1
|
Breiner LM, Slowinski RP, Lowell AN. Highly Active Oligoethylene Glycol Pleuromutilins via Systematic Linker Synthesis/One-Pot Attachment and a Microscale Solubility Method. J Org Chem 2025; 90:919-924. [PMID: 39693570 DOI: 10.1021/acs.joc.4c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The semisynthetic derivatization of natural products is crucial for their continued development as antibiotics. While commercial pleuromutilin derivatives depend on amines for solubility, we demonstrate the high activity and solubility of oligoethylene glycol-substituted pleuromutilins achieved via a one-pot deprotection/attachment approach using thiolates protected as thioesters. The bifunctional linker synthesis is versatile and can be broadly applied to other chemistries. Antibacterial assays revealed this simple glycolate modification enhanced inhibition 4-8-fold relative to that of pleuromutilin. A new microscale solubility method is also introduced.
Collapse
Affiliation(s)
- Logan M Breiner
- Department of Chemistry, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia 24061, United States
| | - Roman P Slowinski
- Department of Chemistry, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia 24061, United States
- Department of Biochemistry, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia 24061, United States
| | - Andrew N Lowell
- Department of Chemistry, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia 24061, United States
- Faculty of Health Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Gulyak EL, Komarova OA, Prokopenko YA, Faizullina EA, Malabuiok DM, Ibragimova AR, Mokrushina YA, Serova OV, Popova GP, Zhitlov MY, Nikitin TD, Brylev VA, Ustinov AV, Alferova VA, Korshun VA, Smirnov IV, Terekhov SS, Sapozhnikova KA. Branched Linkers for Homogeneous Antibody-Drug Conjugates: How Long Is Long Enough? Int J Mol Sci 2024; 25:13356. [PMID: 39769122 PMCID: PMC11678271 DOI: 10.3390/ijms252413356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Homogeneous antibody-drug conjugates (ADCs) exhibit significantly improved pharmacological properties compared to their heterogeneous counterparts. Site-specific conjugation of the payload to the IgG required for homogeneity can be achieved using enzymes. One example is microbial transglutaminase (MTGase), which can selectively perform transamidation on the Q295 residue of human Fc when N297 glycans are removed. As a result, two modifications can be introduced per IgG molecule; however, achieving higher drug-to-antibody ratios (DARs) requires the use of branched linkers. While several such linkers have been reported, little information is available on the relationship between linker structure and ADC properties. To address this gap, we synthesized two branched amino triazide linkers, differing by a PEG4 fragment inserted after the branching point, which were used to prepare two homogeneous trastuzumab-based DAR 6 ADCs (a "short" and a "long" one). This was achieved by a two-step process consisting of enzymatic linker conjugation followed by bioorthogonal coupling with a cleavable linker bearing monomethyl auristatin E (MMAE). Two other trastuzumab-MMAE conjugates were used as controls: a heterogeneous DAR 6 ADC, made using conventional thiol-maleimide chemistry, and a homogeneous DAR 2 ADC. We found that, while the four conjugates had identical affinity for HER2, their cytotoxicity differed significantly: the "long" homogeneous DAR 6 ADC was just as active as its heterogeneous counterpart, but the "short" DAR 6 ADC was an order of magnitude less potent, inferior even to the DAR 2 conjugate. Our findings indicate that the length of the branched linker critically affects the cytotoxic activity of ADCs, possibly due to steric hindrance influencing the rate of linker cleavage by lysosomal enzymes.
Collapse
Affiliation(s)
- Evgeny L. Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Olga A. Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Yury A. Prokopenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Elina A. Faizullina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Diana M. Malabuiok
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Aigul R. Ibragimova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Yuliana A. Mokrushina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Oxana V. Serova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Galina P. Popova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Mikhail Y. Zhitlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Timofei D. Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Vladimir A. Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Stanislav S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| | - Ksenia A. Sapozhnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (O.A.K.); (Y.A.P.); (E.A.F.); (D.M.M.); (A.R.I.); (Y.A.M.); (O.V.S.); (G.P.P.); (M.Y.Z.); (T.D.N.); (V.A.B.); (A.V.U.); (V.A.A.); (V.A.K.); (I.V.S.); (S.S.T.)
| |
Collapse
|
3
|
Misra C, Kaur J, Kumar M, Kaushik L, Chitkara D, Preet S, Wahajuddin M, Raza K. Docetaxel-tethered di-Carboxylic Acid Derivatised Fullerenes: A Promising Drug Delivery Approach for Breast Cancer. AAPS PharmSciTech 2024; 25:233. [PMID: 39358486 DOI: 10.1208/s12249-024-02955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Docetaxel (DTX) has become widely accepted as a first-line treatment for metastatic breast cancer; however, the frequent development of resistance provides challenges in treating the disease.C60 fullerene introduces a unique molecular form of carbon, exhibiting attractive chemical and physical properties. Our study aimed to develop dicarboxylic acid-derivatized C60 fullerenes as a novel DTX delivery carrier. This study investigated the potential of water-soluble fullerenes to deliver the anti-cancer drug DTX through a hydrophilic linker. The synthesis was carried out using the Prato reaction. The spectroscopic analysis confirmed the successful conjugation of DTX molecules over fullerenes. The particle size of nanoconjugate was reported to be 122.13 ± 1.63 nm with a conjugation efficiency of 76.7 ± 0.14%. The designed conjugate offers pH-dependent release with significantly less plasma pH, ensuring maximum release at the target site. In-vitro cell viability studies demonstrated the enhanced cytotoxic nature of the developed nanoconjugate compared to DTX. These synthesized nanoscaffolds were highly compatible with erythrocytes, indicating the safer intravenous route administration. Pharmacokinetic studies confirmed the higher bioavailability (~ 6 times) and decreased drug clearance from the system vis-à-vis plain drug. The histological studies reveal that nanoconjugate-treated tumour cells exhibit similar morphology to normal cells. Therefore, it was concluded that this developed formulation would be a valuable option for clinical use.
Collapse
Affiliation(s)
- Charu Misra
- Department of Pharmacy, School of Chemical Science and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Jasleen Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160 014, India
| | - Manish Kumar
- Department of Pharmacy, School of Chemical Science and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Lokesh Kaushik
- Department of Pharmacy, School of Chemical Science and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
- ICFAI School of Pharmaceutical Sciences, The ICFAI University, Jaipur, Rajasthan, 302031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, 33031, India
| | - Simran Preet
- Department of Biophysics, Panjab University, Chandigarh, 160 014, India
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Science and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
4
|
Akacha R, Abdelhedi-Miladi I, Serghei A, Ben Romdhane H, Drockenmuller E. 1,3,4,5-Tetrasubstituted Poly(1,2,3-triazolium) Obtained through Metal-Free AA+BB Polyaddition of a Diazide and an Activated Internal Dialkyne. Macromol Rapid Commun 2024; 45:e2300644. [PMID: 38350089 DOI: 10.1002/marc.202300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Indexed: 02/15/2024]
Abstract
A tetra(ethylene glycol)-based 1,3,4,5-tetrasubstituted poly(1,2,3-triazolium) is synthesized in two steps including: i) the catalyst-free polyaddition of a diazide and an activated internal dialkyne and ii) the N-alkylation of the resulting 1,2,3-triazole groups. In order to provide detailed structure/properties correlations different analogs are also synthesized. First, parent poly(1,2,3-triazole)s are obtained via AA+BB polyaddition using copper(I)-catalyzed alkyne-azide cycloaddition or metal-free thermal alkyne-azide cycloaddition (TAAC). Poly(1,2,3-triazole)s with higher molar masses are obtained in higher yields by TAAC polyaddition. A 1,3,4-trisubstituted poly(1,2,3-triazolium) structural analog obtained by TAAC polyaddition using a terminal activated dialkyne and subsequent N-alkylation of the 1,2,3-triazole groups enables discussing the influence of the methyl group in the C-4 or C-5 position on thermal and ion conducting properties. Obtained polymers are characterized by 1H, 13C, and 19F NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, size exclusion chromatography, and broadband dielectric spectroscopy. The targeted 1,3,4,5-tetrasubstituted poly(1,2,3-triazolium) exhibits a glass transition temperature of -23 °C and a direct current ionic conductivity of 2.0 × 10-6 S cm-1 at 30 °C under anhydrous conditions. The developed strategy offers opportunities to further tune the electron delocalization of the 1,2,3-triazolium cation and the properties of poly(1,2,3-triazolium)s using this additional substituent as structural handle.
Collapse
Affiliation(s)
- Rania Akacha
- Laboratoire de Chimie (Bio) Organique Structurale et de Polymères, Synthèse et Études Physicochimiques (LR99ES14), Université de Tunis El Manar, Faculté des Sciences de Tunis, El Manar, 2092, Tunisia
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon, F-69003, France
| | - Imen Abdelhedi-Miladi
- Laboratoire de Chimie (Bio) Organique Structurale et de Polymères, Synthèse et Études Physicochimiques (LR99ES14), Université de Tunis El Manar, Faculté des Sciences de Tunis, El Manar, 2092, Tunisia
| | - Anatoli Serghei
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon, F-69003, France
| | - Hatem Ben Romdhane
- Laboratoire de Chimie (Bio) Organique Structurale et de Polymères, Synthèse et Études Physicochimiques (LR99ES14), Université de Tunis El Manar, Faculté des Sciences de Tunis, El Manar, 2092, Tunisia
| | - Eric Drockenmuller
- Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon, F-69003, France
| |
Collapse
|
5
|
Font-Mateu J, Sanllehí P, Sot J, Abad B, Mateos N, Torreno-Pina JA, Ferrari R, Wright RHG, Garcia-Parajo MF, Joglar J, Goñi FM, Beato M. A progesterone derivative linked to a stable phospholipid activates breast cancer cell response without leaving the cell membrane. Cell Mol Life Sci 2024; 81:98. [PMID: 38386110 PMCID: PMC10884080 DOI: 10.1007/s00018-024-05116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
In hormone-responsive breast cancer cells, progesterone (P4) has been shown to act via its nuclear receptor (nPR), a ligand-activated transcription factor. A small fraction of progesterone receptor is palmitoylated and anchored to the cell membrane (mbPR) forming a complex with estrogen receptor alpha (ERα). Upon hormone exposure, either directly or via interaction with ERα, mbPR activates the SRC/RAS/ERK kinase pathway leading to phosphorylation of nPR by ERK. Kinase activation is essential for P4 gene regulation, as the ERK and MSK1 kinases are recruited by the nPR to its genomic binding sites and trigger chromatin remodeling. An interesting open question is whether activation of mbPR can result in gene regulation in the absence of ligand binding to intracellular progesterone receptor (iPR). This matter has been investigated in the past using P4 attached to serum albumin, but the attachment is leaky and albumin can be endocytosed and degraded, liberating P4. Here, we propose a more stringent approach to address this issue by ensuring attachment of P4 to the cell membrane via covalent binding to a stable phospholipid. This strategy identifies the actions of P4 independent from hormone binding to iPR. We found that a membrane-attached progestin can activate mbPR, the ERK signaling pathway leading to iPR phosphorylation, initial gene regulation and entry into the cell cycle, in the absence of detectable intracellular progestin.
Collapse
Affiliation(s)
- Jofre Font-Mateu
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Pol Sanllehí
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Jesús Sot
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Beatriz Abad
- SGIKER, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Nicolas Mateos
- The Barcelona Institute for Science and Technology (BIST), ICFO-Institut de Ciencies Fotòniques, 08860, Barcelona, Spain
| | - Juan Andres Torreno-Pina
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- The Barcelona Institute for Science and Technology (BIST), ICFO-Institut de Ciencies Fotòniques, 08860, Barcelona, Spain
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roni H G Wright
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Maria F Garcia-Parajo
- The Barcelona Institute for Science and Technology (BIST), ICFO-Institut de Ciencies Fotòniques, 08860, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Jesús Joglar
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Félix M Goñi
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Spain.
- Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
6
|
Thomas-Moore BA, Dedola S, Russell DA, Field RA, Marín MJ. Targeted photodynamic therapy for breast cancer: the potential of glyconanoparticles. NANOSCALE ADVANCES 2023; 5:6501-6513. [PMID: 38024308 PMCID: PMC10662151 DOI: 10.1039/d3na00544e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023]
Abstract
Photodynamic therapy (PDT) uses a non-toxic light sensitive molecule, a photosensitiser, that releases cytotoxic reactive oxygen species upon activation with light of a specific wavelength. Here, glycan-modified 16 nm gold nanoparticles (glycoAuNPs) were explored for their use in targeted PDT, where the photosensitiser was localised to the target cell through selective glycan-lectin interactions. Polyacrylamide (PAA)-glycans were chosen to assess glycan binding to the cell lines. These PAA-glycans indicated the selective uptake of a galactose-derivative PAA by two breast cancer cell lines, SK-BR-3 and MDA-MD-231. Subsequently, AuNPs were modified with a galactose-derivative ligand and an amine derivate of the photosensitiser chlorin e6 was incorporated to the nanoparticle surface via amide bond formation using EDC/NHS coupling chemistry. The dual modified nanoparticles were investigated for the targeted cell killing of breast cancer cells, demonstrating the versatility of using glycoAuNPs for selective binding to different cancer cells and their potential use for targeted PDT.
Collapse
Affiliation(s)
- Brydie A Thomas-Moore
- Iceni Glycoscience Ltd. Norwich Research Park Norwich NR4 7TJ UK
- School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Simone Dedola
- Iceni Glycoscience Ltd. Norwich Research Park Norwich NR4 7TJ UK
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - David A Russell
- School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Robert A Field
- Iceni Glycoscience Ltd. Norwich Research Park Norwich NR4 7TJ UK
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - María J Marín
- School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
7
|
Calvert M, Sweeney RP, Chen HM, Bajwa H, Nasseri SA, Habibi D, Withers SG. Branched montbretin A mimics allow derivatisation and potent amylase inhibition. Org Biomol Chem 2023; 21:7977-7983. [PMID: 37751159 DOI: 10.1039/d3ob01051a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Mimics of the complex flavonol glycoside montbretin A in which a flavonol moiety is coupled to a caffeic acid via partially peptidic linkers have proved to be potent inhibitors of human pancreatic alpha-amylase with potential as therapeutics for control of blood glucose levels. After exploring optimal linker length, a synthetic route to a version with a branched linker was devised based on the structure of the enzyme/inhibitor complex. The resultant branched inhibitors were shown to retain nanomolar potency even when decorated with polymers as a means of modifying solubility. Similar improvements, along with nanomolar affinity, could also be achieved through conjugation to cyclodextrins which have the potential to bind to starch binding sites found on the surface of human amylase. Incorporation of a conjugatable branch into this unusual pharmacophore thereby affords considerable flexibility for further modifications to improve pharmacokinetic behaviour or as a site for attachment of capture tags or fluorophores.
Collapse
Affiliation(s)
- Matthew Calvert
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada.
| | - Ryan P Sweeney
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada.
| | - Hong-Ming Chen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada.
| | - Harbir Bajwa
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada.
| | - Seyed A Nasseri
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada.
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada.
| |
Collapse
|
8
|
Deng B, Burns E, McNelles SA, Sun J, Ortega J, Adronov A. Molecular Sieving with PEGylated Dendron-Protein Conjugates. Bioconjug Chem 2023; 34:1467-1476. [PMID: 37499133 DOI: 10.1021/acs.bioconjchem.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A series of generation 3-5 dendrons based on a bis(2,2-hydroxymethylpropionic acid) (bis-MPA) scaffold bearing three respective lengths of linear poly(ethylene glycol) at their periphery and a dibenzocyclooctyne unit at their core was prepared. These dendrons were appended to the surface of azide-decorated α-chymotrypsin (α-CT) via strain-promoted azide-alkyne cycloaddition to yield a library of dendron-protein conjugates. These conjugates were characterized by FT-IR and NMR spectroscopy and were imaged using cryo-electron microscopy. The activity of the PEGylated α-CT-dendron conjugates was investigated using a small molecule (benzoyl-l-tyrosine p-nitroanilide) as well as different proteins of different sizes and crystallinities (casein and bovine serum albumin) as substrates. It was found that the activity of the conjugates toward the small molecule was largely retained, while the activity toward the proteins was significantly diminished. Furthermore, the results indicate that for most of the conjugates the PEG length had a more pronounced impact on enzyme activity than the dendron generation. Overall, the highest sieving ratios were found for α-CT-dendron conjugates decorated with G3-PEG2000, G4-PEG2000, and G5-PEG1000, with the latter two structures offering the best combination of sieving ratio and small molecule activity.
Collapse
Affiliation(s)
- Billy Deng
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Evan Burns
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Stuart A McNelles
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jingyu Sun
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
9
|
Zografou-Barredo NA, Hallatt AJ, Goujon-Ricci J, Cano C. A beginner's guide to current synthetic linker strategies towards VHL-recruiting PROTACs. Bioorg Med Chem 2023; 88-89:117334. [PMID: 37224698 DOI: 10.1016/j.bmc.2023.117334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Over the last two decades, proteolysis targeting chimeras (PROTACs) have been revolutionary in drug development rendering targeted protein degradation (TPD) as an emerging therapeutic modality. These heterobifunctional molecules are comprised of three units: a ligand for the protein of interest (POI), a ligand for an E3 ubiquitin ligase, and a linker that tethers the two motifs together. Von Hippel-Lindau (VHL) is one of the most widely employed E3 ligases in PROTACs development due to its prevalent expression across tissue types and well-characterised ligands. Linker composition and length has proven to play an important role in determining the physicochemical properties and spatial orientation of the POI-PROTAC-E3 ternary complex, thus influencing the bioactivity of degraders. Numerous articles and reports have been published showcasing the medicinal chemistry aspects of the linker design, but few have focused on the chemistry around tethering linkers to E3 ligase ligands. In this review, we focus on the current synthetic linker strategies employed in the assembly of VHL-recruiting PROTACs. We aim to cover a range of fundamental chemistries used to incorporate linkers of varying length, composition and functionality.
Collapse
Affiliation(s)
- Nikol A Zografou-Barredo
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alex J Hallatt
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jennyfer Goujon-Ricci
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Céline Cano
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
10
|
Sapozhnikova KA, Gulyak EL, Brylev VA, Misyurin VA, Oreshkov SD, Alexeeva AV, Ryazantsev DY, Simonova MA, Ryabukhina EV, Popova GP, Tikhonova NA, Lyzhko NA, Barmashov AE, Misyurin AV, Ustinov AV, Alferova VA, Korshun VA. Aminooxy Click Modification of a Periodate-Oxidized Immunoglobulin G: A General Approach to Antibody-Drug Conjugates with Dye-Mediated Expeditious Stoichiometry Control. Int J Mol Sci 2023; 24:ijms24065134. [PMID: 36982208 PMCID: PMC10049567 DOI: 10.3390/ijms24065134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
A universal approach to the construction of antibody-drug conjugates (ADCs) has been developed. It relies on periodate oxidation of naturally present glycans of immunoglobulin G, followed by oxime ligation and, optionally, copper(I)-catalyzed alkyne-azide cycloaddition for conjugation with a toxic payload. The introduction of highly absorbing cyanine dyes into the linker allows for facile determination of the drug-antibody ratio. We applied this methodology to the synthesis of cytotoxic conjugates of an antibody against the tumor-associated antigen PRAME with doxorubicin and monomethyl auristatin E (MMAE). The resultant conjugates retained their affinity to a large extent, yet their cytotoxicity in vitro varied dramatically: while the doxorubicin-based conjugate did not produce any effect on cells, the MMAE-based one demonstrated specific activity against PRAME-expressing cancer cell lines. Importantly, the latter conjugate constitutes the first reported example of a PRAME-targeting ADC.
Collapse
Affiliation(s)
- Ksenia A Sapozhnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Evgeny L Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Lumiprobe RUS Ltd., Kotsyubinskogo 4, 121351 Moscow, Russia
| | - Vsevolod A Misyurin
- N.N. Blokhin National Medical Cancer Research Center, Ministry of Health of Russia, Kashirskoye sh. 24, 115478 Moscow, Russia
| | - Sergey D Oreshkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | | | - Dmitry Yu Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria A Simonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ekaterina V Ryabukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Galina P Popova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | | | | | - Alexander E Barmashov
- N.N. Blokhin National Medical Cancer Research Center, Ministry of Health of Russia, Kashirskoye sh. 24, 115478 Moscow, Russia
| | | | - Alexey V Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Lumiprobe RUS Ltd., Kotsyubinskogo 4, 121351 Moscow, Russia
| | - Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
11
|
Sumohan Pillai A, Alexander A, Sri Varalakshmi G, Manikantan V, Allben Akash B, Enoch IV. Cyclodextrin and folate functionalized polymer nanocarriers: Chain length dependent properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Karaj E, Sindi SH, Kuganesan N, Perera L, Taylor W, Viranga Tillekeratne LM. Tunable Cysteine-Targeting Electrophilic Heteroaromatic Warheads Induce Ferroptosis. J Med Chem 2022; 65:11788-11817. [PMID: 35984756 PMCID: PMC10408038 DOI: 10.1021/acs.jmedchem.2c00909] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Once considered potential liabilities, the modern era witnesses a renaissance of interest in covalent inhibitors in drug discovery. The available toolbox of electrophilic warheads is limited by constraints on tuning reactivity and selectivity. Following our work on a class of ferroptotic agents termed CETZOLEs, we discovered new tunable heterocyclic electrophiles which are capable of inducing ferroptosis. The biological evaluation demonstrated that thiazoles with an alkyne electrophile at the 2-position selectively induce ferroptosis with high potency. Density functional theory calculations and NMR kinetic studies demonstrated the ability of our heterocycles to undergo thiol addition, an apparent prerequisite for cytotoxicity. Chemoproteomic analysis indicated several potential targets, the most prominent among them being GPX4 protein. These results were further validated by western blot analysis and the cellular thermal shift assay. Incorporation of these heterocycles into appropriate pharmacophores generated highly cytotoxic agents such as the analogue BCP-T.A, with low nM IC50 values in ferroptosis-sensitive cell lines.
Collapse
Affiliation(s)
- Endri Karaj
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606
| | - Shaimaa H. Sindi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606
| | - Nishanth Kuganesan
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Lalith Perera
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - William Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - L. M. Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606
| |
Collapse
|
13
|
Tailoring the PEO-based ion conductive ionene as potential quasi-solid electrolyte for electrochemical devices. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Shin I, Li H, Lee CH. A Thiol-Activated Fluorogenic Probe for Detection of a Target Protein. Chem Commun (Camb) 2022; 58:6336-6339. [DOI: 10.1039/d2cc02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorogenic probe for facile and efficient detection of a target protein that binds to a bioactive small molecule was developed. The probe was composed of a thiol-activated fluorogenic...
Collapse
|
15
|
Tesfaye A, Rodríguez‐Nogales A, Benedé S, Fernández TD, Paris JL, Rodriguez MJ, Jiménez‐Sánchez IM, Bogas G, Mayorga C, Torres MJ, Montañez MI. Nanoarchitectures for efficient IgE cross-linking on effector cells to study amoxicillin allergy. Allergy 2021; 76:3183-3193. [PMID: 33784407 PMCID: PMC8518075 DOI: 10.1111/all.14834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/28/2021] [Accepted: 03/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Amoxicillin (AX) is nowadays the β-lactam that more frequently induces immediate allergic reactions. Nevertheless, diagnosis of AX allergy is occasionally challenging due to risky in vivo tests and non-optimal sensitivity of in vitro tests. AX requires protein haptenation to form multivalent conjugates with increased size to be immunogenic. Knowing adduct structural features for promoting effector cell activation would help to improve in vitro tests. We aimed to identify the optimal structural requirement in specific cellular degranulation to AX using well-precised nanoarchitectures of different lengths. METHOD We constructed eight Bidendron Antigens (BiAns) based on polyethylene glycol (PEG) linkers of different lengths (600-12,000 Da), end-coupled with polyamidoamine dendrons that were terminally multi-functionalized with amoxicilloyl (AXO). In vitro IgE recognition was studied by competitive radioallergosorbent test (RAST) and antibody-nanoarchitecture complexes by transmission electron microscopy (TEM). Their allergenic activity was evaluated using bone marrow-derived mast cells (MCs) passively sensitized with mouse monoclonal IgE against AX and humanized RBL-2H3 cells sensitized with polyclonal antibodies from sera of AX-allergic patients. RESULTS All BiAns were recognized by AX-sIgE. Dose-dependent activation responses were observed in both cellular assays, only with longer structures, containing spacers in the range of PEG 6000-12,000 Da. Consistently, greater proportion of immunocomplexes and number of antibodies per complex for longer BiAns were visualized by TEM. CONCLUSIONS BiAns are valuable platforms to study the mechanism of effector cell activation. These nanomolecular tools have demonstrated the importance of the adduct size to promote effector cell activation in AX allergy, which will impact for improving in vitro diagnostics.
Collapse
Affiliation(s)
- Amene Tesfaye
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Alba Rodríguez‐Nogales
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIALCSIC‐UAM)MadridSpain
| | - Tahía D. Fernández
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular Genética y FisiologíaFacultad de CienciasUniversidad de MálagaMálagaSpain
| | - Juan L. Paris
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Maria J. Rodriguez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Isabel M. Jiménez‐Sánchez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Gador Bogas
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
| | - Cristobalina Mayorga
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
| | - María J. Torres
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain
- Departamento de MedicinaFacultad de MedicinaUniversidad de MálagaMálagaSpain
| | - María I. Montañez
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| |
Collapse
|
16
|
Rosier N, Grätz L, Schihada H, Möller J, Işbilir A, Humphrys LJ, Nagl M, Seibel U, Lohse MJ, Pockes S. A Versatile Sub-Nanomolar Fluorescent Ligand Enables NanoBRET Binding Studies and Single-Molecule Microscopy at the Histamine H 3 Receptor. J Med Chem 2021; 64:11695-11708. [PMID: 34309390 DOI: 10.1021/acs.jmedchem.1c01089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The histamine H3 receptor (H3R) is considered an attractive drug target for various neurological diseases. We here report the synthesis of UR-NR266, a novel fluorescent H3R ligand. Broad pharmacological characterization revealed UR-NR266 as a sub-nanomolar compound at the H3R with an exceptional selectivity profile within the histamine receptor family. The presented neutral antagonist showed fast association to its target and complete dissociation in kinetic binding studies. Detailed characterization of standard H3R ligands in NanoBRET competition binding using UR-NR266 highlights its value as a versatile pharmacological tool to analyze future H3R ligands. The low nonspecific binding observed in all experiments could also be verified in TIRF and confocal microscopy. This fluorescent probe allows the highly specific analysis of native H3R in various assays ranging from optical high throughput technologies to biophysical analyses and single-molecule studies in its natural environment. An off-target screening at 14 receptors revealed UR-NR266 as a selective compound.
Collapse
Affiliation(s)
- Niklas Rosier
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Lukas Grätz
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Hannes Schihada
- Section of Receptor Biology & Signaling, Dept. of Physiology & Pharmacology, Karolinska Institutet, Solnavägen 1, Stockholm 171 77, Sweden
| | - Jan Möller
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany.,Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97070, Germany
| | - Ali Işbilir
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany.,Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97070, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Martin Nagl
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Ulla Seibel
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany.,Institute of Pharmacology and Toxicology and Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97070, Germany.,ISAR Bioscience Institute, Semmelweisstraße 5, Planegg 82152, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany.,Department of Neurology, University of Minnesota, 2101 6th Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
17
|
Ariztia J, Chateau A, Boura C, Didierjean C, Lamandé-Langle S, Pellegrini Moïse N. Synthesis of anti-proliferative [3.3.0]furofuranone derivatives by lactonization and functionalization of C-glycosyl compounds. Bioorg Med Chem 2021; 45:116313. [PMID: 34325324 DOI: 10.1016/j.bmc.2021.116313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
The [3.3.0]furofuranone structure is found in numerous families of biologically active natural products. We took advantage of the stereodiversity afforded by carbohydrate derivatives to prepare several compounds structurally similar to goniofufurone and crassalactones which are natural cytotoxic agents. We designed and synthesized several stereoisomers of these natural compounds via lactonization of C-glycosyl compounds bearing an hydroxyl on position 4 and a methyl ester on the pseudo-anomeric positionThe reactivity of this bicyclic moiety was explored through etherification of hydroxyls in position 5 and 7 and various substituants (halogen, phenyl, benzyl, cynanmoyl) were introduced. The anti-proliferative properties of these mimics were then evaluated on various cancer cell lines and two compounds 24 and 35 demonstrated IC50 value of 1.34 µM (U251) and 7.60 µM (U87) respectively.
Collapse
Affiliation(s)
- Julen Ariztia
- Université de Lorraine, CNRS, L2CM, F-5400 Nancy, France
| | - Alicia Chateau
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | | | | | | |
Collapse
|
18
|
Noncovalent Protection for Direct Synthesis of α-Amino-ω-hydroxyl Poly(ethylene oxide). ACS Macro Lett 2021; 10:737-743. [PMID: 35549103 DOI: 10.1021/acsmacrolett.1c00316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of poly(ethylene oxide) (PEO) with amino end group, a key functionality for PEGylation, is a long-standing challenge. Multistep routes based on postmodification or covalent protection have been adopted to circumvent ethoxylation of the amino group by ethylene oxide (EO). Here, we report a noncovalent protection strategy for one-step synthesis of PEO amine. An amino (di)alcohol is mixed with a small amount of mild phosphazene base and excess triethylborane (Et3B) before addition of EO. The complexation of the amino group with Et3B guarantees that polymerization of EO occurs selectively from the hydroxyl group through the bicomponent metal-free catalysis. Simply by precipitation in diethyl ether, the protective Et3B as well as the catalyst can be removed to afford α-amino-ω-hydroxyl PEO with controlled molar mass, low dispersity, and complete end functionality. The effect of initiator structure and retention of Et3B on the storage (oxidative) stability of PEO amine is also revealed.
Collapse
|
19
|
Lyu Y, Martínez Á, D’Incà F, Mancin F, Scrimin P. The Biotin-Avidin Interaction in Biotinylated Gold Nanoparticles and the Modulation of Their Aggregation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1559. [PMID: 34199307 PMCID: PMC8231960 DOI: 10.3390/nano11061559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022]
Abstract
The biotin-avidin interaction is used as a binding tool for the conjugation of biomolecules for more diverse applications; these include nanoparticle conjugation. Despite this, a thorough investigation on the different aggregates that may result from the interaction of biotinylated nanoparticles (gold nanoparticles, AuNPs, in this work) with avidin has not been carried out so far. In this paper, we address this problem and show the type of aggregates formed under thermodynamic and kinetic control by varying the biotinylated AuNP/avidin ratio and the order of addition of the two partners. The analysis was performed by also addressing the amount of protein able to interact with the AuNPs surface and is fully supported by the TEM images collected for the different samples and the shift of the surface plasmon resonance band. We show that the percentage of saturation depends on the size of the nanoparticles, and larger nanoparticles (19 nm in diameter) manage to accommodate a relatively larger amount of avidins than smaller ones (11 nm). The AuNPs are isolated or form small clusters (mostly dimers or trimers) when a large excess or a very low amount of avidin is present, respectively, or form large clusters at stoichiometric concentration of the protein. Daisy-like systems are formed under kinetic control conditions when nanoparticles first covered with the protein are treated with a second batch of biotinylated ones but devoid of avidin.
Collapse
Affiliation(s)
| | | | | | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, via Marzolo, 1, 35131 Padova, Italy; (Y.L.); (Á.M.); (F.D.)
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, via Marzolo, 1, 35131 Padova, Italy; (Y.L.); (Á.M.); (F.D.)
| |
Collapse
|
20
|
Peschel A, Cardoso FC, Walker AA, Durek T, Stone MRL, Braga Emidio N, Dawson PE, Muttenthaler M, King GF. Two for the Price of One: Heterobivalent Ligand Design Targeting Two Binding Sites on Voltage-Gated Sodium Channels Slows Ligand Dissociation and Enhances Potency. J Med Chem 2020; 63:12773-12785. [PMID: 33078946 PMCID: PMC7667638 DOI: 10.1021/acs.jmedchem.0c01107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Voltage-gated
sodium (NaV) channels are pore-forming
transmembrane proteins that play essential roles in excitable cells,
and they are key targets for antiepileptic, antiarrhythmic, and analgesic
drugs. We implemented a heterobivalent design strategy to modulate
the potency, selectivity, and binding kinetics of NaV channel
ligands. We conjugated μ-conotoxin KIIIA, which occludes the
pore of the NaV channels, to an analogue of huwentoxin-IV,
a spider-venom peptide that allosterically modulates channel gating.
Bioorthogonal hydrazide and copper-assisted azide–alkyne cycloaddition
conjugation chemistries were employed to generate heterobivalent ligands
using polyethylene glycol linkers spanning 40–120 Å. The
ligand with an 80 Å linker had the most pronounced bivalent effects,
with a significantly slower dissociation rate and 4–24-fold
higher potency compared to those of the monovalent peptides for the
human NaV1.4 channel. This study highlights the power of
heterobivalent ligand design and expands the repertoire of pharmacological
probes for exploring the function of NaV channels.
Collapse
Affiliation(s)
- Alicia Peschel
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - M Rhia L Stone
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
21
|
Paolino M, Licciardi M, Savoca C, Giammona G, Modica De Mohac L, Reale A, Giuliani G, Komber H, Donati A, Leone G, Magnani A, Anzini M, Cappelli A. Hyaluronan Graft Copolymers Bearing Fatty-Acid Residues as Self-Assembling Nanoparticles for Olanzapine Delivery. Pharmaceutics 2019; 11:E675. [PMID: 31842344 PMCID: PMC6956235 DOI: 10.3390/pharmaceutics11120675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
In order to evaluate the potential of a technology platform based on hyaluronan copolymers grafted with propargylated ferulate fluorophores (HA-FA-Pg) in the development of drug delivery systems, the propargyl groups of HA-FA-Pg derivatives were employed with oleic acid (OA) or stearic acid (SA) residues across a biocompatible hexa(ethylene glycol) (HEG) spacer. The designed materials (i.e., HA-FA-HEG-OA or HA-FA-HEG-SA) showed clear-cut aggregation features in an aqueous environment, as confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), generating nanoaggregate systems. In fact, HA-FA-HEG-OA and HA-FA-HEG-SA derivatives showed the property to create self-assembled cytocompatible nanostructured aggregates in water, thanks to the simultaneous presence of hydrophilic portions in the polymeric backbone, such as hyaluronic acid, and hydrophobic portions in the side chains. Furthermore, the designed materials interact with living cells showing a high degree of cytocompatibility. The potential ability of nanosystems to load pharmacologically active molecules was assessed by the physical entrapment of olanzapine into both polymeric systems. The drug loading evaluation demonstrated that the nanoparticles are able to incorporate a good quantity of olanzapine, as well as improve drug solubility, release profile, and cytocompatibility.
Collapse
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.R.); (G.G.); (A.D.); (G.L.); (A.M.); (M.A.); (A.C.)
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (M.L.); (C.S.); (G.G.)
| | - Cristina Savoca
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (M.L.); (C.S.); (G.G.)
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (M.L.); (C.S.); (G.G.)
| | - Laura Modica De Mohac
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, 90100 Palermo, Italy;
| | - Annalisa Reale
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.R.); (G.G.); (A.D.); (G.L.); (A.M.); (M.A.); (A.C.)
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.R.); (G.G.); (A.D.); (G.L.); (A.M.); (M.A.); (A.C.)
| | - Hartmut Komber
- Leibniz Institute of Polymer Research, Hohe Strasse 6, 01069 Dresden, Germany;
| | - Alessandro Donati
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.R.); (G.G.); (A.D.); (G.L.); (A.M.); (M.A.); (A.C.)
| | - Gemma Leone
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.R.); (G.G.); (A.D.); (G.L.); (A.M.); (M.A.); (A.C.)
| | - Agnese Magnani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.R.); (G.G.); (A.D.); (G.L.); (A.M.); (M.A.); (A.C.)
| | - Maurizio Anzini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.R.); (G.G.); (A.D.); (G.L.); (A.M.); (M.A.); (A.C.)
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy; (A.R.); (G.G.); (A.D.); (G.L.); (A.M.); (M.A.); (A.C.)
| |
Collapse
|
22
|
Anaya O, Haddane A, Drockenmuller E, Abdelhedi-Miladi I, Ben Romdhane H. Poly(1,2,3-triazolium imide)s Obtained Through AA + BB Click Polyaddition. CHEMISTRY AFRICA 2019. [DOI: 10.1007/s42250-019-00090-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Ursuegui S, Schneider JP, Imbs C, Lauvoisard F, Dudek M, Mosser M, Wagner A. Expedient synthesis of trifunctional oligoethyleneglycol-amine linkers and their use in the preparation of PEG-based branched platforms. Org Biomol Chem 2018; 16:8579-8584. [PMID: 30375605 DOI: 10.1039/c8ob02097c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We designed a convergent synthesis pathway that provides access to trifunctional oligoethyleneglycol-amine (OEG-amine) linkers. By applying the reductive coupling of a primary azide to bifunctional OEG-azide precursors, the corresponding symmetrical dialkylamine bearing two homo-functional end chain groups and a central nitrogen was obtained. These building blocks bear minimal structural perturbation compared to the native OEG backbone which makes them attractive for biomedical applications. The NMR investigations of the mechanism process reveal the formation of nitrile and imine intermediates which can react with the reduced free amine form. Additionally, these trifunctional OEG-amine linkers were employed in a coupling reaction to afford branched multifunctional PEG dendrons which are molecularly defined. These discrete PEG-based dendrons (n = 16, 18 and 36) could be useful for numerous applications where multivalency is required.
Collapse
Affiliation(s)
- Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Li L, Huang S, Shang T, Zhang B, Guo Y, Zhu G, Zhou D, Zhang G, Zhu A, Zhang L. Medium Rings Bearing Bitriazolyls: Easily Accessible Structures with Superior Performance as Cu Catalyst Ligands. J Org Chem 2018; 83:13166-13177. [PMID: 30354127 DOI: 10.1021/acs.joc.8b01899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benefiting from their unique properties, the development of structurally novel and easily accessible medium rings is of significant interest in the pharmaceutical industry and academic research. However, synthetic access to medium-ring scaffolds is very difficult due to their rigid skeleton and large-angle strains. In this paper, a new class of medium rings bearing bitriazolyls (MRBTs) was designed, synthesized, identified as a promising new skeleton ligand for the Cu(I)-catalyzed click reaction, and used in site-special modification of protein. One of the MRBTs, 3aa, exhibited a turnover number (TON) as high as 55 000 and dramatic accelerating effects ( kobs = 1.95 M-1 s-1) and ranked among the most efficient ligands for copper-catalyzed alkyne and azide cycloaddition. Unlike the difficult access to other known medium rings, these 7-12-membered MRBTs can be prepared in straightforward, one-step manner from structurally diverse linear terminal diynes and azides. The unique accessibility and intriguing properties therefore imply their broad application perspectives.
Collapse
Affiliation(s)
- Lingjun Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Shenlong Huang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Tongpeng Shang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Bo Zhang
- National Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100083 , P. R. China
| | - Yuanyang Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Gongming Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Demin Zhou
- National Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100083 , P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Lihe Zhang
- National Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100083 , P. R. China
| |
Collapse
|
25
|
Baygu Y, Gök Y. A highly water-soluble zinc(II) phthalocyanines as potential for PDT studies: Synthesis and characterization. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Lee S, Yoon JH, Jo IS, Oh JS, Pine DJ, Shim TS, Yi GR. DNA-Functionalized 100 nm Polymer Nanoparticles from Block Copolymer Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11042-11048. [PMID: 30124299 DOI: 10.1021/acs.langmuir.8b02178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
DNA-mediated self-assembly of colloidal particles is one of the most promising approaches for constructing colloidal superstructures. For nanophotonic materials and devices, DNA-functionalized colloids with diameters of around 100 nm are essential building blocks. Here, we demonstrate a strategy for synthesizing DNA-functionalized polymer nanoparticles (DNA-polyNPs) in the size range of 55-150 nm using block copolymer micelles as a template. Diblock copolymers of polystyrene- b-poly(ethylene oxide) with an azide end group (PS- b-PEO-N3) are first formed into spherical micelles. Then, the micelle cores are swollen with the styrene monomer and polymerized, thus producing PS NPs with PEO brushes and azide functional end groups. DNA strands are conjugated onto the ends of the PEO brushes through a strain-promoted alkyne-azide cycloaddition reaction, resulting in a DNA density of more than one DNA strand per 12.6 nm2 for 70 nm particles. The DNA-polyNPs with complementary sequences enable the formation of CsCl-type colloidal superstructure by DNA binding.
Collapse
Affiliation(s)
- Saerom Lee
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- Department of Physics and Center for Soft Matter Research , New York University , New York , New York 10003 , United States
| | - Jeong Hoon Yoon
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- Department of Physics and Center for Soft Matter Research , New York University , New York , New York 10003 , United States
| | - In-Seong Jo
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Joon Suk Oh
- Department of Physics and Center for Soft Matter Research , New York University , New York , New York 10003 , United States
| | - David J Pine
- Department of Physics and Center for Soft Matter Research , New York University , New York , New York 10003 , United States
- Department of Chemical & Biomolecular Engineering , New York University , Brooklyn , New York 11201 , United States
| | | | - Gi-Ra Yi
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|
27
|
Smith DL, Lemieux EN, Barua S. Correction in Bicinchoninic Acid (BCA) Absorbance Assay to Analyze Protein Concentration. ACTA ACUST UNITED AC 2018. [DOI: 10.1142/s1793984418500058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conducting the bicinchoninic acid (BCA) assay directly after a coupling reaction using (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) (EDC) and [Formula: see text]-hydroxysuccinimide (NHS) chemistry produces significant errors. Here we present a correction for the quantification of gelatin in the supernatant (SN) following gelatin conjugation to polymer microparticles using EDC and NHS chemistry. Following the conjugation reaction, SNs from the gelatin-microparticle formation reaction are treated with BCA assay reagents and quantified for the percentage of unbound gelatin in the solution. NHS was found to interfere with the BCA assay reagents and is dependent on incubation time. It is found that the large concentration (500[Formula: see text][Formula: see text]g/mL) of NHS in the conjugation reaction interferes with the sensitivity of gelatin present in SNs. The interference from NHS requires a careful analysis to distinguish the BCA background absorbance from the sample absorbance. Using an NHS control solution can correct NHS interference and thus decrease the expensive iterations in gelatin quantification and enable accurate analysis of gelatin content. The accuracy of gelatin quantification is further improved by reducing the BCA assay incubation time to approximately 20[Formula: see text]min, compared with the recommended 30[Formula: see text]min. This re-assessment of BCA assay is important to avoid misestimating biases in bioconjugation processes.
Collapse
Affiliation(s)
- Daniel L. Smith
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla MO 65409-1230, USA
| | - Elizabeth N. Lemieux
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla MO 65409-1230, USA
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla MO 65409-1230, USA
| |
Collapse
|
28
|
Kumar M, Sharma G, Kumar R, Singh B, Katare OP, Raza K. Lysine-Based C60-Fullerene Nanoconjugates for Monomethyl Fumarate Delivery: A Novel Nanomedicine for Brain Cancer Cells. ACS Biomater Sci Eng 2018; 4:2134-2142. [DOI: 10.1021/acsbiomaterials.7b01031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, NH-8, District Ajmer, Rajasthan 305 817, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Sector 14, Chandigarh 160 014, India
| | - Rajendra Kumar
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, Sector 14, Chandigarh 160 014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Sector 14, Chandigarh 160 014, India
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, Sector 14, Chandigarh 160 014, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Sector 14, Chandigarh 160 014, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, NH-8, District Ajmer, Rajasthan 305 817, India
| |
Collapse
|
29
|
Wang T, Zhang Y, Wei L, Teng YG, Honda T, Ojima I. Design, Synthesis, and Biological Evaluations of Asymmetric Bow-Tie PAMAM Dendrimer-Based Conjugates for Tumor-Targeted Drug Delivery. ACS OMEGA 2018; 3:3717-3736. [PMID: 29732446 PMCID: PMC5928494 DOI: 10.1021/acsomega.8b00409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
A unique asymmetric bow-tie poly(amidoamine) (PAMAM) dendrimer (ABTD) scaffold was designed and developed as a well-defined macromolecular carrier for tumor-targeted drug delivery. The ABTD scaffold in this study consists of a G3-half-dendron (G3-HD) unit and a G1-half-dendron (G1-HD) unit, bearing thiol moiety in each unit and a bis(maleimide) linker unit, which undergo sequential thiol-maleimide coupling to assemble the scaffold. This assembly methodology is applicable to all other combinations of different generations of PAMAM dendrimers. In the prototype ABTD in this study, 16 biotin moieties were tethered to the G3-HD unit and 4 payloads (new-generation taxoid) to the G1-HD via a self-immolative linker to form an ABTD-tumor-targeting conjugate (ABTD-TTC-1). Two other ABTD-TTCs were synthesized, wherein the G1-HD unit was tethered to a fluorescence-labeled taxoid or to a fluorescent probe. These three ABTD-TTCs were constructed by using a common key ABTD 6 bearing a terminal acetylene group in the G1-HD unit, which was fully characterized as a single molecule by high-resolution mass spectrometry and NMR despite its high molecular weight (Mw: 12 876). Then, the click reaction was employed to couple ABTD 6 with a small-molecule payload or fluorescence probe unit bearing a terminal azide moiety. ABTD-TTC-3, as a surrogate of ABTD-TTC-2, showed substantially enhanced internalization into two cancer cell lines via receptor-mediated endocytosis, attributed to multibinding effect. ABTD-TTC-1 exhibited a remarkable selectivity to cancer cells (1400-7500 times) compared to human normal cells, which demonstrates the salient feature and bright prospect of the ABTD-based tumor-targeted drug-delivery system.
Collapse
Affiliation(s)
- Tao Wang
- Department
of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Yaozhong Zhang
- Department
of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Longfei Wei
- Department
of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Yuhan G. Teng
- Department
of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tadashi Honda
- Department
of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Iwao Ojima
- Department
of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
30
|
Carmona AT, Carrión-Jiménez S, Pingitore V, Moreno-Clavijo E, Robina I, Moreno-Vargas AJ. Harnessing pyrrolidine iminosugars into dimeric structures for the rapid discovery of divalent glycosidase inhibitors. Eur J Med Chem 2018; 151:765-776. [PMID: 29674295 DOI: 10.1016/j.ejmech.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022]
Abstract
The synthesis of three libraries (1a-l, 1a'-l' and 2a-l) of dimeric iminosugars through CuAAC reaction between three different alkynyl pyrrolidines and a set of diazides was carried out. The resulting crude dimers were screened in situ against two α-fucosidases (libraries 1a-l and 1a'-l') and one β-galactosidase (2a-l). This method is pioneer in the search of divalent glycosidase inhibitors. It has allowed the rapid identification of dimer 1i as the best inhibitor of α-fucosidases from bovine kidney (Ki = 0.15 nM) and Homo sapiens (Ki = 60 nM), and dimer 2e as the best inhibitor of β-galactosidase from bovine liver (Ki = 5.8 μM). In order to evaluate a possible divalent effect in the inhibition, the synthesis and biological analysis of the reference monomers were also performed. Divalent effect was only detected in the inhibition of bovine liver β-galactosidase by dimer 2e.
Collapse
Affiliation(s)
- Ana T Carmona
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain
| | - Sebastián Carrión-Jiménez
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain
| | - Valeria Pingitore
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain
| | - Elena Moreno-Clavijo
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain
| | - Inmaculada Robina
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain
| | - Antonio J Moreno-Vargas
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain.
| |
Collapse
|
31
|
Kumar M, Sharma G, Misra C, Kumar R, Singh B, Katare OP, Raza K. N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:274-282. [PMID: 29752099 DOI: 10.1016/j.msec.2018.03.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/07/2018] [Accepted: 03/30/2018] [Indexed: 12/17/2022]
Abstract
Our aim was to develop multiwalled carbon nanotubes (MWCNTs)-based nanoconstructs for the codelivery of N-desmethyl tamoxifen (N-TAM) and a mild P-gp efflux inhibitor, i.e., quercetin (QT) to treat multiple drug resistant (MDR) cancer cells. The hypothesis banks on three-tier attack on the MDR mechanisms viz. drug derivatization, MWCNT permeation and P-gp inhibition. Tamoxifen was converted to N-TAM and was conjugated to carboxylated MWCNTs mediated by a biodegradable linker, i.e., tetraethylene glycol (TEG). QT was adsorbed on the conjugate to fetch the final product, i.e., N-TAM-TEG-MWCNT-QT. Spectroscopic analysis confirmed successful conjugation of N-TAM and physical adsorption of QT. The in-vitro release of N-TAM from the N-TAM-TEG-MWCNT conjugate was minimal to that of pure drug under physiological conditions, but markedly enhanced under the acidic pH of cancer cells. The developed nanometeric formulation was found to be haemo-compatible. Reduced IC50values and better cellular uptake in drug resistant MDA-MB-231 cells were observed, followed by enhanced drug availability in the systemic circulation of rodents vis-à-vis naïve drug. The smart nanosystem conferred the desired temporal drug delivery, enhanced drug efficacy, biocompatibility and conducive pharmacokinetics, which are the crucial desired attributes to tackle the increasing concern of MDR in cancer chemotherapy.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305 817, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh-160 014, India
| | - Charu Misra
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305 817, India
| | - Rajendra Kumar
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, Chandigarh-160 014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh-160 014, India; UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, Chandigarh-160 014, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh-160 014, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305 817, India.
| |
Collapse
|
32
|
Pickens CJ, Johnson SN, Pressnall MM, Leon MA, Berkland CJ. Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide-Alkyne Cycloaddition. Bioconjug Chem 2018; 29:686-701. [PMID: 29287474 PMCID: PMC6310217 DOI: 10.1021/acs.bioconjchem.7b00633] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interrogating biological systems is often limited by access to biological probes. The emergence of "click chemistry" has revolutionized bioconjugate chemistry by providing facile reaction conditions amenable to both biologic molecules and small molecule probes such as fluorophores, toxins, or therapeutics. One particularly popular version is the copper-catalyzed azide-alkyne cycloaddition (AAC) reaction, which has spawned new alternatives such as the strain-promoted azide-alkyne cycloaddition reaction, among others. This focused review highlights practical approaches to AAC reactions for the synthesis of peptide or protein bioconjugates and contrasts current challenges and limitations in light of recent advances in the field. The conical success of antibody drug conjugates has expanded the toolbox of linkers and payloads to facilitate practical applications of bioconjugation to create novel therapeutics and biologic probes. The AAC reaction in particular is poised to enable a large set of functionalized molecules as a combinatorial approach to high-throughput bioconjugate generation, screening, and honing of lead compounds.
Collapse
Affiliation(s)
- Chad J Pickens
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
| | - Stephanie N Johnson
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
| | - Martin A Leon
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66047 , United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66047 , United States
- Department of Chemical and Petroleum Engineering , University of Kansas , , 4132 Learned Hall, 1530 W. 15th , Lawrence , Kansas 66045 , United States
| |
Collapse
|
33
|
Jančaříková G, Herczeg M, Fujdiarová E, Houser J, Kövér KE, Borbás A, Wimmerová M, Csávás M. Synthesis of α-l-Fucopyranoside-Presenting Glycoclusters and Investigation of Their Interaction with Photorhabdus asymbiotica Lectin (PHL). Chemistry 2018; 24:4055-4068. [PMID: 29341313 DOI: 10.1002/chem.201705853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 12/31/2022]
Abstract
Photorhabdus asymbiotica is a gram-negative bacterium that is not only as effective an insect pathogen as other members of the genus, but it also causes serious diseases in humans. The recently identified lectin PHL from P. asymbiotica verifiably modulates an immune response of humans and insects, which supports the idea that the lectin might play an important role in the host-pathogen interaction. Dimeric PHL contains up to seven l-fucose-specific binding sites per monomer, and in order to target multiple binding sites of PHL, α-l-fucoside-containing di-, tri- and tetravalent glycoclusters were synthesized. Methyl gallate and pentaerythritol were chosen as multivalent scaffolds, and the fucoclusters were built from the above-mentioned cores by coupling with different oligoethylene bridges and propargyl α-l-fucosides using 1,3-dipolar azide-alkyne cycloaddition. The interaction between fucoside derivates and PHL was investigated by several biophysical and biological methods, ITC and SPR measurements, hemagglutination inhibition assay, and an investigation of bacterial aggregation properties were carried out. Moreover, details of the interaction between PHL and propargyl α-l-fucoside as a monomer unit were revealed using X-ray crystallography. Besides this, the interaction with multivalent compounds was studied by NMR techniques. The newly synthesized multivalent fucoclusters proved to be up to several orders of magnitude better ligands than the natural ligand, l-fucose.
Collapse
Affiliation(s)
- Gita Jančaříková
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Eva Fujdiarová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Michaela Wimmerová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.,Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Magdolna Csávás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| |
Collapse
|
34
|
Design and synthesis of tumor-targeting theranostic drug conjugates for SPECT and PET imaging studies. Bioorg Chem 2018; 76:458-467. [DOI: 10.1016/j.bioorg.2017.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
|
35
|
Axer A, Hermann S, Kehr G, Clases D, Karst U, Fischer-Riepe L, Roth J, Fobker M, Schäfers M, Gilmour R, Faust A. Harnessing the Maltodextrin Transport Mechanism for Targeted Bacterial Imaging: Structural Requirements for Improved in vivo Stability in Tracer Design. ChemMedChem 2018; 13:241-250. [DOI: 10.1002/cmdc.201700543] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Axer
- Institute for Organic Chemistry; WWU Münster; Corrensstrasse 40 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Sven Hermann
- European Institute for Molecular Imaging; WWU Münster; Waldeyerstrasse 15 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Gerald Kehr
- Institute for Organic Chemistry; WWU Münster; Corrensstrasse 40 48149 Münster Germany
| | - David Clases
- Institute for Inorganic and Analytical Chemistry; WWU Münster; Corrensstrasse 30 48149 Münster Germany
| | - Uwe Karst
- Institute for Inorganic and Analytical Chemistry; WWU Münster; Corrensstrasse 30 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Lena Fischer-Riepe
- Institute for Immunology; WWU Münster; Röntgenstrasse 21 48149 Münster Germany
| | - Johannes Roth
- Institute for Immunology; WWU Münster; Röntgenstrasse 21 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Manfred Fobker
- Center of Laboratory Medicine; WWU Münster; Albert Schweitzer Campus 1 48149 Münster Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging; WWU Münster; Waldeyerstrasse 15 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- Department of Nuclear Medicine; University Hospital Münster; Albert Schweitzer Campus 1 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry; WWU Münster; Corrensstrasse 40 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| | - Andreas Faust
- European Institute for Molecular Imaging; WWU Münster; Waldeyerstrasse 15 48149 Münster Germany
- Interdisciplinary Center of Clinical Research (IZKF); University Hospital Münster; 48149 Münster Germany
- DFG EXC 1003 Cluster of Excellence “Cells in Motion”; WWU Münster; Münster Germany
| |
Collapse
|
36
|
Garnsey MR, Slutskyy Y, Jamison CR, Zhao P, Lee J, Rhee YH, Overman LE. Short Enantioselective Total Syntheses of Cheloviolenes A and B and Dendrillolide C via Convergent Fragment Coupling Using a Tertiary Carbon Radical. J Org Chem 2017; 83:6958-6976. [DOI: 10.1021/acs.joc.7b02458] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Michelle R. Garnsey
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Yuriy Slutskyy
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Christopher R. Jamison
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Peng Zhao
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Juyeol Lee
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology, Hyoja-dong San 31, Pohang, Kyungbook 790-784, Republic of Korea
| | - Larry E. Overman
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
37
|
Malca MY, Ferko PO, Friščić T, Moores A. Solid-state mechanochemical ω-functionalization of poly(ethylene glycol). Beilstein J Org Chem 2017; 13:1963-1968. [PMID: 29062415 PMCID: PMC5629410 DOI: 10.3762/bjoc.13.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023] Open
Abstract
Poly(ethylene glycol) (PEG) is a linear polymer with a wide range of applications in chemical manufacturing, drug development and nanotechnology. PEG derivatives are being increasingly used to covalently modify small molecule and peptide drugs, as well as bioactive nanomaterials in order to improve solubility in biological serum, reduce immunogenicity, and enhance pharmacokinetic profiles. Herein we present the development of mechanochemical procedures for PEG functionalization without the need for bulk solvents, offering a cleaner and more sustainable alternative to existing solution-based PEG procedures. The herein presented mechanochemical procedures enable rapid and solvent-free derivatization of PEG with tosyl, bromide, thiol, carboxylic acid or amine functionalities in good to quantitative yields and with no polymer chain oligomerization, proving the versatility of the method.
Collapse
Affiliation(s)
- Michael Y Malca
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Pierre-Olivier Ferko
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Audrey Moores
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
38
|
Brument S, Cheneau C, Brissonnet Y, Deniaud D, Halary F, Gouin SG. Polymeric mannosides prevent DC-SIGN-mediated cell-infection by cytomegalovirus. Org Biomol Chem 2017; 15:7660-7671. [DOI: 10.1039/c7ob01569k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dextrans coated with triazolylheptylmannoside ligands block human cytomegalovirus trans-infection at picomolar polymer concentrations.
Collapse
Affiliation(s)
- S. Brument
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| | - C. Cheneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064
- INSERM
- Université de Nantes
- Nantes
- France
| | - Y. Brissonnet
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| | - D. Deniaud
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| | - F. Halary
- Centre de Recherche en Transplantation et Immunologie UMR 1064
- INSERM
- Université de Nantes
- Nantes
- France
| | - S. G. Gouin
- LUNAM Université
- CEISAM
- Chimie Et Interdisciplinarité
- Synthèse
- Analyse
| |
Collapse
|
39
|
Herczeg M, Mező E, Molnár N, Ng SK, Lee YC, Dah-Tsyr Chang M, Borbás A. Inhibitory Effect of Multivalent Rhamnobiosides on Recombinant Horseshoe Crab Plasma Lectin Interactions withPseudomonas aeruginosaPAO1. Chem Asian J 2016; 11:3398-3413. [DOI: 10.1002/asia.201601162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/14/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Mihály Herczeg
- Department of Pharmaceutical Chemistry; University of Debrecen; H-4032 Debrecen, Egyetem tér 1 Hungary
| | - Erika Mező
- Department of Pharmaceutical Chemistry; University of Debrecen; H-4032 Debrecen, Egyetem tér 1 Hungary
| | - Nikolett Molnár
- Department of Pharmaceutical Chemistry; University of Debrecen; H-4032 Debrecen, Egyetem tér 1 Hungary
| | - Sim-Kun Ng
- Institute of Molecular and Cellular Biology & Department of Life Science; National Tsing Hua University; Hsinchu Taiwan Republic of China
| | - Yuan-Chuan Lee
- Institute of Molecular and Cellular Biology & Department of Life Science; National Tsing Hua University; Hsinchu Taiwan Republic of China
- Department of Biology; Johns Hopkins University; Baltimore Maryland USA
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology & Department of Life Science; National Tsing Hua University; Hsinchu Taiwan Republic of China
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry; University of Debrecen; H-4032 Debrecen, Egyetem tér 1 Hungary
| |
Collapse
|
40
|
Zhou X, Obadia MM, Venna SR, Roth EA, Serghei A, Luebke DR, Myers C, Chang Z, Enick R, Drockenmuller E, Nulwala HB. Highly cross-linked polyether-based 1,2,3-triazolium ion conducting membranes with enhanced gas separation properties. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Sneddon D, Niemans R, Bauwens M, Yaromina A, van Kuijk SJA, Lieuwes NG, Biemans R, Pooters I, Pellegrini PA, Lengkeek NA, Greguric I, Tonissen KF, Supuran CT, Lambin P, Dubois L, Poulsen SA. Synthesis and in Vivo Biological Evaluation of 68Ga-Labeled Carbonic Anhydrase IX Targeting Small Molecules for Positron Emission Tomography. J Med Chem 2016; 59:6431-43. [DOI: 10.1021/acs.jmedchem.6b00623] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Deborah Sneddon
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Raymon Niemans
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Matthias Bauwens
- Departments
of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Ala Yaromina
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Simon J. A. van Kuijk
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Natasja G. Lieuwes
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Rianne Biemans
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Ivo Pooters
- Departments
of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Paul A. Pellegrini
- LifeSciences
Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Nigel A. Lengkeek
- LifeSciences
Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Ivan Greguric
- LifeSciences
Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Kathryn F. Tonissen
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Claudiu T. Supuran
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| | - Philippe Lambin
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Ludwig Dubois
- Maastricht
Radiation Oncology (MAASTRO Lab), GROW − School for Oncology
and Developmental Biology, Maastricht University, Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Sally-Ann Poulsen
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
42
|
De Bruycker K, Billiet S, Houck HA, Chattopadhyay S, Winne JM, Du Prez FE. Triazolinediones as Highly Enabling Synthetic Tools. Chem Rev 2016; 116:3919-74. [DOI: 10.1021/acs.chemrev.5b00599] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin De Bruycker
- Department of Organic and
Macromolecular Chemistry, Polymer Chemistry Research Group and Laboratory
for Organic Synthesis, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Stijn Billiet
- Department of Organic and
Macromolecular Chemistry, Polymer Chemistry Research Group and Laboratory
for Organic Synthesis, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Hannes A. Houck
- Department of Organic and
Macromolecular Chemistry, Polymer Chemistry Research Group and Laboratory
for Organic Synthesis, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Subrata Chattopadhyay
- Department of Organic and
Macromolecular Chemistry, Polymer Chemistry Research Group and Laboratory
for Organic Synthesis, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Johan M. Winne
- Department of Organic and
Macromolecular Chemistry, Polymer Chemistry Research Group and Laboratory
for Organic Synthesis, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Filip E. Du Prez
- Department of Organic and
Macromolecular Chemistry, Polymer Chemistry Research Group and Laboratory
for Organic Synthesis, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
43
|
Yang S, Kim Y, Kim HC, Siddique AB, Youn G, Kim HJ, Park HJ, Lee JY, Kim S, Kim J. Azide-based heterobifunctional poly(ethylene oxide)s: NaN3-initiated “living” polymerization of ethylene oxide and chain end functionalizations. Polym Chem 2016. [DOI: 10.1039/c5py01444a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sodium azide (NaN3)-initiated “living” ring-opening polymerization of ethylene oxide and chain end functionalizations.
Collapse
Affiliation(s)
- Sera Yang
- Department of Chemistry
- Kyung Hee University
- Seoul 130-701
- Korea
| | - Youn Kim
- Department of Chemistry
- Kyung Hee University
- Seoul 130-701
- Korea
| | | | - Abu B. Siddique
- Department of Chemistry
- Kyung Hee University
- Seoul 130-701
- Korea
| | - Gyusaang Youn
- Department of Chemistry
- Kyung Hee University
- Seoul 130-701
- Korea
| | - Hyun Jun Kim
- Department of Chemistry
- Kyung Hee University
- Seoul 130-701
- Korea
| | - Hyeon Jong Park
- Department of Chemistry
- Kyung Hee University
- Seoul 130-701
- Korea
| | - Jae Yeol Lee
- Department of Chemistry
- Kyung Hee University
- Seoul 130-701
- Korea
| | - Sehoon Kim
- Center for Theragnosis
- KIST
- Seoul 136-791
- Korea
| | - Jungahn Kim
- Department of Chemistry
- Kyung Hee University
- Seoul 130-701
- Korea
| |
Collapse
|
44
|
Entract GM, Bryden F, Domarkas J, Savoie H, Allott L, Archibald SJ, Cawthorne C, Boyle RW. Development of PDT/PET Theranostics: Synthesis and Biological Evaluation of an (18)F-Radiolabeled Water-Soluble Porphyrin. Mol Pharm 2015; 12:4414-23. [PMID: 26559906 DOI: 10.1021/acs.molpharmaceut.5b00606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis of the first water-soluble porphyrin radiolabeled with fluorine-18 is described: a new molecular theranostic agent which integrates the therapeutic selectivity of photodynamic therapy (PDT) with the imaging efficacy of positron emission tomography (PET). Generation of the theranostic was carried out through the conjugation of a cationic water-soluble porphyrin bearing an azide functionality to a fluorine-18 radiolabeled prosthetic bearing an alkyne functionality through click conjugation, with excellent yields obtained in both cold and hot synthesis. Biological evaluation of the synthesized structures shows the first example of an (18)F-radiolabeled porphyrin retaining photocytotoxicity following radiolabeling and demonstrable conjugate uptake and potential application as a radiotracer in vivo. The promising results gained from biological evaluation demonstrate the potential of this structure as a clinically relevant theranostic agent, offering exciting possibilities for the simultaneous imaging and photodynamic treatment of tumors.
Collapse
Affiliation(s)
- Guy M Entract
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K
| | - Francesca Bryden
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K.,Positron Emission Tomography Research Centre, University of Hull , Cottingham Road, Hull, Yorkshire, HU6 7RX, U.K
| | - Juozas Domarkas
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K.,Positron Emission Tomography Research Centre, University of Hull , Cottingham Road, Hull, Yorkshire, HU6 7RX, U.K
| | - Huguette Savoie
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K
| | - Louis Allott
- Institute of Cancer Research , 123 Old Brompton Road, London, SW7 3RP, U.K
| | - Stephen J Archibald
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K.,Positron Emission Tomography Research Centre, University of Hull , Cottingham Road, Hull, Yorkshire, HU6 7RX, U.K
| | - Chris Cawthorne
- Positron Emission Tomography Research Centre, University of Hull , Cottingham Road, Hull, Yorkshire, HU6 7RX, U.K.,School of Biological, Biomedical and Environmental Sciences, University of Hull , Cottingham Road, Hull, Yorkshire, HU6 7RX, U.K
| | - Ross W Boyle
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K
| |
Collapse
|
45
|
Mesquita RB, Moniz T, Miranda JL, Gomes V, Silva AM, Rodriguez-Borges J, Rangel AO, Rangel M. Synthesis and characterization of a 3-hydroxy-4-pyridinone chelator functionalized with a polyethylene glycol (PEG) chain aimed at sequential injection determination of iron in natural waters. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Ikeda T, Nagao I, Moriyama S, Kim JD. Synthesis and characterization of glycidyl-polymer-based poly(ionic liquid)s: highly designable polyelectrolytes with a poly(ethylene glycol) main chain. RSC Adv 2015. [DOI: 10.1039/c5ra17609c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycidyl-polymer-based poly(ionic liquid)s with different spacers and ionic moieties were synthesized by click functionalization of a glycidyl azide polymer.
Collapse
Affiliation(s)
- T. Ikeda
- Polymer Materials Unit
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - I. Nagao
- Polymer Materials Unit
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - S. Moriyama
- International Center for Materials Nanoarchitectonics (MANA)
- NIMS
- Japan
| | - J.-D. Kim
- Polymer Electrolyte Fuel Cell Group
- GREEN
- NIMS
- Japan
| |
Collapse
|
47
|
Chen Y, Li M, Hong Y, Lam JWY, Zheng Q, Tang BZ. Dual-modal MRI contrast agent with aggregation-induced emission characteristic for liver specific imaging with long circulation lifetime. ACS APPLIED MATERIALS & INTERFACES 2014; 6:10783-10791. [PMID: 24942209 DOI: 10.1021/am502282f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We herein report a novel dual-modal MRI contrast agent, TPE-2Gd, for both magnetic and fluorescence imaging. TPE-2Gd consists of a hydrophobic tetraphenylethene (TPE) fluorophore and two hydrophilic gadolinium (Gd) diethylenetriaminepentaacetic acid moieties. As an amphiphilic molecule, TPE-2Gd aggregates into micelles at a high concentration in aqueous medium. These aggregates are highly emissive, showing an aggregation-induced emission (AIE) characteristic. TPE-2Gd is used as a fluorescent agent for cell imaging, which demonstrates negligible cytotoxicity and excellent photostability owing to its AIE property. As a magnetic resonance imaging (MRI) contrast agent, TPE-2Gd exhibits similar longitudinal relaxivity in water (R1,TPE-2Gd = 3.36 ± 0.10 s(-1) per mM of Gd(3+)) as those commercial agents (e.g., Magnevist, R1,magnevist = 3.70 ± 0.02 s(-1) per mM of Gd(3+)). Compared with Magnevist, the circulation lifetime of TPE-2Gd nanoaggregates in living rats is extended from 10 min to 1 h. With relatively high specificity to the liver, the MR imaging could remain hyperintense in liver even after 150 min post injection. These TPE-2Gd nanoparticles can be excreted gradually via renal filtration due to the disassembly of the nanoparticles into small molecules during circulation. TPE-2Gd could thus potentially be used as a liver specific MRI contrast agent for clinical diagnosis.
Collapse
Affiliation(s)
- Yilong Chen
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen 518057, China
| | | | | | | | | | | |
Collapse
|
48
|
Paterson BM, Alt K, Jeffery CM, Price RI, Jagdale S, Rigby S, Williams CC, Peter K, Hagemeyer CE, Donnelly PS. Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody. Angew Chem Int Ed Engl 2014; 53:6115-9. [PMID: 24777818 DOI: 10.1002/anie.201402613] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Indexed: 01/28/2023]
Abstract
The enzyme-mediated site-specific bioconjugation of a radioactive metal complex to a single-chain antibody using the transpeptidase sortase A is reported. Cage amine sarcophagine ligands that were designed to function as substrates for the sortase A mediated bioconjugation to antibodies were synthesized and enzymatically conjugated to a single-chain variable fragment. The antibody fragment scFv(anti-LIBS) targets ligand-induced binding sites (LIBS) on the glycoprotein receptor GPIIb/IIIa, which is present on activated platelets. The immunoconjugates were radiolabeled with the positron-emitting isotope (64)Cu. The new radiolabeled conjugates were shown to bind selectively to activated platelets. The diagnostic potential of the most promising conjugate was demonstrated in an in vivo model of carotid artery thrombosis using positron emission tomography. This approach gives homogeneous products through site-specific enzyme-mediated conjugation and should be broadly applicable to other metal complexes and proteins.
Collapse
Affiliation(s)
- Brett M Paterson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic (Australia)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Paterson BM, Alt K, Jeffery CM, Price RI, Jagdale S, Rigby S, Williams CC, Peter K, Hagemeyer CE, Donnelly PS. Enzyme-Mediated Site-Specific Bioconjugation of Metal Complexes to Proteins: Sortase-Mediated Coupling of Copper-64 to a Single-Chain Antibody. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Arumugam S, Popik VV. Sequential "click" - "photo-click" cross-linker for catalyst-free ligation of azide-tagged substrates. J Org Chem 2014; 79:2702-8. [PMID: 24548078 PMCID: PMC3985855 DOI: 10.1021/jo500143v] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 02/07/2023]
Abstract
Heterobifunctional linker allows for selective catalyst-free ligation of two different azide-tagged substrates via strained-promoted azide-alkyne cycloaddition (SPAAC). The linker contains an azadibenzocyclooctyne (ADIBO) moiety on one end and a cyclopropenone-masked dibenzocyclooctyne (photo-DIBO) group on the other. The first azide-derivatized substrate reacts only at the ADIBO end of the linker as the photo-DIBO moiety is azide-inert. After the completion of the first SPAAC step, photo-DIBO is activated by brief exposure to 350 nm light from a fluorescent UV lamp. The unmasked DIBO group then reacts with the second azide-tagged substrate. Both click reactions are fast (k = 0.4 and 0.07 M(-1) s(-1), respectively) and produce quantitative yield of ligation in organic solvents or aqueous solutions. The utility of the new cross-linker has been demonstrated by conjugation of azide functionalized bovine serum albumin (azido-BSA) with azido-fluorescein and by the immobilization of the latter protein on azide-derivatized silica beads. The BSA-bead linker was designed to incorporate hydrolytically labile fragment, which permits release of protein under the action of dilute acid. UV activation of the second click reaction permits spatiotemporal control of the ligation process.
Collapse
Affiliation(s)
- Selvanathan Arumugam
- Department of Chemistry, University of
Georgia, Athens, Georgia 30602, United
States
| | - Vladimir V. Popik
- Department of Chemistry, University of
Georgia, Athens, Georgia 30602, United
States
| |
Collapse
|