1
|
Wang D, Hou Y, Tang J, Liu J, Rao W. Liquid Metal as Energy Conversion Sensitizers: Materials and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304777. [PMID: 38468447 PMCID: PMC11462305 DOI: 10.1002/advs.202304777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/22/2023] [Indexed: 03/13/2024]
Abstract
Energy can exist in nature in a wide range of forms. Energy conversion refers to the process in which energy is converted from one form to another, and this process will be greatly enhanced by energy conversion sensitizers. Recently, an emerging class of new materials, namely liquid metals (LMs), shows excellent prospects as highly versatile materials. Notably, in terms of energy delivery and conversion, LMs functional materials are chemical responsive, heat-responsive, photo-responsive, magnetic-responsive, microwave-responsive, and medical imaging responsive. All these intrinsic virtues enabled promising applications in energy conversion, which means LMs can act as energy sensitizers for enhancing energy conversion and transport. Herein, first the unique properties of the light, heat, magnetic and microwave converting capacity of gallium-based LMs materials are summarized. Then platforms and applications of LM-based energy conversion sensitizers are highlighted. Finally, some of the potential applications and opportunities of LMs are prospected as energy conversion sensitizers in the future, as well as unresolved challenges. Collectively, it is believed that this review provides a clear perspective for LMs mediated energy conversion, and this topic will help deepen knowledge of the physical chemistry properties of LMs functional materials.
Collapse
Affiliation(s)
- Dawei Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)School of Pharmaceutical SciencesGuizhou UniversityGuiyangGuizhou Province550025China
| | - Yi Hou
- Key Laboratory of Cryogenic Science and TechnologyBeijing Key Lab of CryoBiomedical Engineering and Key Lab of CryogenicsTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jianbo Tang
- School of Chemical EngineeringUniversity of New South Wales (UNSW)KensingtonNSW2052Australia
| | - Jing Liu
- Liquid Metal and Cryogenic Biomedical Research CenterBeijing Key Lab of CryoBiomedical Engineering and Key Lab of CryogenicsTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- Department of Biomedical EngineeringSchool of MedicineTsinghua UniversityBeijing100084China
| | - Wei Rao
- Key Laboratory of Cryogenic Science and TechnologyBeijing Key Lab of CryoBiomedical Engineering and Key Lab of CryogenicsTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Zhou Y, Jiang J, Yin H, Zhang S. In situ fabrication of a plasmonic Bi@Bi 2O 2CO 3 core-shell heterostructure for photocatalytic CO 2 reduction: structural insights into selectivity modulation. Dalton Trans 2024; 53:16066-16075. [PMID: 39295573 DOI: 10.1039/d4dt02203c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The precise design of active sites and light absorbers is essential for developing highly efficient photocatalysts for CO2 reduction. Core-shell heterostructures constructed based on large-sized plasmonic Bi metals are ideal candidates because of the utilization of full-spectrum light and effective charge separation. However, the mechanism of selectivity modulation of large-sized Bi@semiconductor photocatalysts has yet to be explored in depth. Herein, a plasmonic Bi@Bi2O2CO3 core-shell heterostructure was successfully synthesized via a facile solvothermal treatment in deep eutectic solvents, demonstrating highly efficient photocatalytic CO2 reduction. This structure features a sizeable Bi sphere with a thin, epitaxially grown Bi2O2CO3 shell, which allows for the utilization of the entire light spectrum. Additionally, the oxygen vacancies in the Bi2O2CO3 shell can rapidly trap electrons transferred from the Bi core via Bi-O-Bi bonds, thereby forming abundant electron-rich interfaces that serve as the active sites for activating reactant molecules and facilitating the reaction.
Collapse
Affiliation(s)
- Yannan Zhou
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Jingyun Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Hang Yin
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Shouren Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| |
Collapse
|
3
|
Mata MDL, Sanz de León A, Valencia-Liñán LM, Molina SI. Plasmonic Characterization of 3D Printable Metal-Polymer Nanocomposites. ACS MATERIALS AU 2024; 4:424-435. [PMID: 39006399 PMCID: PMC11240405 DOI: 10.1021/acsmaterialsau.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Plasmonic polymer nanocomposites (i.e., polymer matrices containing plasmonic nanostructures) are appealing candidates for the development of manifold technological devices relying on light-matter interactions, provided that they have inherent properties and processing capabilities. The smart development of plasmonic nanocomposites requires in-depth optical analyses proving the material performance, along with correlative studies guiding the synthesis of tailored materials. Importantly, plasmon resonances emerging from metal nanoparticles affect the macroscopic optical response of the nanocomposite, leading to far- and near-field perturbations useful to address the optical activity of the material. We analyze the plasmonic behavior of two nanocomposites suitable for 3D printing, based on acrylic resin matrices loaded with Au or Ag nanoparticles. We compare experimental and computed UV-vis macroscopic spectra (far-field) with single-particle electron energy loss spectroscopy (EELS) analyses (near-field). We extended the calculations of Au and Ag plasmon-related resonances over different environments and nanoparticle sizes. Discrepancies between UV-vis and EELS are dependent on the interplay between the metal considered, the surrounding media, and the size of the nanoparticles. The study allows comparing in detail the plasmonic performance of Au- and Ag-polymer nanocomposites, whose plasmonic response is better addressed, accounting for their intended applications (i.e., whether they rely on far- or near-field interactions).
Collapse
Affiliation(s)
- María de la Mata
- Departamento de Ciencia de
los Materiales, I. M. y Q. I., IMEYMAT, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| | - Albeto Sanz de León
- Departamento de Ciencia de
los Materiales, I. M. y Q. I., IMEYMAT, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| | - Luisa M. Valencia-Liñán
- Departamento de Ciencia de
los Materiales, I. M. y Q. I., IMEYMAT, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| | - Sergio I. Molina
- Departamento de Ciencia de
los Materiales, I. M. y Q. I., IMEYMAT, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| |
Collapse
|
4
|
Agarwal R, Mohamad A. Gallium-based liquid metals as smart responsive materials: Morphological forms and stimuli characterization. Adv Colloid Interface Sci 2024; 329:103183. [PMID: 38788305 DOI: 10.1016/j.cis.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Gallium-based liquid metals (GaLMs) have garnered monumental attention from the scientific community due to their diverse actuation characteristics. These metals possess remarkable characteristics, including high surface tension, excellent electrical and thermal conductivity, phase transformation behaviour, minimal viscosity and vapour pressure, lack of toxicity, and biocompatibility. In addition, GaLMs have melting points that are either lower or near room temperature, making them incredibly beneficial when compared to solid metals since they can be easily deformed. Thus, there has been significant progress in developing multifunctional devices using GaLMs, including bio-devices, flexible and self-healing circuits, and actuators. Despite numerous reports on these liquid metals (LMs), there is an urgent need for consolidated and coherent literature regarding their actuation principles linked to the targeted application. This will ensure that the reader gets the flavour of physics behind the actuation mechanism and how it can be utilized in diverse fields. Moreover, the actuation mechanism has been scattered in the literature, and thus, the primary motive of this review is to provide a one-stop solution for the actuation mechanism and the associated dynamics while directing the readers to specialized literature. Thus, addressing this issue, we thoroughly examine and present a detailed account of the actuation mechanisms of GaLMs while highlighting the science behind them. We also discuss the various morphologies of GaLMs and their crucial physical characteristics which decide their targeted application. Furthermore, we also delve into commonly held beliefs about GaLMs in the literature, such as their toxicity and antibacterial properties, to offer readers a more accurate understanding. Finally, we have explored several key unanswered aspects of the LM that should be explored in future research. The core strength of this review lies in its simplistic approach in offering a starting point for researchers venturing this innovative field, while we make use of existing literature to develop a comprehensive understanding.
Collapse
Affiliation(s)
- Rahul Agarwal
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Abdulmajeed Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
5
|
Wayman TR, Lomonosov V, Ringe E. Capping Agents Enable Well-Dispersed and Colloidally Stable Metallic Magnesium Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:4666-4676. [PMID: 38533241 PMCID: PMC10961833 DOI: 10.1021/acs.jpcc.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Mg nanoparticles are an emerging plasmonic material due to Mg's abundance and ability to sustain size- and shape-dependent localized surface plasmon resonances across a broad range of wavelengths from the ultraviolet to the near infrared. However, Mg nanoparticles are colloidally unstable due to their tendency to aggregate and sediment. Nanoparticle aggregation can be inhibited by the addition of capping agents that impart surface charges or steric repulsion. Here, we report that the common capping agents poly(vinyl) pyrrolidone (PVP), polyethylene glycol (PEG), cetyltrimethylammonium bromide (CTAB), and sodium dodecyl sulfate (SDS) interact differently and have varied effects on the aggregation and colloidal stability of Mg nanoparticles. Nanoparticles synthesized in the presence of PVP showed improvements in colloidal stability and reduced aggregation, as observed by electron microscopy and optical spectroscopy. The binding of PVP was confirmed through infrared and X-ray photoelectron spectroscopy. The influence of PVP on the reduction of di-n-butyl magnesium was evaluated through analysis of particle size distribution and Mg yield as a function of reaction time, reducing agent, and temperature. Furthermore, the presence of PVP drastically changes the growth pattern of metallic Mg structures obtained from the reduction of the Grignard reagents butylmagnesium chloride and phenylmagnesium chloride by lithium naphthalenide: large polycrystalline aggregates and well-separated faceted nanoparticles grow without and with PVP, respectively. This study provides new synthetic routes that generate colloidally stable and well-dispersed Mg nanoparticles for plasmonic and other applications.
Collapse
Affiliation(s)
- Thomas
M. R. Wayman
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Vladimir Lomonosov
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| |
Collapse
|
6
|
Matsuda R, Yao H. UV-resonant magnetoplasmonic properties of chemically synthesized indium nanoparticles. Phys Chem Chem Phys 2024; 26:8850-8857. [PMID: 38426272 DOI: 10.1039/d4cp00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this article, we for the first time demonstrate magnetoplasmonic properties of metallic indium (In0) nanoparticles, one of the promising non-noble metals for UV plasmonics, by using magnetic circular dichroism (MCD) spectroscopy. In0 nanoparticles are synthesized by a kinetically controlled reduction of indium salts, followed by performing centrifugation-based size selection, giving nanoparticles of 37.5 ± 9.7 or 51.6 ± 8.4 nm in diameter. These In0 nanoparticles exhibit a single extinction peak in the UV region (<300 nm), which can be attributed to localised surface plasmon resonance (LSPR), and upon increasing the particle size, the peak is red-shifted and broadened. The MCD signatures are then typical for circular magnetoplasmonic modes of metal nanospheres, and on the basis of the MCD responses, the effective mass of an electron (m*) of indium is estimated. Interestingly, although the large-sized In0 nanoparticles (51.6 nm) have a broader LSPR linewidth, the magneto-optical (MO) activity is larger than that of the smaller one (37.5 nm), which is unlike the behaviour of Ag nanospheres with high-quality-factor plasmonic performance. This can probably be due not only to the formation of stiff semiconducting (In(OH)3) shell layers on the In0 cores (= In0@In(OH)3 core-shell morphology) but also to the effect of the dielectric function of In0 that can influence the light-helicity-dependent field-induced cyclotron shift.
Collapse
Affiliation(s)
- Ririka Matsuda
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| | - Hiroshi Yao
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
7
|
Roy P, Zhu S, Claude JB, Liu J, Wenger J. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence. ACS NANO 2023; 17:22418-22429. [PMID: 37931219 PMCID: PMC10690780 DOI: 10.1021/acsnano.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 11/08/2023]
Abstract
Plasmonic optical nanoantennas offer compelling solutions for enhancing light-matter interactions at the nanoscale. However, until now, their focus has been mainly limited to the visible and near-infrared regions, overlooking the immense potential of the ultraviolet (UV) range, where molecules exhibit their strongest absorption. Here, we present the realization of UV resonant nanogap antennas constructed from paired rhodium nanocubes. Rhodium emerges as a robust alternative to aluminum, offering enhanced stability in wet environments and ensuring reliable performance in the UV range. Our results showcase the nanoantenna's ability to enhance the UV autofluorescence of label-free streptavidin and hemoglobin proteins. We achieve significant enhancements of the autofluorescence brightness per protein by up to 120-fold and reach zeptoliter detection volumes, enabling UV autofluorescence correlation spectroscopy (UV-FCS) at high concentrations of several tens of micromolar. We investigate the modulation of fluorescence photokinetic rates and report excellent agreement between the experimental results and numerical simulations. This work expands the applicability of plasmonic nanoantennas to the deep UV range, unlocking the investigation of label-free proteins at physiological concentrations.
Collapse
Affiliation(s)
- Prithu Roy
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Siyuan Zhu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jean-Benoît Claude
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jie Liu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jérôme Wenger
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| |
Collapse
|
8
|
Wang Z, Lu J, Wang Z, Huang J, Wang L, Chen Q, Li Y, Jin Y, Liang P. Investigation of high-order resonant modes for aluminium nanoparticles (arrays) using the finite-difference time-domain method. NANOSCALE 2023; 15:16425-16431. [PMID: 37791531 DOI: 10.1039/d3nr04226j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The optical properties of aluminum nanoparticles are simulated and calculated using the finite-difference time-domain (FDTD) method. Our research has given a comprehensive explanation of how the substrate's dielectric coefficients impact the surface plasmon resonance effect. Furthermore, it offers valuable insights into the role of substrate materials with different dielectric coefficients in modulating the surface plasmon resonance effect of aluminum nanoparticles. The simulation demonstrates the high sensitivity of the structure's surface plasmon resonance (SPR) to the particle size of aluminum nanoparticles. Primarily due to the short-wavelength resonance characteristics, as the particle size increases in the presence of a substrate, there is an overall red shift in the peak position compared to the case without a substrate. A non-metallic kind of substance, which is weakly coupled to the aluminum nanoparticles, has weak electric field enhancement; nevertheless the metal substrates confer significant electrically powered field enhancement to the system, and the height of the particles placed on the substrate also affects the SPR properties of the structure. For various specific needs or possible applications requiring different characteristic peaks, the SPR properties of the aluminum nanoparticle-substrate structure can be tuned by particle size and height.
Collapse
Affiliation(s)
- Zhen Wang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China.
| | - Jinqiao Lu
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China.
| | - Zilong Wang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China.
| | - Jie Huang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China.
| | - Le Wang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China.
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yunfeng Li
- College of Information Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yongxing Jin
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China.
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China.
| |
Collapse
|
9
|
Sun J, Nguyen DH, Liu J, Lo C, Ma Y, Chen Y, Yi J, Huang J, Giap H, Nguyen HYT, Liao C, Lin M, Lai C. On-Chip Monolithically Integrated Ultraviolet Low-Threshold Plasmonic Metal-Semiconductor Heterojunction Nanolasers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301493. [PMID: 37559172 PMCID: PMC10558691 DOI: 10.1002/advs.202301493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/16/2023] [Indexed: 08/11/2023]
Abstract
The metal-semiconductor heterojunction is imperative for the realization of electrically driven nanolasers for chip-level platforms. Progress in developing such nanolasers has hitherto rarely been realized, however, because of their complexity in heterojunction fabrication and the need to use noble metals that are incompatible with microelectronic manufacturing. Most plasmonic nanolasers lase either above a high threshold (101 -103 MW cm-2 ) or at a cryogenic temperature, and lasing is possible only after they are removed from the substrate to avoid the large ohmic loss and the low modal reflectivity, making monolithic fabrication impossible. Here, for the first time, record-low-threshold, room-temperature ultraviolet (UV) lasing of plasmon-coupled core-shell nanowires that are directly grown on silicon is demonstrated. The naturally formed core-shell metal-semiconductor heterostructure of the nanowires leads to a 100-fold improvement in growth density over previous results. This unprecedentedly high nanowire density creates intense plasmonic resonance, which is outcoupled to the resonant Fabry-Pérot microcavity. By boosting the emission strength by a factor of 100, the hybrid photonic-plasmonic system successfully facilitates a record-low laser threshold of 12 kW cm-2 with a spontaneous emission coupling factor as high as ≈0.32 in the 340-360 nm range. Such architecture is simple and cost-competitive for future UV sources in silicon integration.
Collapse
Affiliation(s)
- Jia‐Yuan Sun
- Department of PhysicsNational Dong Hwa UniversityHualien974301Taiwan
| | - Duc Huy Nguyen
- Department of PhysicsNational Dong Hwa UniversityHualien974301Taiwan
| | - Jia‐Ming Liu
- Department of Electrical and Computer EngineeringUniversity of CaliforniaLos AngelesCA90095USA
- Institute of PhotonicsNational Yang Ming Chiao Tung UniversityTainan711010Taiwan
- Institute of OptoelectronicsNational Chung Hsing UniversityTaichung402202Taiwan
| | - Chia‐Yao Lo
- Department of Optoelectronics and Materials TechnologyNational Taiwan Ocean UniversityKeelung202301Taiwan
| | - Yuan‐Ron Ma
- Department of PhysicsNational Dong Hwa UniversityHualien974301Taiwan
| | - Yi‐Jia Chen
- Department of Materials Science and EngineeringNational Dong Hwa UniversityHualien974301Taiwan
| | - Jui‐Yun Yi
- Department of Electrical EngineeringNational Kaohsiung Normal UniversityKaohsiung824004Taiwan
| | - Jian‐Zhi Huang
- Department of Opto‐Electronic EngineeringNational Dong Hwa UniversityHualien974301Taiwan
| | - Hien Giap
- Department of PhysicsNational Dong Hwa UniversityHualien974301Taiwan
| | | | - Chun‐Da Liao
- R&D CenterTaiwan Semiconductor Manufacturing CompanyHsinchu300091Taiwan
| | - Ming‐Yi Lin
- Department of DermatologyNational Taiwan University Hospital and College of MedicineNational Taiwan UniversityTaipei100229Taiwan
| | - Chien‐Chih Lai
- Department of PhysicsNational Dong Hwa UniversityHualien974301Taiwan
- Department of Opto‐Electronic EngineeringNational Dong Hwa UniversityHualien974301Taiwan
| |
Collapse
|
10
|
Huang X, Chen L, Zhi W, Zeng R, Ji G, Cai H, Xu J, Wang J, Chen S, Tang Y, Zhang J, Zhou H, Sun P. Urchin-Shaped Au-Ag@Pt Sensor Integrated Lateral Flow Immunoassay for Multimodal Detection and Specific Discrimination of Clinical Multiple Bacterial Infections. Anal Chem 2023; 95:13101-13112. [PMID: 37526338 DOI: 10.1021/acs.analchem.3c01631] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A new lateral flow immunoassay strip (LFIA) combining sensitive detection and identification of multiple bacteria remains a huge challenge. In this study, we first developed multifunctional urchin-shaped Au-Ag@Pt nanoparticles (UAA@P NPs) with a unique combination of colorimetric-SERS-photothermal-catalytic (CM/SERS/PT/CL) properties and integrated them with LFIA for multiplexed detection and specific discrimination of pathogenic bacteria in blood samples. Unlike the conventional LFIA that relied on antibody (Ab), this novel LFIA introduced 4-mercaptophenylboronic acid (4-MPBA) as an ideal Ab replacer that was functionalized on UAA@P NPs (UAA@P/M NPs) with outstanding binding and enrichment capacities toward bacteria. Taking Staphylococcus aureus (S. aureus) as model bacteria, the limit of detection (LOD) was 3 CFU/mL for SERS-LFIA, 27 CFU/mL for PT-LFIA, and 18 CFU/mL for CL-LFIA, three of which were over 330-fold, 37-fold, and 55-fold more sensitive than ordinary visual CM-LFIA, respectively. Besides, this SERS-LFIA is capable of identifying three types of bacterial spiked blood samples (E. coli, S. aureus, and P. aeruginosa) effectively according to specific bacterial Raman "fingerprints" by partial least-squares-discriminant analysis (PLS-DA). More importantly, this LFIA was successfully applied to blood samples with satisfactory recoveries from 90.3% to 108.8% and capable of identifying the infected patients (N = 4) from healthy subjects (N = 2) with great accuracy. Overall, the multimodal LFIA incorporates bacteria discrimination and quantitative detection, offering an avenue for early warning and diagnosis of bacterial infection.
Collapse
Affiliation(s)
- Xueqin Huang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lingzhi Chen
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Weixia Zhi
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Runmin Zeng
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guanxu Ji
- Oncology Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jinyong Wang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Shanze Chen
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yong Tang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianglin Zhang
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Haibo Zhou
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Pinghua Sun
- The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Giordano AN, Rao R. Beyond the Visible: A Review of Ultraviolet Surface-Enhanced Raman Scattering Substrate Compositions, Morphologies, and Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2177. [PMID: 37570495 PMCID: PMC10421355 DOI: 10.3390/nano13152177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
The first observation of ultraviolet surface-enhanced Raman scattering (UV-SERS) was 20 years ago, yet the field has seen a slower development pace than its visible and near-infrared counterparts. UV excitation for SERS offers many potential advantages. These advantages include increased scattering intensity, higher spatial resolution, resonance Raman enhancement from organic, biological, and semiconductor analytes, probing UV photoluminescence, and mitigating visible photoluminescence from analytes or substrates. One of the main challenges is the lack of readily accessible, effective, and reproducible UV-SERS substrates, with few commercial sources available. In this review, we evaluate the reported UV-SERS substrates in terms of their elemental composition, substrate morphology, and performance. We assess the best-performing substrates with regard to their enhancement factors and limits of detection in both the ultraviolet and deep ultraviolet regions. Even though aluminum nanostructures were the most reported and best-performing substrates, we also highlighted some unique UV-SERS composition and morphology substrate combinations. We address the challenges and potential opportunities in the field of UV-SERS, especially in relation to the development of commercially available, cost-effective substrates. Lastly, we discuss potential application areas for UV-SERS, including cost-effective detection of environmentally and militarily relevant analytes, in situ and operando experimentation, defect engineering, development of materials for extreme environments, and biosensing.
Collapse
Affiliation(s)
- Andrea N. Giordano
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA
- National Research Council, Washington, DC 20001, USA
| | - Rahul Rao
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA
| |
Collapse
|
12
|
Peng F, Lu SY, Sun PQ, Zhang NN, Liu K. Branched Aluminum Nanocrystals with Internal Hot Spots: Synthesis and Single-Particle Surface-Enhanced Raman Scattering. NANO LETTERS 2023. [PMID: 37410961 DOI: 10.1021/acs.nanolett.3c01605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Owing to their unique and sustainable surface plasmonic properties, Al nanocrystals have attracted increasing attention for plasmonic-enhanced applications, including single-particle surface-enhanced Raman scattering (SERS). However, whether Al nanocrystals can achieve single-particle SERS is still unknown, mainly due to the synthetic difficulty of Al nanocrystals with internal gaps. Herein, we report a regrowth method for the synthesis of Al nanohexapods with tunable and uniform internal gaps for single-particle SERS with an enhancement factor of up to 1.79 × 108. The uniform branches of the Al nanohexapods can be systematically tuned regarding their dimensions, terminated facets, and internal gaps. The Al nanohexapods generate hot spots concentrated in the internal gaps due to the strong plasmonic coupling between the branches. A single-particle SERS measurement of Al nanohexapods shows strong Raman signals with maximum enhancement factors comparable to that of Au counterparts. The large enhancement factor indicates that Al nanohexapods are good candidates for single-particle SERS.
Collapse
Affiliation(s)
- Fei Peng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shao-Yong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Pan-Qi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
13
|
Todorov R, Hristova-Vasileva T, Katrova V, Atanasova A. Silver and Gold Containing Compounds of p-Block Elements As Perspective Materials for UV Plasmonics. ACS OMEGA 2023; 8:14321-14341. [PMID: 37125114 PMCID: PMC10134472 DOI: 10.1021/acsomega.2c05943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
We present a review of phase formation tendencies, methods for preparation and optical properties of alloys and compounds from the binary systems of silver or gold with metals and metalloids from the p-block of the Periodic system of elements. Reference data about the homogeneity regions in the systems of interest, together with information about the crystalline structure of existing indexed compounds in them, is proposed and statistically analyzed. General background for the synthesis of intermetallic alloys and compounds, and the tendencies for their preparation for plasmonic purposes are presented. The high plasma frequency, ωp of p-block metals makes their alloys with silver and gold an interesting object of study, due to the possibility of ωp variation over a wide interval in the ultraviolet (UV) spectral region with a view to finding more efficient materials for excitation of a localized surface plasmon resonance (LSPR) necessary for various applications and techniques operating in this part of the electromagnetic spectrum. Unlike the alloys between the noble metals Cu, Ag, and Au, which form continuous series of solid solutions, different areas can be observed in the phase diagrams of the Ag(Au)-p-block systems, containing solid solutions, intermetallic compounds, and heterogeneous mixtures. The ability to vary the plasma frequency of solid solutions, like the alloys between the noble metals Cu, Ag, and Au, is the reason to pay attention to the compositions of the Ag(Au-p-block systems that fall in these regions of their phase diagrams. The analysis of the published results for complex permittivity shows that the addition of small amounts of conductive p-block elements to noble metals reduces the energy gap for interband transitions and increases their plasmonic activity in the UV spectral range. The article analyzes the relationship between electrical resistivity and LSPR excitation efficiency, which shows that the intermetallic compounds from Ag(Au)-p-block systems with a well-ordered crystalline structure and good conductivity level can be more effective materials for UV plasmonics than the boundary solid solutions. Intermetallic compounds can be easily obtained in the form of bulk samples, thin films, and nanoparticles with controlled size and geometric shape. The spectral dependences of the plasmon efficiency of the intermetallic compounds, determined from their complex permittivity functions, show that they are promising materials for excitation of LSPR in the UV spectral region.
Collapse
Affiliation(s)
- Rosen Todorov
- Institute
of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 109, 1113 Sofia, Bulgaria
| | - Temenuga Hristova-Vasileva
- Institute
of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 109, 1113 Sofia, Bulgaria
- Institute
of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Vesela Katrova
- Institute
of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 109, 1113 Sofia, Bulgaria
| | - Anna Atanasova
- Institute
of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 109, 1113 Sofia, Bulgaria
| |
Collapse
|
14
|
Demishkevich E, Zyubin A, Seteikin A, Samusev I, Park I, Hwangbo CK, Choi EH, Lee GJ. Synthesis Methods and Optical Sensing Applications of Plasmonic Metal Nanoparticles Made from Rhodium, Platinum, Gold, or Silver. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3342. [PMID: 37176223 PMCID: PMC10180225 DOI: 10.3390/ma16093342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
The purpose of this paper is to provide an in-depth review of plasmonic metal nanoparticles made from rhodium, platinum, gold, or silver. We describe fundamental concepts, synthesis methods, and optical sensing applications of these nanoparticles. Plasmonic metal nanoparticles have received a lot of interest due to various applications, such as optical sensors, single-molecule detection, single-cell detection, pathogen detection, environmental contaminant monitoring, cancer diagnostics, biomedicine, and food and health safety monitoring. They provide a promising platform for highly sensitive detection of various analytes. Due to strongly localized optical fields in the hot-spot region near metal nanoparticles, they have the potential for plasmon-enhanced optical sensing applications, including metal-enhanced fluorescence (MEF), surface-enhanced Raman scattering (SERS), and biomedical imaging. We explain the plasmonic enhancement through electromagnetic theory and confirm it with finite-difference time-domain numerical simulations. Moreover, we examine how the localized surface plasmon resonance effects of gold and silver nanoparticles have been utilized for the detection and biosensing of various analytes. Specifically, we discuss the syntheses and applications of rhodium and platinum nanoparticles for the UV plasmonics such as UV-MEF and UV-SERS. Finally, we provide an overview of chemical, physical, and green methods for synthesizing these nanoparticles. We hope that this paper will promote further interest in the optical sensing applications of plasmonic metal nanoparticles in the UV and visible ranges.
Collapse
Affiliation(s)
- Elizaveta Demishkevich
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Andrey Zyubin
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Alexey Seteikin
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Department of Physics, Amur State University, 675021 Blagoveshchensk, Russia
| | - Ilia Samusev
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Inkyu Park
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - Chang Kwon Hwangbo
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Geon Joon Lee
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
15
|
Qi MY, Tang ZR, Xu YJ. Near Field Scattering Optical Model-Based Catalyst Design for Artificial Photoredox Transformation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
16
|
Valenti M, Wobben MD, Bleiji Y, Cordaro A, Tabernig SW, Aarts M, Buijs RD, Rodriguez SRK, Polman A, Alarcón-Lladó E. Optical Characterization of Plasmonic Indium Lattices Fabricated via Electrochemical Deposition. ACS APPLIED OPTICAL MATERIALS 2023; 1:753-758. [PMID: 37007840 PMCID: PMC10043931 DOI: 10.1021/acsaom.2c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
The optical properties of periodic metallic nanoparticle lattices have found many exciting applications. Indium is an emerging plasmonic material that offers to extend the plasmonic applications given by gold and silver from the visible to the ultraviolet spectral range, with applications in imaging, sensing, and lasing. Due to the high vapor pressure/low melting temperature of indium, nanofabrication of ordered metallic nanoparticles is nontrivial. In this work, we show the potential of selective area electrochemical deposition to generate large-area lattices of In pillars for plasmonic applications. We study the optical response of the In lattices by means of angle-dependent extinction measurements demonstrating strong plasmonic surface lattice resonances and a good agreement with numerical simulations. The results open avenues toward high-quality lattices of plasmonic indium nanoparticles and can be extended to other promising plasmonic materials that can be electrochemically grown.
Collapse
Affiliation(s)
- Marco Valenti
- Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Merlinde D. Wobben
- Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Yorick Bleiji
- Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Andrea Cordaro
- Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stefan W. Tabernig
- Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Mark Aarts
- Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Robin D. Buijs
- Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | - Albert Polman
- Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Esther Alarcón-Lladó
- Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
17
|
Horák M, Čalkovský V, Mach J, Křápek V, Šikola T. Plasmonic Properties of Individual Gallium Nanoparticles. J Phys Chem Lett 2023; 14:2012-2019. [PMID: 36794890 PMCID: PMC10017019 DOI: 10.1021/acs.jpclett.3c00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Gallium is a plasmonic material offering ultraviolet to near-infrared tunability, facile and scalable preparation, and good stability of nanoparticles. In this work, we experimentally demonstrate the link between the shape and size of individual gallium nanoparticles and their optical properties. To this end, we utilize scanning transmission electron microscopy combined with electron energy loss spectroscopy. Lens-shaped gallium nanoparticles with a diameter between 10 and 200 nm were grown directly on a silicon nitride membrane using an effusion cell developed in house that was operated under ultra-high-vacuum conditions. We have experimentally proven that they support localized surface plasmon resonances and their dipole mode can be tuned through their size from the ultraviolet to near-infrared spectral region. The measurements are supported by numerical simulations using realistic particle shapes and sizes. Our results pave the way for future applications of gallium nanoparticles such as hyperspectral absorption of sunlight in energy harvesting or plasmon-enhanced luminescence of ultraviolet emitters.
Collapse
Affiliation(s)
- Michal Horák
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Vojtěch Čalkovský
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Jindřich Mach
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Vlastimil Křápek
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Tomáš Šikola
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
| |
Collapse
|
18
|
Turishchev S, Schleusener A, Chuvenkova O, Parinova E, Liu P, Manyakin M, Kurganskii S, Sivakov V. Spectromicroscopy Studies of Silicon Nanowires Array Covered by Tin Oxide Layers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206322. [PMID: 36650978 DOI: 10.1002/smll.202206322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The composition and atomic and electronic structure of a silicon nanowire (SiNW) array coated with tin oxide are studied at the spectromicroscopic level. SiNWs are covered from top to down with a wide bandgap tin oxide layer using a metal-organic chemical vapor deposition technique. Results obtained via scanning electron microscopy and X-ray diffraction showed that tin-oxide nanocrystals, 20 nm in size, form a continuous and highly developed surface with a complex phase composition responsible for the observed electronic structure transformation. The "one spot" combination, containing a chemically sensitive morphology and spectroscopic data, is examined via photoemission electron microscopy in the X-ray absorption near-edge structure spectroscopy (XANES) mode. The observed spectromicroscopy results showed that the entire SiNW surface is covered with a tin(IV) oxide layer and traces of tin(II) oxide and metallic tin phases. The deviation from stoichiometric SnO2 leads to the formation of the density of states sub-band in the atop tin oxide layer bandgap close to the bottom of the SnO2 conduction band. These observations open up the possibility of the precise surface electronic structures estimation using photo-electron microscopy in XANES mode.
Collapse
Affiliation(s)
- Sergey Turishchev
- Voronezh State University, Physics Faculty, General Physics Department, Universitetskaya pl.1, Voronezh, 394018, Russian Federation
| | - Alexander Schleusener
- Leibniz Institute of Photonic Technology, Research Department Functional Interfaces, Albert Einstein Str. 9, 07745, Jena, Germany
- Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Olga Chuvenkova
- Voronezh State University, Physics Faculty, General Physics Department, Universitetskaya pl.1, Voronezh, 394018, Russian Federation
| | - Elena Parinova
- Voronezh State University, Physics Faculty, General Physics Department, Universitetskaya pl.1, Voronezh, 394018, Russian Federation
| | - Poting Liu
- Leibniz Institute of Photonic Technology, Research Department Functional Interfaces, Albert Einstein Str. 9, 07745, Jena, Germany
- Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Maxim Manyakin
- Voronezh State University, Physics Faculty, General Physics Department, Universitetskaya pl.1, Voronezh, 394018, Russian Federation
| | - Sergei Kurganskii
- Voronezh State University, Physics Faculty, General Physics Department, Universitetskaya pl.1, Voronezh, 394018, Russian Federation
| | - Vladimir Sivakov
- Leibniz Institute of Photonic Technology, Research Department Functional Interfaces, Albert Einstein Str. 9, 07745, Jena, Germany
| |
Collapse
|
19
|
Liu P, Schleusener A, Zieger G, Bochmann A, van Spronsen MA, Sivakov V. Nanostructured Silicon Matrix for Materials Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206318. [PMID: 36642786 DOI: 10.1002/smll.202206318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Tin-containing layers with different degrees of oxidation are uniformly distributed along the length of silicon nanowires formed by a top-down method by applying metalorganic chemical vapor deposition. The electronic and atomic structure of the obtained layers is investigated by applying nondestructive surface-sensitive X-ray absorption near edge spectroscopy using synchrotron radiation. The results demonstrated, for the first time, a distribution effect of the tin-containing phases in the nanostructured silicon matrix compared to the results obtained for planar structures at the same deposition temperatures. The amount and distribution of tin-containing phases can be effectively varied and controlled by adjusting the geometric parameters (pore diameter and length) of the initial matrix of nanostructured silicon. Due to the occurrence of intense interactions between precursor molecules and decomposition by-products in the nanocapillary, as a consequence of random thermal motion of molecules in the nanocapillary, which leads to additional kinetic energy and formation of reducing agents, resulting in effective reduction of tin-based compounds to a metallic tin state for molecules with the highest penetration depth in the nanostructured silicon matrix. This effect will enable clear control of the phase distributions of functional materials in 3D matrices for a wide range of applications.
Collapse
Affiliation(s)
- Poting Liu
- Leibniz Institute of Photonic Technology, Albert-Einstein Str. 9, 07745, Jena, Germany
- Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Alexander Schleusener
- Leibniz Institute of Photonic Technology, Albert-Einstein Str. 9, 07745, Jena, Germany
- Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Gabriel Zieger
- Leibniz Institute of Photonic Technology, Albert-Einstein Str. 9, 07745, Jena, Germany
| | - Arne Bochmann
- Ernst Abbe University of Applied Science, Carl-Zeiss-Promenade 2, 07745, Jena, Germany
| | | | - Vladimir Sivakov
- Leibniz Institute of Photonic Technology, Albert-Einstein Str. 9, 07745, Jena, Germany
| |
Collapse
|
20
|
Karaballi RA, Monfared YE, Bicket IC, Coridan RH, Dasog M. Solid-state synthesis of UV-plasmonic Cr 2N nanoparticles. J Chem Phys 2022; 157:154706. [PMID: 36272801 DOI: 10.1063/5.0109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Materials that exhibit plasmonic response in the UV region can be advantageous for many applications, such as biological photodegradation, photocatalysis, disinfection, and bioimaging. Transition metal nitrides have recently emerged as chemically and thermally stable alternatives to metal-based plasmonic materials. However, most free-standing nitride nanostructures explored so far have plasmonic responses in the visible and near-IR regions. Herein, we report the synthesis of UV-plasmonic Cr2N nanoparticles using a solid-state nitridation reaction. The nanoparticles had an average diameter of 9 ± 5 nm and a positively charged surface that yields stable colloidal suspension. The particles were composed of a crystalline nitride core and an amorphous oxide/oxynitride shell whose thickness varied between 1 and 7 nm. Calculations performed using the finite element method predicted the localized surface plasmon resonance (LSPR) for these nanoparticles to be in the UV-C region (100-280 nm). While a distinctive LSPR peak could not be observed using absorbance measurements, low-loss electron energy loss spectroscopy showed the presence of surface plasmons between 80 and 250 nm (or ∼5 to 15 eV) and bulk plasmons centered around 50-62 nm (or ∼20 to 25 eV). Plasmonic coupling was also observed between the nanoparticles, resulting in resonances between 250 and 400 nm (or ∼2.5 to 5 eV).
Collapse
Affiliation(s)
- Reem A Karaballi
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | | - Isobel C Bicket
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Mita Dasog
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
21
|
Wang L, Feng Y, Li Z, Liu G. Nanoscale thermoplasmonic welding. iScience 2022; 25:104422. [PMID: 35663015 PMCID: PMC9156941 DOI: 10.1016/j.isci.2022.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Establishing direct, close contact between individual nano-objects is crucial to fabricating hierarchical and multifunctional nanostructures. Nanowelding is a technical prerequisite for successfully manufacturing such structures. In this paper, we review the nanoscale thermoplasmonic welding with a focus on its physical mechanisms, key influencing factor, and emerging applications. The basic mechanisms are firstly described from the photothermal conversion to self-limited heating physics. Key aspects related to the welding process including material scrutinization, nanoparticle geometric and spatial configuration, heating scheme and performance characterization are then discussed in terms of the distinctive properties of plasmonic welding. Based on the characteristics of high precision and flexible platform of thermoplasmonic welding, the potential applications are further highlighted from electronics and optics to additive manufacturing. Finally, the future challenges and prospects are outlined for future prospects of this dynamic field. This work summarizes these innovative concepts and works on thermoplasmonic welding, which is significant to establish a common link between nanoscale welding and additive manufacturing communities.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Yijun Feng
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Ze Li
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
22
|
Dumiszewska E, Ciepielewski P, Caban PA, Jóźwik I, Gaca J, Baranowski JM. Formation of GeO2 under Graphene on Ge(001)/Si(001) Substrates Using Water Vapor. Molecules 2022; 27:molecules27113636. [PMID: 35684572 PMCID: PMC9181917 DOI: 10.3390/molecules27113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
The problem of graphene protection of Ge surfaces against oxidation is investigated. Raman, X-Ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements of graphene epitaxially grown on Ge(001)/Si(001) substrates are presented. It is shown that the penetration of water vapor through graphene defects on Gr/Ge(001)/Si(001) samples leads to the oxidation of germanium, forming GeO2. The presence of trigonal GeO2 under graphene was identified by Raman and XRD measurements. The oxidation of Ge leads to the formation of blisters under the graphene layer. It is suggested that oxidation of Ge is connected with the dissociation of water molecules and penetration of OH molecules or O to the Ge surface. It has also been found that the formation of blisters of GeO2 leads to a dramatic increase in the intensity of the graphene Raman spectrum. The increase in the Raman signal intensity is most likely due to the screening of graphene by GeO2 from the Ge(001) surface.
Collapse
|
23
|
Li C, Zhou X, Zhang Q, Xue Y, Kuang Z, Zhao H, Mou CY, Chen H. Construction of Heterostructured Sn/TiO 2 /Si Photocathode for Efficient Photoelectrochemical CO 2 Reduction. CHEMSUSCHEM 2022; 15:e202200188. [PMID: 35243793 DOI: 10.1002/cssc.202200188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Using renewable energy to convert CO2 into liquid products, as a sustainable way to produce fuels and chemicals, has attracted intense attention. Herein, a novel heterostructured photocathode composed of Si wafer, TiO2 layer, and Sn metal particles has been successfully fabricated by combining of a facile hydrothermal and electrodeposition method. The obtained Sn/TiO2 /Si photocathode shows enhanced light absorption performance by the surface plasmon resonance effect of Sn metal. Especially, the Sn/TiO2 /Si photocathode together with rich oxygen vacancy defects jointly promote photoelectrochemical CO2 reduction, harvesting a high faradaic efficiency of HCOOH and a desirable average current density (-4.72 mA cm-2 ) at -1.0 V vs. reversible hydrogen electrode. Significantly, the photocathode Sn/TiO2 /Si also shows good stability due to the design of protecting layer TiO2 . This study provides a facile strategy of constructing an efficient photocathode to improve the light absorption performance and the electron transfer efficiency, exhibiting great potential in the CO2 reduction.
Collapse
Affiliation(s)
- Chengjin Li
- School of Materials and chemical, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Xiaoxia Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Qingming Zhang
- School of Materials and chemical, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Yi Xue
- School of Materials and chemical, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Zhaoyu Kuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Han Zhao
- National Taiwan University, Department of Chemistry, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chung-Yuan Mou
- National Taiwan University, Department of Chemistry, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
24
|
Abstract
Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China.,Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China.,College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, Hunan, P.R. China
| | - Gang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
25
|
King ME, Fonseca Guzman MV, Ross MB. Material strategies for function enhancement in plasmonic architectures. NANOSCALE 2022; 14:602-611. [PMID: 34985484 DOI: 10.1039/d1nr06049j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmonic materials are promising for applications in enhanced sensing, energy, and advanced optical communications. These applications, however, often require chemical and physical functionality that is suited and designed for the specific application. In particular, plasmonic materials need to access the wide spectral range from the ultraviolet to the mid-infrared in addition to having the requisite surface characteristics, temperature dependence, or structural features that are not intrinsic to or easily accessed by the noble metals. Herein, we describe current progress and identify promising strategies for further expanding the capabilities of plasmonic materials both across the electromagnetic spectrum and in functional areas that can enable new technology and opportunities.
Collapse
Affiliation(s)
- Melissa E King
- Department of Chemistry, University of Massachusetts, Lowell, Lowell, MA 01854, USA.
| | | | - Michael B Ross
- Department of Chemistry, University of Massachusetts, Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
26
|
Huang J, Zhao X, Huang X, Liang W. Understanding the mechanism of plasmon-driven water splitting: hot electron injection and a near field enhancement effect. Phys Chem Chem Phys 2021; 23:25629-25636. [PMID: 34757361 DOI: 10.1039/d1cp03509f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing plasmon-generated hot carriers to drive chemical reactions has currently become an active area of research in solar photocatalysis at the nanoscale. However, the mechanism underlying exact transfer and the generation dynamics of hot carriers, and the strategies used to further improve the quantum efficiency of the photocatalytic reaction still deserve further investigation. In this work, we perform a nonadiabatic excited-state dynamics study to depict the correlation between the reaction rate of plasmon-driven water splitting (PDWS) and the sizes of gold particles, the incident light frequency and intensity, and the near-field spatial distribution. Four model systems, H2O and Au20@H2O separately interacting with the laser field and the near field generated by the Au nanoparticle (NP) with a few nanometers in size, have been investigated. Our simulated results clearly unveil the mechanism of PDWS and hot-electron injection in a Schottky-free junction: the electrons populated on the antibonding orbitals of H2O are mandatory to drive the OH bond breaking and the strong orbital hybridization between Au20 and H2O creates the conditions for direct electron injection. We further find that the linear dependence of the reaction rate and the field amplitude only holds at a relatively weak field and it breaks down when the second OH bond begins to dissociate and field-induced water fragmentation occurs at a very intensive field, and that with the guarantee of electron injection, the water splitting rate increases with an increase in the NP size. This study will be helpful for further improving the efficiency of photochemical reactions involving plasmon-generated hot carriers and expanding the applications of hot carriers in a variety of chemical reactions.
Collapse
Affiliation(s)
- Jiaquan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China.
| | - Xinyi Zhao
- Xiamen Huaxia University, Ximen 361005, Fujian Province, China
| | - Xunkun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China.
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China.
| |
Collapse
|
27
|
Czelej K, Colmenares JC, Jabłczyńska K, Ćwieka K, Werner Ł, Gradoń L. Sustainable hydrogen production by plasmonic thermophotocatalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Optical and magneto-optical properties of rhodium nanostructures with different morphologies: Insight into the absorption bump in the UV region. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Cai YY, Tauzin LJ, Ostovar B, Lee S, Link S. Light emission from plasmonic nanostructures. J Chem Phys 2021; 155:060901. [PMID: 34391373 DOI: 10.1063/5.0053320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism of light emission from metallic nanoparticles has been a subject of debate in recent years. Photoluminescence and electronic Raman scattering mechanisms have both been proposed to explain the observed emission from plasmonic nanostructures. Recent results from Stokes and anti-Stokes emission spectroscopy of single gold nanorods using continuous wave laser excitation carried out in our laboratory are summarized here. We show that varying excitation wavelength and power change the energy distribution of hot carriers and impact the emission spectral lineshape. We then examine the role of interband and intraband transitions in the emission lineshape by varying the particle size. We establish a relationship between the single particle emission quantum yield and its corresponding plasmonic resonance quality factor, which we also tune through nanorod crystallinity. Finally, based on anti-Stokes emission, we extract electron temperatures that further suggest a hot carrier based mechanism. The central role of hot carriers in our systematic study on gold nanorods as a model system supports a Purcell effect enhanced hot carrier photoluminescence mechanism. We end with a discussion on the impact of understanding the light emission mechanism on fields utilizing hot carrier distributions, such as photocatalysis and nanothermometry.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Lawrence J Tauzin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Behnaz Ostovar
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Stephen Lee
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| |
Collapse
|
30
|
Xiang H, Wu Y, Zhu X, She M, An Q, Zhou R, Xu P, Zhao F, Yan L, Zhao Y. Highly Stable Silica-Coated Bismuth Nanoparticles Deliver Tumor Microenvironment-Responsive Prodrugs to Enhance Tumor-Specific Photoradiotherapy. J Am Chem Soc 2021; 143:11449-11461. [PMID: 34292717 DOI: 10.1021/jacs.1c03303] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiosensitizers are agents capable of amplifying injury to tumor tissues by enhancing DNA damage and fortifying production of radical oxygen species (ROS). The use of such radiosensitizers in the clinic, however, remains limited by an insufficient ability to differentiate between cancer and normal cells and by the presence of a reversible glutathione system that can diminish the amount of ROS generated. Here, to address these limitations, we design an H2O2-responsive prodrug which can be premixed with lauric acid (melting point ∼43 °C) and loaded around the surface of silica-coated bismuth nanoparticles (BSNPs) for cancer-specific photoradiotherapy. Particularly, silica coating confers BSNPs with improved chemical stability against both near-infrared light and X-rays. Upon photothermal heating, lauric acid is melted to trigger prodrug release, followed by its transformation into p-quinone methide via H2O2 stimulation to irreversibly alkylate glutathione. Concurrently, this heat boosts tumor oxygenation and helps relieve the hypoxic microenvironment. Following sequential irradiation by X-rays, BSNPs generate plentiful ROS, which act in combination with these events to synergistically induce cell death via DNA breakage and mitochondria-mediated apoptosis pathways, ultimately enabling effective inhibition of tumor growth in vivo with high tumor specificity and reduced side effects. Collectively, this work presents a promising approach for the improvement of other ROS-responsive proalkylating agents, while simultaneously highlighting a robust nanosystem for combining these prodrugs with photoradiosensitizers to realize precision photoradiotherapy.
Collapse
Affiliation(s)
- Huandong Xiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, P. R. China.,College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China.,GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, P. R. China
| | - Yuanzheng Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xianyu Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengyao She
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology, Faculty of Life and Health Science, Northwest University, Xi'an 710069, P. R. China
| | - Qi An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ruyi Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Peng Xu
- National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, P. R. China.,National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, P. R. China
| |
Collapse
|
31
|
Aluminium-Based Plasmonic Sensors in Ultraviolet. SENSORS 2021; 21:s21124096. [PMID: 34198650 PMCID: PMC8232181 DOI: 10.3390/s21124096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022]
Abstract
We theoretically investigate the surface plasmon polaritons (SPPs) generated on an Al film covered by an Al2O3 layer in the context of their application as refractive index sensors. The calculated reflection spectra indicate SPP resonance excited by ultraviolet light, which was affected by the thickness of both the metal and the oxide layers on the surface. With optimized geometry, the system can work as a tunable sensor with a wide UV wavelength range λ∼ 150–300 nm. We report a quality factor of up to 10 and a figure of merit on the order of 9, and these are comparable to the performance of more complicated UV plasmonic nanostructures and allow for the detection of a 1% change of the refraction index. The sensor can operate on the basis of either the incidence angle or wavelength changes. The effect of oxide surface roughness is also investigated with an emphasis on amplitude-based refraction index sensing.
Collapse
|
32
|
Guo H, Yue S, Wang R, Hou Y, Li M, Zhang K, Zhang Z. Design of Polarization-Independent Reflective Metalens in the Ultraviolet-Visible Wavelength Region. NANOMATERIALS 2021; 11:nano11051243. [PMID: 34066775 PMCID: PMC8150367 DOI: 10.3390/nano11051243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/02/2022]
Abstract
Flat lens or metalens, as one of the most important application branches of metasurfaces, has recently been attracting significant research interest. Various reflective and transmissive metalenses have been demonstrated in the terathertz, infrared and visible wavelength range. However, metalens operating in the ultraviolet (UV) wavelength range is rare. Moreover, the development of reflective UV metalens, the important counterpart of transmissive ones, falls far behind. In this work, with thorough investigation of material properties, we propose a reflective metalens based on silicon dioxide (SiO2) and aluminum (Al) that operates in the vacuum ultraviolet (VUV) to visible wavelength region. Four reflective metalenses were designed and optimized for wavelengths of 193, 441, 532 and 633 nm, and prominent focusing capability was observed, especially for the VUV wavelength of 193 nm. Dispersion characteristics of the metalenses were also studied within ±50 nm of the design wavelength, and negative dispersion was found for all cases. In addition, the SiO2 + Al platform can be, in principle, extended to the mid-infrared (IR) wavelength range. The reflective VUV metalens proposed in this work is expected to propel miniaturization and integration of UV optics.
Collapse
Affiliation(s)
- Huifang Guo
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (H.G.); (R.W.); (Y.H.); (M.L.); (K.Z.)
- School of Microelectronics, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Song Yue
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (H.G.); (R.W.); (Y.H.); (M.L.); (K.Z.)
- School of Microelectronics, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
- Correspondence: (S.Y.); (Z.Z.)
| | - Ran Wang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (H.G.); (R.W.); (Y.H.); (M.L.); (K.Z.)
- School of Microelectronics, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Yu Hou
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (H.G.); (R.W.); (Y.H.); (M.L.); (K.Z.)
| | - Man Li
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (H.G.); (R.W.); (Y.H.); (M.L.); (K.Z.)
- School of Microelectronics, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Kunpeng Zhang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (H.G.); (R.W.); (Y.H.); (M.L.); (K.Z.)
| | - Zichen Zhang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (H.G.); (R.W.); (Y.H.); (M.L.); (K.Z.)
- School of Microelectronics, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
- Correspondence: (S.Y.); (Z.Z.)
| |
Collapse
|
33
|
An D, Fu J, Xie Z, Xing C, Zhang B, Wang B, Qiu M. Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. J Mater Chem B 2021; 8:7076-7120. [PMID: 32648567 DOI: 10.1039/d0tb00824a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wonderful black phosphorus (BP) and some BP analogs (BPAs) have been increasingly studied for their biomedical applications owing to their fascinating properties and biodegradability, but opportunities and challenges have always coexisted in their study. Poor stability upon exposure to the natural environment is the major obstacle hampering their in vivo applications. BP/polymer and BPAs/polymer nanocomposites can not only efficiently prevent their oxidation and aggregation but also exhibit "biological activity" due to synergistic effects. In this review, we briefly describe the synthesis methods and stability strategies of BP/polymer and BPAs/polymer. Then, advances pertaining to their exciting therapeutic applications in various fields are systematically introduced, such as cancer therapy (phototherapy, drug delivery, and synergistic immunotherapy), bone regeneration, and neurogenesis. Some challenges for future clinical trials and possible directions for further study are finally discussed.
Collapse
Affiliation(s)
- Dong An
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Jianye Fu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, P. R. China
| | - Chenyang Xing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bin Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bing Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| |
Collapse
|
34
|
Ma K, Zhou X, Kan C, Xu J, Jiang M. Pt nanoparticles utilized as efficient ultraviolet plasmons for enhancing whispering gallery mode lasing of a ZnO microwire via Ga-incorporation. Phys Chem Chem Phys 2021; 23:6438-6447. [PMID: 33711087 DOI: 10.1039/d1cp00131k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introducing nanostructured metals with ultraviolet plasmonic characters has attracted much attention for fabricating high performance optoelectronic devices in the shorter wavelength spectrum. In this work, platinum nanoparticles (PtNPs) with controlled plasmonic responses in ultraviolet wavelengths were successfully synthesized. To demonstrate the promising availability, PtNPs with desired sizes were deposited on a hexagonal ZnO microwire via Ga-doping (PtNPs@ZnO:Ga MW). Under ultraviolet illumination, typical near-band-edge emission of ZnO:Ga MW was considerably enhanced; meanwhile, the photocurrent is much larger than that of the bare MW. Thereby, the enhanced phenomena of a ZnO:Ga MW is related to localized surface plasmon resonances of the decorated PtNPs. A single MW with a hexagonal cross-section can be a potential platform to construct a whispering gallery mode (WGM) cavity due to its total inner wall reflection. Given this, the influence of PtNPs via ultraviolet plasmons on lasing features of the ZnO:Ga MW was tested. The lasing characteristics are significantly enhanced, including lasing output enhancement, a clear reduction of the threshold and the improvement of the quality factor. To exploit the working principle, PtNPs serving as powerful ultraviolet plasmons can couple with ZnO:Ga excitons, accelerating radiative recombination. Since fabricating stable, typical nanostructured metals with ultraviolet plasmons remains a challenging issue, the results illustrated in the work may offer a low-cost and efficient scheme for achieving plasmon-enhanced wide-bandgap semiconductor based ultraviolet optoelectronic devices with excellent performances.
Collapse
Affiliation(s)
- Kunjie Ma
- College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | | | | | | | | |
Collapse
|
35
|
Huang Y, Zhu Y, Chen S, Xie X, Wu Z, Zhang N. Schottky Junctions with Bi Cocatalyst for Taming Aqueous Phase N 2 Reduction toward Enhanced Solar Ammonia Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003626. [PMID: 33747743 PMCID: PMC7967041 DOI: 10.1002/advs.202003626] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/11/2020] [Indexed: 05/19/2023]
Abstract
Solar-powered N2 reduction in aqueous solution is becoming a research hotspot for ammonia production. Schottky junctions at the metal/semiconductor interface have been effective to build up a one-way channel for the delivery of photogenerated electrons toward photoredox reactions. However, their applications for enhancing the aqueous phase reduction of N2 to ammonia have been bottlenecked by the difficulty of N2 activation and the competing H2 evolution reaction (HER) at the metal surface. Herein, the application of Bi with low HER activity as a robust cocatalyst for constructing Schottky-junction photocatalysts toward N2 reduction to ammonia is reported. The introduction of Bi not only boosts the interfacial electron transfer from excited photocatalysts due to the built-in Schottky-junction effect at the Bi/semiconductor interface but also synchronously facilitates the on-site N2 adsorption and activation toward solar ammonia production. The unidirectional charge transfer to the active site of Bi significantly promotes the photocatalytic N2-to-ammonia conversion efficiency by 65 times for BiOBr. In addition, utilizing Bi to enhance the photocatalytic ammonia production can be extended to other semiconductor systems. This work is expected to unlock the promise of engineering Schottky junctions toward high-efficiency solar N2-to-ammonia conversion in aqueous phase.
Collapse
Affiliation(s)
- Yewei Huang
- College of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
- College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Yisong Zhu
- College of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| | - Shuijiao Chen
- College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Xiuqiang Xie
- College of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| | - Zhenjun Wu
- College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Nan Zhang
- College of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| |
Collapse
|
36
|
Esfahani Monfared Y, Dasog M. Computational investigation of the plasmonic properties of TiN, ZrN, and HfN nanoparticles: the role of particle size, medium, and surface oxidation. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group 4 transition metal nitride (TMN) nanoparticles (NPs) display strong plasmonic responses in the visible and near-infrared regimes, exhibit high melting points and significant chemical stability, and thus are potential earth-abundant alternatives to Au and Ag based plasmonic applications. However, a detailed understanding of the relationship between TMN NP physical properties and plasmonic response is required to maximize their utility. In this study, the localized surface plasmon resonance (LSPR) frequency, bandwidth, and extinction of titanium nitride (TiN), zirconium nitride (ZrN), and hafnium nitride (HfN) NPs were examined as a function of the particle size, surface oxidation, and refractive index of the surrounding medium using finite element method (FEM). A linear redshift in the LSPR frequency and a linear increase in the associated full width at half maximum (FWHM) was observed with increasing the particle size, oxidation layer thickness, and medium refractive index. We show that the effect of surface oxidation on plasmonic properties of TMN NPs is strongly size-dependent with a significant LSPR redshift, intensity reduction, and broadening in small NPs compared with larger NPs. Furthermore, the performance and efficiency of HfN, ZrN, and TiN, as well as Au NPs for narrowband (photothermal therapy, PTT) and broadband (solar energy conversion) applications, was investigated in detail. The results indicate that narrowband and broadband photothermal performance of NPs strongly depend on the particle size, surface properties, and in case of narrowband absorption, excitation wavelength.
Collapse
Affiliation(s)
- Yashar Esfahani Monfared
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada
| | - Mita Dasog
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
37
|
LSPR biosensing for the early-stage prostate cancer detection using hydrogen bonds between PSA and antibody: Molecular dynamic and experimental study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Yadav S, Satija J. The current state of the art of plasmonic nanofibrous mats as SERS substrates: design, fabrication and sensor applications. J Mater Chem B 2021; 9:267-282. [PMID: 33241248 DOI: 10.1039/d0tb02137g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a widely used analytical tool that allows molecular fingerprint-based ultra-sensitive detection through an enhanced electromagnetic field generated by plasmonic metal nanoparticles (MNPs) by virtue of their localized surface plasmon resonance (LSPR). Although significant progress has been made in the design and fabrication of a variety of SERS substrates, MNP-decorated electrospun nanofibrous (NF) mats have attracted much attention due to their unique nanoscale structural and functional properties. This review focuses on the current state of the art in the fabrication of plasmonic NF mats with the main focus on the pre-mix, in situ, and ex situ approaches. The characteristic functional advantages and limitations of these strategies are also highlighted, which might be helpful for the research community when adopting a suitable approach. The potential of these plasmonic NF mats as a SERS-active optical sensor substrate, and their performance parameters such as the limit of detection, analytical range, and enhancement factor, and real-world applications are also discussed. The summary and futuristic discussion in this review might be of significant value in developing plasmonic NF mat-based SERS-active point-of-care diagnostic chips for a wide range of applications.
Collapse
Affiliation(s)
- Sangeeta Yadav
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Jitendra Satija
- Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
39
|
Cuscunà M, Manoccio M, Esposito M, Scuderi M, Nicotra G, Tarantini I, Melcarne A, Tasco V, Losurdo M, Passaseo A. Gallium chiral nanoshaping for circular polarization handling. MATERIALS HORIZONS 2021; 8:187-196. [PMID: 34821297 DOI: 10.1039/d0mh01078b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work we report the local growth of ordered arrays of 3D core-shell chiral nanohelices based on plasmonic gallium metal. The structures can be engineered in a single step using focused ion beam induced deposition, where a Ga+ ion source is used to shape the metallic nanohelix core, while the dielectric precursor is dissociated to create dielectric shells. The solubility of gallium in the different investigated dielectric matrices controls the core-shell thickness ratio of the nanohelices. The chiral plasmonic behaviour of these gallium-based nanostructures is experimentally measured by circularly polarized light transmission through nanostructure arrays and compared with numerical simulations. Large chiroptical effects in the visible range are demonstrated due to the plasmonic effects arising from gallium nanoclusters in the core.
Collapse
Affiliation(s)
- Massimo Cuscunà
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fazio E, Gökce B, De Giacomo A, Meneghetti M, Compagnini G, Tommasini M, Waag F, Lucotti A, Zanchi CG, Ossi PM, Dell’Aglio M, D’Urso L, Condorelli M, Scardaci V, Biscaglia F, Litti L, Gobbo M, Gallo G, Santoro M, Trusso S, Neri F. Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2317. [PMID: 33238455 PMCID: PMC7700616 DOI: 10.3390/nano10112317] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Laser synthesis emerges as a suitable technique to produce ligand-free nanoparticles, alloys and functionalized nanomaterials for catalysis, imaging, biomedicine, energy and environmental applications. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment and conjugate a large variety of nanostructures in a scalable and clean way. In this work, we give an overview on the fundamentals of pulsed laser synthesis of nanocolloids and new information about its scalability towards selected applications. Biomedicine, catalysis and sensing are the application areas mainly discussed in this review, highlighting advantages of laser-synthesized nanoparticles for these types of applications and, once partially resolved, the limitations to the technique for large-scale applications.
Collapse
Affiliation(s)
- Enza Fazio
- Department of Mathematical and Computational Sciences, Physics and Earth Physics, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (G.G.); (F.N.)
| | - Bilal Gökce
- Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany; (B.G.); (F.W.)
| | - Alessandro De Giacomo
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
- CNR-NANOTEC, c/o Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
| | - Moreno Meneghetti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (M.M.); (F.B.); (L.L.); (M.G.)
| | - Giuseppe Compagnini
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.C.); (L.D.); (M.C.); (V.S.)
| | - Matteo Tommasini
- Department of Chemistry, Materials, Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy; (M.T.); (A.L.); (C.G.Z.)
| | - Friedrich Waag
- Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany; (B.G.); (F.W.)
| | - Andrea Lucotti
- Department of Chemistry, Materials, Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy; (M.T.); (A.L.); (C.G.Z.)
| | - Chiara Giuseppina Zanchi
- Department of Chemistry, Materials, Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy; (M.T.); (A.L.); (C.G.Z.)
| | - Paolo Maria Ossi
- Department of Energy & Center for NanoEngineered Materials and Surfaces—NEMAS, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy;
| | - Marcella Dell’Aglio
- CNR-NANOTEC, c/o Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
| | - Luisa D’Urso
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.C.); (L.D.); (M.C.); (V.S.)
| | - Marcello Condorelli
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.C.); (L.D.); (M.C.); (V.S.)
| | - Vittorio Scardaci
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.C.); (L.D.); (M.C.); (V.S.)
| | - Francesca Biscaglia
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (M.M.); (F.B.); (L.L.); (M.G.)
| | - Lucio Litti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (M.M.); (F.B.); (L.L.); (M.G.)
| | - Marina Gobbo
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (M.M.); (F.B.); (L.L.); (M.G.)
| | - Giovanni Gallo
- Department of Mathematical and Computational Sciences, Physics and Earth Physics, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (G.G.); (F.N.)
| | - Marco Santoro
- STMicroelectronics S.R.L., Stradale Primosole 37, 95121 Catania, Italy;
| | - Sebastiano Trusso
- CNR-IPCF Istituto per i Processi Chimico-Fisici, 98053 Messina, Italy;
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physics and Earth Physics, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (G.G.); (F.N.)
| |
Collapse
|
41
|
Zhang M, Wang X, Huang Z, Rao W. Liquid Metal Based Flexible and Implantable Biosensors. BIOSENSORS 2020; 10:E170. [PMID: 33182535 PMCID: PMC7696291 DOI: 10.3390/bios10110170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022]
Abstract
Biosensors are the core elements for obtaining significant physiological information from living organisms. To better sense life information, flexible biosensors and implantable sensors that are highly compatible with organisms are favored by researchers. Moreover, materials for preparing a new generation of flexible sensors have also received attention. Liquid metal is a liquid-state metallic material with a low melting point at or around room temperature. Owing to its high electrical conductivity, low toxicity, and superior fluidity, liquid metal is emerging as a highly desirable candidate in biosensors. This paper is dedicated to reviewing state-of-the-art applications in biosensors that are expounded from seven aspects, including pressure sensor, strain sensor, gas sensor, temperature sensor, electrical sensor, optical sensor, and multifunctional sensor, respectively. The fundamental scientific and technological challenges lying behind these recommendations are outlined. Finally, the perspective of liquid metal-based biosensors is present, which stimulates the upcoming design of biosensors.
Collapse
Affiliation(s)
- Mingkuan Zhang
- Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China; (M.Z.); (X.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaohong Wang
- Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China; (M.Z.); (X.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiping Huang
- Department of Mechanical Engineering, Imperial College London, London SW7 2BU, UK;
| | - Wei Rao
- Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China; (M.Z.); (X.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Wang X, Choi J, Liu J, Malis O, Li X, Bermel P, Zhang X, Wang H. 3D Hybrid Trilayer Heterostructure: Tunable Au Nanorods and Optical Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45015-45022. [PMID: 32960570 DOI: 10.1021/acsami.0c14937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Engineering plasmonic nanostructures from three dimensions (3D) is very attractive toward controllable and tunable nanophotonic components and devices. Herein, Au-based trilayer heterostructures composed of a dielectric spacer sandwiched by hybrid Au-TiN vertically aligned nanocomposite (VAN) nanoplasmonic claddings are demonstrated with a broad range of geometries and property tuning. Two types of spacer layers, that is, a pure dielectric BaTiO3 layer and a hybrid plasmonic Au-BaTiO3 VAN layer, contribute to the tuning of the Au nanorod dimension. Such geometrical variations of Au nanostructures originate from the surface energy and lattice strain tuned by the spacer layers. Optical measurements and numerical simulations suggest the change of the localized surface plasmon resonance which is strongly affected by the tailored Au nanorods as either separated or channeled. The uniaxial dielectric tensors suggest a tunable hyperbolic property affected by such a metal-insulator-metal trilayer stack. The complex 3D heterostructures offer additional tuning parameters and design flexibilities in hybrid plasmonic metamaterials toward potential applications in light harvesting, sensing, and nanophotonic devices.
Collapse
Affiliation(s)
- Xuejing Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Junho Choi
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Juncheng Liu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Oana Malis
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaoqin Li
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Peter Bermel
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xinghang Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
43
|
Fontaine N, Picard-Lafond A, Asselin J, Boudreau D. Thinking outside the shell: novel sensors designed from plasmon-enhanced fluorescent concentric nanoparticles. Analyst 2020; 145:5965-5980. [PMID: 32815925 DOI: 10.1039/d0an01092h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The alteration of photophysical properties of fluorophores in the vicinity of a metallic nanostructure, a phenomenon termed plasmon- or metal-enhanced fluorescence (MEF), has been investigated extensively and used in a variety of proof-of-concept demonstrations over the years. A particularly active area of development in this regard has been the design of nanostructures where fluorophore and metallic core are held in a stable geometry that imparts improved luminosity and photostability to a plethora of organic fluorophores. This minireview presents an overview of MEF-based concentric core-shell sensors developed in the past few years. These architectures expand the range of applications of nanoparticles (NPs) beyond the uses possible with fluorescent molecules. Design aspects that are being described include the influence of the nanocomposite structure on MEF, notably the dependence of fluorescence intensity and lifetime on the distance to the plasmonic core. The chemical composition of nanocomposites as a design feature is also discussed, taking as an example the use of non-noble plasmonic metals such as indium as core materials to enhance multiple fluorophores throughout the UV-Vis range and tune the sensitivity of halide-sensing fluorophores operating on the principle of collisional quenching. Finally, the paper describes how various solid substrates can be functionalized with MEF-based nanosensors to bestow them with intense and photostable pH-sensitive properties for use in fields such as medical therapy and diagnostics, dentistry, biochemistry and microfluidics.
Collapse
Affiliation(s)
- Nicolas Fontaine
- Department of Chemistry, Université Laval, 1045 avenue de la Médecine, Québec, CanadaG1V 0A6.
| | | | | | | |
Collapse
|
44
|
A metal-enhanced fluorescence sensing platform for selective detection of picric acid in aqueous medium. Anal Chim Acta 2020; 1129:12-23. [DOI: 10.1016/j.aca.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
|
45
|
Chen YP, Lai CC, Tsai WS. Full-color based on bismuth core-shell nanoparticles in one-step fabrication. OPTICS EXPRESS 2020; 28:24511-24525. [PMID: 32906991 DOI: 10.1364/oe.398903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Plasmonic resonances in metallic nanostructures are promising for the structure-dependent color-rendering effect. In this study, bismuth is selected as an alternative plasmonic material due to its large tunable range from near-ultraviolet to near-infrared. Various sizes of core-shell bismuth nanoparticles are fabricated on a large-area silicon substrate using a one-step thermal evaporation deposition process. Particle diameters, cross-sections, and arrangement are characterized at 12 featured sections, which reveal spectral shifts and full visible colors in a hue order with a color gamut that is close to sRGB. Color palettes on the chromaticity coordinates rendered from both measured and simulation reflection spectra are in very good accordance with the microscopic image colors of all sections.
Collapse
|
46
|
Yu H, Zhang P, Lu S, Yang S, Peng F, Chang WS, Liu K. Synthesis and Multipole Plasmon Resonances of Spherical Aluminum Nanoparticles. J Phys Chem Lett 2020; 11:5836-5843. [PMID: 32610015 DOI: 10.1021/acs.jpclett.0c01754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In comparison to Au and Ag, the high plasma frequency of Al allows multipole plasmon resonances from the ultraviolet to visible (UV-vis) range to be achieved by its nanoparticles with much smaller sizes and even a spherical shape. Herein, we report the high-supersaturation growth of monodisperse spherical Al nanoparticles (Al NPs) from 84 to 200 nm and their distinctive size-dependent multipole plasmon resonance properties in the UV-vis range. Linear relationships between the particle diameter and resonance peak positions of the dipole, quadrupole, and octupole were observed experimentally and confirmed by finite-difference time-domain (FDTD) calculations. FDTD calculations further reveal the high scattering-to-extinction ratio of multipole modes for the particle diameters >100 nm. The extinction coefficients of spherical Al NPs with different diameters were also determined. The excellent matching between the experimental and simulated results in the present work not only offers a standard for the synthesis and characterization of high-quality Al NPs but also provides new insight into the multipole plasmonic properties of Al NPs for advanced optical and sensing applications.
Collapse
Affiliation(s)
- Hua Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Peng Zhang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shaoyong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Fei Peng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei-Shun Chang
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
47
|
He Z, Li Z, Li C, Xue W, Cui W. Ultra-high sensitivity sensing based on ultraviolet plasmonic enhancements in semiconductor triangular prism meta-antenna systems. OPTICS EXPRESS 2020; 28:17595-17610. [PMID: 32679965 DOI: 10.1364/oe.395640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Silicon (Si), germanium (Ge), and gallium arsenide (GaAs) are familiar semiconductors that always act in the role of optical dielectrics. However, these semiconductors also have plasmonic behaviors in ultraviolet (UV) ranges due to the strong interband transitions or valence electrons. And few studies are aimed at investigating plasmonic properties in the semiconductor at the nanoscale. In this work, we discuss UV plasmonics and sensing properties in single and dimer Si, Ge, and GaAs triangular prism meta-antenna systems. The results show that obvious local surface plasmon resonances (LSPRs) can be realized in the proposed triangular prism meta-antennas, and the resonant wavelength, electromagnetic field distribution, surface charge distribution, and surface current density can be effectively tuned by structural and material parameters. In addition, we also find that the Si triangular prism meta-antenna shows more intense plasmonic responses in UV ranges than that in the Ge or GaAs triangular prism nanostructures. Especially, the phase difference between the triangular prism nanostructure and light source can effectively regulate the symbol and value of the surface charge. Moreover, the great enhancement of electric field can be seen in the dimer triangular prism meta-antennas when the distance of the gap is g<5 nm, especially g=1 nm. The most interesting result is that the maximum of refractive index sensitivity s and figure of merit (FoM) are greatly enlarged in dimer triangular prism meta-antennas. Particularly, the sensitivity can reach up to 215 nm/RIU in the dimer GaAs triangular prism meta-antennas, which is improved more than one order of magnitude. These research results may play important roles in applications of the photo detecting, plasmonic sensing and disinfecting in UV ranges.
Collapse
|
48
|
Karaballi RA, Monfared YE, Dasog M. Overview of Synthetic Methods to Prepare Plasmonic Transition-Metal Nitride Nanoparticles. Chemistry 2020; 26:8499-8505. [PMID: 32068296 DOI: 10.1002/chem.201905217] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 02/04/2023]
Abstract
The search for new plasmonic materials that are low-cost, chemically and thermally stable, and exhibit low optical losses has garnered significant attention among researchers. Recently, metal nitrides have emerged as promising alternatives to conventional, noble-metal-based plasmonic materials, such as silver and gold. Many of the initial studies on metal nitrides have focused on computational prediction of the plasmonic properties of these materials. In recent years, several synthetic methods have been developed to enable empirical analysis. This review highlights synthetic techniques for the preparation of plasmonic metal nitride nanoparticles, which are predominantly free-standing, by using solid-state and solid-gas phase reactions, nonthermal and arc plasma methods, and laser ablation. The physical properties of the nanoparticles, such as shape, size, crystallinity, and optical response, obtained with such synthetic methods are also summarized.
Collapse
Affiliation(s)
- Reem A Karaballi
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada
| | - Yashar E Monfared
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada
| | - Mita Dasog
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
49
|
Catalán-Gómez S, Bran C, Vázquez M, Vázquez L, Pau JL, Redondo-Cubero A. Plasmonic coupling in closed-packed ordered gallium nanoparticles. Sci Rep 2020; 10:4187. [PMID: 32144349 PMCID: PMC7060194 DOI: 10.1038/s41598-020-61090-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Plasmonic gallium (Ga) nanoparticles (NPs) are well known to exhibit good performance in numerous applications such as surface enhanced fluorescence and Raman spectroscopy or biosensing. However, to reach the optimal optical performance, the strength of the localized surface plasmon resonances (LSPRs) must be enhanced particularly by suitable narrowing the NP size distribution among other factors. With this purpose, our last work demonstrated the production of hexagonal ordered arrays of Ga NPs by using templates of aluminium (Al) shallow pit arrays, whose LSPRs were observed in the VIS region. The quantitative analysis of the optical properties by spectroscopic ellipsometry confirmed an outstanding improvement of the LSPR intensity and full width at half maximum (FWHM) due to the imposed ordering. Here, by engineering the template dimensions, and therefore by tuning Ga NPs size, we expand the LSPRs of the Ga NPs to cover a wider range of the electromagnetic spectrum from the UV to the IR regions. More interestingly, the factors that cause this optical performance improvement are studied with the universal plasmon ruler equation, supported with discrete dipole approximation simulations. The results allow us to conclude that the plasmonic coupling between NPs originated in the ordered systems is the main cause for the optimized optical response.
Collapse
Affiliation(s)
- S Catalán-Gómez
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain.
| | - C Bran
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049, Madrid, Spain
| | - M Vázquez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049, Madrid, Spain
| | - L Vázquez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049, Madrid, Spain
| | - J L Pau
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain
| | - A Redondo-Cubero
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain
| |
Collapse
|
50
|
Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903391. [PMID: 31583849 DOI: 10.1002/smll.201903391] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/21/2019] [Indexed: 05/20/2023]
Abstract
Liquid metals are emerging as fluidic inorganic materials in various research fields. Micro- and nanoparticles of Ga and its alloys have received particular attention in the last decade due to their non toxicity and accessibility in ambient conditions as well as their interesting chemical, physical, mechanical, and electrical properties. Unique features such as a fluidic nature and self-passivating oxide skin make Ga-based liquid metal particles (LMPs) distinguishable from conventional inorganic particles in the context of synthesis and applications. Here, recent advances in the bottom-up and top-down synthetic methods of Ga-based LMPs, their physicochemical properties, and their applications are summarized. Finally, the current status of the LMPs is highlighted and perspectives on future directions are also provided.
Collapse
Affiliation(s)
- Hyunsun Song
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taekyung Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Seohyun Kang
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Haneul Jin
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|