1
|
Kang Y, Zhao J, Zeng Y, Du X, Gu Z. 3D Printing Photonic Crystals: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403525. [PMID: 39087369 DOI: 10.1002/smll.202403525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Living organisms in nature possess diverse and vibrant structural colors generated from their intrinsic surface micro/nanostructures. These intricate micro/nanostructures can be harnessed to develop a new generation of colorful materials for various fields such as photonics, information storage, display, and sensing. Recent advancements in the fabrication of photonic crystals have enabled the preparation of structurally colored materials with customized geometries using 3D printing technologies. Here, a comprehensive review of the historical development of fabrication methods for photonic crystals is provided. Diverse 3D printing approaches along with the underlying mechanisms, as well as the regulation methods adopted to generate photonic crystals with structural color, are discussed. This review aims to offer the readers an overview of the state-of-the-art 3D printing techniques for photonic crystals, present a guide and considerations to fabricate photonic crystals leveraging different 3D printing methods.
Collapse
Affiliation(s)
- Youlong Kang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yi Zeng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xin Du
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Kim JH, Kim JB, Kim SH. Structural Color Inks Containing Photonic Microbeads for Direct Writing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38593432 DOI: 10.1021/acsami.4c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Printing structurally colored patterns is of great importance for providing customized graphics for various purposes. Although a direct writing technique has been developed, the use of colloidal dispersions as photonic inks requires delicate printing conditions and restricts the mechanical and optical properties of printed patterns. In this work, we produce elastic photonic microbeads through scalable bulk emulsification and formulate photonic inks containing microbeads for direct writing. To produce the microbeads, a photocurable colloidal dispersion is emulsified into a highly concentrated sucrose solution via vortexing, which results in spherical emulsion droplets with a relatively narrow size distribution. The microbeads are produced by photopolymerization and are then suspended in urethane acrylate resin at volume fractions of 0.35-0.45. The photonic inks retain high color saturation of the microbeads and offer enhanced printability and dimensional control on various target substrates including fabrics, papers, and even skins. Importantly, the printed graphics show high mechanical stability as the elastic microbeads are embedded in the polyurethane matrix. Moreover, the colors show a wide viewing angle and low-angle dependency due to the optical isotropy of individual microbeads and light refraction at the air-matrix interface. We postulate that this versatile direct writing technique is potentially useful for structural color coating and printing on the surfaces of arbitrary 3D objects.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong Bin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Fallahi V, Kordrostami Z, Hosseini M. Sensitivity and quality factor improvement of photonic crystal sensors by geometrical optimization of waveguides and micro-ring resonators combination. Sci Rep 2024; 14:2001. [PMID: 38263207 PMCID: PMC10805923 DOI: 10.1038/s41598-024-52363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
In this work, the process of designing and simulating optical sensors based on photonic crystal (PC) micro-ring resonators (MRRs) has been investigated. According to the PC type, different waveguides and resonators can be designed, and various topologies can be proposed from their combination, for optical sensor applications. Here, the investigated MRR is of the symmetrical micro-hexagonal ring resonator (MHRR) type. Different arrays of MHRR arrangement have been designed to investigate their effects on the output spectrum. The results of the design and simulation of different topologies have been analyzed and compared with other numerical researches. Considering all the necessary aspects of PC optical sensors, a detailed and comprehensive algorithm has been presented for designing these devices and choosing the optimal structure. In a more complementary process, the effects of reflector rods have been investigated, which indicates the existence of similarity and compatibility in the design between the distance of reflector rods and the length of MHRRs to obtain the optimal structure. Finally, the effect of different values of lattice constant and radius of dielectric rods on FWHM, transmission (TR) and resonant wavelength is studied, and the most optimal mode is presented. In order to measure the performance of the proposed optimal sensor, its application for gas detection has been analyzed. TR, FWHM, quality factor (QF), sensitivity (S) and figure of merit (FOM) of the proposed sensor were equal to 96%, 0.31 nm, 2636, 6451 nm/RIU and 2960 RIU-1 respectively. An examination of results from similar research indicates a rational and effective approach for generating diverse topologies, aiming to attain the most optimal configuration for optical sensors employing MRRs. Furthermore, employing a systematic design process based on established principles and the proposed algorithm helps prevent arbitrary parameter variations, facilitating the attainment of desired outcomes in a more streamlined and efficient manner. Given the comprehensive nature of this research, it presents a viable solution for designing optical devices based on MRRs for use in optical integrated circuits (OICs) applications.
Collapse
Affiliation(s)
- Vahid Fallahi
- Department of Electrical and Electronic Engineering, and Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran
| | - Zoheir Kordrostami
- Department of Electrical and Electronic Engineering, and Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran.
| | - Mehdi Hosseini
- Physics Department, Shiraz University of Technology, Shiraz, Iran.
| |
Collapse
|
4
|
Xu D, Wang Y, Sun L, Luo Z, Luo Y, Wang Y, Zhao Y. Living Anisotropic Structural Color Hydrogels for Cardiotoxicity Screening. ACS NANO 2023; 17:15180-15188. [PMID: 37459507 DOI: 10.1021/acsnano.3c04817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Environmental toxins can result in serious and fatal damage in the human heart, while the development of a viable stratagem for assessing the effects of environmental toxins on human cardiac tissue is still a challenge. Herein, we present a heart-on-a-chip based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured living anisotropic structural color hydrogels for cardiotoxicity screening. Such anisotropic structural color hydrogels with a conductive parallel carbon nanotube (CNT) upper layer, gelatin methacryloyl (GelMA) interlayer, and inverse opal bottom layer were fabricated by a sandwich replicating approach. The inverse opal structure endowed the anisotropic hydrogels with stable structural color property, while the parallel and conductive CNTs could induce the hiPSC-CMs to grow in a directional manner with consistent autonomous beating. Notably, the resultant hiPSC-CM-cultured hydrogel exhibited synchronous shifts in structural color, responding to contraction and relaxation of hiPSC-CMs, offering a visual platform for monitoring cell activity. Given these features, the hiPSC-CM-cultured living anisotropic structural color hydrogels were integrated into a heart-on-a-chip, which provided a superior cardiotoxicity screening platform for environmental toxins.
Collapse
Affiliation(s)
- Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
5
|
Winhard BF, Maragno LG, Gomez-Gomez A, Katz J, Furlan KP. Printing Crack-Free Microporous Structures by Combining Additive Manufacturing with Colloidal Assembly. SMALL METHODS 2023; 7:e2201183. [PMID: 36571286 DOI: 10.1002/smtd.202201183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
To date high printing resolution and scalability, i.e., macroscale component dimensions and fast printing, are incompatible characteristics for additive manufacturing (AM) processes. It is hereby demonstrated that the combination of direct writing as an AM process with colloidal assembly enables the breaching of this processing barrier. By tailoring printing parameters for polystyrene (PS) microparticle-templates, how to avoid coffee ring formation is demonstrated, thus printing uniform single lines and macroscale areas. Moreover, a novel "comb"-strategy is introduced to print macroscale, crack-free colloidal coatings with low viscous colloidal suspensions. The printed templates are transformed into ceramic microporous channels as well as photonic coatings via atomic layer deposition (ALD) and calcination. The obtained structures reveal promising wicking capabilities and broadband reflection in the near-infrared, respectively. This work provides guidelines for printing low viscous colloidal suspensions and highlights the advancements that this printing process offers toward novel applications of colloidal-based printed structures.
Collapse
Affiliation(s)
- Benedikt F Winhard
- Hamburg University of Technology, Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073, Hamburg, Germany
| | - Laura G Maragno
- Hamburg University of Technology, Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073, Hamburg, Germany
| | - Alberto Gomez-Gomez
- Hamburg University of Technology, Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073, Hamburg, Germany
| | - Julian Katz
- Hamburg University of Technology, Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073, Hamburg, Germany
| | - Kaline P Furlan
- Hamburg University of Technology, Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073, Hamburg, Germany
| |
Collapse
|
6
|
Yu X, Li H, Song Y. Ink-Drop Dynamics on Chemically Modified Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15453-15462. [PMID: 36502385 DOI: 10.1021/acs.langmuir.2c03108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inkjet printing provides an efficient routine for distributing functional materials into locations with well-designed arrangements. As one of the most critical factors in determining the printing quality, the impacting and depositing behaviors of ink drops largely depend on the wettability of the target surface. In addition to printing on solids with intrinsic wettability, various ink-drop impact dynamics and deposition morphologies have been reported through modifying the surface wettability including both homogeneous and heterogeneous, which opens up possibilities for applications such as advanced optic/electric device fabrication and highly sensitive detection. In this Perspective, we summarize recent progress in the modification methods of solid surface wettability and their capability in modulating the ink-drop impacting and depositing dynamics. The challenges facing ink-drop regulation by chemical modification methodologies are also envisaged at the end of the Perspective.
Collapse
Affiliation(s)
- Xinye Yu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Kim JH, Kim JB, Choi YH, Park S, Kim SH. Photonic Microbeads Templated by Oil-in-Oil Emulsion Droplets for High Saturation of Structural Colors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105225. [PMID: 34889511 DOI: 10.1002/smll.202105225] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Photonic microbeads containing crystalline colloidal arrays are promising as a key component of structural-color inks for various applications including printings, paintings, and cosmetics. However, structural colors from microbeads usually have low color saturation and the production of the beads requires delicate and time-consuming protocols. Herein, elastic photonic microbeads are designed with enhanced color saturation through facile photocuring of oil-in-oil emulsion droplets. Dispersions of highly-concentrated silica particles in elastomer precursors are microfluidically emulsified into immiscible oil to produce monodisperse droplets. The silica particles spontaneously form crystalline arrays in the entire volume of the droplets due to interparticle repulsion which is unperturbed by the diffusion of the surrounding oil whereas weakened for oil-in-water droplets. The crystalline arrays are permanently stabilized by photopolymerization of the precursor, forming elastic photonic microbeads. The microbeads are transferred into the refractive-index-matched biocompatible oil. The high crystallinity of colloidal arrays increases the reflectivity at stopband and the index matching reduces incoherent scattering at the surface of the microbeads, enhancing color saturation. The colors can be adjusted by mixing two distinctly colored microbeads. Also, low stiffness and high elasticity reduce foreign-body sensation and enhance fluidity, potentially serving as pragmatic structural colorants for photonic inks.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jong Bin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Self-Similarity Properties of Complex Quasi-Periodic Fibonacci and Cantor Photonic Crystals. PHOTONICS 2021. [DOI: 10.3390/photonics8120558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, the influence of structural modifications on basic quasi-periodic (QP) photonic crystals (PhC’s) on self-similarity feature in their spectral responses is examined. Investigated crystals are chosen based on a present knowledge on the QP crystals, and are classified according to their structure. One of the QP crystals considered for the calculations is a concatenation, Fibonacci structure. It characterizes with a self-similar spectra for its different orders, which means, that the spectral shape repeats itself and can be partially identical for a different orders of the Fibonacci QP crystal. The calculations were also performed for the fractal structure, based on a Cantor QP crystal. Just as for the case of the Fibonacci structure, it characterizes with a self-similar spectra for different orders of the structure. Considered photonic devices are next put through simple modification operations by multiplication, conjugation or mirror reflection. Resulting, modified structures are used for the calculations of their spectral response. Results show, that the self-similarity of the spectra is not affected by performed modifications, and thus spectral response of QP PhC can be designed without losing this feature. Moreover the regular expansion of the repeated central part of the spectrum that appears in higher-order Fibonacci QP PhC spectra (due to the self-similarity) with the increase Fibonacci crystal order is presented here for the first time.
Collapse
|
9
|
Upadhyaya AM, Hasan MK, Abdel-Khalek S, Hassan R, Srivastava MC, Sharan P, Islam S, Saad AME, Vo N. A Comprehensive Review on the Optical Micro-Electromechanical Sensors for the Biomedical Application. Front Public Health 2021; 9:759032. [PMID: 34926383 PMCID: PMC8674308 DOI: 10.3389/fpubh.2021.759032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
This study presented an overview of current developments in optical micro-electromechanical systems in biomedical applications. Optical micro-electromechanical system (MEMS) is a particular class of MEMS technology. It combines micro-optics, mechanical elements, and electronics, called the micro-opto electromechanical system (MOEMS). Optical MEMS comprises sensing and influencing optical signals on micron-level by incorporating mechanical, electrical, and optical systems. Optical MEMS devices are widely used in inertial navigation, accelerometers, gyroscope application, and many industrial and biomedical applications. Due to its miniaturised size, insensitivity to electromagnetic interference, affordability, and lightweight characteristic, it can be easily integrated into the human body with a suitable design. This study presented a comprehensive review of 140 research articles published on photonic MEMS in biomedical applications that used the qualitative method to find the recent advancement, challenges, and issues. The paper also identified the critical success factors applied to design the optimum photonic MEMS devices in biomedical applications. With the systematic literature review approach, the results showed that the key design factors could significantly impact design, application, and future scope of work. The literature of this paper suggested that due to the flexibility, accuracy, design factors efficiency of the Fibre Bragg Grating (FBG) sensors, the demand has been increasing for various photonic devices. Except for FBG sensing devices, other sensing systems such as optical ring resonator, Mach-Zehnder interferometer (MZI), and photonic crystals are used, which still show experimental stages in the application of biosensing. Due to the requirement of sophisticated fabrication facilities and integrated systems, it is a tough choice to consider the other photonic system. Miniaturisation of complete FBG device for biomedical applications is the future scope of work. Even though there is a lot of experimental work considered with an FBG sensing system, commercialisation of the final FBG device for a specific application has not been seen noticeable progress in the past.
Collapse
Affiliation(s)
- Anup M. Upadhyaya
- Department of Mechanical Engineering, Amity School of Engineering and Technology (ASET), Amity University, Noida, Lucknow, India
- Department of Mechanical Engineering, The Oxford College of Engineering, Bangalore, India
- Department of Electronics and Communication Engineering, The Oxford College of Engineering, Bangalore, India
| | - Mohammad Kamrul Hasan
- Network and Communication Technology Lab, Center for Cyber Security, Faculty of Information Science and Technology, The National University of Malaysia (UKM), Bangi, Malaysia
| | - S. Abdel-Khalek
- Department of Mathematics and Statistics, College of Science, Taif University, Taif, Saudi Arabia
| | - Rosilah Hassan
- Network and Communication Technology Lab, Center for Cyber Security, Faculty of Information Science and Technology, The National University of Malaysia (UKM), Bangi, Malaysia
| | - Maneesh C. Srivastava
- Department of Mechanical Engineering, Amity School of Engineering and Technology (ASET), Amity University, Noida, Lucknow, India
- Department of Mechanical Engineering, The Oxford College of Engineering, Bangalore, India
| | - Preeta Sharan
- Department of Electronics and Communication Engineering, The Oxford College of Engineering, Bangalore, India
| | - Shayla Islam
- Institute of Computer Science and Digital Innovation, University College Sedaya International (UCSI) University, Kuala Lumpur, Malaysia
| | - Asma Mohammed Elbashir Saad
- Department of Physics College of Science and Humanities in AL-Kharj, Prince Sattam Bin Abdulaziz University, AL-Kharj, Saudi Arabia
| | - Nguyen Vo
- Department of Information Technology, Victorian Institute of Technology, Melbourne, VIC, Australia
| |
Collapse
|
10
|
|
11
|
Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography. Molecules 2021; 26:molecules26092817. [PMID: 34068649 PMCID: PMC8126101 DOI: 10.3390/molecules26092817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 01/22/2023] Open
Abstract
Droplet microfluidics—the art and science of forming droplets—has been revolutionary for high-throughput screening, directed evolution, single-cell sequencing, and material design. However, traditional fabrication techniques for microfluidic devices suffer from several disadvantages, including multistep processing, expensive facilities, and limited three-dimensional (3D) design flexibility. High-resolution additive manufacturing—and in particular, projection micro-stereolithography (PµSL)—provides a promising path for overcoming these drawbacks. Similar to polydimethylsiloxane-based microfluidics 20 years ago, 3D printing methods, such as PµSL, have provided a path toward a new era of microfluidic device design. PµSL greatly simplifies the device fabrication process, especially the access to truly 3D geometries, is cost-effective, and it enables multimaterial processing. In this review, we discuss both the basics and recent innovations in PµSL; the material basis with emphasis on custom-made photopolymer formulations; multimaterial 3D printing; and, 3D-printed microfluidic devices for emulsion formation as our focus application. Our goal is to support researchers in setting up their own PµSL system to fabricate tailor-made microfluidics.
Collapse
|
12
|
|
13
|
Cold Plasma Deposition of Polymeric Nanoprotrusion, Nanoparticles, and Nanofilm Structures on a Slide Glass Surface. Processes (Basel) 2021. [DOI: 10.3390/pr9010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we coated the surface of glass slides with nanoprotrusion, nanoparticles, and nanofilm structures by one-step plasma deposition of three vinyl monomers. Three functional vinyl monomers with symmetrical polarity sites were used: methyl methacrylate (MMA), trifluoro methylmethacrylate (TFMA), and trimethylsilyl methyl methacrylate (TSMA). The TSMA/MMA (80/20, mol-%) nanoprotrusion-coated surface of slide glass was superhydrophobic, with a 153° contact angle. We also evaluated the transmittance (%) of the slide glass with nanoprotrusions in the infrared (IR) (940 nm), ultraviolet (365 nm) and visible light (380–700 nm) regions. The obtained nanoprotrusion structure surface of slide glass created by plasma deposition transmits more than 90% of visible light.
Collapse
|
14
|
Sun J, Li Y, Liu G, Chu F, Chen C, Zhang Y, Tian H, Song Y. Patterning a Superhydrophobic Area on a Facile Fabricated Superhydrophilic Layer Based on an Inkjet-Printed Water-Soluble Polymer Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9952-9959. [PMID: 32787129 DOI: 10.1021/acs.langmuir.0c01769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An elaborated surface with a superhydrophilic area and a superhydrophobic area was fabricated by inkjet printing a water-soluble polymer template on a superhydrophilic layer. Titanate was used to generate the superhydrophilic layer with an in situ reaction. A water-soluble polymer template was inkjet printed on the facile fabricated superhydrophilic layer. Superhydrophobic treatment was carried out on the inkjet-printed surface with perfluorinated molecules. A superhydrophilic-superhydrophobic patterned surface (SSPS) was obtained by washing out the water-soluble polymer template. Various patterns of SSPS were fabricated with the different water-soluble polymer templates. Then, adhesion and deposition of water droplets were studied on the SSPS with the different wetting abilities on the surface. Meanwhile, a microreaction with a microfluidic chip was realized on the SSPS. In this work, systematic research on fabricating an SSPS based on a facile fabricated superhydrophilic layer with an inkjet-printed water-soluble polymer template is presented. It will have great potential for patterning materials, fabricating devices, and researching interfaces, such as microdroplet self-removal, analyte enrichment, and liquid-liquid interface reaction.
Collapse
Affiliation(s)
- Jiazhen Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yang Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Guangping Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fuqiang Chu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongshan Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
15
|
Shang L, Wang Y, Cai L, Shu Y, Zhao Y. Structural color barcodes for biodiagnostics. VIEW 2020. [DOI: 10.1002/viw2.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Luoran Shang
- Zhongshan∼Xuhui Hospital, Institutes of Biomedical SciencesFudan University Shanghai China
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyFudan University Shanghai China
- The Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical SciencesFudan University Shanghai China
- NHC Key Laboratory of Hearing MedicineFudan University Shanghai China
| | - Yuetong Wang
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| | - Lijun Cai
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyFudan University Shanghai China
- NHC Key Laboratory of Hearing MedicineFudan University Shanghai China
| | - Yuanjin Zhao
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| |
Collapse
|
16
|
Bigdeli MB, Tsai PA. Making Photonic Crystals via Evaporation of Nanoparticle-Laden Droplets on Superhydrophobic Microstructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4835-4841. [PMID: 32309954 DOI: 10.1021/acs.langmuir.0c00193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We employed a convenient evaporation approach to fabricate photonic crystals by naturally drying droplets laden with nanoparticles on a superhydrophobic surface. The final drying morphology could be controlled by the concentration of nanoparticles. A dilute droplet resulted in a torus, whereas a quasi-spherical cap with a bottom cavity was made from a concentrated droplet. Remarkably, the nanofluid droplets maintained high contact angles (≳120°) during the entire evaporation process because of inhomogeneous surface wetting. Bottom-view snapshots revealed that during evaporation the color of the contact area changed sequentially from white to red, orange, yellow, and eventually to green. Scanning electron microscopy and Voronoi analysis demonstrated that nanoparticles were self-assembled to a hexagonal pattern. Finally, based on the effects of particle size, material, and volume concentration on the reflected wavelengths, a model has been developed to successfully predict the reflected wavelength peaks from the contact area of evaporating colloidal droplets. Our model can be easily adopted as a manufacturing guide for functional photonic crystals to predict the optimal reflected color made by evaporation-driven self-assembly of photonic crystals.
Collapse
Affiliation(s)
- Masoud Bozorg Bigdeli
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8, Canada
| | - Peichun Amy Tsai
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8, Canada
| |
Collapse
|
17
|
Bian F, Sun L, Cai L, Wang Y, Wang Y, Zhao Y. Colloidal Crystals from Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903931. [PMID: 31515951 DOI: 10.1002/smll.201903931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Colloidal crystals are of great interest to researchers because of their excellent optical properties and broad applications in barcodes, sensors, displays, drug delivery, and other fields. Therefore, the preparation of high quality colloidal crystals in large quantities with high speed is worth investigating. After decades of development, microfluidics have been developed that provide new choices for many fields, especially for the generation of functional materials in microscale. Through the design of microfluidic chips, colloidal crystals can be prepared controllably with the advantages of fast speed and low cost. In this Review, research progress on colloidal crystals from microfluidics is discussed. After summarizing the classifications, the generation of colloidal crystals from microfluidics is discussed, including basic colloidal particles preparation, and their assembly inside or outside of microfluidic devices. Then, applications of the achieved colloidal crystals from microfluidics are illustrated. Finally, the future development and prospects of microfluidic-based colloidal crystals are summarized.
Collapse
Affiliation(s)
- Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuetong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
18
|
Liu P, Bai L, Yang J, Gu H, Zhong Q, Xie Z, Gu Z. Self-assembled colloidal arrays for structural color. NANOSCALE ADVANCES 2019; 1:1672-1685. [PMID: 36134244 PMCID: PMC9417313 DOI: 10.1039/c8na00328a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Structural color materials that are colloidally assembled as inspired by nature are attracting increased interest in a wide range of research fields. The assembly of colloidal particles provides a facile and cost-effective strategy for fabricating three-dimensional structural color materials. In this review, the generation mechanisms of structural colors from colloidally assembled photonic crystalline structures (PCSs) and photonic amorphous structures (PASs) are first presented, followed by the state-of-the-art and detailed technologies for their fabrication. The variable optical properties of PASs and PCSs are then discussed, focusing on their spatial long- and short-order structures and surface topography, followed by a detailed description of the modulation of structural color by refractive index and lattice distance. Finally, the current applications of structural color materials colloidally assembled in various fields including biomaterials, microfluidic chips, sensors, displays, and anticounterfeiting are reviewed, together with future applications and tasks to be accomplished.
Collapse
Affiliation(s)
- Panmiao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Ling Bai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Nanjing 210096 China
| | - Jianjun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Hongcheng Gu
- Key Laboratory of Child Development and Learning Science, Research Center for Learning Science, Southeast University Nanjing 210096 China
| | - Qifeng Zhong
- Department of Pharmaceutical Equipment and Electronic Instruments, School of Engineering, China Pharmaceutical University 24 Tongjia Lane, Gulou District Nanjing 210009 China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Nanjing 210096 China
| | - Zhongze Gu
- Key Laboratory of Child Development and Learning Science, Research Center for Learning Science, Southeast University Nanjing 210096 China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Nanjing 210096 China
| |
Collapse
|
19
|
Huang C, Wang J, Lv X, Liu L, Liang L, Hu W, Luo C, Wang F, Yuan Q. Redefining Molecular Amphipathicity in Reversing the "Coffee-Ring Effect": Implications for Single Base Mutation Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6777-6783. [PMID: 29779375 DOI: 10.1021/acs.langmuir.8b01248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The "coffee ring effect" is a natural phenomenon wherein sessile drops leave ring-shaped structures on the solid surfaces upon drying. It drives a nonuniform deposition of suspended compounds on the substrates, which adversely affects many processes, including surface-assisted biosensing and molecular self-assembly. In this study, we describe how the coffee ring effect can be eliminated by controlling the amphipathicity of the suspended compounds, for example, DNA modified with hydrophobic dye. Specifically, nuclease digestion of the hydrophilic DNA end converts the dye-labeled molecule into an amphipathic molecule (one with comparably weighted hydrophobic and hydrophilic ends) and reverses the coffee ring effect and results in a uniform disk-shaped feature deposition of the dye. The amphipathic product decreases the surface tension of the sessile drops and induces the Marangoni flow, which drives the uniform distribution of the amphipathic dye-labeled product in the drops. As a proof of concept, this strategy was used in a novel enzymatic amplification method for biosensing to eliminate the coffee ring effect on a nitrocellulose membrane and increase assay reliability and sensitivity. Importantly, the reported strategy for eliminating the coffee ring effect can be extended to other sessile drop systems for potentially improving assay reliability and sensitivity.
Collapse
Affiliation(s)
- Chi Huang
- Institute of Chemical Biology and Nanomedicine, Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | | | | | | | - Ling Liang
- Institute of Chemical Biology and Nanomedicine, Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | | | | | | | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine, Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| |
Collapse
|
20
|
Kong X, Chong X, Squire K, Wang AX. Microfluidic Diatomite Analytical Devices for Illicit Drug Sensing with ppb-Level Sensitivity. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 259:587-595. [PMID: 29755211 PMCID: PMC5943051 DOI: 10.1016/j.snb.2017.12.038] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The escalating research interests in porous media microfluidics, such as microfluidic paper-based analytical devices, have fostered a new spectrum of biomedical devices for point-of-care (POC) diagnosis and biosensing. In this paper, we report microfluidic diatomite analytical devices (μDADs), which consist of highly porous photonic crystal biosilica channels, as an innovative lab-on-a-chip platform to detect illicit drugs. The μDADs in this work are fabricated by spin-coating and tape-stripping diatomaceous earth on regular glass slides with cross section of 400×30µm2. As the most unique feature, our μDADs can simultaneously perform on-chip chromatography to separate small molecules from complex biofluidic samples and acquire the surface-enhanced Raman scattering spectra of the target chemicals with high specificity. Owing to the ultra-small dimension of the diatomite microfluidic channels and the photonic crystal effect from the fossilized diatom frustules, we demonstrate unprecedented sensitivity down to part-per-billion (ppb) level when detecting pyrene (1ppb) from mixed sample with Raman dye and cocaine (10 ppb) from human plasma. This pioneering work proves the exclusive advantage of μDADs as emerging microfluidic devices for chemical and biomedical sensing, especially for POC drug screening.
Collapse
Affiliation(s)
- Xianming Kong
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, P. R. China
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Xinyuan Chong
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Kenny Squire
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Alan X. Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
21
|
Hodaei A, Akhlaghi O, Khani N, Aytas T, Sezer D, Tatli B, Menceloglu YZ, Koc B, Akbulut O. Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9873-9881. [PMID: 29474786 DOI: 10.1021/acsami.8b00551] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A single additive, a grafted copolymer, is designed to ensure the stability of suspensions of highly loaded iron oxide nanoparticles (IOPs) and to facilitate three-dimensional (3D) printing of these suspensions in the filament form. This poly (ethylene glycol)-grafted copolymer of N-[3(dimethylamino)propyl]methacrylamide and acrylic acid harnesses both electrostatic and steric repulsion to realize an optimum formulation for 3D printing. When used at 1.15 wt % (by the weight of IOPs), the suspension attains ∼81 wt % solid loading-96% of the theoretical limit as calculated by the Krieger-Dougherty equation. Rectangular, thick-walled toroidal, and thin-walled toroidal magnetic cores and a porous lattice structure are fabricated to demonstrate the utilization of this suspension as an ink for 3D printing. The electrical and magnetic properties of the magnetic cores are characterized through impedance spectroscopy (IS) and vibrating sample magnetometry (VSM), respectively. The IS indicates the possibility of utilizing wire-wound 3D printed cores as the inductive coils. The VSM verifies that the magnetic properties of IOPs before and after the ink formulation are kept almost unchanged because of the low dosage of the additive. This particle-targeted approach for the formulation of 3D printing inks allows embodiment of a fully aqueous system with utmost target material content.
Collapse
Affiliation(s)
- Amin Hodaei
- Faculty of Engineering and Natural Sciences , Sabanci University , Orhanli-Tuzla , Istanbul 34956 , Turkey
| | - Omid Akhlaghi
- Faculty of Engineering and Natural Sciences , Sabanci University , Orhanli-Tuzla , Istanbul 34956 , Turkey
| | - Navid Khani
- Faculty of Engineering and Natural Sciences , Sabanci University , Orhanli-Tuzla , Istanbul 34956 , Turkey
- 3D Bioprinting Laboratory , Sabanci University Nanotechnology Research and Application Center , Orhanli-Tuzla , Istanbul 34956 , Turkey
| | - Tunahan Aytas
- Faculty of Engineering and Natural Sciences , Sabanci University , Orhanli-Tuzla , Istanbul 34956 , Turkey
| | - Dilek Sezer
- Faculty of Engineering and Natural Sciences , Sabanci University , Orhanli-Tuzla , Istanbul 34956 , Turkey
| | - Buse Tatli
- Faculty of Engineering and Natural Sciences , Sabanci University , Orhanli-Tuzla , Istanbul 34956 , Turkey
| | - Yusuf Z Menceloglu
- Faculty of Engineering and Natural Sciences , Sabanci University , Orhanli-Tuzla , Istanbul 34956 , Turkey
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences , Sabanci University , Orhanli-Tuzla , Istanbul 34956 , Turkey
- 3D Bioprinting Laboratory , Sabanci University Nanotechnology Research and Application Center , Orhanli-Tuzla , Istanbul 34956 , Turkey
| | - Ozge Akbulut
- Faculty of Engineering and Natural Sciences , Sabanci University , Orhanli-Tuzla , Istanbul 34956 , Turkey
| |
Collapse
|
22
|
Hou J, Li M, Song Y. Patterned Colloidal Photonic Crystals. Angew Chem Int Ed Engl 2017; 57:2544-2553. [PMID: 28891204 DOI: 10.1002/anie.201704752] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Indexed: 11/07/2022]
Abstract
Colloidal photonic crystals (PCs) have been well developed because they are easy to prepare, cost-effective, and versatile with regards to modification and functionalization. Patterned colloidal PCs contribute a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate-induced assembly, inkjet printing, and selective immobilization and modification, is presented. The advantages of patterned PC devices are also discussed in detail, for example, improved detection sensitivity and response speed of the sensors, control over the flow direction and wicking rate of microfluidic channels, recognition of cross-reactive molecules through an array-patterned microchip, fabrication of display devices with tunable patterns, well-arranged RGB units, and wide viewing-angles, and the ability to construct anti-counterfeiting devices with different security strategies. Finally, the perspective of future developments and challenges is presented.
Collapse
Affiliation(s)
- Jue Hou
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| |
Collapse
|
23
|
Affiliation(s)
- Jue Hou
- Key Laboratory of Green Printing, Institute of Chemistry; Chinese Academy of Sciences, ICCAS, Beijing Engineering, Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS); Beijing 100190 Volksrepublik China
| | - Mingzhu Li
- Key Laboratory of Green Printing, Institute of Chemistry; Chinese Academy of Sciences, ICCAS, Beijing Engineering, Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS); Beijing 100190 Volksrepublik China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry; Chinese Academy of Sciences, ICCAS, Beijing Engineering, Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS); Beijing 100190 Volksrepublik China
| |
Collapse
|
24
|
Zhou Y. The recent development and applications of fluidic channels by 3D printing. J Biomed Sci 2017; 24:80. [PMID: 29047370 PMCID: PMC5646158 DOI: 10.1186/s12929-017-0384-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/17/2017] [Indexed: 01/09/2023] Open
Abstract
The technology of “Lab-on-a-Chip” allows the synthesis and analysis of chemicals and biological substance within a portable or handheld device. The 3D printed structures enable precise control of various geometries. The combination of these two technologies in recent years makes a significant progress. The current approaches of 3D printing, such as stereolithography, polyjet, and fused deposition modeling, are introduced. Their manufacture specifications, such as surface roughness, resolution, replication fidelity, cost, and fabrication time, are compared with each other. Finally, novel application of 3D printed channel in biology are reviewed, including pathogenic bacteria detection using magnetic nanoparticle clusters in a helical microchannel, cell stimulation by 3D chemical gradients, perfused functional vascular channels, 3D tissue construct, organ-on-a-chip, and miniaturized fluidic “reactionware” devices for chemical syntheses. Overall, the 3D printed fluidic chip is becoming a powerful tool in the both medical and chemical industries.
Collapse
Affiliation(s)
- Yufeng Zhou
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore.
| |
Collapse
|
25
|
Sun Y, Peng C, Wang X, Wang R, Yang J, Zhang D. Rheological behavior of Al2O3 suspensions containing polyelectrolyte complexes for direct ink writing. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.07.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Gao B, Tang L, Zhang D, Xie Z, Su E, Liu H, Gu Z. Transpiration-Inspired Fabrication of Opal Capillary with Multiple Heterostructures for Multiplex Aptamer-Based Fluorescent Assays. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32577-32582. [PMID: 28875697 DOI: 10.1021/acsami.7b10143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work we report a method for the fabrication of opal capillary with multiple heterostructures for aptamer-based assays. The method is inspired by plant transpiration. During the fabrication, monodisperse SiO2 nanoparticles (NPs) self-assemble in a glass capillary, with the solvent gradually evaporating from the top end of the capillary. By a simple change of the colloid solution that wicks through the capillary, multiple heterostructures can be easily prepared inside the capillary. On the surface of the SiO2 NPs, polydopamine is coated for immobilization of aminomethyl-modified aptamers. The aptamers are used for fluorescent detection of adenosine triphosphate (ATP) and thrombin. Owing to fluorescence enhancement effect of the photonic heterstructures, the fluorescent signal for detection is amplified up to 40-fold. The limit of detection is 32 μM for ATP and 8.1 nM for thrombin. Therefore, we believe this method is promising for the fabrication of analytical capillary devices for point-of-care testing.
Collapse
Affiliation(s)
- Bingbing Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Litianyi Tang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Dagan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Enben Su
- Getein Biotech, Inc., 9 Bofu Rd., Luhe District, Nanjing, Jiangsu 211505, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
27
|
Abstract
Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels. Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area. In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation. The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development. We believe this review will promote communications among biology, chemistry, physics, and materials science.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
28
|
Inan H, Poyraz M, Inci F, Lifson MA, Baday M, Cunningham BT, Demirci U. Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem Soc Rev 2017; 46:366-388. [PMID: 27841420 PMCID: PMC5529146 DOI: 10.1039/c6cs00206d] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.
Collapse
Affiliation(s)
- Hakan Inan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Muhammet Poyraz
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Mark A Lifson
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Murat Baday
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering (by courtesy), Stanford University, Stanford, CA, USA
| |
Collapse
|
29
|
Wang B, Prinsen P, Wang H, Bai Z, Wang H, Luque R, Xuan J. Macroporous materials: microfluidic fabrication, functionalization and applications. Chem Soc Rev 2017; 46:855-914. [DOI: 10.1039/c5cs00065c] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields.
Collapse
Affiliation(s)
- Bingjie Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Pepijn Prinsen
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Huizhi Wang
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Zhishan Bai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hualin Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Jin Xuan
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| |
Collapse
|
30
|
Huang Y, Li W, Qin M, Zhou H, Zhang X, Li F, Song Y. Printable Functional Chips Based on Nanoparticle Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1503339. [PMID: 28102576 DOI: 10.1002/smll.201503339] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/04/2016] [Indexed: 05/18/2023]
Abstract
With facile manufacturability and modifiability, impressive nanoparticles (NPs) assembly applications were performed for functional patterned devices, which have attracted booming research attention due to their increasing applications in high-performance optical/electrical devices for sensing, electronics, displays, and catalysis. By virtue of easy and direct fabrication to desired patterns, high throughput, and low cost, NPs assembly printing is one of the most promising candidates for the manufacturing of functional micro-chips. In this review, an overview of the fabrications and applications of NPs patterned assembly by printing methods, including inkjet printing, lithography, imprinting, and extended printing techniques is presented. The assembly processes and mechanisms on various substrates with distinct wettabilities are deeply discussed and summarized. Via manipulating the droplet three phase contact line (TCL) pinning or slipping, the NPs contracted in ink are controllably assembled following the TCL, and generate novel functional chips and correlative integrate devices. Finally, the perspective of future developments and challenges is presented and widely exhibited.
Collapse
Affiliation(s)
- Yu Huang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
| | - Wenbo Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Meng Qin
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Haihua Zhou
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
| | - Xingye Zhang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
| | - Fengyu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
| |
Collapse
|
31
|
Alamán J, Alicante R, Peña JI, Sánchez-Somolinos C. Inkjet Printing of Functional Materials for Optical and Photonic Applications. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E910. [PMID: 28774032 PMCID: PMC5457235 DOI: 10.3390/ma9110910] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/26/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Abstract
Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges.
Collapse
Affiliation(s)
- Jorge Alamán
- Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, C./Pedro Cerbuna 12, Zaragoza 50009, Spain.
- BSH, Polígono Industrial de PLA-ZA, Ronda del Canal Imperial de Aragón, 18-20, Zaragoza 50197, Spain.
| | - Raquel Alicante
- Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, C./Pedro Cerbuna 12, Zaragoza 50009, Spain.
| | - Jose Ignacio Peña
- Departamento de Ciencia y Tecnología de Materiales y Fluidos, Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, C./María de Luna 3, Zaragoza 50018, Spain.
| | - Carlos Sánchez-Somolinos
- Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, C./Pedro Cerbuna 12, Zaragoza 50009, Spain.
| |
Collapse
|
32
|
Ngo CV, Chun DM. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder. Sci Rep 2016; 6:36735. [PMID: 27824132 PMCID: PMC5099995 DOI: 10.1038/srep36735] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/19/2016] [Indexed: 01/18/2023] Open
Abstract
In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.
Collapse
Affiliation(s)
- Chi-Vinh Ngo
- School of Mechanical Engineering, University of Ulsan, Ulsan, South Korea
| | - Doo-Man Chun
- School of Mechanical Engineering, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
33
|
Zhang X, Wasserberg D, Breukers C, Terstappen LWMM, Beck M. Temperature-Switch Cytometry-Releasing Antibody on Demand from Inkjet-Printed Gelatin for On-Chip Immunostaining. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27539-27545. [PMID: 27684590 DOI: 10.1021/acsami.6b09206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Complete integration of all sample preparation steps in a microfluidic device greatly benefits point-of-care diagnostics. In the most simplistic approach, reagents are integrated in a microfluidic chip and dissolved upon filling with a sample fluid by capillary force. This will generally result in at least partial reagent wash-off during sample inflow. However, many applications, such as immunostaining-based cytometry, strongly rely on a homogeneous reagent distribution across the chip. The concept of initially preventing release (during inflow), followed by a triggered instantaneous and complete release on demand (after filling is completed) represents an elegant and simple solution to this problem. Here, we realize this controlled release by embedding antibodies in a gelatin layer integrated in a microfluidic chamber. The gelatin/antibody layer is deposited by inkjet printing. Maturation of this layer during the course of several weeks, due to the ongoing physical cross-linking of gelatin, slows down the antibody release, thereby reducing antibody wash-off during inflow, and consequently helping to meet the requirement for a homogeneous antibody distribution in the filled chamber. After inflow, complete antibody release is obtained by heating the gelatin layer above its sol-gel transition temperature, which causes the rapid dissolution of the entire gelatin/antibody layer at moderate temperatures. We demonstrate uniform and complete on-chip immunostaining of CD4 positive (CD4+) T-lymphocytes in whole blood samples, which is critical for accurate cell counts. The sample preparation is realized entirely on-chip, by applying temperature-switched antibody release from matured gelatin/antibody layers.
Collapse
Affiliation(s)
- Xichen Zhang
- Medical Cell Biophysics Group, MIRA Institute for Biomedical Engineering and Technical Medicine, Faculty of Science and Technology, University of Twente , Enschede 7522 NB, The Netherlands
| | - Dorothee Wasserberg
- Medical Cell Biophysics Group, MIRA Institute for Biomedical Engineering and Technical Medicine, Faculty of Science and Technology, University of Twente , Enschede 7522 NB, The Netherlands
| | - Christian Breukers
- Medical Cell Biophysics Group, MIRA Institute for Biomedical Engineering and Technical Medicine, Faculty of Science and Technology, University of Twente , Enschede 7522 NB, The Netherlands
| | - Leon W M M Terstappen
- Medical Cell Biophysics Group, MIRA Institute for Biomedical Engineering and Technical Medicine, Faculty of Science and Technology, University of Twente , Enschede 7522 NB, The Netherlands
| | - Markus Beck
- Medical Cell Biophysics Group, MIRA Institute for Biomedical Engineering and Technical Medicine, Faculty of Science and Technology, University of Twente , Enschede 7522 NB, The Netherlands
| |
Collapse
|
34
|
Zhao Z, Wang J, Lu J, Yu Y, Fu F, Wang H, Liu Y, Zhao Y, Gu Z. Tubular inverse opal scaffolds for biomimetic vessels. NANOSCALE 2016; 8:13574-13580. [PMID: 27241065 DOI: 10.1039/c6nr03173k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.
Collapse
Affiliation(s)
- Ze Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jie Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jie Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China. and Suzhou Key Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China. and Suzhou Key Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| |
Collapse
|
35
|
Sun J, Bao B, Jiang J, He M, Zhang X, Song Y. Facile fabrication of a superhydrophilic–superhydrophobic patterned surface by inkjet printing a sacrificial layer on a superhydrophilic surface. RSC Adv 2016. [DOI: 10.1039/c6ra02170k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A superhydrophilic–superhydrophobic patterned surface was facilely fabricated by controlling the depositing morphology of the inkjet droplet on a superhydrophilic surface.
Collapse
Affiliation(s)
- Jiazhen Sun
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- China
| | - Bin Bao
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- China
| | - Jieke Jiang
- Key Laboratory of Green Printing
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing Engineering Research Center of Nanomaterials for Green Printing Technology
- Beijing National Laboratory for Molecular Sciences
| | - Min He
- Key Laboratory of Green Printing
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing Engineering Research Center of Nanomaterials for Green Printing Technology
- Beijing National Laboratory for Molecular Sciences
| | - Xingye Zhang
- Key Laboratory of Green Printing
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing Engineering Research Center of Nanomaterials for Green Printing Technology
- Beijing National Laboratory for Molecular Sciences
| | - Yanlin Song
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- China
- Key Laboratory of Green Printing
| |
Collapse
|
36
|
Kuang M, Wang J, Jiang L. Bio-inspired photonic crystals with superwettability. Chem Soc Rev 2016; 45:6833-6854. [DOI: 10.1039/c6cs00562d] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review focus on the recent developments in the mechanism, fabrication and application of bio-inspired PCs with superwettability.
Collapse
Affiliation(s)
- Minxuan Kuang
- Laboratory of Bio-inspired Smart Interface Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Jingxia Wang
- Laboratory of Bio-inspired Smart Interface Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Lei Jiang
- Laboratory of Bio-inspired Smart Interface Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
37
|
Phillips KR, England GT, Sunny S, Shirman E, Shirman T, Vogel N, Aizenberg J. A colloidoscope of colloid-based porous materials and their uses. Chem Soc Rev 2016; 45:281-322. [DOI: 10.1039/c5cs00533g] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Colloids assemble into a variety of bioinspired structures for applications including optics, wetting, sensing, catalysis, and electrodes.
Collapse
Affiliation(s)
| | - Grant T. England
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Steffi Sunny
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Elijah Shirman
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Wyss Institute for Biologically Inspired Engineering
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Wyss Institute for Biologically Inspired Engineering
| | - Nicolas Vogel
- Institute of Particle Technology
- Friedrich-Alexander-University Erlangen-Nürnberg
- Erlangen
- Germany
- Cluster of Excellence Engineering of Advanced Materials
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology
- Harvard University
- Cambridge
- USA
- John A. Paulson School of Engineering and Applied Sciences
| |
Collapse
|
38
|
Fang Y, Ni Y, Leo SY, Wang B, Basile V, Taylor C, Jiang P. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23650-9. [PMID: 26447681 DOI: 10.1021/acsami.5b07220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.
Collapse
Affiliation(s)
- Yin Fang
- Department of Chemical Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Yongliang Ni
- Department of Mechanical and Aerospace Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Sin-Yen Leo
- Department of Chemical Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Bingchen Wang
- Department of Chemical Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Vito Basile
- ITIA-CNR, Industrial Technologies and Automation Institute, National Council of Research, Via Bassini, 15, 20133 Milano, Italy
| | - Curtis Taylor
- Department of Mechanical and Aerospace Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Peng Jiang
- Department of Chemical Engineering, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
39
|
Zhang B, Cheng Y, Wang H, Ye B, Shang L, Zhao Y, Gu Z. Multifunctional inverse opal particles for drug delivery and monitoring. NANOSCALE 2015; 7:10590-4. [PMID: 26035621 DOI: 10.1039/c5nr02324f] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Particle-based delivery systems have a demonstrated value for drug discovery and development. Here, we report a new type of particle-based delivery system that has controllable release and is self-monitoring. The particles were composed of poly(N-isopropylacrylamide) (pNIPAM) hydrogel with an inverse opal structure. The presence of macropores in the particles provides channels for active drug loading and release from the materials.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhao Y, Cheng Y, Shang L, Wang J, Xie Z, Gu Z. Microfluidic synthesis of barcode particles for multiplex assays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:151-174. [PMID: 25331055 DOI: 10.1002/smll.201401600] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/20/2014] [Indexed: 06/04/2023]
Abstract
The increasing use of high-throughput assays in biomedical applications, including drug discovery and clinical diagnostics, demands effective strategies for multiplexing. One promising strategy is the use of barcode particles that encode information about their specific compositions and enable simple identification. Various encoding mechanisms, including spectroscopic, graphical, electronic, and physical encoding, have been proposed for the provision of sufficient identification codes for the barcode particles. These particles are synthesized in various ways. Microfluidics is an effective approach that has created exciting avenues of scientific research in barcode particle synthesis. The resultant particles have found important application in the detection of multiple biological species as they have properties of high flexibility, fast reaction times, less reagent consumption, and good repeatability. In this paper, research progress in the microfluidic synthesis of barcode particles for multiplex assays is discussed. After introducing the general developing strategies of the barcode particles, the focus is on studies of microfluidics, including their design, fabrication, and application in the generation of barcode particles. Applications of the achieved barcode particles in multiplex assays will be described and emphasized. The prospects for future development of these barcode particles are also presented.
Collapse
Affiliation(s)
- Yuanjin Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China; Laboratory of Environment and Biosafety Research, Institute of Southeast University in Suzhou, Suzhou, 215123, China
| | | | | | | | | | | |
Collapse
|
41
|
Ren J, Xuan H, Liu C, Yao C, Zhu Y, Liu X, Ge L. Graphene oxide hydrogel improved sensitivity in one-dimensional photonic crystals for detection of beta-glucan. RSC Adv 2015. [DOI: 10.1039/c5ra12155h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study establishes a new approach to quantify beta-glucan in oats by combining the dye Congo red with 1DPhCs with a PANI defect.
Collapse
Affiliation(s)
- Jiaoyu Ren
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Hongyun Xuan
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Cihui Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Chong Yao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Yanxi Zhu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Xuefan Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Liqin Ge
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| |
Collapse
|
42
|
Abstract
CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be generated by evaporation-induced nanoparticle crystallization or polymerization of ordered nanoparticle crystallization arrays. In particular, because microfluidics was used for the generation of the droplet templates, the development of spherical colloidal PhCs has progressed significantly. These new strategies not only ensure monodispersity, but also increase the structural and functional diversity of the PhC beads, paving the way for the development of advanced optoelectronic devices. In this Account, we present the research progress on spherical colloidal PhCs, including their design, preparation, and potential applications. We outline various types of spherical colloidal PhCs, such as close-packed, non-close-packed, inverse opal, biphasic or multiphasic Janus structured, and core-shell structured geometries. Based on their unique optical properties, applications of the spherical colloidal PhCs for displays, sensors, barcodes, and cell culture microcarriers are presented. Future developments of the spherical colloidal PhC materials are also envisioned.
Collapse
Affiliation(s)
- Yuanjin Zhao
- State Key
Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- State Key
Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yao Cheng
- State Key
Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key
Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
43
|
Bai L, Xie Z, Wang W, Yuan C, Zhao Y, Mu Z, Zhong Q, Gu Z. Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing. ACS NANO 2014; 8:11094-100. [PMID: 25300045 DOI: 10.1021/nn504659p] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Facile, fast, and cost-effective technology for patterning of responsive colloidal photonic crystals (CPCs) is of great importance for their practical applications. In this report, we develop a kind of responsive CPC patterns with multicolor shifting properties by inkjet printing mesoporous colloidal nanoparticle ink on both rigid and soft substrates. By adjusting the size and mesopores' proportion of nanoparticles, we can precisely control the original color and vapor-responsive color shift extent of mesoporous CPC. As a consequence, multicolor mesoporous CPCs patterns with complex vapor responsive color shifts or vapor-revealed implicit images are subsequently achieved. The complicated and reversible multicolor shifts of mesoporous CPC patterns are favorable for immediate recognition by naked eyes but hard to copy. This approach is favorable for integration of responsive CPCs with controllable responsive optical properties. Therefore, it is of great promise for developing advanced responsive CPC devices such as anticounterfeiting devices, multifunctional microchips, sensor arrays, or dynamic displays.
Collapse
Affiliation(s)
- Ling Bai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen ZZ, Cai L, Chen MY, Lin Y, Pang DW, Tang HW. Indirect immunofluorescence detection of E. coli O157:H7 with fluorescent silica nanoparticles. Biosens Bioelectron 2014; 66:95-102. [PMID: 25460888 DOI: 10.1016/j.bios.2014.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
Abstract
A method of fluorescent nanoparticle-based indirect immunofluorescence assay using either fluorescence microscopy or flow cytometry for the rapid detection of pathogenic Escherichia coli O157:H7 was developed. The dye-doped silica nanoparticles (NPs) were synthesized using W/O microemulsion methods with the combination of 3-aminopropyltriethoxysilane (APTES) and fluorescein isothiocyanate (FITC) and polymerization reaction with carboxyethylsilanetriol sodium salt (CEOS). Protein A was immobilized at the surface of the NPs by covalent binding to the carboxyl linkers and the surface coverage of Protein A on NPs was determined by the Bradford method. Rabbit anti-E. Coli O157:H7 antibody was used as primary antibody to recognize E. coli O157:H7 and then antibody binding protein (Protein A) labeled with FITC-doped silica NPs (FSiNPs) was used to generate fluorescent signal. With this method, E. Coli O157:H7 in buffer and bacterial mixture was detected. In addition, E. coli O157:H7 in several spiked background beef samples were measured with satisfactory results. Therefore, the FSiNPs are applicable in signal-amplified bioassay of pathogens due to their excellent capabilities such as brighter fluorescence and higher photostability than the direct use of conventional fluorescent dyes.
Collapse
Affiliation(s)
- Ze-Zhong Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Li Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| | - Min-Yan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
45
|
Pavli P, Petrou PS, Douvas AM, Dimotikali D, Kakabakos SE, Argitis P. Protein-resistant cross-linked poly(vinyl alcohol) micropatterns via photolithography using removable polyoxometalate photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17463-17473. [PMID: 25212665 DOI: 10.1021/am5053224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the last years, there has been an increasing interest in controlling the protein adsorption properties of surfaces because this control is crucial for the design of biomaterials. On the other hand, controlled immobilization of proteins is also important for their application as solid surfaces in immunodiagnostics and biosensors. Herein we report a new protein patterning method where regions of the substrate are covered by a hydrophilic film that minimizes protein adsorption. Particularly, poly(vinyl alcohol) (PVA) cross-linked structures created by an especially developed photolithographic process are proved to prevent protein physisorption and they are used as a guide for selective protein adsorption on the uncovered areas of a protein adsorbing substrate such as polystyrene. The PVA cross-linking is induced by photo-oxidation using, as a catalyst, polyoxometalate (H3PW12O40 or α-(NH4)6P2W18O62), which is removed using a methyl alcohol/water mixed solvent as the developer. We demonstrate that the polystyrene and the cross-linked PVA exhibit dramatically different performances in terms of protein physisorption. In particular, the polystyrene areas presented up to 130 times higher protein binding capacity than the PVA ones, whereas the patterning resolution could easily reach dimensions of a few micrometers. The proposed approach can be applied on any substrate where PVA films can be coated for controlling protein adsorption onto surface areas custom defined by the user.
Collapse
Affiliation(s)
- Pagona Pavli
- Institute of Microelectronics, NCSR Demokritos , Aghia Paraskevi 15310, Greece
| | | | | | | | | | | |
Collapse
|
46
|
Kuang M, Wang L, Song Y. Controllable Printing Droplets for High-Resolution Patterns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6950-8. [PMID: 24687946 DOI: 10.1002/adma.201305416] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/26/2014] [Indexed: 05/12/2023]
Affiliation(s)
- Minxuan Kuang
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Libin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
47
|
Hou J, Zhang H, Yang Q, Li M, Song Y, Jiang L. Bio-Inspired Photonic-Crystal Microchip for Fluorescent Ultratrace Detection. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400686] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Hou J, Zhang H, Yang Q, Li M, Song Y, Jiang L. Bio-Inspired Photonic-Crystal Microchip for Fluorescent Ultratrace Detection. Angew Chem Int Ed Engl 2014; 53:5791-5. [DOI: 10.1002/anie.201400686] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 11/06/2022]
|
49
|
Orloff ND, Truong C, Cira N, Koo S, Hamilton A, Choi S, Wu V, Riedel-Kruse IH. Integrated bioprinting and imaging for scalable, networkable desktop experimentation. RSC Adv 2014. [DOI: 10.1039/c4ra05932h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A fluid-deposition and imaging platform based on a re-engineered desktop printer and scanner integrated for do-it-yourself research, remote experimentation, and (on-line) education.
Collapse
Affiliation(s)
| | - Cynthia Truong
- Department of Bioengineering
- Stanford University
- Stanford, USA
| | - Nathan Cira
- Department of Bioengineering
- Stanford University
- Stanford, USA
| | - Stephen Koo
- Department of Bioengineering
- Stanford University
- Stanford, USA
| | - Andrea Hamilton
- Department of Bioengineering
- Stanford University
- Stanford, USA
| | - Sean Choi
- Department of Bioengineering
- Stanford University
- Stanford, USA
| | - Victoria Wu
- Department of Bioengineering
- Stanford University
- Stanford, USA
| | | |
Collapse
|
50
|
Mujawar LH, Kuerten JGM, Siregar DP, van Amerongen A, Norde W. Influence of the relative humidity on the morphology of inkjet printed spots of IgG on a non-porous substrate. RSC Adv 2014. [DOI: 10.1039/c4ra01327a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During the drying of inkjet printed droplets, the solute particles (IgG-Alexa-635 molecules) in the drop may distribute unevenly on the substrate, resulting in a “coffee-stain” spot morphology.
Collapse
Affiliation(s)
- Liyakat Hamid Mujawar
- Food and Biobased Research, Biomolecular Sensing and Diagnostics
- Wageningen University and Research Centre
- 6708 AA Wageningen, The Netherlands
- Laboratory of Physical Chemistry and Colloid Science
- Wageningen University
| | - J. G. M. Kuerten
- Department of Mechanical Engineering
- Eindhoven University of Technology
- 5600 MB Eindhoven, The Netherlands
- Faculty EEMCS
- University of Twente
| | - D. P. Siregar
- Department of Mechanical Engineering
- Eindhoven University of Technology
- 5600 MB Eindhoven, The Netherlands
| | - Aart van Amerongen
- Food and Biobased Research, Biomolecular Sensing and Diagnostics
- Wageningen University and Research Centre
- 6708 AA Wageningen, The Netherlands
| | - Willem Norde
- Laboratory of Physical Chemistry and Colloid Science
- Wageningen University
- 6703 HB Wageningen, The Netherlands
- University Medical Center Groningen
- University of Groningen
| |
Collapse
|