1021/acs.langmuir.1c01638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A platform based on cryogel monoliths in small capillaries, which allows very strong enrichment of an analyte through a capture and release process, is described. For their preparation, a photoreactive copolymer solution containing capture molecules of interest is filled into a capillary, frozen in, and then photochemically transformed into cryogel monoliths through C,H-insertion cross-linking reactions. As a test example, the platform is used for the preconcentration of dopamine from bovine serum albumin and urine samples through capture and release processes. During capture from a large volume and release into a smaller volume, the platform shows recovery rates up to 97% and allows up to a roughly 630-fold enrichment of the concentration of the analyte. The presented platform could be used as a disposable device for the purification and enrichment of a variety of cis-diol-containing samples.
Collapse
Affiliation(s)
- Patrick L Fosso Tene
- Chemistry & Physics of Interfaces, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Andreas Weltin
- Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Tritz
- Chemistry & Physics of Interfaces, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Herve J Defeu Soufo
- Division of Infectious Diseases, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Thomas Brandstetter
- Chemistry & Physics of Interfaces, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Jürgen Rühe
- Chemistry & Physics of Interfaces, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
25
|
Roeven E, Scheres L, Smulders MM, Zuilhof H. Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Kost J, Bleiziffer A, Rusitov D, Rühe J. Thermally Induced Cross-Linking of Polymers via C,H Insertion Cross-Linking (CHic) under Mild Conditions. J Am Chem Soc 2021; 143:10108-10119. [PMID: 34132532 DOI: 10.1021/jacs.1c02133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The focus of studies performed so far on the formation of surface-attached polymer networks by C,H insertion cross-linking (CHic) reaction has been largely on photochemical activation. This study describes the thermal activation of the formation of (surface-attached) polymer networks under comparably mild conditions. A novel cross-linker, based on a diazo phenyl ester group, is incorporated into various copolymers, which are subsequently deposited on solid substrates. Upon activation, the cross-linker moieties generate carbene intermediates, which lead to rapid, complete cross-linking of the whole film and simultaneous surface attachment to various organic materials via CHic. Although this system requires only comparably mild conditions (i.e., below 100 °C) to become activated, a long shelf life at room temperature is observed. The presented system might be useful in a wide range of applications, from coatings to rather complex geometries. We demonstrate the covalent binding of protein-repellent thin films to the inner surface of (rubber) tubes and the generation of patterned structures by a "branding iron" approach. For this a hot structure is pressed onto a diazo polymer coated surface, leading in the contact zone to fast cross-linking while in all other areas the polymer remains soluble and is washed off during subsequent extraction.
Collapse
Affiliation(s)
- Jonas Kost
- Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.,Freiburg Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Alexander Bleiziffer
- Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.,Freiburg Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Dennis Rusitov
- Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.,Freiburg Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.,Freiburg Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
27
|
Söder D, Garay-Sarmiento M, Rahimi K, Obstals F, Dedisch S, Haraszti T, Davari MD, Jakob F, Heß C, Schwaneberg U, Rodriguez-Emmenegger C. Unraveling the Mechanism and Kinetics of Binding of an LCI-eGFP-Polymer for Antifouling Coatings. Macromol Biosci 2021; 21:e2100158. [PMID: 34145970 DOI: 10.1002/mabi.202100158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Indexed: 11/07/2022]
Abstract
The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications.
Collapse
Affiliation(s)
- Dominik Söder
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Khosrow Rahimi
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Fabian Obstals
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Sarah Dedisch
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Felix Jakob
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Heß
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533, Kleve, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | | |
Collapse
|
28
|
Straub AJ, Scherag FD, Kim HI, Steiner MS, Brandstetter T, Rühe J. "CHicable" and "Clickable" Copolymers for Network Formation and Surface Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6510-6520. [PMID: 34003660 DOI: 10.1021/acs.langmuir.1c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we present the generation of novel, multifunctional polymer networks through a combination of C,H-insertion cross-linking (CHic) and click chemistry. To this, copolymers consisting of hydrophilic N,N-dimethylacrylamide as matrix component and repeat units containing azide moieties, as well as benzophenone or anthraquinone groups, are generated. The benzophenone or anthraquinone groups allow photo-cross-linking, surface attachment or covalent immobilization of adjacent (bio)molecules through CHic reactions. The azide moieties either can react with available alkynes through conventional click reactions or can be activated to form nitrenes, which can also undergo CHic reactions. By choosing appropriate reaction conditions, the same polymer can be used to follow very different reaction paths, opening up a plethora of choices for the generation of functional polymer networks. In the exemplary presented case ("CHic-Click"), irradiation of the copolymers with UV-A light (λirr = 365 nm) leads to cross-linking (network formation) and surface attachment simultaneously. The azide units remain intact during this cross-linking step, and alkyne-modified (bio)molecules can be bound through click reactions. Biofunctionalization of the polymer network with alkynylated streptavidin, followed by application of biotin-conjugated antibody and a model analyte, highlights the potential of these surface architectures as a toolbox which can be adapted for diverse bioanalytical applications.
Collapse
Affiliation(s)
- Alexander J Straub
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Frank D Scherag
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Hye In Kim
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Mark-Steven Steiner
- Microcoat Biotechnologie GmbH, Am Neuland 3, 82347 Bernried am Starnberger See, Germany
| | - Thomas Brandstetter
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
29
|
Tian L, Yin Y, Bing W, Jin E. Antifouling Technology Trends in Marine Environmental Protection. JOURNAL OF BIONIC ENGINEERING 2021; 18:239-263. [PMID: 33815489 PMCID: PMC7997792 DOI: 10.1007/s42235-021-0017-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Marine fouling is a worldwide problem, which is harmful to the global marine ecological environment and economic benefits. The traditional antifouling strategy usually uses toxic antifouling agents, which gradually exposes a serious environmental problem. Therefore, green, long-term, broad-spectrum and eco-friendly antifouling technologies have been the main target of engineers and researchers. In recent years, many eco-friendly antifouling technologies with broad application prospects have been developed based on the low toxicity and non-toxicity antifouling agents and materials. In this review, contemporary eco-friendly antifouling technologies and materials are summarized into bionic antifouling and non-bionic antifouling strategies (2000-2020). Non-bionic antifouling technologies mainly include protein resistant polymers, antifoulant releasing coatings, foul release coatings, conductive antifouling coatings and photodynamic antifouling technology. Bionic antifouling technologies mainly include the simulated shark skin, whale skin, dolphin skin, coral tentacles, lotus leaves and other biology structures. Brief future research directions and challenges are also discussed in the end, and we expect that this review would boost the development of marine antifouling technologies.
Collapse
Affiliation(s)
- Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- Weihai Institute for Bionics-Jilin University, Weihai, 264207 China
| | - Yue Yin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 China
| | - E. Jin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| |
Collapse
|
30
|
Mieda S. Analysis of the Interaction between a Protein and Polymer Membranes Using Steered Molecular Dynamics Simulation to Interpret the Fouling Behavior. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shunsuke Mieda
- Platform Laboratory for Science & Technology, Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| |
Collapse
|
31
|
Robidillo CJT, Veinot JGC. Functional Bio-inorganic Hybrids from Silicon Quantum Dots and Biological Molecules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52251-52270. [PMID: 33155802 DOI: 10.1021/acsami.0c14199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantum dots (QDs) are semiconductor nanoparticles that exhibit photoluminescent properties useful for applications in the field of diagnostics and medicine. Successful implementation of these QDs for bio-imaging and bio/chemical sensing typically involves conjugation to biologically active molecules for recognition and signal generation. Unfortunately, traditional and widely studied QDs are based upon heavy metals and other toxic elements (e.g., Cd- and Pb-based QDs), which precludes their safe use in actual biological systems. Silicon quantum dots (SiQDs) offer the same advantages as these heavy-metal-based QDs with the added benefits of nontoxicity and abundance. The preparation of functional bio-inorganic hybrids from SiQDs and biomolecules has lagged significantly compared to their traditional toxic counterparts because of the challenges associated with the synthesis of water-soluble SiQDs and their relative instability in aqueous environments. Advances in SiQD synthesis and surface functionalization, however, have made possible the preparation of functional bio-inorganic hybrids from SiQDs and biological molecules through different bioconjugation reactions. In this contribution, we review the various bioconjugate reactions by which SiQDs have been linked to biomolecules and implemented as platforms for bio-imaging and bio/chemical sensing. We also highlight the challenges that need to be addressed and overcome for these materials to reach their full potential. Lastly, we give prospective applications where this unique class of nontoxic and biocompatible materials can be of great utility in the future.
Collapse
Affiliation(s)
- Christopher Jay T Robidillo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Physical Sciences and Mathematics, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
32
|
Xie X, Li X, Lei J, Zhao X, Lyu Y, Mu C, Li D, Ge L, Xu Y. Oxidized starch cross-linked porous collagen-based hydrogel for spontaneous agglomeration growth of adipose-derived stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111165. [PMID: 32806308 DOI: 10.1016/j.msec.2020.111165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022]
Abstract
Many strategies have been employed to artificially reconstruct adipose tissue in tissue engineering. The functionalization and survival of reconstructed adipose tissue depend on sufficient angiogenesis. Notably, agglomeration growth of adipose-derived stem cells (ASCs) is beneficial to promoting angiogenesis. Herein, we present a porous collagen-based hydrogel for spontaneous agglomeration growth of ASCs to promote angiogenesis. Oxidized starch with different oxidation degree was prepared and used to cross-link collagen to fabricate the porous hydrogel. The gelation time and pore size of hydrogels can be controlled by adjusting the oxidation degree of starch. Crosslinking enhances the mechanical properties, inhibits the swelling and biodegradation of the hydrogels. The hydrogels possess good blood compatibility and cytocompatibility. Significantly, ASCs tended to adhere to the hydrogels and spontaneously grew into spheres along with time. Effective expression of vascular endothelial growth and fibroblast growth factors were observed. Overall, the hydrogels have application prospects in vascularized adipose tissue engineering.
Collapse
Affiliation(s)
- Xiaofen Xie
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, PR China
| | - Jinfeng Lei
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xi Zhao
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yongbo Lyu
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changdao Mu
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Defu Li
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liming Ge
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Yongbin Xu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, PR China.
| |
Collapse
|
33
|
Kupka V, Dvořáková E, Manakhov A, Michlíček M, Petruš J, Vojtová L, Zajíčková L. Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing. Polymers (Basel) 2020; 12:polym12061403. [PMID: 32580496 PMCID: PMC7362260 DOI: 10.3390/polym12061403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Biodegradable composite nanofibers were electrospun from poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO) mixtures dissolved in acetic and formic acids. The variation of PCL:PEO concentration in the polymer blend, from 5:95 to 75:25, revealed the tunability of the hydrolytic stability and mechanical properties of the nanofibrous mats. The degradation rate of PCL/PEO nanofibers can be increased compared to pure PCL, and the mechanical properties can be improved compared to pure PEO. Although PCL and PEO have been previously reported as immiscible, the electrospinning into nanofibers having restricted dimensions (250–450 nm) led to a microscopically mixed PCL/PEO blend. However, the hydrolytic stability and tensile tests revealed the segregation of PCL into few-nanometers-thin fibrils in the PEO matrix of each nanofiber. A synergy phenomenon of increased stiffness appeared for the high concentration of PCL in PCL/PEO nanofibrous mats. The pure PCL and PEO mats had a Young’s modulus of about 12 MPa, but the mats made of high concentration PCL in PCL/PEO solution exhibited 2.5-fold higher values. The increase in the PEO content led to faster degradation of mats in water and up to a 20-fold decrease in the nanofibers’ ductility. The surface of the PCL/PEO nanofibers was functionalized by an amine plasma polymer thin film that is known to increase the hydrophilicity and attach proteins efficiently to the surface. The combination of different PCL/PEO blends and amine plasma polymer coating enabled us to tune the surface functionality, the hydrolytic stability, and the mechanical properties of biodegradable nanofibrous mats.
Collapse
Affiliation(s)
- Vojtěch Kupka
- Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic; (V.K.); (J.P.); (L.V.)
- Regional Centre of Advanced Technologies and Materials and Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17 Listopadu 12, 77900 Olomouc, Czech Republic
| | - Eva Dvořáková
- Central European Institute of Technology—CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (E.D.); (A.M.); (M.M.)
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Anton Manakhov
- Central European Institute of Technology—CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (E.D.); (A.M.); (M.M.)
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| | - Miroslav Michlíček
- Central European Institute of Technology—CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (E.D.); (A.M.); (M.M.)
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Josef Petruš
- Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic; (V.K.); (J.P.); (L.V.)
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic
| | - Lucy Vojtová
- Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic; (V.K.); (J.P.); (L.V.)
| | - Lenka Zajíčková
- Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic; (V.K.); (J.P.); (L.V.)
- Central European Institute of Technology—CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (E.D.); (A.M.); (M.M.)
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
34
|
Wang W, Zhao J, Li C, Pang Q. Shape memory materials promoting cell adhesion and tissue invasion towards the applications requiring minimally invasive implantation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1820-1835. [PMID: 32567531 DOI: 10.1080/09205063.2020.1778236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Wei Wang
- The Department of Plastic and Burn Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jia Zhao
- Department of Research and Development, Shanghai Jingchen Biotechnology co, LTD, Shanghai, China
| | - Chunbo Li
- Department of Obstetrics and Gynecology, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Qiying Pang
- Department of Anesthesiology, Tongji Hospital of Tongji University, Shanghai, China
| |
Collapse
|
35
|
Lehnfeld J, Gruening M, Kronseder M, Mueller R. Comparison of Protein-Repellent Behavior of Linear versus Dendrimer-Structured Surface-Immobilized Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5880-5890. [PMID: 32366096 DOI: 10.1021/acs.langmuir.0c00625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For many biomedical applications, material surfaces should not only prevent unspecific protein adsorption and bacterial attachment as in many other applications in the food, health, or marine industry, but they should also promote the adhesion of tissue cells. In order to take a first step toward the challenging development of protein and bacteria-repelling and cell-adhesion-promoting materials, polyamine and poly(amido amine) surface coatings with terminal amine groups and varying structure (dendrimer, oligomer, polymer) were immobilized on model surfaces via silane chemistry. Physicochemical analysis showed that all modifications are hydrophilic (contact angles <60°) and possess similar surface free energies (SFEs, ∼46-54 mN/m), whereas their amine group densities and zeta potentials at physiological conditions (pH 7.4) varied greatly (-50 to +75 mV). In protein adsorption experiments with single proteins (human serum albumin (HSA) and lysozyme) as well as complex physiological fluids (fetal bovine serum (FBS) and human saliva), the amounts of adsorbed protein were found to correlate strongly with the zeta potential of the surface coatings. Both modifications based on linear polymers exhibited good protein repellency toward all proteins examined and are thus promising for testing in cell adhesion studies.
Collapse
Affiliation(s)
| | - Martina Gruening
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | | | | |
Collapse
|
36
|
Weisler W, Miller S, Jernigan S, Buckner G, Bryant M. Design and testing of a centrifugal fluidic device for populating microarrays of spheroid cancer cell cultures. J Biol Eng 2020; 14:7. [PMID: 32190109 PMCID: PMC7066855 DOI: 10.1186/s13036-020-0228-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background In current cancer spheroid culturing methods, the transfer and histological processing of specimens grown in 96-well plates is a time consuming process. A centrifugal fluidic device was developed and tested for rapid extraction of spheroids from a 96-well plate and subsequent deposition into a molded agar receiver block. The deposited spheroids must be compact enough to fit into a standard histology cassette while also maintaining a highly planar arrangement. This size and planarity enable histological processing and sectioning of spheroids in a single section. The device attaches directly to a 96-well plate and uses a standard centrifuge to facilitate spheroid transfer. The agar block is then separated from the device and processed. Results Testing of the device was conducted using six full 96-well plates of fixed Pa14C pancreatic cancer spheroids. On average, 80% of spheroids were successfully transferred into the agar receiver block. Additionally, the planarity of the deposited spheroids was evaluated using confocal laser scanning microscopy. This revealed that, on average, the optimal section plane bisected individual spheroids within 27% of their mean radius. This shows that spheroids are largely deposited in a planar fashion. For rare cases where spheroids had a normalized distance to the plane greater than 1, the section plane either misses or captures a small cross section of the spheroid volume. Conclusions These results indicate that the proposed device is capable of a high capture success rate and high sample planarity, thus demonstrating the capabilities of the device to facilitate rapid histological evaluation of spheroids grown in standard 96-well plates. Planarity figures are likely to be improved by adjusting agar block handling prior to imaging to minimize deformation and better preserve the planarity of deposited spheroids. Additionally, investigation into media additives to reduce spheroid adhesion to 96-well plates would greatly increase the capture success rate of this device.
Collapse
Affiliation(s)
- Warren Weisler
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910 USA
| | - Samuel Miller
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910 USA
| | - Shaphan Jernigan
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910 USA
| | - Gregory Buckner
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910 USA
| | - Matthew Bryant
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910 USA
| |
Collapse
|
37
|
Martin G, Lübke J, Schefold S, Jordan JF, Schlunck G, Reinhard T, Kanokwijitsilp T, Prucker O, Rühe J, Anton A. Prevention of Ocular Tenon Adhesion to Sclera by a PDMAA Polymer to Improve Results after Glaucoma Surgery. Macromol Rapid Commun 2020; 41:e1900352. [DOI: 10.1002/marc.201900352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/17/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Gottfried Martin
- Eye CenterMedical Center ‐ Faculty of MedicineUniversity of Freiburg Killianstraße 5 79106 Freiburg Germany
| | - Jan Lübke
- Eye CenterMedical Center ‐ Faculty of MedicineUniversity of Freiburg Killianstraße 5 79106 Freiburg Germany
| | - Suzanna Schefold
- Eye CenterMedical Center ‐ Faculty of MedicineUniversity of Freiburg Killianstraße 5 79106 Freiburg Germany
- Department of Microsystems Engineering (IMTEK)University of Freiburg Georges‐Köhler‐Allee 103 79110 Freiburg Germany
| | - Jens F. Jordan
- Eye CenterMedical Center ‐ Faculty of MedicineUniversity of Freiburg Killianstraße 5 79106 Freiburg Germany
- Praxisausübungsgemeinschaft Vobig & Jordan Hans‐Thoma‐Straße 24 60596 Frankfurt Germany
| | - Günther Schlunck
- Eye CenterMedical Center ‐ Faculty of MedicineUniversity of Freiburg Killianstraße 5 79106 Freiburg Germany
| | - Thomas Reinhard
- Eye CenterMedical Center ‐ Faculty of MedicineUniversity of Freiburg Killianstraße 5 79106 Freiburg Germany
| | - Thananthorn Kanokwijitsilp
- Department of Microsystems Engineering (IMTEK)University of Freiburg Georges‐Köhler‐Allee 103 79110 Freiburg Germany
| | - Oswald Prucker
- Department of Microsystems Engineering (IMTEK)University of Freiburg Georges‐Köhler‐Allee 103 79110 Freiburg Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering (IMTEK)University of Freiburg Georges‐Köhler‐Allee 103 79110 Freiburg Germany
| | - Alexandra Anton
- Eye CenterMedical Center ‐ Faculty of MedicineUniversity of Freiburg Killianstraße 5 79106 Freiburg Germany
| |
Collapse
|
38
|
Elsayed SM, Widyaya VT, Shafi Y, Eickenscheidt A, Lienkamp K. Bifunctional Bioactive Polymer Surfaces with Micrometer and Submicrometer-sized Structure: The Effects of Structure Spacing and Elastic Modulus on Bioactivity. Molecules 2019; 24:E3371. [PMID: 31527527 PMCID: PMC6767307 DOI: 10.3390/molecules24183371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
This study presents a comparison of two types of bifunctional structured surface that were made from the same polymer -- an antimicrobial polycation (a synthetic mimic of an antimicrobial peptide, SMAMP) and a protein-repellent polyzwitterion (poly(sulfobetaines), PSB). The first type of bifunctional surface was fabricated by a colloidal lithography (CL) based process where the two polymers were immobilized sequentially onto pre-structured surfaces with a chemical contrast (gold on silicon). This enabled site-selective covalent attachment. The CL materials had a spacing ranging from 200 nm to 2 µm. The second type of structured surface (spacing: 1 - 8.5 µm) was fabricated using a microcontact printing (µCP) process where SMAMP patches were printed onto a PSB network, so that 3D surface features were obtained. The thus obtained materials were studied by quantitative nanomechanical measurements using atomic force microscopy (QNM-AFM). The different architectures led to different local elastic moduli at the polymer-air interface, where the CL surfaces were much stiffer (Derjaguin-Muller-Toporov (DMT) modulus = 20 ± 0.8 GPa) compared to the structured 3D networks obtained by µCP (DMT modulus = 42 ± 1.1 MPa). The effects of the surface topology and stiffness on the antimicrobial activity against Escherichia coli, the protein repellency (using fibrinogen), and the compatibility with human gingival mucosal keratinocytes were investigated. The softer 3D µCP surfaces had simultaneous antimicrobial activity, protein repellency, and cell compatibility at all spacings. For the stiffer CL surfaces, quantitative simultaneous antimicrobial activity and protein repellency was not obtained. However, the cell compatibility could be maintained at all spacings. The optimum spacing for the CL materials was in the range of 500 nm-1 µm, with significantly reduced antimicrobial activity at 2 µm spacing. Thus, the soft polymer network obtained by µCP could be more easily optimized than the stiff CL surface, and had a broader topology range of optimal or near-optimal bioactivity.
Collapse
Affiliation(s)
- Sarah M Elsayed
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Vania Tanda Widyaya
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Yasir Shafi
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Alice Eickenscheidt
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Karen Lienkamp
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.
| |
Collapse
|
39
|
Robidillo CJT, Wandelt S, Dalangin R, Zhang L, Yu H, Meldrum A, Campbell RE, Veinot JGC. Ratiometric Detection of Nerve Agents by Coupling Complementary Properties of Silicon-Based Quantum Dots and Green Fluorescent Protein. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33478-33488. [PMID: 31414591 DOI: 10.1021/acsami.9b10996] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ratiometric photoluminescent detection of the toxicologically potent organophosphate ester nerve agents paraoxon (PX) and parathion (PT) using the complementary optical and chemical properties of the long Stokes shift green fluorescent protein variant, mAmetrine1.2 (mAm), and red-emitting silicon-based quantum dots (SiQDs) is reported. PX and PT selectively quench SiQD photoluminescence (PL) through a dynamic quenching mechanism, thereby, facilitating the development of a ratiometric sensor platform that shows micromolar limits of detection for PX and PT and that is unaffected by the presence of common inorganic and organic interferents. As a part of the present study, we also demonstrate that the paper-based sensors derived from mAm and SiQDs detect PX and PT at concentrations as low as 5 μM using a readily available commercial color analysis smartphone "app". The ratiometric sensor reported herein can potentially be used for the convenient and rapid on-site detection and quantification of PX and PT in real-world samples.
Collapse
Affiliation(s)
- Christopher Jay T Robidillo
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
- Department of Physical Sciences and Mathematics , University of the Philippines Manila , P. Faura Street , Ermita, Manila 1000 , Philippines
| | - Sophia Wandelt
- Faculty of Chemistry and Pharmacy , Ludwig-Maximilians-Universität München , Munich 81377 , Germany
| | - Rochelin Dalangin
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Lijuan Zhang
- Department of Physics , University of Alberta , Edmonton , Alberta T6G 2E1 , Canada
| | - Haoyang Yu
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Alkiviathes Meldrum
- Department of Physics , University of Alberta , Edmonton , Alberta T6G 2E1 , Canada
| | - Robert E Campbell
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
- Department of Chemistry , The University of Tokyo , Tokyo 113-0033 , Japan
| | - Jonathan G C Veinot
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
40
|
Kleber C, Lienkamp K, Rühe J, Asplund M. Wafer-Scale Fabrication of Conducting Polymer Hydrogels for Microelectrodes and Flexible Bioelectronics. ACTA ACUST UNITED AC 2019; 3:e1900072. [PMID: 32648703 DOI: 10.1002/adbi.201900072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/13/2019] [Indexed: 11/06/2022]
Abstract
Future-oriented directions in neural interface technologies point towards the development of multimodal devices that combine different functionalities such as neural stimulation, neurotransmitter sensing, and drug release within one platform. Conducting polymer hydrogels (CPHs) are suggested as materials for the coating of standard metal electrodes to add functionalities such as local delivery of therapeutic drugs. However, to make such coatings truly useful for multimodal devices, it is necessary to develop process technologies that allow the micropatterning of CPHs onto selected electrode sites. In this study, a wafer-scale fabrication procedure is presented, which is used to coat the CPH, based on the hydrogel P(DMAA-co-5%MABP-co-2,5%SSNa) and the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT), onto flexible neural probes. The resulting material has favorable properties for the generation of recording electrodes and in addition offers a convenient platform for biofunctionalization. By controlling the PEDOT content within the hydrogel matrix, charge injection limits of up to 3.7 mC cm- 2 are obtained. Long-term stability is tested by immersing coated samples in phosphate-buffered saline solution at 37 °C for 1 year. Non-cytotoxicity of the coatings is confirmed with a direct cell culture test using a fluorescent neuroblastoma cell line.
Collapse
Affiliation(s)
- Carolin Kleber
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,Brainlinks-Braintools, University of Freiburg, 79110, Freiburg, Germany
| | - Karen Lienkamp
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,Brainlinks-Braintools, University of Freiburg, 79110, Freiburg, Germany.,FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,Brainlinks-Braintools, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
41
|
Abstract
This paper describes a simple method to pattern nanoparticles on planar surfaces using the antifouling property of poly(ethylene glycol) monolayers deposited from a solution on the native oxide of titanium. Atomic force microcopy was used to pattern the poly(ethylene glycol) monolayers producing protein active sites on the protein-resistant surface. Patterns with different sizes have been generated by shaving the monolayers with different repetitions. Friction force microscopy was used to image the patterns. The smallest patterns are 50 nm and the largest patterns are 500 nm at full width half maximum. The smallest pattern was produced with one shave, whereas the largest pattern was produced by shaving the monolayers 112 times. Protein-coated nanoparticles were immobilised on the shaved (protein active) part of the monolayers by dipping the patterned samples into a solution that contains 2% by volume protein-functionalized nanoparticles with a nominal diameter of 40 nm. Atomic force microscopy was used to take a topographic image of the samples. The topographic image showed that the protein-functionalized nanoparticles were attached onto the shaved part of the substrate but not on the poly(ethylene glycol)-covered part of the substrate. The level of aggregation of the nanoparticles was also investigated from the topographic image. The section analysis of the topographic image of the nanoparticle patterns showed a height of 40 nm which proved that only a monolayer of particles were deposited on the shaved part of the monolayer.
Collapse
|
42
|
Mammalian Cell Behavior on Hydrophobic Substrates: Influence of Surface Properties. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3020048] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The influence of different surface properties holding to a modification of the substrate towards hydrophobic or superhydrophobic behavior was reviewed in this paper. Cell adhesion, their communication, and proliferation can be strongly manipulated, acting on interfacial relationship involving stiffness, surface charge, surface chemistry, roughness, or wettability. All these features can play mutual roles in determining the final properties of biomedical applications ranging from fabrics to cell biology devices. The focus of this work is the mammalian cell viability in contact with moderate to highly water repellent coatings or materials and also in combination with hydrophilic areas for more specific application. Few case studies illustrate a range of examples in which these surface properties and design can be fruitfully matched to the specific aim.
Collapse
|
43
|
Szell T, Dressler FF, Goelz H, Bluemel B, Miernik A, Brandstetter T, Scherag F, Schoeb DS. In Vitro Effects of a Novel Coating Agent on Bacterial Biofilm Development on Ureteral Stents. J Endourol 2019; 33:225-231. [PMID: 30458115 DOI: 10.1089/end.2018.0616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tamas Szell
- Department of Urology, Faculty of Medicine, Medical Center–University of Freiburg, Freiburg, Germany
| | - Franz Friedrich Dressler
- Department of Urology, Faculty of Medicine, Medical Center–University of Freiburg, Freiburg, Germany
| | - Hanna Goelz
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center–University of Freiburg, Freiburg, Germany
| | - Benjamin Bluemel
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center–University of Freiburg, Freiburg, Germany
| | - Arkadiusz Miernik
- Department of Urology, Faculty of Medicine, Medical Center–University of Freiburg, Freiburg, Germany
| | - Thomas Brandstetter
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Frank Scherag
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Dominik Stefan Schoeb
- Department of Urology, Faculty of Medicine, Medical Center–University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Widyaya VT, Müller C, Al-Ahmad A, Lienkamp K. Three-Dimensional, Bifunctional Microstructured Polymer Hydrogels Made from Polyzwitterions and Antimicrobial Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1211-1226. [PMID: 30563333 PMCID: PMC7611509 DOI: 10.1021/acs.langmuir.8b03410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biofilm-associated infections of medical devices are a global problem. For the prevention of such infections, biomaterial surfaces are chemically or topographically modified to slow down the initial stages of biofilm formation. In the bifunctional material here presented, chemical and topographical cues are combined, so that protein and bacterial adhesion as well as bacterial proliferation are effectively inhibited. Upon changes in the surface topography parameters and investigation of the effect of these changes on bioactivity, structure-property relationships are obtained. The target material is obtained by microcontact printing (μCP), a soft lithography method. The antimicrobial component, poly(oxanorbornene)-based synthetic mimics of an antimicrobial peptide (SMAMP), was printed onto a protein-repellent polysulfobetaine hydrogel, so that bifunctional 3D structured polymer surfaces with 1, 2, and 8.5 μm spacing are obtained. These surfaces are characterized with fluorescence microscopy, surface plasmon resonance spectroscopy, atomic force microscopy, and contact angle measurements. Biological studies show that the bifunctional surfaces with 1 and 2 μm spacing are 100% antimicrobially active against Escherichia coli and Staphylococcus aureus, 100% fibrinogen-repellent, and nontoxic to human gingival mucosal keratinocytes. At 8.5 μm spacing, the broad-band antimicrobial activity and the protein repellency are compromised, which indicates that this spacing is above the upper limit for effective simultaneous antimicrobial activity and protein repellency of polyzwitterionic-polycationic materials.
Collapse
Affiliation(s)
- Vania Tanda Widyaya
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Claas Müller
- Laboratory for Process Technology, Department of Microsystem Engineering (IMTEK), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine of the Albert-Ludwigs-Universität, Freiburg, Hugstetter Str. 55, 79106 Germany
| | - Karen Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
45
|
Koc J, Schönemann E, Amuthalingam A, Clarke J, Finlay JA, Clare AS, Laschewsky A, Rosenhahn A. Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1552-1562. [PMID: 30376714 DOI: 10.1021/acs.langmuir.8b02799] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel coatings against a series of proteins and nonmotile as well as motile marine organisms as model foulers. The coatings are prepared by simultaneous photoinduced cross-linking and surface anchoring to elucidate the effect of the molecular structure of the zwitterionic moieties on their antifouling activity. Analogously prepared coatings of poly(butyl methacrylate) and poly(oligoethylene glycol methacrylate) serve as references. Photoreactive polymers are synthesized by the statistical copolymerization of sulfobetaine or sulfabetaine methacrylates and methacrylamides with a benzophenone derivative of 2-hydroxyethyl methacrylate and are applied as a thin film coating. While keeping the density of the zwitterionic and cross-linker groups constant, the molecular structure of the zwitterionic side chains is varied systematically, as is the arrangement of the ion pairs in the side chain by changing the classical linear geometry to a novel Y-shaped geometry. All of the polyzwitterions strongly reduce fouling compared to poly(butyl methacrylate). Overall, the sulfabetaine polyzwitterion coatings studied matches the high antifouling effectiveness of oligo(ethylene glycol)-based ones used as a control. Nevertheless, performances varied individually for a given pair of polymer and fouler. The case of the polysulfobetaines exemplifies that minor chemical changes in the polymer structure affect the antifouling performance markedly. Accordingly, the antifouling performance of such polymers cannot be correlated simply to the type of zwitterion used (which could be generally ranked as better performing or poorer performing) but is a result of the polymer's precise chemical structure. Our findings underline the need to enlarge the existing structural diversity of polyzwitterions for antifouling purposes to optimize the potential of their chemical structure.
Collapse
Affiliation(s)
- Julian Koc
- Analytical Chemistry - Biointerfaces , Ruhr University Bochum , 44780 Bochum , Germany
| | - Eric Schönemann
- Department of Chemistry , University Potsdam , 14476 Potsdam-Golm , Germany
| | - Ajitha Amuthalingam
- Analytical Chemistry - Biointerfaces , Ruhr University Bochum , 44780 Bochum , Germany
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - Andre Laschewsky
- Department of Chemistry , University Potsdam , 14476 Potsdam-Golm , Germany
- Fraunhofer Institute of Applied Polymer Research IAP , 14476 Potsdam-Golm , Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces , Ruhr University Bochum , 44780 Bochum , Germany
| |
Collapse
|
46
|
Zinggeler M, Brandstetter T, Rühe J. Biophysical Insights on the Enrichment of Cancer Cells from Whole Blood by (Affinity) Filtration. Sci Rep 2019; 9:1246. [PMID: 30718672 PMCID: PMC6362249 DOI: 10.1038/s41598-018-37541-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/22/2018] [Indexed: 12/31/2022] Open
Abstract
Circulating tumor cells (CTCs) play a key role during the metastatic process of human cancers and their reliable detection and characterization could enable new and effective ways of cancer diagnosis, monitoring and treatment. However, due to their ultralow concentration in patient blood, the CTCs must first be enriched before such analysis can be performed. Classical microfiltration is an important and widely used method for the mechanical enrichment of CTCs. This method exploits that CTCs are generally larger than the accompanying blood cells, however, does not differentiate the cells in other ways. In an affinity filtration, selectivity is added by functionalizing the membrane with specific antibodies against a CTC-characteristic surface protein such as the epithelial cell adhesion molecule (EpCAM). A common shortcoming of both filtration approaches is that there is still a poor understanding of the enrichment process and the systems developed so far are frequently operated under non-optimized conditions. To address this, systematic filtration experiments are performed in this work using the EpCAM+ cell line MCF-7 as CTC-model and standard track-etched membranes modified with or without antibodies against EpCAM. The influences of the key filtration parameters time and applied pressure are studied and it is found that in all cases the extent of cell recovery is limited by a lysis process which occurs on the membrane surface. Counterintuitively, it is found that filtration at rather high pressures is advantageous to ensure high recovery rates. To describe the pressure-induced lysis process a biophysical model is developed. This model allows the determination of optimum filtration conditions to achieve both high cancer cell recovery and large blood sample throughput. It is demonstrated that this way practically 100% of spiked cancer cells can be recovered from milliliters of undiluted whole blood within seconds.
Collapse
Affiliation(s)
- Marc Zinggeler
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Thomas Brandstetter
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany.
| |
Collapse
|
47
|
Schönberg JN, Zinggeler M, Fosso P, Brandstetter T, Rühe J. One-Step Photochemical Generation of Biofunctionalized Hydrogel Particles via Two-Phase Flow. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39411-39416. [PMID: 30375846 DOI: 10.1021/acsami.8b11757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biofunctional hydrogel particles have become increasingly popular in medical diagnostics; however, their generation is time-consuming and typically requires several process steps. We report on a new method for the simple, fast, and reproducible one-step generation of monodisperse hydrogel particles equipped with biofunctional molecules such as proteins or DNA. Key to the approach is the simultaneous photo cross-linking of the polymer chains and covalent binding of proteins or DNA through a C,H insertion reaction inside aqueous plug compartments that are produced via microfluidics. The strong performance in biological binding assays of the functionalized particles is demonstrated.
Collapse
Affiliation(s)
- Jan-Niklas Schönberg
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering , University of Freiburg , Georges-Koehler-Allee 103 , Freiburg 79110 , Germany
| | - Marc Zinggeler
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering , University of Freiburg , Georges-Koehler-Allee 103 , Freiburg 79110 , Germany
| | - Patrick Fosso
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering , University of Freiburg , Georges-Koehler-Allee 103 , Freiburg 79110 , Germany
| | - Thomas Brandstetter
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering , University of Freiburg , Georges-Koehler-Allee 103 , Freiburg 79110 , Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering , University of Freiburg , Georges-Koehler-Allee 103 , Freiburg 79110 , Germany
| |
Collapse
|
48
|
Scherag FD, Mader A, Zinggeler M, Birsner N, Kneusel RE, Brandstetter T, Rühe J. Blocking-Free and Substrate-Independent Serological Microarray Immunoassays. Biomacromolecules 2018; 19:4641-4649. [DOI: 10.1021/acs.biomac.8b01334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Frank D. Scherag
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Andreas Mader
- Scienion AG, Volmerstrasse 7b, 12489 Berlin, Germany
| | - Marc Zinggeler
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Nicole Birsner
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | | | - Thomas Brandstetter
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
49
|
Robidillo CJT, Aghajamali M, Faramus A, Sinelnikov R, Veinot JGC. Interfacing enzymes with silicon nanocrystals through the thiol-ene reaction. NANOSCALE 2018; 10:18706-18719. [PMID: 30270384 DOI: 10.1039/c8nr05368e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study reports the preparation of functional bioinorganic hybrids, through application of the thiol-ene reaction, that exhibit catalytic activity and photoluminescent properties from enzymes and freestanding silicon nanocrystals. Thermal hydrosilylation of 1,7-octadiene and alkene-terminated poly(ethylene oxide)methyl ether with hydride-terminated silicon nanocrystals afforded nanocrystals functionalized with alkene residues and poly(ethylene oxide) moieties. These silicon nanocrystals were conjugated with representative enzymes through the photochemical thiol-ene reaction to afford bioinorganic hybrids that are dispersible and photostable in buffer, and that exhibit photoluminescence (λmax = 630 nm) and catalytic activity. They were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering analysis (DLS), absorption spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and pertinent enzyme activity assays. The general derivatization approach presented for interfacing enzymes with biocompatible silicon nanocrystals has far reaching implications for many applications ranging from sensors to therapeutic agents. The bioinorganic hybrids presented herein have potential applications in the chemical detection of nitrophenyl esters and urea. They can also be employed in enzyme-based theranostics as they combine long-lived silicon nanocrystal photoluminescence with substrate-specific enzymatic activity.
Collapse
|
50
|
Zhang K, Fang H, Qin Y, Zhang L, Yin J. Functionalized Scaffold for in Situ Efficient Gene Transfection of Mesenchymal Stem Cells Spheroids toward Chondrogenesis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33993-34004. [PMID: 30207161 DOI: 10.1021/acsami.8b12268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multicellular mesenchymal stem cell (MSC) spheroids possess enhanced chondrogenesis ability and limited fibrosis, exhibiting advantage toward hyaline-like cartilage regeneration. However, because of the limited cell surfaces in spheroid exposed to DNA/vector, it is difficult to realize efficient gene transfection, most of which highly rely on cell-substrate interaction. Here, we report a poly(l-glutamic acid)-based porous scaffold with tunable inner surfaces that can sequentially realize cell-scaffold attachment and detachment, as well as the followed in situ spheroid formation. The attachment and detachment of cells from scaffold is achieved by the capture and release of fibronectin (Fn) via reversible imine linkage between aromatic aldehyde groups of scaffold and amino groups of Fn. Together with N, N, N-trimethyl chitosan chloride condensing plasmid DNA encoding transforming growth factor-β1 (pDNA-TGF-β1), cell attachment realizes efficient surface-mediated gene transfection. Conversion of scaffold stiffness can affect the adhesion shape of cells. Stiffer scaffold reinforces the adhesion, leading to the amplification of peripheral focal adhesions and the promotion of cell spreading, as well as the promotion of gene transfection efficiency. After cellular detachment from the scaffold via lysine treatment, the subsequent spheroid formation with extensive cell-cell interaction up-regulates the corresponding protein expression with a prolonged term. With the induction effect of the expressed TGF-β1, significantly enhanced chondrogenesis of MSCs in spheroids is achieved at 10 d in vitro. Well-regenerated cartilage at 8 weeks in vivo indicates that the present gene transfection system is a platform that can be potentially applied toward cartilage tissue engineering.
Collapse
Affiliation(s)
- Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering , Shanghai University , 99 Shangda Road , Shanghai 200444 , PR China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering , Shanghai University , 99 Shangda Road , Shanghai 200444 , PR China
| | - Yechi Qin
- Department of Polymer Materials, School of Materials Science and Engineering , Shanghai University , 99 Shangda Road , Shanghai 200444 , PR China
| | - Lili Zhang
- Department of Polymer Materials, School of Materials Science and Engineering , Shanghai University , 99 Shangda Road , Shanghai 200444 , PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering , Shanghai University , 99 Shangda Road , Shanghai 200444 , PR China
| |
Collapse
|