1
|
Shen X, Ke X, Li T, Sun C, Duan X. Generation, control, and application of stable bubbles in a hypersonic acoustic system. LAB ON A CHIP 2024; 24:4450-4460. [PMID: 39206785 DOI: 10.1039/d4lc00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bubble-based microfluidics has been applied in many fields. However, there remains a need for a facile and flexible method for stable bubble generation and control in a microchannel. This paper reports a hypersonic acoustic system that can generate and release functional stable bubbles in a microchannel in an on-demand manner. It was found that the hypersonic frequency in this system played a vital role in the generation and control of bubbles. Specifically, a nanostructurally enhanced acoustic resonator was used to generate highly localized ultrahigh-frequency acoustic waves that ensured the feasibility and rapidity of bubble generation. Simultaneously, the acoustothermal effect of hypersound was harnessed to effectuate precise control over the bubble size. In addition, high-throughput droplet splitting was performed to confirm the stability of bubbles and their functionality in micromanipulation. The results showed that a mother droplet could be split controllably into a desired number of daughter droplets with specific volume ratios. In summary, the hypersonic acoustic system was demonstrated to be capable of on-demand-generation of stable bubbles in a microfluidic context and thus may extend the bubble-based applications.
Collapse
Affiliation(s)
- Xiaotian Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xianwu Ke
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Zhou L, Li G, Yao J, Wang J, Yao X, Ye Z, Zheng D, Song K, Zhang H, Zhang X, Shuai J, Ye F, Li M, Li Y, Chen G, Cheng Y, Liu H, Shaw P, Liu L. Emulation and evaluation of tumor cell combined chemotherapy in isotropic/anisotropic collagen fiber microenvironments. LAB ON A CHIP 2024; 24:2999-3014. [PMID: 38742451 DOI: 10.1039/d4lc00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The rapid emergence of anisotropic collagen fibers in the tissue microenvironment is a critical transition point in late-stage breast cancer. Specifically, the fiber orientation facilitates the likelihood of high-speed tumor cell invasion and metastasis, which pose lethal threats to patients. Thus, based on this transition point, one key issue is how to determine and evaluate efficient combination chemotherapy treatments in late-stage cancer. In this study, we designed a collagen microarray chip containing 241 high-throughput microchambers with embedded metastatic breast cancer cell MDA-MB-231-RFP. By utilizing collagen's unique structure and hydromechanical properties, the chip constructed three-dimensional isotropic and anisotropic collagen fiber structures to emulate the tumor cell microenvironment at early and late stages. We injected different chemotherapeutic drugs into its four channels and obtained composite biochemical concentration profiles. Our results demonstrate that anisotropic collagen fibers promote cell proliferation and migration more than isotropic collagen fibers, suggesting that the geometric arrangement of fibers plays an important role in regulating cell behavior. Moreover, the presence of anisotropic collagen fibers may be a potential factor leading to the poor efficacy of combined chemotherapy in late-stage breast cancer. We investigated the efficacy of various chemotherapy drugs using cell proliferation inhibitors paclitaxel and gemcitabine and tumor cell migration inhibitors 7rh and PP2. To ensure the validity of our findings, we followed a systematic approach that involved testing the inhibitory effects of these drugs. According to our results, the drug combinations' effectiveness could be ordered as follows: paclitaxel + gemcitabine > gemcitabine + 7rh > PP2 + paclitaxel > 7rh + PP2. This study shows that the biomimetic chip system not only facilitates the creation of a realistic in vitro model for examining the cell migration mechanism in late-stage breast cancer but also has the potential to function as an effective tool for future chemotherapy assessment and personalized medicine.
Collapse
Affiliation(s)
- Lianjie Zhou
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Guoqiang Li
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - Jingru Yao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Jing Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Xiyao Yao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Zhikai Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Dongtian Zheng
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Kena Song
- College of Medical Technology and Engineering, Henan University of Science and Technology, Henan 471023, China
| | - Hongfei Zhang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Xianquan Zhang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yufeng Li
- Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo Chen
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Yuyan Cheng
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - He Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Peter Shaw
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
3
|
Kshetri KG, Nama N. Acoustophoresis around an elastic scatterer in a standing wave field. Phys Rev E 2023; 108:045102. [PMID: 37978594 DOI: 10.1103/physreve.108.045102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
Acoustofluidic systems often employ prefabricated acoustic scatterers that perturb the imposed acoustic field to realize the acoustophoresis of immersed microparticles. We present a numerical study to investigate the time-averaged streaming and radiation force fields around a scatterer. Based on the streaming and radiation force field, we obtain the trajectories of the immersed microparticles with varying sizes and identify a critical transition size at which the motion of immersed microparticles in the vicinity of a prefabricated scatterer shifts from being streaming dominated to radiation dominated. We consider a range of acoustic frequencies to reveal that the critical transition size decreases with increasing frequency; this result explains the choice of acoustic frequencies in previously reported experimental studies. We also examine the impact of scatterer material and fluid properties on the streaming and radiation force fields, as well as on the critical transition size. Our results demonstrate that the critical transition size decreases with an increase in acoustic contrast factor: a nondimensional quantity that depends on material properties of the scatterer and the fluid. Our results provide a pathway to realize radiation force based manipulation of small particles by increasing the acoustic contrast factor of the scatterer, lowering the kinematic viscosity of the fluid, and increasing the acoustic frequency.
Collapse
Affiliation(s)
- Khemraj Gautam Kshetri
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Nitesh Nama
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
4
|
Saravanakumar SM, Cicek PV. Microfluidic Mixing: A Physics-Oriented Review. MICROMACHINES 2023; 14:1827. [PMID: 37893264 PMCID: PMC10609072 DOI: 10.3390/mi14101827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023]
Abstract
This comprehensive review paper focuses on the intricate physics of microfluidics and their application in micromixing techniques. Various methods for enhancing mixing in microchannels are explored, with a keen emphasis on the underlying fluid dynamics principles. Geometrical micromixers employ complex channel designs to induce fluid-fluid interface distortions, yielding efficient mixing while retaining manufacturing simplicity. These methods synergize effectively with external techniques, showcasing promising potential. Electrohydrodynamics harnesses electrokinetic phenomena like electroosmosis, electrophoresis, and electrothermal effects. These methods offer dynamic control over mixing parameters via applied voltage, frequency, and electrode positioning, although power consumption and heating can be drawbacks. Acoustofluidics leverages acoustic waves to drive microstreaming, offering localized yet far-reaching effects. Magnetohydrodynamics, though limited in applicability to certain fluids, showcases potential by utilizing magnetic fields to propel mixing. Selecting an approach hinges on trade-offs among complexity, efficiency, and compatibility with fluid properties. Understanding the physics of fluid behavior and rationalizing these techniques aids in tailoring the most suitable micromixing solution. In a rapidly advancing field, this paper provides a consolidated understanding of these techniques, facilitating the informed choice of approach for specific microfluidic mixing needs.
Collapse
Affiliation(s)
| | - Paul-Vahe Cicek
- Microtechnologies Integration & Convergence Research Group, Université du Québec à Montréal (UQAM), Montreal, QC H2X 3Y7, Canada
| |
Collapse
|
5
|
Liu Y, Yin Q, Luo Y, Huang Z, Cheng Q, Zhang W, Zhou B, Zhou Y, Ma Z. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves. ULTRASONICS SONOCHEMISTRY 2023; 96:106441. [PMID: 37216791 PMCID: PMC10213378 DOI: 10.1016/j.ultsonch.2023.106441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Qiu Yin
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China.
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
6
|
Liu B, Qiao M, Zhang S, Yang J. A Bi-Directional Acoustic Micropump Driven by Oscillating Sharp-Edge Structures. MICROMACHINES 2023; 14:860. [PMID: 37421093 DOI: 10.3390/mi14040860] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 07/09/2023]
Abstract
This paper proposes a bi-directional acoustic micropump driven by two groups of oscillating sharp-edge structures: one group of sharp-edge structures with inclined angles of 60° and a width of 40 μm, and another group with inclined angles of 45° and a width of 25 μm. One of the groups of sharp-edge structures will vibrate under the excitation of the acoustic wave generated with a piezoelectric transducer at its corresponding resonant frequency. When one group of sharp-edge structures vibrates, the microfluid flows from left to right. When the other group of sharp-edge structures vibrates, the microfluid flows in the opposite direction. Some gaps are designed between the sharp-edge structures and the upper surface and the bottom surface of the microchannels, which can reduce the damping between the sharp-edge structures and the microchannels. Actuated with an acoustic wave of a different frequency, the microfluid in the microchannel can be driven bidirectionally by the inclined sharp-edge structures. The experiments show that the acoustic micropump, driven by oscillating sharp-edge structures, can produce a stable flow rate of up to 125 μm/s from left to right, when the transducer was activated at 20.0 kHz. When the transducer was activated at 12.8 kHz, the acoustic micropump can produce a stable flow rate of up to 85 μm/s from right to left. This bi-directional acoustic micropump, driven by oscillating sharp-edge structures, is easy to operate and shows great potential in various applications.
Collapse
Affiliation(s)
- Bendong Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Meimei Qiao
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Shaohua Zhang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jiahui Yang
- Beijing Vocational College of Agriculture, Beijing 102208, China
| |
Collapse
|
7
|
Lu Y, Tan W, Mu S, Zhu G. A multi-vortex micromixer based on the synergy of acoustics and inertia for nanoparticle synthesis. Anal Chim Acta 2023; 1239:340742. [PMID: 36628735 DOI: 10.1016/j.aca.2022.340742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Mixing is one of the most important steps in chemical reaction, sample preparation and emulsification. However, achieving complete mixing of fluids at high throughput is still a challenge for acoustic micromixers, which are limited by the intensity of the acoustic streaming. In this study, we proposed an acoustic-inertial micromixer based on multi-vortex synergy by introducing inertia into acoustic micromixer. The device contains side-wall sharp-edge structure and contraction-expansion array structure (SCEA) in the microchannel to enhance the acoustic streaming with inertial vortices. The mixing mechanism of SCEA was explored and the mixing process showed three modes: acoustic streaming dominant mode, acoustic-inertial synergy mode and inertial vortex dominant mode. On the basis of the "vortex seed" provided by the contraction-expansion structure, stronger chaotic advection was produced by the synergy of acoustic streaming and inertial vortices (including Dean vortex and horizontal vortex). Rapider mixing (0.20 m s) and wider operating ranges (0-3000 μL/min) were achieved in SCEA at lower driving voltages compared with conventional acoustic micromixers. Finally, more homogeneous and tunable chitosan nanoparticles and shellac nanoparticles were synthesized based on this device. The micromorphology, particle size distribution and drug loading properties of the products were measured and compared. This work provides a platform for control of mixing process in specific application environments with high operational flexibility, indicating potentially wider application of SCEA in multi-functional integration of lab-on-a-chip systems.
Collapse
Affiliation(s)
- Yuwen Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Wei Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| | - Shuoshuo Mu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Guorui Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
8
|
Sun L, Lehnert T, Gijs MAM, Li S. Polydimethylsiloxane microstructure-induced acoustic streaming for enhanced ultrasonic DNA fragmentation on a microfluidic chip. LAB ON A CHIP 2022; 22:4224-4237. [PMID: 36178361 DOI: 10.1039/d2lc00366j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Next-generation sequencing (NGS) is an essential technology for DNA identification in genomic research. DNA fragmentation is a critical step for NGS and doing this on-chip is of great interest for future integrated genomic solutions. Here we demonstrate fast acoustofluidic DNA fragmentation via ultrasound-actuated elastic polydimethylsiloxane (PDMS) microstructures that induce acoustic streaming and associated shear forces when placed in the field of an ultrasonic transducer. Indeed, acoustic streaming locally generates high tensile stresses that can mechanically stretch and break DNA molecule chains. The improvement in efficiency of the on-chip DNA fragmentation is due to the synergistic effect of these tensile stresses and ultrasonic cavitation phenomena. We tested these microstructure-induced effects in a DNA-containing microfluidic channel both experimentally and by simulation. The DNA fragmentation process was evaluated by measuring the change in the DNA fragment size over time. The chip works well with both long and short DNA chains; in particular, purified lambda (λ) DNA was cut from 48.5 kbp to 3 kbp in one minute with selected microstructures and further down to 300 bp within two and a half minutes. The fragment size of mouse genomic DNA was reduced from 1.4 kbp to 400 bp in one minute and then to 200 bp in two and a half minutes. The DNA fragmentation efficiency of the chip equipped with the PDMS microstructures was twice that of the chip without the microstructures. Exhaustive comparison shows that the on-chip fragmentation performance reaches the level of high-end professional standards. Recently, DNA fragmentation was shown to be enhanced using vibrating air microbubbles when the chip was placed in an acoustic field. We think the microbubble-free microstructure-based device we present is easier to operate and more reliable, as it avoids microbubble preparation and maintenance, while showing high DNA fragmentation performance.
Collapse
Affiliation(s)
- Lin Sun
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, P. R. China.
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Songjing Li
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, P. R. China.
| |
Collapse
|
9
|
Chen C, Li P, Guo T, Chen S, Xu D, Chen H. Generation of Dynamic Concentration Profile Using A Microfluidic Device Integrating Pneumatic Microvalves. BIOSENSORS 2022; 12:bios12100868. [PMID: 36291005 PMCID: PMC9599525 DOI: 10.3390/bios12100868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/12/2023]
Abstract
Generating and maintaining the concentration dilutions of diffusible molecules in microchannels is critical for high-throughput chemical and biological analysis. Conventional serial network microfluidic technologies can generate high orders of arbitrary concentrations by a predefined microchannel network. However, a previous design requires a large occupancy area and is unable to dynamically generate different profiles in the same chip, limiting its applications. This study developed a microfluidic device enabling dynamic variations of both the concentration in the same channel and the concentration distribution in multiple channels by adjusting the flow resistance using programmable pneumatic microvalves. The key component (the pneumatic microvalve) allowed dynamic adjustment of the concentration profile but occupied a tiny space. Additionally, a Matlab program was developed to calculate the flow rates and flow resistance of various sections of the device, which provided theoretical guidance for dimension design. In silico investigations were conducted to evaluate the microvalve deformation with widths from 100 to 300 µm and membrane thicknesses of 20 and 30 µm under the activation pressures between 0 and 2000 mbar. The flow resistance of the deformed valve was studied both numerically and experimentally and an empirical model for valve flow resistance with the form of Rh=aebP was proposed. Afterward, the fluid flow in the valve region was characterized using Micro PIV to further demonstrate the adjustment mechanism of the flow resistance. Then, the herringbone structures were employed for fast mixing to allow both quick variation of concentration and minor space usage of the channel network. Finally, an empirical formula-supported computational program was developed to provide the activation pressures required for the specific concentration profile. Both linear (Ck = -0.2k + 1) and nonlinear (Ck = (110)k) concentration distribution in four channels were varied using the same device by adjusting microvalves. The device demonstrated the capability to control the concentration profile dynamically in a small space, offering superior application potentials in analytical chemistry, drug screening, and cell biology research.
Collapse
Affiliation(s)
- Chang Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Panpan Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Siyuan Chen
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Dong Xu
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
You R, Wu H, Pang W, Duan X. On-Chip Arbitrary Manipulation of Single Particles by Acoustic Resonator Array. Anal Chem 2022; 94:5392-5398. [PMID: 35319870 DOI: 10.1021/acs.analchem.2c00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Effective and arbitrary manipulation of particles in liquid has attracted substantial interest. Acoustic tweezers, a new and promising tool, exhibit high biocompatibility, universality, and precision but lack arbitrariness. In this work, we report a gigahertz (GHz) bulk acoustic streaming tweezer (AST)-based micro-manipulation platform capable of efficiently translating acoustic energy to fluid kinetic energy, creating a controllable, quick-response, and stable flow field and precisely, arbitrarily, and universally manipulating a single particle to move like a microrobot. Through controlling the radio frequency signals applied on these resonators, the intensity and direction of the acoustic streaming flow can be quickly and arbitrarily adjusted. Consequently, the particle dispersed at the bottom can be arbitrarily and steadily driven along the predesigned route to the target position by the acoustic streaming drag force (ASF). We utilized four resonators cooperated as a work group to manipulate single SiO2 particles to complete nearly uniform linear motions and U-shaped motions, as well as playing billiards and exploring a maze, demonstrating the enormous potential of this GHz AST-based single-particle manipulation platform for separation, assembly, sensing, enriching, transporting, and so forth.
Collapse
Affiliation(s)
- Rui You
- State Key Laboratory of Precision Measuring Technology and Instrument, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Hang Wu
- State Key Laboratory of Precision Measuring Technology and Instrument, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instrument, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instrument, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Sun L, Lehnert T, Li S, Gijs MAM. Bubble-enhanced ultrasonic microfluidic chip for rapid DNA fragmentation. LAB ON A CHIP 2022; 22:560-572. [PMID: 34989733 DOI: 10.1039/d1lc00933h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA fragmentation is an essential process in developing genetic sequencing strategies, genetic research, as well as for the diagnosis of diseases with a genetic signature like cancer. Efficient on-chip DNA fragmentation protocols would be beneficial to process integration and open new opportunities for microfluidics in genetic applications. Here we present an acoustic microfluidic chip comprising an array of ultrasound-actuated microbubbles located at dedicated positions adjacent to a channel containing the DNA sample solution. The efficiency of the on-chip DNA fragmentation process arises mainly from tensile forces generated by acoustic streaming near the oscillating bubble interfaces, as well as a synergistic effect of streaming stress and ultrasonic cavitation. Acoustic microstreaming and the pressure distribution in the DNA channel were assessed by finite element simulation. We characterized the bubble-enhanced effect by measuring gene fragment size distributions with respect to different ultrasound parameters. For optimized on-chip conditions, purified lambda (λ) DNA (48.5 kbp) could be disrupted to fragments with an average size of 2 kbp after 30 s and down to 300 bp after 90 s. Mouse genomic DNA (1.4 kbp) fragmentation size decreased to 500 bp in 30 s and reduced further to 250 bp in 90 s. Bubble-induced fragmentation was more than 3 times faster than without bubbles. On-chip performance and process yield were found to be comparable to a sophisticated high-end commercial system. In this view, our new bubble-enhanced microfluidic approach is a promising tool for current and next generation sequencing platforms with high efficiency and good capacity. Moreover, the availability of an efficient on-chip DNA fragmentation process opens perspectives for implementing full molecular protocols on a single microfluidic platform.
Collapse
Affiliation(s)
- Lin Sun
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, P. R. China
| | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Songjing Li
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, P. R. China
| | - Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| |
Collapse
|
12
|
Yao J, Li G, Jiao Y, Zheng Y, Liu Y, Wang G, Zhou L, Zhang H, Zhang X, Shuai J, Fan Q, Ye F, Lou S, Chen G, Song K, Liao Y, Liu L. Biological gel-based microchamber array for tumor cell proliferation and migration studies in well-controlled biochemical gradients. LAB ON A CHIP 2021; 21:3004-3018. [PMID: 34159958 DOI: 10.1039/d0lc00951b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Breast cancer metastasis is a complex process controlled by multiple factors, including various cell-cell interactions, cell-environment coupling, and oxygen, nutrient and drug gradients that are intimately related to the heterogeneous breast tissue structure. In this study, we constructed a high-throughput in vitro biochip system containing an array of 642 microchambers arranged in a checkerboard configuration, with each chamber embedded in a composite extracellular matrix (ECM) composed of engineered collagen and Matrigel to mimic local heterogeneous environment in vivo. In addition, a controllable complex tetragonal chemical concentration profile can be achieved by imposing chemical compounds at the four boundaries of the chip, leading to distinct local nutrient and/or drug gradients in the individual microchambers. Here, the microchamber array with composite ECM (MACECM) device aims to simulate multiple tumor cell niches composed of both breast epithelial cells (MCF-10A-GFP) and metastatic breast cancer cells (MDA-MB-231-RFP), which enables systematic studies of cell responses to a variety of biochemical conditions. The results obtained from the MACECM studies indicate that discoidin domain receptor 1 (DDR1) inhibitor 7rh and matrix metalloproteinase inhibitor batimastat, in association with epidermal growth factor (EGF) had no significant effects on the growth of MCF-10A-GFP cells, but had significant effects on DDR1 expression and the related migratory behavior of MDA-MB-231-RFP cells. The MACECM design not only enables the construction of a more realistic in vitro model for investigating cancer cell migration mechanisms but also has considerable potential for further development as a platform for next-generation high-throughput and therapeutic screening (e.g., anti-cancer drug evaluation) and personalized medicine.
Collapse
Affiliation(s)
- Jingru Yao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Guoqiang Li
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85281, USA
| | - Yu Zheng
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85281, USA
| | - Yanping Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Gao Wang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Lianjie Zhou
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Hongfei Zhang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Xianquan Zhang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, China and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Silong Lou
- Chongqing University Cancer Hospital, Chongqing 400044, China
| | - Guo Chen
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Kena Song
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China. and College of Medical Technology and Engineering, Henan University of Science and Technology, Henan 471023, China.
| | - Yong Liao
- Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400331, China.
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
13
|
Ghorbani Kharaji Z, Bayareh M, Kalantar V. A review on acoustic field-driven micromixers. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2020-0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A review on acoustic field-driven micromixers is given. This is supplemented by the governing equations, governing non-dimensional parameters, numerical simulation approaches, and fabrication techniques. Acoustically induced vibration is a kind of external energy input employed in active micromixers to improve the mixing performance. An air bubble energized by an acoustic field acts as an external energy source and induces friction forces at the interface between an air bubble and liquid, leading to the formation of circulatory flows. The current review (with 200 references) evaluates different characteristics of microfluidic devices working based on acoustic field shaking.
Collapse
Affiliation(s)
| | - Morteza Bayareh
- Department of Mechanical Engineering , Shahrekord University , Shahrekord , Iran
| | - Vali Kalantar
- Department of Mechanical Engineering , Yazd University , Yazd , Iran
| |
Collapse
|
14
|
Sun L, K Siddique M, Wang L, Li S. Mixing characteristics of a bubble mixing microfluidic chip for genomic DNA extraction based on magnetophoresis: CFD simulation and experiment. Electrophoresis 2021; 42:2365-2374. [PMID: 33905543 DOI: 10.1002/elps.202000295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/16/2021] [Accepted: 04/16/2021] [Indexed: 01/31/2023]
Abstract
Mixing a small amount of magnetic beads and regents with large volume samples evenly in microcavities of a microfluidic chip is always the key step for the application of microfluidic technology in the field of magnetophoresis analysis. This article proposes a microfluidic chip for DNA extraction by magnetophoresis, which relies on bubble rising to generate turbulence and microvortices of various sizes to mix magnetic beads with samples uniformly. The construction and working principle of the microfluidic chip are introduced. CFD simulations are conducted when magnetic beads and samples are irritated by the generation of gas bubbles with the variation of supply pressures. The whole mixing process in the microfluidic chip is observed through a high-speed camera and a microfluidic system when the gas bubbles are generated continuously. The influence of supply pressure on the mixing characteristics of the microfluidic chip is investigated and discussed with both simulation and experiments. Compared with magnetic mixing, bubble mixing can avoid the magnetic beads gather phenomenon caused by magnetic forces and provide a rapid and high efficient solution to realize mixing small amount of regents in large volume samples in a certain order without complex moving structures and operations in a chip. Two applications of mixing with the proposed microfluidic chip are also carried out and discussed.
Collapse
Affiliation(s)
- Lin Sun
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China
| | - Muhammad K Siddique
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China
| | - Lei Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China
| | - Songjing Li
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
15
|
Li Y, Liu X, Huang Q, Ohta AT, Arai T. Bubbles in microfluidics: an all-purpose tool for micromanipulation. LAB ON A CHIP 2021; 21:1016-1035. [PMID: 33538756 DOI: 10.1039/d0lc01173h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent decades, the integration of microfluidic devices and multiple actuation technologies at the microscale has greatly contributed to the progress of related fields. In particular, microbubbles are playing an increasingly important role in microfluidics because of their unique characteristics that lead to specific responses to different energy sources and gas-liquid interactions. Many effective and functional bubble-based micromanipulation strategies have been developed and improved, enabling various non-invasive, selective, and precise operations at the microscale. This review begins with a brief introduction of the morphological characteristics and formation of microbubbles. The theoretical foundations and working mechanisms of typical micromanipulations based on acoustic, thermodynamic, and chemical microbubbles in fluids are described. We critically review the extensive applications and the frontline advances of bubbles in microfluidics, including microflow patterns, position and orientation control, biomedical applications, and development of bubble-based microrobots. We lastly present an outlook to provide directions for the design and application of microbubble-based micromanipulation tools and attract the attention of relevant researchers to the enormous potential of microbubbles in microfluidics.
Collapse
Affiliation(s)
- Yuyang Li
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
16
|
Direct numerical simulation of microbubble streaming in a microfluidic device: The effect of the bubble protrusion depth on the vortex pattern. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0656-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Cai Z, Huang Z, Li Z, Su M, Zhao Z, Qin F, Zhang Z, Yang J, Song Y. Evaporation Induced Spontaneous Micro‐Vortexes through Engineering of the Marangoni Flow. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zheren Cai
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhandong Huang
- Department of Mechanical and Materials Engineering The University of Western Ontario London Ontario N6A 5B9 Canada
| | - Zheng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Meng Su
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feifei Qin
- Chair of Building Physics Department of Mechanical and Process Engineering ETH Zürich (Swiss Federal Institute of Technology in Zürich) Zürich 8092 Switzerland
| | - Zeying Zhang
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun Yang
- Department of Mechanical and Materials Engineering The University of Western Ontario London Ontario N6A 5B9 Canada
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
18
|
Gu Y, Chen C, Rufo J, Shen C, Wang Z, Huang PH, Fu H, Zhang P, Cummer SA, Tian Z, Huang TJ. Acoustofluidic Holography for Micro- to Nanoscale Particle Manipulation. ACS NANO 2020; 14:14635-14645. [PMID: 32574491 PMCID: PMC7688555 DOI: 10.1021/acsnano.0c03754] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acoustic-based techniques can manipulate particles in a label-free, contact-free, and biocompatible manner. However, most previous work in acoustic manipulation has been constrained by axisymmetric patterns of pressure nodes and antinodes. Acoustic holography is an emerging technique that offers the potential to generate arbitrary pressure distributions which can be applied to particle manipulation with higher degrees of freedom. However, since current acoustic holography techniques rely on acoustic radiation forces, which decrease dramatically when the target particle size decreases, they have difficulty manipulating particles in the micro/nanoscale. Here, we introduce a holography technique that leverages both an arbitrary acoustic field and controllable fluid motion to offer an effective approach for manipulating micro/nano particles. Our approach, termed acoustofluidic holography (AFH), can manipulate a variety of materials, including cells, polymers, and metals, across sizes ranging from hundreds of micrometers to tens of nanometers.
Collapse
Affiliation(s)
- Yuyang Gu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27707, United States
| | - Chuyi Chen
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27707, United States
| | - Joseph Rufo
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27707, United States
| | - Chen Shen
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Zeyu Wang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27707, United States
| | - Po-Hsun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27707, United States
| | - Hai Fu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27707, United States
| | - Peiran Zhang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27707, United States
| | - Steven A Cummer
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27707, United States
| |
Collapse
|
19
|
Cai Z, Huang Z, Li Z, Su M, Zhao Z, Qin F, Zhang Z, Yang J, Song Y. Evaporation Induced Spontaneous Micro‐Vortexes through Engineering of the Marangoni Flow. Angew Chem Int Ed Engl 2020; 59:23684-23689. [DOI: 10.1002/anie.202008477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/27/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Zheren Cai
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhandong Huang
- Department of Mechanical and Materials Engineering The University of Western Ontario London Ontario N6A 5B9 Canada
| | - Zheng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Meng Su
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feifei Qin
- Chair of Building Physics Department of Mechanical and Process Engineering ETH Zürich (Swiss Federal Institute of Technology in Zürich) Zürich 8092 Switzerland
| | - Zeying Zhang
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun Yang
- Department of Mechanical and Materials Engineering The University of Western Ontario London Ontario N6A 5B9 Canada
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
20
|
Liu P, Tian Z, Hao N, Bachman H, Zhang P, Hu J, Huang TJ. Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells. LAB ON A CHIP 2020; 20:3399-3409. [PMID: 32779677 PMCID: PMC7494569 DOI: 10.1039/d0lc00378f] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Controllable enrichment of micro/nanoscale objects plays a significant role in many biomedical and biochemical applications, such as increasing the detection sensitivity of assays, or improving the structures of bio-engineered tissues. However, few techniques can perform concentrations of micro/nano objects in multi-well plates, a very common laboratory vessel. In this work, we develop an acoustofluidic multi-well plate, which adopts an array of simple, low-cost and commercially available ring-shaped piezoelectric transducers for rapid and robust enrichment of micro/nanoscale particles/cells in each well of the plate. The enrichment mechanism is validated and characterized through both numerical simulations and experiments. We observe that the ring-shaped piezoelectric transducer can generate circular standing flexural waves in the substrate of each well, and that the vibrations can induce acoustic streaming near the interface between the substrate and a fluid droplet placed within the well; this streaming can drive micro/nanoscale objects to the center of the droplet for enrichment. Moreover, the acoustofluidic multi-well plate can realize simultaneous and consistent enrichment of biological cells in each well of the plate. With merits such as simplicity, controllability, low cost, and excellent compatibility with other downstream analysis tools, the developed acoustofluidic multi-well plate could be a versatile tool for many applications such as micro/nano fabrication, self-assembly, biomedical/biochemical sensing, and tissue engineering.
Collapse
Affiliation(s)
- Pengzhan Liu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tian Z, Wang Z, Zhang P, Naquin TD, Mai J, Wu Y, Yang S, Gu Y, Bachman H, Liang Y, Yu Z, Huang TJ. Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. SCIENCE ADVANCES 2020; 6:eabb0494. [PMID: 32917678 PMCID: PMC11206475 DOI: 10.1126/sciadv.abb0494] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/23/2020] [Indexed: 05/21/2023]
Abstract
Acoustic tweezers are a promising technology for the biocompatible, precise manipulation of delicate bioparticles ranging from nanometer-sized exosomes to millimeter-sized zebrafish larva. However, their widespread usage is hindered by their low compatibility with the workflows in biological laboratories. Here, we present multifunctional acoustic tweezers that can manipulate bioparticles in a disposable Petri dish. Various functionalities including cell patterning, tissue engineering, concentrating particles, translating cells, stimulating cells, and cell lysis are demonstrated. Moreover, leaky surface acoustic wave-based holography is achieved by encoding required phases in electrode profiles of interdigitated transducers. This overcomes the frequency and resolution limits of previous holographic techniques to control three-dimensional acoustic beams in microscale. This study presents a favorable technique for noncontact and label-free manipulation of bioparticles in commonly used Petri dishes. It can be readily adopted by the biological and medical communities for cell studies, tissue generation, and regenerative medicine.
Collapse
Affiliation(s)
- Zhenhua Tian
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Ty Downing Naquin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuqi Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Zhiming Yu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
22
|
Liu B, Ma Z, Yang J, Gao G, Liu H. A Concentration Gradients Tunable Generator with Adjustable Position of the Acoustically Oscillating Bubbles. MICROMACHINES 2020; 11:mi11090827. [PMID: 32878158 PMCID: PMC7570149 DOI: 10.3390/mi11090827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/29/2023]
Abstract
It is essential to control concentration gradients at specific locations for many biochemical experiments. This paper proposes a tunable concentration gradient generator actuated by acoustically oscillating bubbles trapped in the bubble channels using a controllable position based on the gas permeability of polydimethylsiloxane (PDMS). The gradient generator consists of a glass substrate, a PDMS chip, and a piezoelectric transducer. When the trapped bubbles are activated by acoustic waves, the solution near the gas–liquid interface is mixed. The volume of the bubbles and the position of the gas–liquid interface are regulated through the permeability of the PDMS wall. The tunable concentration gradient can be realized by changing the numbers and positions of the bubbles that enable the mixing of fluids in the main channel, and the amplitude of the applied voltage. This new device is easy to fabricate, responsive, and biocompatible, and therefore has great application prospects. In particular, it is suitable for biological research with high requirements for temporal controllability.
Collapse
Affiliation(s)
- Bendong Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (Z.M.); (J.Y.); (G.G.); (H.L.)
- Correspondence: ; Tel.: +86-010-67396187
| | - Zhigao Ma
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (Z.M.); (J.Y.); (G.G.); (H.L.)
| | - Jiahui Yang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (Z.M.); (J.Y.); (G.G.); (H.L.)
- Electrical and Mechanical College, Beijing Vocational College of Agriculture, Beijing 102208, China
| | - Guohua Gao
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (Z.M.); (J.Y.); (G.G.); (H.L.)
| | - Haibin Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (Z.M.); (J.Y.); (G.G.); (H.L.)
| |
Collapse
|
23
|
Jin G, Bachman H, Naquin TD, Rufo J, Hou S, Tian Z, Zhao C, Huang TJ. Acoustofluidic Scanning Nanoscope with High Resolution and Large Field of View. ACS NANO 2020; 14:8624-8633. [PMID: 32574033 PMCID: PMC7438315 DOI: 10.1021/acsnano.0c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optical imaging with nanoscale resolution and a large field of view is highly desirable in many research areas. Unfortunately, it is challenging to achieve these two features simultaneously while using a conventional microscope. An objective lens with a low numerical aperture (NA) has a large field of view but poor resolution. In contrast, a high NA objective lens will have a higher resolution but reduced field of view. In an effort to close the gap between these trade-offs, we introduce an acoustofluidic scanning nanoscope (AS-nanoscope) that can simultaneously achieve high resolution with a large field of view. The AS-nanoscope relies on acoustofluidic-assisted scanning of multiple microsized particles. A scanned 2D image is then compiled by processing the microparticle images using an automated big-data image algorithm. The AS-nanoscope has the potential to be integrated into a conventional microscope or could serve as a stand-alone instrument for a wide range of applications where both high resolution and large field of view are required.
Collapse
Affiliation(s)
- Geonsoo Jin
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| | - Hunter Bachman
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| | - Ty Downing Naquin
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rufo
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| | - Serena Hou
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| | - Zhenhua Tian
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| | - Chenglong Zhao
- Department of Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
- Department of Electro-Optics and Photonics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
24
|
Zhang P, Bachman H, Ozcelik A, Huang TJ. Acoustic Microfluidics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:17-43. [PMID: 32531185 PMCID: PMC7415005 DOI: 10.1146/annurev-anchem-090919-102205] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Acoustic microfluidic devices are powerful tools that use sound waves to manipulate micro- or nanoscale objects or fluids in analytical chemistry and biomedicine. Their simple device designs, biocompatible and contactless operation, and label-free nature are all characteristics that make acoustic microfluidic devices ideal platforms for fundamental research, diagnostics, and therapeutics. Herein, we summarize the physical principles underlying acoustic microfluidics and review their applications, with particular emphasis on the manipulation of macromolecules, cells, particles, model organisms, and fluidic flows. We also present future goals of this technology in analytical chemistry and biomedical research, as well as challenges and opportunities.
Collapse
Affiliation(s)
- Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA;
| | - Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA;
| | - Adem Ozcelik
- Department of Mechanical Engineering, Aydın Adnan Menderes University, Aydın 09010, Turkey;
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
25
|
Hao N, Liu P, Bachman H, Pei Z, Zhang P, Rufo J, Wang Z, Zhao S, Huang TJ. Acoustofluidics-Assisted Engineering of Multifunctional Three-Dimensional Zinc Oxide Nanoarrays. ACS NANO 2020; 14:6150-6163. [PMID: 32352741 PMCID: PMC7415004 DOI: 10.1021/acsnano.0c02145] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The integration of acoustics and microfluidics (termed acoustofluidics) presents a frontier in the engineering of functional micro-/nanomaterials. Acoustofluidic techniques enable active and precise spatiotemporal control of matter, providing great potential for the design of advanced nanosystems with tunable material properties. In this work, we introduce an acoustofluidic approach for engineering multifunctional three-dimensional nanostructure arrays and demonstrate their potential in enrichment and biosensing applications. In particular, our acoustofluidic device integrates an acoustic transducer with a sharp-edge-based acoustofluidic reactor that enables uniform patterning of zinc oxide (ZnO) nanoarrays with customizable lengths, densities, diameters, and other properties. The resulting ZnO nanoarray-coated glass capillaries can rapidly and efficiently capture and enrich biomolecules with sizes ranging from a few nanometers to several hundred nanometers. In order to enable the detection of these biomolecules, silver (Ag) nanoparticles are deposited onto the ZnO nanoarrays, and the integrated ZnO-Ag capillary device functions as a label-free plasmonic biosensing system for surface-enhanced Raman spectroscopy (SERS) based detection of exosomes, DNA oligonucleotides, and E. coli bacteria. The optical sensing enhancement of ZnO-Ag capillary is further validated through finite-difference time-domain (FDTD) simulations. These findings not only provide insights into the engineering of functional micro/nanomaterials using acoustofluidics but also shed light onto the development of portable microanalytical devices for point-of-care applications.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Pengzhan Liu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Zhichao Pei
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Shuaiguo Zhao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
26
|
On-chip simultaneous rotation of large-scale cells by acoustically oscillating bubble array. Biomed Microdevices 2020; 22:13. [DOI: 10.1007/s10544-020-0470-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Rasouli MR, Tabrizian M. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles. LAB ON A CHIP 2019; 19:3316-3325. [PMID: 31495858 DOI: 10.1039/c9lc00637k] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mixing is a crucial step in many chemical analyses and synthesis processes, particularly in nanoparticle formation, where it determines the nucleation rate, homogeneity, and physicochemical characteristics of the products. In this study, we propose an energy-efficient acoustic platform based on boundary-driven acoustic streaming, which provides the rapid mixing required to control nanoprecipitation. The device encompasses oscillatory bubbles and sharp edges in the microchannel to transform the acoustic energy into vigorous vortical fluid motions. The combination of bubbles and sharp edges at their immediate proximity induced substantially stronger acoustic microstreams than the simple superposition of their effects. The device could effectively homogenize DI water and fluorescein within a mixing length of 25.2 μm up to a flow rate of 116 μL min-1 at a driving voltage of 40 Vpp, corresponding to a mixing time of 0.8 ms. This rapid mixing was employed to mitigate some complexities in nanoparticle synthesis, namely controlling nanoprecipitation and size, batch to batch variation, synthesis throughput, and clogging. Both polymeric nanoparticles and liposomes were synthesized in this platform and showed a smaller effective size and narrower size distribution in comparison to those obtained by a hydrodynamic flow focusing method. Through changing the mixing time, the effective size of the nanoparticles could be fine-tuned for both polymeric nanoparticles and liposomes. The rapid mixing and strong vortices prevent aggregation of nanoparticles, leading to a substantially higher throughput of liposomes in comparison with that by the hydrodynamic flow focusing method. The straightforward fabrication process of the system coupled with low power consumption, high-controllability, and rapid mixing time renders this mixer a practical platform for a myriad of nano and biotechnological applications.
Collapse
Affiliation(s)
- M Reza Rasouli
- Biomedical Engineering Department-Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada.
| | - Maryam Tabrizian
- Biomedical Engineering Department-Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada. and Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
28
|
Zhang C, Xu B, Gong C, Luo J, Zhang Q, Gong Y. Fiber Optofluidic Technology Based on Optical Force and Photothermal Effects. MICROMACHINES 2019; 10:E499. [PMID: 31357458 PMCID: PMC6722967 DOI: 10.3390/mi10080499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Optofluidics is an exciting new area of study resulting from the fusion of microfluidics and photonics. It broadens the application and extends the functionality of microfluidics and has been extensively investigated in biocontrol, molecular diagnosis, material synthesis, and drug delivery. When light interacts with a microfluidic system, optical force and/or photothermal effects may occur due to the strong interaction between light and liquid. Such opto-physical effects can be used for optical manipulation and sensing due to their unique advantages over conventional microfluidics and photonics, including their simple fabrication process, flexible manipulation capability, compact configuration, and low cost. In this review, we summarize the latest progress in fiber optofluidic (FOF) technology based on optical force and photothermal effects in manipulation and sensing applications. Optical force can be used for optofluidic manipulation and sensing in two categories: stable single optical traps and stable combined optical traps. The photothermal effect can be applied to optofluidics based on two major structures: optical microfibers and optical fiber tips. The advantages and disadvantages of each FOF technology are also discussed.
Collapse
Affiliation(s)
- Chenlin Zhang
- Science and Technology on Security Communication Laboratory, Institute of Southwestern Communication, Chengdu 610041, China
| | - Bingjie Xu
- Science and Technology on Security Communication Laboratory, Institute of Southwestern Communication, Chengdu 610041, China.
| | - Chaoyang Gong
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jingtang Luo
- State Grid Sichuan Economic Research Institute, Chengdu 610041, China
| | - Quanming Zhang
- State Grid Sichuan Economic Research Institute, Chengdu 610041, China
| | - Yuan Gong
- Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
29
|
Huang PH, Chan CY, Li P, Wang Y, Nama N, Bachman H, Huang TJ. A sharp-edge-based acoustofluidic chemical signal generator. LAB ON A CHIP 2018; 18:1411-1421. [PMID: 29668002 PMCID: PMC6064650 DOI: 10.1039/c8lc00193f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Resolving the temporal dynamics of cell signaling pathways is essential for regulating numerous downstream functions, from gene expression to cellular responses. Mapping these signaling pathways requires the exposure of cells to time-varying chemical signals; these are difficult to generate and control over a wide temporal range. Herein, we present an acoustofluidic chemical signal generator based on a sharp-edge-based micromixing strategy. The device, simply by modulating the driving signals of an acoustic transducer including the ON/OFF switching frequency, actuation time and duty cycle, is capable of generating both single-pulse and periodic chemical signals that are temporally controllable in terms of stimulation period, stimulation duration and duty cycle. We also demonstrate the device's applicability and versatility for cell signaling studies by probing the calcium (Ca2+) release dynamics of three different types of cells stimulated by ionomycin signals of different shapes. Upon short single-pulse ionomycin stimulation (∼100 ms) generated by our device, we discover that cells tend to dynamically adjust the intracellular level of Ca2+ through constantly releasing and accepting Ca2+ to the cytoplasm and from the extracellular environment, respectively. With advantages such as simple fabrication and operation, compact device design, and reliability and versatility, our device will enable decoding of the temporal characteristics of signaling dynamics for various physiological processes.
Collapse
Affiliation(s)
- Po-Hsun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Liu B, Tian B, Yang X, Li M, Yang J, Li D, Oh KW. Manipulation of micro-objects using acoustically oscillating bubbles based on the gas permeability of PDMS. BIOMICROFLUIDICS 2018; 12:034111. [PMID: 29937951 PMCID: PMC5993670 DOI: 10.1063/1.5028419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
This paper presents a novel manipulation method for micro-objects using acoustically oscillating bubbles with a controllable position based on the gas permeability of polydimethylsiloxane. The oscillating bubble trapped within the side channel attracts the neighboring micro-objects, and the position of the air-liquid interface is controlled by generating temporary pressure difference between the side channel and the air channel. To demonstrate the feasibility of the method in technological applications, polystyrene microparticles of 10 μm in diameter were successfully captured, transported, and released. The influence of pressure difference on the movement speed of the air-liquid interface was demonstrated in our experiments, and the manipulation performance was also characterized by varying the frequency of the acoustic excitation and the pressure difference. Since the bubble generation and the air-liquid interface movement in our manipulation method do not need any electrochemical reaction and any high temperature, this on-chip manipulation method provides a controllable, efficient, and noninvasive tool for handling micro-objects such as particles, cells, and other entities. The whole manipulation process, including capturing, transporting, and releasing of particles, spent less than 1 min. It can be used to select the cells and particles in the microfluidic device or change the cell culture medium.
Collapse
Affiliation(s)
- Bendong Liu
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Baohua Tian
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Xu Yang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Mohan Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | | | - Desheng Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Kwang W. Oh
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA
| |
Collapse
|
31
|
Bachman H, Huang PH, Zhao S, Yang S, Zhang P, Fu H, Huang TJ. Acoustofluidic devices controlled by cell phones. LAB ON A CHIP 2018; 18:433-441. [PMID: 29302660 PMCID: PMC5989538 DOI: 10.1039/c7lc01222e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Acoustofluidic devices have continuously demonstrated their potential to impact medical diagnostics and lab-on-a-chip applications. To bring these technologies to real-world applications, they must be made more accessible to end users. Herein, we report on the effort to provide an easy-to-use and portable system for controlling sharp-edge-based acoustofluidic devices. With the use of a cell phone and a modified Bluetooth® speaker, on-demand and hands-free pumping and mixing are achieved. Additionally, a novel design for a sharp-edge-based acoustofluidic device is proposed that combines both pumping and mixing functions into a single device, thus removing the need for external equipment typically needed to accomplish these two tasks. These applications serve to demonstrate the potential function that acoustofluidic devices can provide in point-of-care platforms. To further this point-of-care goal, we also design a portable microscope that combines with the cell phone and Bluetooth® power supply, providing a completely transportable acoustofluidic testing station. This work serves to bolster the promising position that acoustofluidic devices have within the rapidly changing research and diagnostics fields.
Collapse
Affiliation(s)
- Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nat Commun 2017; 8:770. [PMID: 28974671 PMCID: PMC5626690 DOI: 10.1038/s41467-017-00845-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022] Open
Abstract
Systems capable of precise motion in the vasculature can offer exciting possibilities for applications in targeted therapeutics and non-invasive surgery. So far, the majority of the work analysed propulsion in a two-dimensional setting with limited controllability near boundaries. Here we show bio-inspired rolling motion by introducing superparamagnetic particles in magnetic and acoustic fields, inspired by a neutrophil rolling on a wall. The particles self-assemble due to dipole–dipole interaction in the presence of a rotating magnetic field. The aggregate migrates towards the wall of the channel due to the radiation force of an acoustic field. By combining both fields, we achieved a rolling-type motion along the boundaries. The use of both acoustic and magnetic fields has matured in clinical settings. The combination of both fields is capable of overcoming the limitations encountered by single actuation techniques. We believe our method will have far-reaching implications in targeted therapeutics. Devising effective swimming and propulsion strategies in microenvironments is attractive for drug delivery applications. Here Ahmed et al. demonstrate a micropropulsion strategy in which a combination of magnetic and acoustic fields is used to assemble and propel colloidal particles along channel walls.
Collapse
|
33
|
Chen XZ, Hoop M, Shamsudhin N, Huang T, Özkale B, Li Q, Siringil E, Mushtaq F, Di Tizio L, Nelson BJ, Pané S. Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605458. [PMID: 27943524 DOI: 10.1002/adma.201605458] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/04/2016] [Indexed: 05/18/2023]
Abstract
An FeGa@P(VDF-TrFE) wire-shaped magnetoelectric nanorobot is designed and fabricated to demonstrate a proof-of-concept integrated device, which features wireless locomotion and on-site triggered therapeutics with a single external power source (i.e., a magnetic field). The device can be precisely steered toward a targeted location wirelessly by rotating magnetic fields and perform on-demand magnetoelectrically assisted drug release to kill cancer cells.
Collapse
Affiliation(s)
- Xiang-Zhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich, 8092, Switzerland
| | - Marcus Hoop
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich, 8092, Switzerland
| | - Naveen Shamsudhin
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich, 8092, Switzerland
| | - Tianyun Huang
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich, 8092, Switzerland
| | - Berna Özkale
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich, 8092, Switzerland
| | - Qian Li
- Center for Nanophase Materials Sciences and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Erdem Siringil
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich, 8092, Switzerland
| | - Fajer Mushtaq
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich, 8092, Switzerland
| | - Luca Di Tizio
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich, 8092, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich, 8092, Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
34
|
Kaynak M, Ozcelik A, Nourhani A, Lammert PE, Crespi VH, Huang TJ. Acoustic actuation of bioinspired microswimmers. LAB ON A CHIP 2017; 17:395-400. [PMID: 27991641 PMCID: PMC5465869 DOI: 10.1039/c6lc01272h] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Acoustic actuation of bioinspired microswimmers is experimentally demonstrated. Microswimmers are fabricated in situ in a microchannel. Upon acoustic excitation, the flagellum of the microswimmer oscillates, which in turn generates linear or rotary movement depending on the swimmer design. The speed of these bioinspired microswimmers is tuned by adjusting the voltage amplitude applied to the acoustic transducer. Simple microfabrication and remote actuation are promising for biomedical applications.
Collapse
Affiliation(s)
- Murat Kaynak
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Adem Ozcelik
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Amir Nourhani
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Paul E Lammert
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Vincent H Crespi
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA and Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
35
|
Destgeer G, Jung JH, Park J, Ahmed H, Sung HJ. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves. Anal Chem 2016; 89:736-744. [DOI: 10.1021/acs.analchem.6b03314] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ghulam Destgeer
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Jin Ho Jung
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Jinsoo Park
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Husnain Ahmed
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Hyung Jin Sung
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
36
|
Orbay S, Ozcelik A, Lata J, Kaynak M, Wu M, Huang TJ. Mixing high-viscosity fluids via acoustically driven bubbles. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2016; 27:015008. [PMID: 31588165 PMCID: PMC6777744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present an acoustofluidic micromixer which can perform rapid and homogeneous mixing of highly viscous fluids in the presence of an acoustic field. In this device, two high-viscosity polyethylene glycol (PEG) solutions were co-injected into a three-inlet PDMS microchannel with the center inlet containing a constant stream of nitrogen flow which forms bubbles in the device. When these bubbles were excited by an acoustic field generated via a piezoelectric transducer, the two solutions mixed homogenously due to the combination of acoustic streaming, droplet ejection, and bubble eruption effects. The mixing efficiency of this acoustofluidic device was evaluated using PEG-700 solutions which are ~106 times more viscous than deionized (DI) water. Our results indicate homogenous mixing of the PEG-700 solutions with a ~0.93 mixing index. The acoustofluidic micromixer is compact, inexpensive, easy to operate, and has the capacity to mix highly viscous fluids within 50 milliseconds.
Collapse
Affiliation(s)
- Sinem Orbay
- Department of Biomedical Engineering, The Pennsylvania State University, University park, PA 16802, USA
| | - Adem Ozcelik
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University park, PA 16802, USA
| | - James Lata
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University park, PA 16802, USA
| | - Murat Kaynak
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University park, PA 16802, USA
| | - Mengxi Wu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University park, PA 16802, USA
| | - Tony Jun Huang
- Department of Biomedical Engineering, The Pennsylvania State University, University park, PA 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University park, PA 16802, USA
| |
Collapse
|
37
|
Ahmed D, Baasch T, Jang B, Pane S, Dual J, Nelson BJ. Artificial Swimmers Propelled by Acoustically Activated Flagella. NANO LETTERS 2016; 16:4968-74. [PMID: 27459382 DOI: 10.1021/acs.nanolett.6b01601] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent studies have garnered considerable interest in the field of propulsion to maneuver micro- and nanosized objects. Acoustics provide an alternate and attractive method to generate propulsion. To date, most acoustic-based swimmers do not use structural resonances, and their motion is determined by a combination of bulk acoustic streaming and a standing-wave field. The resultant field is intrinsically dependent on the boundaries of their resonating chambers. Though acoustic based propulsion is appealing in biological contexts, existing swimmers are less efficient, especially when operating in vivo, since no predictable standing-wave can be established in a human body. Here we describe a new class of nanoswimmer propelled by the small-amplitude oscillation of a flagellum-like flexible tail in standing and, more importantly, in traveling acoustic waves. The artificial nanoswimmer, fabricated by multistep electrodeposition techniques, compromises a rigid bimetallic head and a flexible tail. During acoustic excitation of the nanoswimmer the tail structure oscillates, which leads to a large amplitude propulsion in traveling waves. FEM simulation results show that the structural resonances lead to high propulsive forces.
Collapse
Affiliation(s)
- Daniel Ahmed
- Institute of Robotics and Intelligent Systems (IRIS) and ‡Institute of Mechanical Systems (IMES), ETH Zurich , Zurich CH-8092, Switzerland
| | | | - Bumjin Jang
- Institute of Robotics and Intelligent Systems (IRIS) and ‡Institute of Mechanical Systems (IMES), ETH Zurich , Zurich CH-8092, Switzerland
| | - Salvador Pane
- Institute of Robotics and Intelligent Systems (IRIS) and ‡Institute of Mechanical Systems (IMES), ETH Zurich , Zurich CH-8092, Switzerland
| | | | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems (IRIS) and ‡Institute of Mechanical Systems (IMES), ETH Zurich , Zurich CH-8092, Switzerland
| |
Collapse
|
38
|
Ramesan S, Rezk AR, Cheng KW, Chan PPY, Yeo LY. Acoustically-driven thread-based tuneable gradient generators. LAB ON A CHIP 2016; 16:2820-2828. [PMID: 27334420 DOI: 10.1039/c5lc00937e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thread-based microfluidics offer a simple, easy to use, low-cost, disposable and biodegradable alternative to conventional microfluidic systems. While it has recently been shown that such thread networks facilitate manipulation of fluid samples including mixing, flow splitting and the formation of concentration gradients, the passive capillary transport of fluid through the thread does not allow for precise control due to the random orientation of cellulose fibres that make up the thread, nor does it permit dynamic manipulation of the flow. Here, we demonstrate the use of high frequency sound waves driven from a chip-scale device that drives rapid, precise and uniform convective transport through the thread network. In particular, we show that it is not only possible to generate a stable and continuous concentration gradient in a serial dilution and recombination network, but also one that can be dynamically tuned, which cannot be achieved solely with passive capillary transport. Additionally, we show a proof-of-concept in which such spatiotemporal gradient generation can be achieved with the entire thread network embedded in a three-dimensional hydrogel construct to more closely mimic the in vivo tissue microenvironment in microfluidic chemotaxis studies and cell culture systems, which is then employed to demonstrate the effect of such gradients on the proliferation of cells within the hydrogel.
Collapse
Affiliation(s)
- Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3000, Australia.
| | | | | | | | | |
Collapse
|
39
|
Chen Y, Fang Z, Merritt B, Strack D, Xu J, Lee S. Onset of particle trapping and release via acoustic bubbles. LAB ON A CHIP 2016; 16:3024-32. [PMID: 26805706 DOI: 10.1039/c5lc01420d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Trapping and sorting of micro-sized objects is one important application of lab on a chip devices, with the use of acoustic bubbles emerging as an effective, non-contact method. Acoustically actuated bubbles are known to exert a secondary radiation force (FSR) on micro-particles and stabilize them on the bubble surface, when this radiation force exceeds the external hydrodynamic forces that act to keep the particles in motion. While the theoretical expression of FSR has been derived by Nyborg decades ago, no direct experimental validation of this force has been performed, and the relationship between FSR and the bubble's ability to trap particles in a given lab on a chip device remains largely empirical. In order to quantify the connection between the bubble oscillation and the resultant FSR, we experimentally measure the amplitude of bubble oscillations that give rise to FSR and observe the trapping and release of a single microsphere in the presence of the mean flow at the corresponding acoustic parameters using an acoustofluidic device. By combining well-developed theories that connect bubble oscillations to the acoustic actuation, we derive the expression for the critical input voltage that leads to particle release into the flow, in good agreement with the experiments.
Collapse
Affiliation(s)
- Yun Chen
- Department of Mechanical Engineering, Texas A & M University, College Station, TX 77840, USA.
| | - Zecong Fang
- Department of Mechanical Engineering, Washington State University, Vancouver, WA 98686, USA
| | - Brett Merritt
- Department of Mechanical Engineering, Washington State University, Vancouver, WA 98686, USA
| | - Dillon Strack
- Department of Mechanical Engineering, Texas A & M University, College Station, TX 77840, USA.
| | - Jie Xu
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL 60607, USA.
| | - Sungyon Lee
- Department of Mechanical Engineering, Texas A & M University, College Station, TX 77840, USA.
| |
Collapse
|
40
|
Collins DJ, Ma Z, Ai Y. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields. Anal Chem 2016; 88:5513-22. [DOI: 10.1021/acs.analchem.6b01069] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David J. Collins
- Pillar of Engineering Product
Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Zhichao Ma
- Pillar of Engineering Product
Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product
Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
41
|
Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang TJ. Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 2016; 7:11085. [PMID: 27004764 PMCID: PMC4814581 DOI: 10.1038/ncomms11085] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation. The precise rotational manipulation of single cells is technically challenging and relies on the optical, magnetic and electrical properties of the biospecimen. Here the authors develop an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms.
Collapse
Affiliation(s)
- Daniel Ahmed
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Adem Ozcelik
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nagagireesh Bojanala
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nitesh Nama
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Awani Upadhyay
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
42
|
Zhou B, Xiao X, Liu T, Gao Y, Huang Y, Wen W. Real-time concentration monitoring in microfluidic system via plasmonic nanocrescent arrays. Biosens Bioelectron 2016; 77:385-92. [DOI: 10.1016/j.bios.2015.09.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/03/2015] [Accepted: 09/23/2015] [Indexed: 01/09/2023]
|
43
|
Xie Y, Nama N, Li P, Mao Z, Huang PH, Zhao C, Costanzo F, Huang TJ. Probing Cell Deformability via Acoustically Actuated Bubbles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:902-10. [PMID: 26715211 PMCID: PMC4876965 DOI: 10.1002/smll.201502220] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/02/2015] [Indexed: 05/21/2023]
Abstract
An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nitesh Nama
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chenglong Zhao
- Department of Physics & Electro-Optics Program, University of Dayton, Dayton, OH 45469, USA
| | - Francesco Costanzo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
44
|
Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Huang PH, Chan CY, Li P, Nama N, Xie Y, Wei CH, Chen Y, Ahmed D, Huang TJ. A spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures. LAB ON A CHIP 2015; 15:4166-76. [PMID: 26338516 PMCID: PMC4641750 DOI: 10.1039/c5lc00868a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability to generate stable, spatiotemporally controllable concentration gradients is critical for resolving the dynamics of cellular response to a chemical microenvironment. Here we demonstrate an acoustofluidic gradient generator based on acoustically oscillating sharp-edge structures, which facilitates in a step-wise fashion the rapid mixing of fluids to generate tunable, dynamic chemical gradients. By controlling the driving voltage of a piezoelectric transducer, we demonstrated that the chemical gradient profiles can be conveniently altered (spatially controllable). By adjusting the actuation time of the piezoelectric transducer, moreover, we generated pulsatile chemical gradients (temporally controllable). With these two characteristics combined, we have developed a spatiotemporally controllable gradient generator. The applicability and biocompatibility of our acoustofluidic gradient generator are validated by demonstrating the migration of human dermal microvascular endothelial cells (HMVEC-d) in response to a generated vascular endothelial growth factor (VEGF) gradient, and by preserving the viability of HMVEC-d cells after long-term exposure to an acoustic field. Our device features advantages such as simple fabrication and operation, compact and biocompatible device, and generation of spatiotemporally tunable gradients.
Collapse
Affiliation(s)
- Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ahmed D, Peng X, Ozcelik A, Zheng Y, Huang TJ. Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems. AIP ADVANCES 2015; 5:097161. [PMID: 26421224 PMCID: PMC4575316 DOI: 10.1063/1.4931641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/10/2015] [Indexed: 05/18/2023]
Abstract
We acoustically modulated the localized surface plasmon resonances (LSPRs) of metal nanostructures integrated within microfluidic systems. An acoustically driven micromixing device based on bubble microstreaming quickly and homogeneously mixes multiple laminar flows of different refractive indices. The altered refractive index of the mixed fluids enables rapid modulation of the LSPRs of gold nanodisk arrays embedded within the microfluidic channel. The device features fast response for dynamic operation, and the refractive index within the channel is tailorable. With these unique features, our "acousto-plasmofluidic" device can be useful in applications such as optical switches, modulators, filters, biosensors, and lab-on-a-chip systems.
Collapse
Affiliation(s)
- Daniel Ahmed
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, The Pennsylvania State University , University Park, PA 16802 USA
| | - Xiaolei Peng
- Department of Mechanical Engineering, Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin , Austin, TX 78712 USA
| | - Adem Ozcelik
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, The Pennsylvania State University , University Park, PA 16802 USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin , Austin, TX 78712 USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, The Pennsylvania State University , University Park, PA 16802 USA
| |
Collapse
|
47
|
Ahmed D, Lu M, Nourhani A, Lammert PE, Stratton Z, Muddana HS, Crespi VH, Huang TJ. Selectively manipulable acoustic-powered microswimmers. Sci Rep 2015; 5:9744. [PMID: 25993314 PMCID: PMC4438614 DOI: 10.1038/srep09744] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/02/2015] [Indexed: 01/04/2023] Open
Abstract
Selective actuation of a single microswimmer from within a diverse group would be a
first step toward collaborative guided action by a group of swimmers. Here we
describe a new class of microswimmer that accomplishes this goal. Our swimmer design
overcomes the commonly-held design paradigm that microswimmers must use
non-reciprocal motion to achieve propulsion; instead, the swimmer is
propelled by oscillatory motion of an air bubble trapped within the
swimmer's polymer body. This oscillatory motion is driven by the
application of a low-power acoustic field, which is biocompatible with biological
samples and with the ambient liquid. This acoustically-powered microswimmer
accomplishes controllable and rapid translational and rotational motion, even in
highly viscous liquids (with viscosity 6,000 times higher than that of water). And
by using a group of swimmers each with a unique bubble size (and resulting unique
resonance frequencies), selective actuation of a single swimmer from among the group
can be readily achieved.
Collapse
Affiliation(s)
- Daniel Ahmed
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Mengqian Lu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Amir Nourhani
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul E Lammert
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Zak Stratton
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hari S Muddana
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802 USA
| | - Vincent H Crespi
- 1] Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA [3] Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tony Jun Huang
- 1] Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802 USA
| |
Collapse
|
48
|
Vogus DR, Mansard V, Rapp MV, Squires TM. Measuring concentration fields in microfluidic channels in situ with a Fabry-Perot interferometer. LAB ON A CHIP 2015; 15:1689-1696. [PMID: 25661262 DOI: 10.1039/c5lc00095e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent advancements in microfluidic technology have allowed for the generation and control of complex chemical gradients; however, few general techniques can measure these spatio-temporal concentration profiles without fluorescent labeling. Here we describe a Fabry-Perot interferometric technique, capable of measuring concentration profiles in situ, without any chemical label, by tracking Fringes of Equal Chromatic Order (FECO). The technique has a sensitivity of 10(-5) RIU, which can be used to track local solute changes of ~0.05% (w/w). The technique is spatially resolved (1 μm) and easily measures evolving concentration fields with ~20 Hz rate. Here, we demonstrate by measuring the binary diffusion coefficients of various solutes and solvents (and their concentration-dependence) in both free solution and in polyethylene glycol diacrylate (PEG-DA) hydrogels.
Collapse
Affiliation(s)
- Douglas R Vogus
- Department of Chemical Engineering University of California, Santa Barbara, USA.
| | | | | | | |
Collapse
|
49
|
Xie Y, Yang S, Mao Z, Li P, Zhao C, Cohick Z, Huang PH, Huang TJ. In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems. ACS NANO 2014; 8:12175-84. [PMID: 25402207 PMCID: PMC4278689 DOI: 10.1021/nn503826r] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/07/2014] [Indexed: 05/20/2023]
Abstract
In this work, we develop an in situ method to grow highly controllable, sensitive, three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates via an optothermal effect within microfluidic devices. Implementing this approach, we fabricate SERS substrates composed of Ag@ZnO structures at prescribed locations inside microfluidic channels, sites within which current fabrication of SERS structures has been arduous. Conveniently, properties of the 3D Ag@ZnO nanostructures such as length, packing density, and coverage can also be adjusted by tuning laser irradiation parameters. After exploring the fabrication of the 3D nanostructures, we demonstrate a SERS enhancement factor of up to ∼2×10(6) and investigate the optical properties of the 3D Ag@ZnO structures through finite-difference time-domain simulations. To illustrate the potential value of our technique, low concentrations of biomolecules in the liquid state are detected. Moreover, an integrated cell-trapping function of the 3D Ag@ZnO structures records the surface chemical fingerprint of a living cell. Overall, our optothermal-effect-based fabrication technique offers an effective combination of microfluidics with SERS, resolving problems associated with the fabrication of SERS substrates in microfluidic channels. With its advantages in functionality, simplicity, and sensitivity, the microfluidic-SERS platform presented should be valuable in many biological, biochemical, and biomedical applications.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shikuan Yang
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhangming Mao
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Peng Li
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chenglong Zhao
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zane Cohick
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
50
|
Huang PH, Nama N, Mao Z, Li P, Rufo J, Chen Y, Xie Y, Wei CH, Wang L, Huang TJ. A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. LAB ON A CHIP 2014; 14:4319-23. [PMID: 25188786 PMCID: PMC4198616 DOI: 10.1039/c4lc00806e] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present a programmable acoustofluidic pump that utilizes the acoustic streaming effects generated by the oscillation of tilted sharp-edge structures. This sharp-edge-based acoustofluidic pump is capable of generating stable flow rates as high as 8 μL min(-1) (~76 Pa of pumping pressure), and it can tune flow rates across a wide range (nanoliters to microliters per minute). Along with its ability to reliably produce stable and tunable flow rates, the acoustofluidic pump is easy to operate and requires minimum hardware, showing great potential for a variety of applications.
Collapse
Affiliation(s)
- Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|