1
|
Liu X, Guo P, Yu Q, Gao SQ, Yuan H, Tan X, Lin YW. Site-specific incorporation of 19F-nulcei at protein C-terminus to probe allosteric conformational transitions of metalloproteins. Commun Biol 2024; 7:1613. [PMID: 39627324 PMCID: PMC11615248 DOI: 10.1038/s42003-024-07331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Allosteric conformational change is an important paradigm in the regulation of protein function, which is typically triggered by the binding of small cofactors, metal ions or protein partners. Here, we found those conformational transitions can be effectively monitored by 19F NMR, facilitated by a site-specific 19F incorporation strategy at the protein C-terminus using asparaginyl endopeptidase (AEP). Three case studies show that C-terminal 19F-nuclei can reveal protein dynamics not only adjacent but also distal to C-terminus, including those occurring in a hemoprotein neuroglobin (Ngb), calmodulin (CaM), and a cobalt metalloregulator (CoaR) responding to both cobalt and tetrapyrrole. In Ngb, the heme orientation disorder is affected by missense mutations that perturb backbone rigidity or surface charges close to the heme axial ligands. In CaM, the C-terminal 19F-nuclei is an ideal probe for detecting the binding states of Ca2+, peptides and inhibitors. Furthermore, multiple 19F-moieties were incorporated into the two domains of CoaR, revealing the intrinsically disordered C-terminal metal binding tail might be an allosteric conformational switch to maintain cobalt homeostasis and balance corrinoid biosynthesis. This study demonstrates that the AEP-based 19F-modification strategy can be applied to various targets to study allosteric regulation, especially for those biological processes modulated by the protein C-terminus.
Collapse
Affiliation(s)
- Xichun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China.
| | - Pengfei Guo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Qiufan Yu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China.
- Key Lab of Protein Structure and Function of Universities in Hunan Province, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
2
|
Toscano G, Rosati M, Barbieri L, Maier K, Banci L, Luchinat E, Konrat R, Lichtenecker RJ. The synthesis of specifically isotope labelled fluorotryptophan and its use in mammalian cell-based protein expression for 19F-NMR applications. Chem Commun (Camb) 2024; 60:14188-14191. [PMID: 39512115 DOI: 10.1039/d4cc04789c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
19F nuclei serve as versatile sensors for detecting protein interactions and dynamics in biomolecular NMR spectroscopy. Although various methods have been developed to incorporate fluorine-containing aromatic residues into proteins using E. coli or cell-free expression techniques, similar approaches for protein production in mammalian cell lines remain limited. Here, we present a cost-effective synthetic route to obtain selectively deuterated, carbon-13 labeled fluorotryptophan and demonstrate its use in introducing 19F-13C spin pairs into carbonic anhydrase 2 and superoxide dismutase, following an expression protocol utilizing HEK cells.
Collapse
Affiliation(s)
- Giorgia Toscano
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Martina Rosati
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Letizia Barbieri
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
| | - Katharina Maier
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
| | - Lucia Banci
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Enrico Luchinat
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030-Vienna, Austria
- Mag-Lab, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| | - Roman J Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Mag-Lab, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| |
Collapse
|
3
|
Ghosh P, Betz K, Gutfreund C, Pal A, Marx A, Srivatsan SG. Structures of a DNA Polymerase Caught while Incorporating Responsive Dual-Functional Nucleotide Probes. Angew Chem Int Ed Engl 2024:e202414319. [PMID: 39428682 DOI: 10.1002/anie.202414319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Functionalizing nucleic acids using DNA polymerases is essential in biophysical and biotechnology applications. This study focuses on understanding how DNA polymerases recognize and incorporate nucleotides with diverse chemical modifications, aiming to develop advanced nucleotide probes. We present the crystal structures of ternary complexes of Thermus aquaticus DNA polymerase (KlenTaq) with C5-heterocycle-modified environment-sensitive 2'-deoxyuridine-5'-triphosphate (dUTP) probes. These nucleotides include SedUTP, BFdUTP and FBFdUTP, which bear selenophene, benzofuran and fluorobenzofuran, respectively, at the C5 position of uracil, and exhibit high conformational sensitivity. SedUTP and FBFdUTP serve as dual-app probes, combining a fluorophore with X-ray anomalous scattering Se or 19F NMR labels. Our study reveals that the size of the heterocycle influences how DNA polymerase families A and B incorporate these modified nucleotides during single nucleotide incorporation and primer extension reactions. Remarkably, the responsiveness of FBFdUTP enabled real-time monitoring of the binary complex formation and polymerase activity through fluorescence and 19F NMR spectroscopy. Comparative analysis of incorporation profiles, fluorescence, 19F NMR data, and crystal structures of ternary complexes highlights the plasticity of the enzyme. Key insight is provided into the role of gatekeeper amino acids (Arg660 and Arg587) in accommodating and processing these modified substrates, offering a structural basis for next-generation nucleotide probe development.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Cédric Gutfreund
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Arindam Pal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
4
|
Wang J, Hong D, Li J, Wang L, Xie Y, Da J, Liu Y. Activatable Multiplexed 19F NMR Probes for Dynamic Monitoring of Biomarkers Associated with Cellular Senescence. ACS MEASUREMENT SCIENCE AU 2024; 4:577-584. [PMID: 39430968 PMCID: PMC11487673 DOI: 10.1021/acsmeasuresciau.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/22/2024]
Abstract
Simultaneous detection of multiple biomarkers is crucial to achieve specific and dynamic analysis of cellular senescence, given its intrinsic high heterogeneity. Current approaches for senescence detection largely rely on fluorescence imaging, but fluorescent probes inevitably suffer from issues including autofluorescence and spectral overlap when being applied for the simultaneous detection of multiple biomarkers. Herein, we report an alternative strategy and design activatable multiplexed senoprobes based on 19F NMR for dynamic monitoring of cellular senescence. Differing from previous approaches, our strategy has two unique advantages. First, this strategy utilizes the changes in the 19F chemical shift as the signal output, which features by its fingerprint and quantifiable characters, thereby significantly enhancing the detection throughput toward biomarkers with minimized spectral overlapping. Second, the background signal is minimized, benefiting from the extremely low abundance of F in biological samples, and the detection accuracy can thus be improved. As a proof of concept, two activatable 19F NMR molecular probes are synthesized that specially respond to two key senescence-associated biomarkers (β-gal and ROS) and have been successfully demonstrated for dynamical and quantitative assessment of the changes of these biomarkers in different cellular models of senescence, without causing obvious cytotoxicity. Owing to the flexible molecular design, this work may offer a useful platform to create diversified 19F NMR senoprobes for deep understanding of cellular senescence across a wide range of aging-related diseases.
Collapse
Affiliation(s)
- Jian Wang
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Donghui Hong
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jun Da
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory
(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Aptamer Engineering
Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
5
|
Jordan C, Hayashi T, Löbbert A, Fan J, Teschers CS, Siebold K, Aufiero M, Pape F, Campbell E, Axer A, Bussmann K, Bergander K, Köhnke J, Gossert AD, Gilmour R. Probing the Origin of Affinity in the GM1-Cholera Toxin Complex through Site-Selective Editing with Fluorine. ACS CENTRAL SCIENCE 2024; 10:1481-1489. [PMID: 39220706 PMCID: PMC11363330 DOI: 10.1021/acscentsci.4c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Carbohydrates regulate an inimitable spectrum of biological functions, yet successfully leveraging this therapeutic avenue continues to be frustrated by low affinities with glycan-specific proteins. A conspicuous exception is the interaction of monosialotetrahexosylganglioside (GM1) with the carbohydrate-recognition domain of cholera toxin from Vibrio cholerae: this is one of the strongest protein-carbohydrate interactions known. To establish the importance of a long-discussed key hydrogen bond between C2 of the terminal galactose of GM1 and the B subunit pentamer of cholera toxin (CTB5), the total synthesis of a selectively fluorinated GM1 epitope was conducted in 19 steps. This process of molecular editing (Oδ-H → Fδ-) strategically deletes the hydrogen bond donor while retaining the localized partial charge of the substituent. Comparison of the binding affinity of F-GM1/CTB5 with native GM1, the GM1 carbohydrate epitope, and meta-mononitrophenyl-α-galactoside (MNPG) revealed a trend that fully supports the importance of this key interaction. These NMR data suggest that F-GM1 binds in a closely similar conformation as native GM1. Crystallographic analyses of the complex also confirm that the OH → F bioisosteric exchange at C2 of the terminal galactose induces a ring conformation that eliminates key hydrogen bonds: these interactions are compensated for by inter- and intramolecular fluorine-specific interactions.
Collapse
Affiliation(s)
- Christina Jordan
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Taiki Hayashi
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | | | - Jingran Fan
- Institut
für Lebensmittelchemie, Leibniz Universität
Hannover, 30167 Hannover, Germany
| | | | - Kathrin Siebold
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Marialuisa Aufiero
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Felix Pape
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Emma Campbell
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Alexander Axer
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Kathrin Bussmann
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Klaus Bergander
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Jesko Köhnke
- Institut
für Lebensmittelchemie, Leibniz Universität
Hannover, 30167 Hannover, Germany
| | | | - Ryan Gilmour
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
6
|
Hanson GSM, Coxon CR. Fluorinated Tags to Study Protein Conformation and Interactions Using 19F NMR. Chembiochem 2024; 25:e202400195. [PMID: 38744671 DOI: 10.1002/cbic.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The incorporation of fluorine atoms into a biomacromolecule provides a background-free and environmentally sensitive reporter of structure, conformation and interactions using 19F NMR. There are several methods to introduce the 19F reporter - either by synthetic incorporation via solid phase peptide synthesis; by suppressing the incorporation or biosynthesis of a natural amino acid and supplementing the growth media with a fluorinated counterpart during protein expression; and by genetic code expansion to add new amino acids to the amino acid alphabet. This review aims to discuss progress in the field of introducing fluorinated handles into biomolecules for NMR studies by post-translational bioconjugation or 'fluorine-tagging'. We will discuss the range of chemical tagging 'warheads' that have been used, explore the applications of fluorine tags, discuss ways to enhance reporter sensitivity and how the signal to noise ratios can be boosted. Finally, we consider some key challenges of the field and offer some ideas for future directions.
Collapse
Affiliation(s)
- George S M Hanson
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| |
Collapse
|
7
|
Gandra UR, Axthelm J, Bellstedt P, Singh A, Schiller A, Mohideen MIH, Mandal AK. 19F NMR Probes: Molecular Logic Material Implications for the Anion Discrimination and Chemodosimetric Approach for Selective Detection of H 2O 2. Anal Chem 2024; 96:11232-11238. [PMID: 38961620 DOI: 10.1021/acs.analchem.4c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Detection and discrimination of similar solvation energies of bioanalytes are vital in medical and practical applications. Currently, various advanced techniques are equipped to recognize these crucial bioanalytes. Each strategy has its own benefits and limitations. One-dimensional response, lack of discrimination power for anions, and reactive oxygen species (ROS) generally limit the utilized fluorescent probe. Therefore, a cutting-edge, refined method is expected to conquer these limitations. The use of 19F NMR spectroscopy for detecting and discriminating essential analytes in practical applications is an emerging technique. As an alternative strategy, we report two fluorinated boronic acid-appended pyridinium salts 5-F-o-BBBpy (1) and 5-CF3-o-BBBpy (2). Probe (1) acts as a chemosensor for identifying and discriminating inorganic anions with similar solvation energies with strong bidirectional 19F shifts in the lower ppm range. Probe (2) turns as a chemo dosimeter for the selective detection and precise quantification of hydrogen peroxide (H2O2) among other competing ROS. To demonstrate real-life applicability, we successfully quantified H2O2 via probe (2) in different pharmaceutical, dental, and cosmetic samples. We found that tuning the -F/-CF3 moiety to the arene boronic acid enables the π-conjugation, a crucial prerequisite for the discrimination of anions and H2O2. Characteristic 19F NMR fingerprints in the presence of anions revealed a complementary implication (IMP)/not implication (NIMP) logic function. Finally, the 16 distinct binary Boolean operations on two logic values are defined for "functional completeness" using the special property of the IMP gate. Boolean logic's ability to handle information by utilizing characteristic 19F NMR fingerprints has not been seen previously in a single chemical platform for detecting and differentiating such anions.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Department of Chemistry, Khalifa University of Science and Technology, Main Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jörg Axthelm
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Peter Bellstedt
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Akanksha Singh
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alexander Schiller
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - M Infas H Mohideen
- Department of Chemistry, Khalifa University of Science and Technology, Main Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Amal Kumar Mandal
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Jordan C, Siebold K, Priegue P, Seeberger PH, Gilmour R. A Fluorinated Sialic Acid Vaccine Lead Against Meningitis B and C. J Am Chem Soc 2024; 146:15366-15375. [PMID: 38768956 PMCID: PMC11157539 DOI: 10.1021/jacs.4c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Inspired by the specificity of α-(2,9)-sialyl epitopes in bacterial capsular polysaccharides (CPS), a doubly fluorinated disaccharide has been validated as a vaccine lead against Neisseria meningitidis serogroups C and/or B. Emulating the importance of fluorine in drug discovery, this molecular editing approach serves a multitude of purposes, which range from controlling α-selective chemical sialylation to mitigating competing elimination. Conjugation of the disialoside with two carrier proteins (CRM197 and PorA) enabled a semisynthetic vaccine to be generated; this was then investigated in six groups of six mice. The individual levels of antibodies formed were compared and classified as highly glycan-specific and protective. All glycoconjugates induced a stable and long-term IgG response and binding to the native CPS epitope was achieved. The generated antibodies were protective against MenC and/or MenB; this was validated in vitro by SBA and OPKA assays. By merging the fluorinated glycan epitope of MenC with an outer cell membrane protein of MenB, a bivalent vaccine against both serogroups was created. It is envisaged that validation of this synthetic, fluorinated disialoside bioisostere as a potent antigen will open new therapeutic avenues.
Collapse
Affiliation(s)
- Christina Jordan
- Institute
for Organic Chemistry, University of Münster, Corrensstraße 36, Münster 48149, Germany
| | - Kathrin Siebold
- Institute
for Organic Chemistry, University of Münster, Corrensstraße 36, Münster 48149, Germany
| | - Patricia Priegue
- Department
of Biomolecular Systems, Max Planck Institute
for Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Arnimallee 22, Berlin 14195, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
for Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Arnimallee 22, Berlin 14195, Germany
| | - Ryan Gilmour
- Institute
for Organic Chemistry, University of Münster, Corrensstraße 36, Münster 48149, Germany
| |
Collapse
|
9
|
Roy S, Majee P, Sudhakar S, Mishra S, Kalia J, Pradeepkumar PI, Srivatsan SG. Structural elucidation of HIV-1 G-quadruplexes in a cellular environment and their ligand binding using responsive 19F-labeled nucleoside probes. Chem Sci 2024; 15:7982-7991. [PMID: 38817587 PMCID: PMC11134374 DOI: 10.1039/d4sc01755b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Understanding the structure and recognition of highly conserved regulatory segments of the integrated viral DNA genome that forms unique topologies can greatly aid in devising novel therapeutic strategies to counter chronic infections. In this study, we configured a probe system using highly environment-sensitive nucleoside analogs, 5-fluoro-2'-deoxyuridine (FdU) and 5-fluorobenzofuran-2'-deoxyuridine (FBFdU), to investigate the structural polymorphism of HIV-1 long terminal repeat (LTR) G-quadruplexes (GQs) by fluorescence and 19F NMR. FdU and FBFdU, serving as hairpin and GQ sensors, produced distinct spectral signatures for different GQ topologies adopted by LTR G-rich oligonucleotides. Importantly, systematic 19F NMR analysis in Xenopus laevis oocytes gave unprecedented information on the structure adopted by the LTR G-rich region in the cellular environment. The results indicate that it forms a unique GQ-hairpin hybrid architecture, a potent hotspot for selective targeting. Furthermore, structural models generated using MD simulations provided insights on how the probe system senses different GQs. Using the responsiveness of the probes and Taq DNA polymerase stop assay, we monitored GQ- and hairpin-specific ligand interactions and their synergistic inhibitory effect on the replication process. Our findings suggest that targeting GQ and hairpin motifs simultaneously using bimodal ligands could be a new strategy to selectively block the viral replication.
Collapse
Affiliation(s)
- Sarupa Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr Homi Bhabha Road Pune 411008 India
| | - Priyasha Majee
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Satyajit Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - Jeet Kalia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr Homi Bhabha Road Pune 411008 India
| |
Collapse
|
10
|
Wang C, Gu G, Zhang W, Wu J, Zhao Y. A high-performance chiral 19F-labeled probe with an increased structural twisting. Chem Commun (Camb) 2024; 60:5082-5085. [PMID: 38639106 DOI: 10.1039/d4cc01313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We developed a new strategy to enhance the chiral discrimination capability of 19F-labeled probes by tuning the torsion angle of the probe's backbone, allowing for the resolution of challenging analytes. Its versatility is demonstrated through the superior performance and the wide analyte scope.
Collapse
Affiliation(s)
- Chenyang Wang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.
| | - Guangxing Gu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.
| | - Wei Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanchuan Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
11
|
Chai Z, Li C. In-Cell 19F NMR of Proteins: Recent Progress and Future Opportunities. Chemistry 2024; 30:e202303988. [PMID: 38269421 DOI: 10.1002/chem.202303988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
In vitro, 19F NMR methodology is preferably selected as a complementary and straightforward method for unveiling the conformations, dynamics, and interactions of biological molecules. Its effectiveness in vivo has seen continuous improvement, addressing challenges faced by conventional heteronuclear NMR experiments on structured proteins, such as severe line broadening, low signal-to-noise ratio, and background signals. Herein, we summarize the distinctive advantages of 19F NMR, along with recent progress in sample preparation and applications within the realm of in-cell NMR. Additionally, we offer insights into the future directions and prospects of this methodology based on our understanding.
Collapse
Affiliation(s)
- Zhaofei Chai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| |
Collapse
|
12
|
Khatik SY, Roy S, Srivatsan SG. Synthesis and Enzymatic Incorporation of a Dual-App Nucleotide Probe That Reports Antibiotics-Induced Conformational Change in the Bacterial Ribosomal Decoding Site RNA. ACS Chem Biol 2024; 19:687-695. [PMID: 38407057 DOI: 10.1021/acschembio.3c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Natural nucleosides are nonfluorescent and do not have intrinsic labels that can be readily utilized for analyzing nucleic acid structure and recognition. In this regard, researchers typically use the so-called "one-label, one-technique" approach to study nucleic acids. However, we envisioned that a responsive dual-app nucleoside system that harnesses the power of two complementing biophysical techniques namely, fluorescence and 19F NMR, will allow the investigation of nucleic acid conformations more comprehensively than before. We recently introduced a nucleoside analogue by tagging trifluoromethyl-benzofuran at the C5 position of 2'-deoxyuridine, which serves as an excellent fluorescent and 19F NMR probe to study G-quadruplex and i-motif structures. Taking forward, here, we report the development of a ribonucleotide version of the dual-app probe to monitor antibiotics-induced conformational changes in RNA. The ribonucleotide analog is derived by conjugating trifluoromethyl-benzofuran at the C5 position of uridine (TFBF-UTP). The analog is efficiently incorporated by T7 RNA polymerase to produce functionalized RNA transcripts. Detailed photophysical and 19F NMR of the nucleoside and nucleotide incorporated into RNA oligonucleotides revealed that the analog is structurally minimally invasive and can be used for probing RNA conformations by fluorescence and 19F NMR techniques. Using the probe, we monitored and estimated aminoglycoside antibiotics binding to the bacterial ribosomal decoding site RNA (A-site, a very important RNA target). While 2-aminopurine, a famous fluorescent nucleic acid probe, fails to detect structurally similar aminoglycoside antibiotics binding to the A-site, our probe reports the binding of different aminoglycosides to the A-site. Taken together, our results demonstrate that TFBF-UTP is a very useful addition to the nucleic acid analysis toolbox and could be used to devise discovery platforms to identify new RNA binders of therapeutic potential.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sarupa Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
13
|
Schweipert M, Nehls T, Frühauf A, Debarnot C, Kumar A, Knapp S, Lermyte F, Meyer‐Almes F. The catalytic domain of free or ligand bound histone deacetylase 4 occurs in solution predominantly in closed conformation. Protein Sci 2024; 33:e4917. [PMID: 38358265 PMCID: PMC10868454 DOI: 10.1002/pro.4917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Human histone deacetylase 4 (HDAC4) is a key epigenetic regulator involved in a number of important cellular processes. This makes HDAC4 a promising target for the treatment of several cancers and neurodegenerative diseases, in particular Huntington's disease. HDAC4 is highly regulated by phosphorylation and oxidation, which determine its nuclear or cytosolic localization, and exerts its function through multiple interactions with other proteins, forming multiprotein complexes of varying composition. The catalytic domain of HDAC4 is known to interact with the SMRT/NCOR corepressor complex when the structural zinc-binding domain (sZBD) is intact and forms a closed conformation. Crystal structures of the HDAC4 catalytic domain have been reported showing an open conformation of HDAC4 when bound to certain ligands. Here, we investigated the relevance of this HDAC4 conformation under physiological conditions in solution. We show that proper zinc chelation in the sZBD is essential for enzyme function. Loss of the structural zinc ion not only leads to a massive decrease in enzyme activity, but it also has serious consequences for the overall structural integrity and stability of the protein. However, the Zn2+ free HDAC4 structure in solution is incompatible with the open conformation. In solution, the open conformation of HDAC4 was also not observed in the presence of a variety of structurally divergent ligands. This suggests that the open conformation of HDAC4 cannot be induced in solution, and therefore cannot be exploited for the development of HDAC4-specific inhibitors.
Collapse
Affiliation(s)
- Markus Schweipert
- Department of Chemical Engineering and BiotechnologyUniversity of Applied SciencesDarmstadtGermany
| | - Thomas Nehls
- Department of ChemistryClemens‐Schöpf‐Institute of Chemistry and Biochemistry, Technical University of DarmstadtDarmstadtGermany
| | - Anton Frühauf
- Department of Chemical Engineering and BiotechnologyUniversity of Applied SciencesDarmstadtGermany
| | - Cecilé Debarnot
- Department of Chemical Engineering and BiotechnologyUniversity of Applied SciencesDarmstadtGermany
| | - Adarsh Kumar
- Fachbereich Biochemie, Chemie und PharmazieInstitut für Pharmazeutische Chemie, Goethe‐University FrankfurtFrankfurt Am MainGermany
| | - Stefan Knapp
- Fachbereich Biochemie, Chemie und PharmazieInstitut für Pharmazeutische Chemie, Goethe‐University FrankfurtFrankfurt Am MainGermany
| | - Frederik Lermyte
- Department of ChemistryClemens‐Schöpf‐Institute of Chemistry and Biochemistry, Technical University of DarmstadtDarmstadtGermany
| | - Franz‐Josef Meyer‐Almes
- Department of Chemical Engineering and BiotechnologyUniversity of Applied SciencesDarmstadtGermany
| |
Collapse
|
14
|
Costantino A, Pham LBT, Barbieri L, Calderone V, Ben‐Nissan G, Sharon M, Banci L, Luchinat E. Controlling the incorporation of fluorinated amino acids in human cells and its structural impact. Protein Sci 2024; 33:e4910. [PMID: 38358125 PMCID: PMC10868450 DOI: 10.1002/pro.4910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Fluorinated aromatic amino acids (FAAs) are promising tools when studying protein structure and dynamics by NMR spectroscopy. The incorporation FAAs in mammalian expression systems has been introduced only recently. Here, we investigate the effects of FAAs incorporation in proteins expressed in human cells, focusing on the probability of incorporation and its consequences on the 19 F NMR spectra. By combining 19 F NMR, direct MS and x-ray crystallography, we demonstrate that the probability of FAA incorporation is only a function of the FAA concentration in the expression medium and is a pure stochastic phenomenon. In contrast with the MS data, the x-ray structures of carbonic anhydrase II reveal that while the 3D structure is not affected, certain positions lack fluorine, suggesting that crystallization selectively excludes protein molecules featuring subtle conformational modifications. This study offers a predictive model of the FAA incorporation efficiency and provides a framework for controlling protein fluorination in mammalian expression systems.
Collapse
Affiliation(s)
- Azzurra Costantino
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Lan B. T. Pham
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Letizia Barbieri
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
| | - Vito Calderone
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Gili Ben‐Nissan
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Michal Sharon
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Lucia Banci
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Enrico Luchinat
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| |
Collapse
|
15
|
Wang S, Xu Y. RNA structure promotes liquid-to-solid phase transition of short RNAs in neuronal dysfunction. Commun Biol 2024; 7:137. [PMID: 38287096 PMCID: PMC10824717 DOI: 10.1038/s42003-024-05828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
In nucleotide expansion disorders, RNA foci are reportedly associated with neurodegenerative disease pathogeneses. Characteristically, these RNAs exhibit long poly-RNA repeats, such as 47 × CAG, 47 × CUG, or 29 × GGGGCC, usually becoming abnormal pathological aggregations above a critical number of nucleotide repeats. However, it remains unclear whether short, predominantly cellular RNA molecules can cause phase transitions to induce RNA foci. Herein, we demonstrated that short RNAs even with only two repeats can aggregate into a solid-like state via special RNA G-quadruplex structures. In human cells, these solid RNA foci could not dissolve even when using agents that disrupt RNA gelation. The aggregation of shorter RNAs can be clearly observed in vivo. Furthermore, we found that RNA foci induce colocalization of the RNA-binding protein Sam68, a protein commonly found in patients with fragile X-associated tremor/ataxia syndrome, suppressing cell clonogenicity and eventually causing cell death. Our results suggest that short RNA gelation promoted by specific RNA structures contribute to the neurological diseases, which disturb functional cellular processes.
Collapse
Affiliation(s)
- Shiyu Wang
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
16
|
Vitali V, Torricella F, Massai L, Messori L, Banci L. Enlarging the scenario of site directed 19F labeling for NMR spectroscopy of biomolecules. Sci Rep 2023; 13:22017. [PMID: 38086881 PMCID: PMC10716153 DOI: 10.1038/s41598-023-49247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The possibility of using selectively incorporated 19F nuclei for NMR spectroscopic studies has retrieved increasing interest in recent years. The high gyromagnetic ratio of 19F and its absence in native biomolecular systems make this nucleus an interesting alternative to standard 1H NMR spectroscopy. Here we show how we can attach a label, carrying a 19F atom, to protein tyrosines, through the use of a specific three component Mannich-type reaction. To validate the efficacy and the specificity of the approach, we tested it on two selected systems with the aid of ESI MS measurements.
Collapse
Affiliation(s)
- Valentina Vitali
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Francesco Torricella
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy.
| |
Collapse
|
17
|
Simonet B, Herrscher V, Witjaksono C, Chaignon P, Massicot F, Vasse JL, Seemann M, Behr JB. Carbohydrate-Templated Syntheses of Trifluoromethyl-Substituted MEP Analogues for the Study of the Methylerythritol Phosphate Pathway. J Org Chem 2023; 88:15832-15843. [PMID: 37917513 DOI: 10.1021/acs.joc.3c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Trifluoromethyl analogues of methylerythritol phosphate (MEP) and 2-C-methyl-erythritol 2,4-cyclodiphosphate (MEcPP), natural substrates of key enzymes from the MEP pathway, were prepared starting from d-glucose as the chiral template to secure absolute configurations. The obligate trifluoromethyl group was inserted with complete diastereoselectivity using the Ruppert-Prakash nucleophile. Target compounds were assayed against the corresponding enzymes showing that trifluoro-MEP did not disrupt IspD activity, whereas trifluoro-MEcPP induced 40% inhibition of IspG at 1 mM.
Collapse
Affiliation(s)
- Basile Simonet
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Vivien Herrscher
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Clea Witjaksono
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Philippe Chaignon
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Fabien Massicot
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Jean-Luc Vasse
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Jean-Bernard Behr
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| |
Collapse
|
18
|
Sperga A, Veliks J. Recent Advances in Monofluorinated Carbenes, Carbenoids, Ylides, and Related Species. Chemistry 2023:e202301851. [PMID: 37902650 DOI: 10.1002/chem.202301851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 10/31/2023]
Abstract
The synthesis of monofluorinated compounds is of great interest because of the vast applications of organofluorine compounds. Recently, the introduction of monofluorocarbene synthons has emerged as an important strategy for the synthesis of fluorine-containing products. In contrast to direct fluorination, in which C-F bonds are formed, the use of monofluorinated carbenes and related reactive species involves C-C or C-X bond formation while delivering valuable fluorine atoms into the target structure. Owing to increased knowledge on carbon-carbon and carbon-heteroatom bond formations, monofluorinated carbenes have enormous potential for the synthesis of organofluorine compounds, which, in our opinion, has not yet been fully exploited. This review summarizes the recent advances in the synthetic applications of monofluorinated carbenes, carbenoids, ylides, and related species.
Collapse
Affiliation(s)
- Arturs Sperga
- Latvian Institute of OrganicSynthesis, Aizkrauklesiela 21, 1006, Riga, Latvia
| | - Janis Veliks
- Latvian Institute of OrganicSynthesis, Aizkrauklesiela 21, 1006, Riga, Latvia
| |
Collapse
|
19
|
Smith MJ, Bramham JE, Nilsson M, Morris GA, Castañar L, Golovanov AP. Lighting up spin systems: enhancing characteristic 1H signal patterns of fluorinated molecules. Chem Commun (Camb) 2023; 59:11692-11695. [PMID: 37698544 DOI: 10.1039/d3cc03557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Fluorine is becoming increasingly prevalent in medicinal chemistry, both in drug molecules and in molecular probes. The presence of fluorine allows convenient monitoring of such molecules in complex environments by NMR spectroscopy. However, sensitivity is a persistent limitation of NMR, especially when molecules are present at low concentrations. Here, sensitivity issues with 1H NMR are mitigated by sharing 19F photochemically-induced dynamic nuclear polarisation with 1H nuclei. Unlike direct 1H enhancement, this method enhances 1H signals without significantly distorting multiplet intensities, and has the potential to enable the use of suitable molecules as low-concentration probes.
Collapse
Affiliation(s)
- Marshall J Smith
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jack E Bramham
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Mathias Nilsson
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Gareth A Morris
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Laura Castañar
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Department of Organic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain.
| | - Alexander P Golovanov
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
20
|
Xu L, Wang Q, Liu Y, Fu S, Zhao Y, Huang S, Huang B. 19F NMR enantiodiscrimination and diastereomeric purity determination of amino acids, dipeptides, and amines. Analyst 2023; 148:4548-4556. [PMID: 37594386 DOI: 10.1039/d3an00761h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Chiral amino-group compounds are of significance for human health, such as biogenic amino acids (AAs), dipeptides, and even various drugs. Enantiospecific discrimination of these chiral compounds is vital in diagnosing diseases, identifying pathological biomarkers and enhancing pharmaceutical chemistry research. Here, we report a simple and rapid 19F NMR-based strategy to differentiate chiral AAs, dipeptides, and amines, that were derivatized with (R)-2-(2-fluorophenyl)-2-hydroxyacetic acid ((R)-2FHA). As a result, 19 proteinogenic AAs (37 isomers) as well as Gly could be concurrently resolved. Moreover, various mirror-image dipeptides, such as Ser-His, Leu-Leu, and Ala-Ala, were commendably recognized. Intriguingly, we found that the absolute configuration of AAs in the N-terminus of dipeptides decided the relative 19F chemical shifts between two enantiomers. Besides, the ability of this method for enantiodiscrimination was further demonstrated by non-AA amines, including aromatic and aliphatic amines, and even amines having chiral centers several carbons away from the amino-group. The structurally similar antibiotics, amoxicillin and ampicillin, were well discriminated. Furthermore, this method accurately determines the de or dr values of non-racemic mixtures. Therefore, our strategy provides an effective approach for 19F NMR-based enantiodiscrimination and diastereomeric purity determination of amino-group compounds.
Collapse
Affiliation(s)
- Lihua Xu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China.
| | - Qiong Wang
- College of Chemistry, Shandong Normal University, Jinan, 250014, P.R. China
| | - Yan Liu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, P.R. China
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China.
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, P.R. China
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China.
| | - Biling Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P.R. China.
| |
Collapse
|
21
|
Cui CY, Li B, Su XC. Real-Time Monitoring of the Level and Activity of Intracellular Glutathione in Live Cells at Atomic Resolution by 19F-NMR. ACS CENTRAL SCIENCE 2023; 9:1623-1632. [PMID: 37637729 PMCID: PMC10451033 DOI: 10.1021/acscentsci.3c00385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/29/2023]
Abstract
Visualization and quantification of important biomolecules like glutathione (GSH) in live cells are highly important. The existing methods are mostly from optical detection and lack of atomic resolution on the activity of GSH. Here, we present a sensitive 19F-NMR method to quantify real-time variations of GSH in live cells in a reversible manner. This NMR method prevents extracellular leakage and irreversible consumption of intracellular GSH during the detection. The high performance of the reactive 19F-probe enables accurate determination of intracellular GSH content at atomic resolution, from which information on GSH variations with respect to the extracellular and intracellular conditions can be inferred. In addition, we demonstrate the applicability of this NMR method to quantify the GSH levels between different live cell lines and to disclose the distinct differences between the intracellular environment and cell lysates. We foresee the application of 19F-NMR to monitor real-time variations of intracellular GSH levels in relation to GSH-involved central cellular processes.
Collapse
Affiliation(s)
| | | | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic
Chemistry, College of Chemistry, Nankai
University, Tianjin 300071, China
| |
Collapse
|
22
|
Nan K, Jiang YN, Li M, Wang B. Recent Progress in Diboronic-Acid-Based Glucose Sensors. BIOSENSORS 2023; 13:618. [PMID: 37366983 DOI: 10.3390/bios13060618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Non-enzymatic sensors with the capability of long-term stability and low cost are promising in glucose monitoring applications. Boronic acid (BA) derivatives offer a reversible and covalent binding mechanism for glucose recognition, which enables continuous glucose monitoring and responsive insulin release. To improve selectivity to glucose, a diboronic acid (DBA) structure design has been explored and has become a hot research topic for real-time glucose sensing in recent decades. This paper reviews the glucose recognition mechanism of boronic acids and discusses different glucose sensing strategies based on DBA-derivatives-based sensors reported in the past 10 years. The tunable pKa, electron-withdrawing properties, and modifiable group of phenylboronic acids were explored to develop various sensing strategies, including optical, electrochemical, and other methods. However, compared to the numerous monoboronic acid molecules and methods developed for glucose monitoring, the diversity of DBA molecules and applied sensing strategies remains limited. The challenges and opportunities are also highlighted for the future of glucose sensing strategies, which need to consider practicability, advanced medical equipment fitment, patient compliance, as well as better selectivity and tolerance to interferences.
Collapse
Affiliation(s)
- Ke Nan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu-Na Jiang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Meng Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Bing Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
- International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| |
Collapse
|
23
|
Khatik SY, Sudhakar S, Mishra S, Kalia J, Pradeepkumar PI, Srivatsan SG. Probing juxtaposed G-quadruplex and hairpin motifs using a responsive nucleoside probe: a unique scaffold for chemotherapy. Chem Sci 2023; 14:5627-5637. [PMID: 37265741 PMCID: PMC10231310 DOI: 10.1039/d3sc00519d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
Paucity of efficient probes and small molecule ligands that can distinguish different G-quadruplex (GQ) topologies poses challenges not only in understanding their basic structure but also in targeting an individual GQ form from others. Alternatively, G-rich sequences that harbour unique chimeric structural motifs (e.g., GQ-duplex or GQ-hairpin junctions) are perceived as new therapeutic hotspots. In this context, the epidermal growth factor receptor (EGFR) gene, implicated in many cancers, contains a 30 nucleotide G-rich segment in the promoter region, which adopts in vitro two unique architectures each composed of a GQ topology (parallel and hybrid-type) juxtaposed with a hairpin domain. Here, we report the use of a novel dual-app probe, C5-trifluoromethyl benzofuran-modified 2'-deoxyuridine (TFBF-dU), in the systematic analysis of EGFR GQs and their interaction with small molecules by fluorescence and 19F NMR techniques. Notably, distinct fluorescence and 19F NMR signals exhibited by the probe enabled the quantification of the relative population of random, parallel and hybrid-type GQ structures under different conditions, which could not be obtained by conventional CD and 1H NMR techniques. Using the fluorescence component, we quantified ligand binding properties of GQs, whereas the 19F label enabled the assessment of ligand-induced changes in GQ dynamics. Studies also revealed that mutations in the hairpin domain affected GQ formation and stability, which was further functionally verified in polymerase stop assay. We anticipate that these findings and useful properties of the nucleoside probe could be utilized in designing and evaluating binders that jointly target both GQ and hairpin domains for enhanced selectivity and druggability.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road Pune 411008 India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Satyajit Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - Jeet Kalia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road Pune 411008 India
| |
Collapse
|
24
|
Killoran PM, Hanson GSM, Verhoork SJM, Smith M, Del Gobbo D, Lian L, Coxon CR. Probing Peptidylprolyl Bond cis/trans Status Using Distal 19 F NMR Reporters. Chemistry 2023; 29:e202203017. [PMID: 36550088 PMCID: PMC10946801 DOI: 10.1002/chem.202203017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
A method for measuring peptidylprolyl bond cis-trans conformational status in peptide models is described, using 4-fluorophenylalanine (4FPhe) as a distal reporter for 19 F NMR. The %cis-Pro population was measured for peptides of the general structure Ac-X-Pro-Z-Ala-Ala-4FPhe (X and Z are proteinogenic amino acids) at pH 7.4, and provided conformational populations consistent with literature values obtained by more complex methods. This approach was applied to probe the prolyl bond status in pentapeptide models of the intrinsically disordered C-terminal region of α-synuclein, which mirrored the preferences in the Ac-X-Pro-Z-Ala-4FPhe models. Advantageously, the 19 F reporter group does not need to be adjacent to or attached to proline to provide quantifiable signals and distal 4-fluorophenylalanines can be placed so as not to influence prolyl bond conformation. Finally, we demonstrated that the prolyl bond status is not significantly affected by pH when there are ionisable amino acid residues at the carboxyl side of proline, which makes 19 F NMR an invaluable tool with which to study proline isomerism at a range of pHs and in different solvents and buffers.
Collapse
Affiliation(s)
- Patrick M. Killoran
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolMerseysideL3 3AFUK
| | - George S. M. Hanson
- EaStChem School of ChemistryThe University of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH14 4ASUK
| | - Sanne J. M. Verhoork
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolMerseysideL3 3AFUK
| | - Madeleine Smith
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolMerseysideL3 3AFUK
| | - Davide Del Gobbo
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolMerseysideL3 3AFUK
| | - Lu‐Yun Lian
- Institute of SystemsMolecular and Integrative BiologyThe University of LiverpoolCrown StreetLiverpoolL69 7ZBUK
| | - Christopher R. Coxon
- EaStChem School of ChemistryThe University of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH14 4ASUK
| |
Collapse
|
25
|
Wu K, Zhang X, Wu LL, Huang JS, Che CM. A Convergent, Modular Approach to Trifluoromethyl-Bearing 5-Membered Rings via Catalytic C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2023; 62:e202215891. [PMID: 36596721 DOI: 10.1002/anie.202215891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Trifluoromethyl-bearing 5-membered rings are prevalent in bioactive molecules, but modular approaches to these compounds by functionalization of robust C(sp3 )-H bonds in a direct and selective manner are extremely challenging. Herein we report the rhodium-catalyzed α-CF3 -α-alkyl carbene insertion into C(sp3 )-H bonds of a broad range of substrates to access 7 types of CF3 -bearing saturated 5-membered carbo- and heterocycles. The reaction is particularly effective for benzylic C-H insertion exerting good site-, diastereo- and enantiocontrol, and applicable to the synthesis of chiral CF3 analogues of bioactive molecules. Ruthenium α-CF3 -α-alkyl carbene complexes underwent stoichiometric reactions to give C-H insertion products, lending evidence for the involvement of metal α-CF3 -α-alkyl carbene species in the catalytic cycle. DFT calculations revealed that the π⋅⋅⋅π attraction and intra-carbene C-H⋅⋅⋅F hydrogen bond elucidate the origin of selectivity of the benzylic C-H insertion reactions.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuyang Zhang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Chemistry and Chemical Engineering of Guangdong Provincial Laboratory, No. 1, College Road, Tuojiang Street, Jinping District, Shantou, Guangdong, 515041, China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Chemistry and Chemical Engineering of Guangdong Provincial Laboratory, No. 1, College Road, Tuojiang Street, Jinping District, Shantou, Guangdong, 515041, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
| |
Collapse
|
26
|
Fluorinated Human Serum Albumin as Potential 19F Magnetic Resonance Imaging Probe. Molecules 2023; 28:molecules28041695. [PMID: 36838682 PMCID: PMC9959765 DOI: 10.3390/molecules28041695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Fluorinated human serum albumin conjugates were prepared and tested as potential metal-free probes for 19F magnetic resonance imaging (MRI). Each protein molecule was modified by several fluorine-containing compounds via the N-substituted natural acylating reagent homocysteine thiolactone. Albumin conjugates retain the protein's physical and biological properties, such as its 3D dimensional structure, aggregation ability, good solubility, proteolysis efficiency, biocompatibility, and low cytotoxicity. A dual-labeled with cyanine 7 fluorescence dye and fluorine reporter group albumin were synthesized for simultaneous fluorescence imaging and 19F MRI. The preliminary in vitro studies show the prospects of albumin carriers for multimodal imaging.
Collapse
|
27
|
Zhou M, Feng Z, Zhang X. Recent advances in the synthesis of fluorinated amino acids and peptides. Chem Commun (Camb) 2023; 59:1434-1448. [PMID: 36651307 DOI: 10.1039/d2cc06787k] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The site-selective modification of amino acids, peptides, and proteins has always been an intensive topic in organic synthesis, medicinal chemistry, and chemical biology due to the vital role of amino acids in life. Among the developed methods, the site-selective introduction of fluorine functionalities into amino acids and peptides has emerged as a useful approach to change their physicochemical and biological properties. With the increasing demand for life science, the direct fluorination/fluoroalkylation of proteins has also received increasing attention because of the unique properties of fluorine atom(s) that can change the protein structure, increase their lipophilicity, and enable fluorine functionality as a biological tracer or probe for chemical biology studies. In this feature article, we summarized the recent advances in the synthesis of fluorinated amino acids and peptides, wherein two strategies have been discussed. One is based on the fluorinated building blocks to prepare fluorinated amino acids and peptides with diversified structures, including the transformations of fluorinated imines and nickel-catalyzed dicarbofunctionalization of alkenes with bromodifluoroacetate and its derivatives; the other is direct fluorination/fluoroakylation of amino acids, peptides, and proteins, in which the selective transformations of the functional groups on serine, threonine, tyrosine, tryptophan, and cysteine lead to a wide range of fluorinated α-amino acids, peptides, and proteins, featuring synthetic convenience and late-stage modification of biomacromolecules. These two strategies complement each other, wherein transition-metal catalysis and new fluoroalkylating reagents provide powerful tools to selectively access fluorinated amino acids, peptides, and proteins, showing the prospect of medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Minqi Zhou
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhang Feng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xingang Zhang
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
28
|
Montgomery K, Elhabashy A, Chen G, Chen QH, Krishnan VV. Targeted F 19 - tags to detect amino acids in complex mixtures using NMR spectroscopy. J Fluor Chem 2023; 266:110084. [PMID: 39450044 PMCID: PMC11500796 DOI: 10.1016/j.jfluchem.2022.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nuclear magnetic resonance spectroscopy of fluorine-19 nucleus ( F 19 -NMR) emerges as a powerful tool because of the high sensitivity due to its high natural abundance, broad spectral range, and the simplicity of a spin-half system. However, it is still seldom utilized in the chemistry classroom or research. This article thus aims to demonstrate the power of NMR by investigating the kinetics when a F 19 - tag reacts with individual amino acids (AA) and eventually utilizing the approach to identify and quantify various AAs from a complex mixture such as a metabolomics sample. The F 19 - tag named 2,5-dioxopyrrolidin-1-yl-2-(trifluoromethyl)benzoate was synthesized following a previously established method. The reaction kinetics of the tag was then continuously measured using F 19 NMR in the presence of selected AAs. The estimated reaction rate constants to form the F 19 - tags with each AA differ, which could be used as an identification tool. The tag formations were typically completed in 24-48 h in water for all the samples. These demonstrations suggest that F 19 - tags could form the basis for chemical kinetics and AA detection using F 19 -NMR.
Collapse
Affiliation(s)
- Keeton Montgomery
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Aya Elhabashy
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| | - V V Krishnan
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
29
|
Audsley G, Carpenter H, Essien NB, Lai-Morrice J, Al-Hilaly Y, Serpell LC, Akien GR, Tizzard GJ, Coles SJ, Ulldemolins CP, Kostakis GE. Chiral Co 3Y Propeller-Shaped Chemosensory Platforms Based on 19F-NMR. Inorg Chem 2023; 62:2680-2693. [PMID: 36716401 PMCID: PMC9930122 DOI: 10.1021/acs.inorgchem.2c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two propeller-shaped chiral CoIII3YIII complexes built from fluorinated ligands are synthesized and characterized by single-crystal X-ray diffraction (SXRD), IR, UV-vis, circular dichroism (CD), elemental analysis, thermogravimetric analysis (TGA), electron spray ionization mass spectroscopy (ESI-MS), and NMR (1H, 13C, and 19F). This work explores the sensing and discrimination abilities of these complexes, thus providing an innovative sensing method using a 19F NMR chemosensory system and opening new directions in 3d/4f chemistry. Control experiments and theoretical studies shed light on the sensing mechanism, while the scope and limitations of this method are discussed and presented.
Collapse
Affiliation(s)
- Gabrielle Audsley
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Harry Carpenter
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Nsikak B. Essien
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - James Lai-Morrice
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Youssra Al-Hilaly
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK,Chemistry
Department, College of Science, Mustansiriyah
University, Baghdad 10001, Iraq
| | - Louise C. Serpell
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK
| | - Geoffrey R. Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J. Tizzard
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J. Coles
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | | | - George E. Kostakis
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK,
| |
Collapse
|
30
|
Chen YT, Li B, Chen JL, Su XC. Stereospecific recognition of a chiral centre over multiple flexible covalent bonds by 19F-NMR. Analyst 2023; 148:233-238. [PMID: 36537694 DOI: 10.1039/d2an01632j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High performance in chiral recognition by a reactive 19F-tag was demonstrated for a variety of enantiomers. The analytes with up to five flexible covalent bonds from the chiral center can be discriminated by a sensitive chiral reporter manifested in the 19F-NMR spectrum. Simultaneous identification of chiral amines in a mixture and high accuracy ee determination were achieved.
Collapse
Affiliation(s)
- Ya-Ting Chen
- State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
31
|
Li A, Luo X, Chen D, Li L, Lin H, Gao J. Small Molecule Probes for 19F Magnetic Resonance Imaging. Anal Chem 2023; 95:70-82. [PMID: 36625117 DOI: 10.1021/acs.analchem.2c04539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| |
Collapse
|
32
|
Wang X, Patureau FW. Pd-catalyzed access to mono- and di-fluoroallylic amines from primary anilines. Chem Commun (Camb) 2023; 59:486-489. [PMID: 36530134 PMCID: PMC9814328 DOI: 10.1039/d2cc05844h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Pd-catalyzed highly selective synthesis of mono- and di-2-fluoroallylic amines from gem-difluorocyclopropanes and ubiquitous unprotected primary anilines is herein described. Initial kinetic investigations suggest a first order in the gem-difluorocyclopropane substrate, as well as a circa zeroth order in the aniline coupling partner. The newly produced fluoroallylic motifs should find important applications in synthetic as well as medicinal chemistry and stimulate the further development of coupling methods based on strained cyclic building blocks.
Collapse
Affiliation(s)
- Xingben Wang
- Institute of Organic Chemistry, RWTH Aachen UniversityLandoltweg 1Aachen 52074Germanyhttps://www.patureau-oc-rwth-aachen.de
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen UniversityLandoltweg 1Aachen 52074Germanyhttps://www.patureau-oc-rwth-aachen.de
| |
Collapse
|
33
|
Detection and Identification of Amphetamine-Type Stimulants and Analogs via Recognition-Enabled “Chromatographic” 19F NMR. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Dal Colle MCS, Fittolani G, Delbianco M. Synthetic Approaches to Break the Chemical Shift Degeneracy of Glycans. Chembiochem 2022; 23:e202200416. [PMID: 36005282 PMCID: PMC10087674 DOI: 10.1002/cbic.202200416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Indexed: 01/25/2023]
Abstract
NMR spectroscopy is the leading technique for determining glycans' three-dimensional structure and dynamic in solution as well as a fundamental tool to study protein-glycan interactions. To overcome the severe chemical shift degeneracy of these compounds, synthetic probes carrying NMR-active nuclei (e. g., 13 C or 19 F) or lanthanide tags have been proposed. These elegant strategies permitted to simplify the complex NMR analysis of unlabeled analogues, shining light on glycans' conformational aspects and interaction with proteins. Here, we highlight some key achievements in the synthesis of specifically labeled glycan probes and their contribution towards the fundamental understanding of glycans.
Collapse
Affiliation(s)
- Marlene C. S. Dal Colle
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
35
|
Porat-Dahlerbruch G, Struppe J, Quinn CM, Gronenborn AM, Polenova T. 19F fast MAS (60-111 kHz) dipolar and scalar based correlation spectroscopy of organic molecules and pharmaceutical formulations. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101831. [PMID: 36182713 DOI: 10.1016/j.ssnmr.2022.101831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
19F magic angle spinning (MAS) NMR spectroscopy is a powerful tool for characterization of fluorinated solids. The recent development of 19F MAS NMR probes, operating at spinning frequencies of 60-111 kHz, enabled analysis of systems spanning from organic molecules to pharmaceutical formulations to biological assemblies, with unprecedented resolution. Herein, we systematically evaluate the benefits of high MAS frequencies (60-111 kHz) for 1D and 2D 19F-detected experiments in two pharmaceuticals, the antimalarial drug mefloquine and a formulation of the cholesterol-lowering drug atorvastatin calcium. We demonstrate that 1H decoupling is essential and that scalar-based, heteronuclear single quantum coherence (HSQC) and heteronuclear multiple quantum coherence (HMQC) correlation experiments become feasible and efficient at the MAS frequency of 100 kHz. This study opens doors for the applications of high frequency 19F MAS NMR to a wide range of problems in chemistry and biology.
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, 01821, United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Angela M Gronenborn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States; Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States; Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15261, United States.
| |
Collapse
|
36
|
Pierrat OA, Liu M, Collie GW, Shetty K, Rodrigues MJ, Le Bihan YV, Gunnell EA, McAndrew PC, Stubbs M, Rowlands MG, Yahya N, Shehu E, Talbot R, Pickard L, Bellenie BR, Cheung KMJ, Drouin L, Innocenti P, Woodward H, Davis OA, Lloyd MG, Varela A, Huckvale R, Broccatelli F, Carter M, Galiwango D, Hayes A, Raynaud FI, Bryant C, Whittaker S, Rossanese OW, Hoelder S, Burke R, van Montfort RLM. Discovering cell-active BCL6 inhibitors: effectively combining biochemical HTS with multiple biophysical techniques, X-ray crystallography and cell-based assays. Sci Rep 2022; 12:18633. [PMID: 36329085 PMCID: PMC9633773 DOI: 10.1038/s41598-022-23264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
By suppressing gene transcription through the recruitment of corepressor proteins, B-cell lymphoma 6 (BCL6) protein controls a transcriptional network required for the formation and maintenance of B-cell germinal centres. As BCL6 deregulation is implicated in the development of Diffuse Large B-Cell Lymphoma, we sought to discover novel small molecule inhibitors that disrupt the BCL6-corepressor protein-protein interaction (PPI). Here we report our hit finding and compound optimisation strategies, which provide insight into the multi-faceted orthogonal approaches that are needed to tackle this challenging PPI with small molecule inhibitors. Using a 1536-well plate fluorescence polarisation high throughput screen we identified multiple hit series, which were followed up by hit confirmation using a thermal shift assay, surface plasmon resonance and ligand-observed NMR. We determined X-ray structures of BCL6 bound to compounds from nine different series, enabling a structure-based drug design approach to improve their weak biochemical potency. We developed a time-resolved fluorescence energy transfer biochemical assay and a nano bioluminescence resonance energy transfer cellular assay to monitor cellular activity during compound optimisation. This workflow led to the discovery of novel inhibitors with respective biochemical and cellular potencies (IC50s) in the sub-micromolar and low micromolar range.
Collapse
Affiliation(s)
- Olivier A Pierrat
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Manjuan Liu
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Gavin W Collie
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Kartika Shetty
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Matthew J Rodrigues
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Yann-Vaï Le Bihan
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Emma A Gunnell
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - P Craig McAndrew
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Mark Stubbs
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Martin G Rowlands
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Norhakim Yahya
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Erald Shehu
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Rachel Talbot
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Lisa Pickard
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Benjamin R Bellenie
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Kwai-Ming J Cheung
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Ludovic Drouin
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Paolo Innocenti
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Hannah Woodward
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Owen A Davis
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Matthew G Lloyd
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Ana Varela
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Rosemary Huckvale
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Fabio Broccatelli
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Michael Carter
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - David Galiwango
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Angela Hayes
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Florence I Raynaud
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Christopher Bryant
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Steven Whittaker
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Olivia W Rossanese
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Swen Hoelder
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Rosemary Burke
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Rob L M van Montfort
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK.
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
37
|
Gao XD, Hu Y, Wang WF, Zhao XB, Du XZ, Shi YP. Rapid and Selective 19F NMR-Based Sensors for Fingerprint Identification of Ribose. Anal Chem 2022; 94:11564-11572. [PMID: 35968680 DOI: 10.1021/acs.analchem.2c01832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribose plays an important role in the process of life. Excessive ribose in the human cerebrospinal fluid or urine can be used as an early diagnostic marker of leukoencephalopathy. Fluorinated phenylboronic acid combined with 19F NMR spectroscopy was a powerful method for molecular recognition. However, phenylboronic acid-based sensors for selective detection of ribose are rarely reported in the literature. In this study, the rapid and highly selective recognition of ribose was studied by 19F NMR and 2-fluorophenylboric acid. It was found that 2-fluoro-phenylboric acid was an appropriate 19F NMR-based sensor molecule for the determination of ribose under physiological conditions with high selectivity and robust anti-interference ability. When 2-fluorophenylboric acid was used for the detection of ribose in human urine without any sample pretreatment, a limit of detection of 78 μM was obtained at room temperature under given 19F NMR experimental conditions (400 MHz, 512 scans, ca. 12 min), which can well meet the needs of practical application.
Collapse
Affiliation(s)
- Xu-Dong Gao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.,College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yue Hu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Xin-Zhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| |
Collapse
|
38
|
Khatik SY, Srivatsan SG. Environment-Sensitive Nucleoside Probe Unravels the Complex Structural Dynamics of i-Motif DNAs. Bioconjug Chem 2022; 33:1515-1526. [PMID: 35819865 DOI: 10.1021/acs.bioconjchem.2c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although evidence for the existence and biological role of i-motif (iM) DNA structures in cells is emerging, probing their structural polymorphism and identifying physiologically active conformations using currently available tools remain a major challenge. Here, we describe the development of an innovative device to investigate the conformation equilibrium of different iMs formed by C-rich telomeric repeat and oncogenic B-raf promoter sequences using a new conformation-sensitive dual-purpose nucleoside probe. The nucleoside is composed of a trifluoromethyl-benzofuran-2-yl moiety at the C5 position of 2'-deoxyuridine, which functions as a responsive fluorescent and 19F NMR probe. While the fluorescent component is useful in monitoring and estimating the folding process, the 19F label provides spectral signatures for various iMs, thereby enabling a systematic analysis of their complex population equilibrium under different conditions (e.g., pH, temperature, metal ions, and cell lysate). Distinct 19F signals exhibited by the iMs formed by the human telomeric repeat helped in calculating their relative population. A battery of fluorescence and 19F NMR studies using native and mutated B-raf oligonucleotides gave valuable insights into the iM structure landscape and its dependence on environmental conditions and also helped in predicting the structure of the major iM conformation. Overall, our findings indicate that the probe is highly suitable for studying complex nucleic acid systems.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
39
|
Porat-Dahlerbruch G, Struppe J, Quinn CM, Gronenborn AM, Polenova T. Determination of accurate 19F chemical shift tensors with R-symmetry recoupling at high MAS frequencies (60-100 kHz). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 340:107227. [PMID: 35568013 DOI: 10.1016/j.jmr.2022.107227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
Fluorination is a versatile and valuable modification for numerous systems, and 19F NMR spectroscopy is the premier method for their structural characterization. 19F chemical shift anisotropy is a sensitive probe of structure and dynamics, even though 19F chemical shift tensors have been reported for only a handful of systems to date. Here, we explore γ-encoded R-symmetry based recoupling sequences for the determination of 19F chemical shift tensors in fully protonated organic solids at high, 60-100 kHz MAS frequencies. We show that the performance of 19F-RNCSA experiments improves with increasing MAS frequencies, and that 1H decoupling is required to determine accurate chemical shift tensor parameters. In addition, these sequences are tolerant to B1-field inhomogeneity making them suitable for a wide range of systems and experimental conditions.
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Angela M Gronenborn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States.
| |
Collapse
|
40
|
Dixon AD, Inoue A, Robson SA, Culhane KJ, Trinidad JC, Sivaramakrishnan S, Bumbak F, Ziarek JJ. Effect of Ligands and Transducers on the Neurotensin Receptor 1 Conformational Ensemble. J Am Chem Soc 2022; 144:10241-10250. [PMID: 35647863 PMCID: PMC9936889 DOI: 10.1021/jacs.2c00828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Using a discrete, intracellular 19F nuclear magnetic resonance (NMR) probe on transmembrane helix 6 of the neurotensin receptor 1 (NTS1), we aim to understand how ligands and transducers modulate the receptor's structural ensemble in a solution. For apo NTS1, 19F NMR spectra reveal an ensemble of at least three conformational substates (one inactive and two active-like) in equilibrium that exchange on the millisecond to second timescale. Dynamic NMR experiments reveal that these substates follow a linear three-site exchange process that is both thermodynamically and kinetically remodeled by orthosteric ligands. As previously observed in other G protein-coupled receptors (GPCRs), the full agonist is insufficient to completely stabilize the active-like state. The inactive substate is abolished upon coupling to β-arrestin-1 (βArr1) or the C-terminal helix of Gαq, which comprises ≳60% of the GPCR/G protein interface surface area. Whereas βArr1 exclusively selects for pre-existing active-like substates, the Gαq peptide induces a new substate. Both transducer molecules promote substantial line broadening of active-like states, suggesting contributions from additional microsecond to millisecond exchange processes. Together, our study suggests that (i) the NTS1 allosteric activation mechanism may be alternatively dominated by induced fit or conformational selection depending on the coupled transducer, and (ii) the available static structures do not represent the entire conformational ensemble observed in a solution.
Collapse
Affiliation(s)
- Austin D. Dixon
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578 Miyagi, Japan
| | - Scott A. Robson
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kelly J. Culhane
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States,Present Address: Department of Chemistry, Lawrence University, Appleton, Wisconsin, 54911, United States
| | - Jonathan C. Trinidad
- Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Fabian Bumbak
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States,Present Address: Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joshua J. Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
41
|
Shet H, Sahu R, Sanghvi YS, Kapdi AR. Strategies for the Synthesis of Fluorinated Nucleosides, Nucleotides and Oligonucleotides. CHEM REC 2022; 22:e202200066. [PMID: 35638251 DOI: 10.1002/tcr.202200066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Fluorinated nucleosides and oligonucleotides are of specific interest as probes for studying nucleic acids interaction, structures, biological transformations, and its biomedical applications. Among various modifications of oligonucleotides, fluorination of preformed nucleoside and/or nucleotides have recently gained attention owing to the unique properties of fluorine atoms imparting medicinal properties with respect to the small size, electronegativity, lipophilicity, and ability for stereochemical control. This review deals with synthetic protocols for selective fluorination either at sugar or base moiety in a preformed nucleosides, nucleotides and nucleic acids using specific fluorinating reagents.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology -, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha-751013, India.,Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Rajesh Sahu
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802, Crystal Ridge, Encinitas, CA92024-6615, California, USA
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| |
Collapse
|
42
|
Xu Z, Gu S, Li Y, Wu J, Zhao Y. Recognition-Enabled Automated Analyte Identification via 19F NMR. Anal Chem 2022; 94:8285-8292. [PMID: 35622989 DOI: 10.1021/acs.analchem.2c00642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear magnetic resonance (NMR) is an indispensable tool for structural elucidation and noninvasive analysis. Automated identification of analytes with NMR is highly pursued in metabolism research and disease diagnosis; however, this process is often complicated by the signal overlap and the sample matrix. We herein report a detection scheme based on 19F NMR spectroscopy and dynamic recognition, which effectively simplifies the detection signal and mitigates the influence of the matrix on the detection. It is demonstrated that this approach can not only detect and differentiate capsaicin and dihydrocapsaicin in complex real-world samples but also quantify the ibuprofen content in sustained-release capsules. Based on the 19F signals obtained in the detection using a set of three 19F probes, automated analyte identification is achieved, effectively reducing the odds of misrecognition caused by structural similarity.
Collapse
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Siyi Gu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yipeng Li
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
43
|
Abstract
The widespread application of nuclear magnetic resonance (NMR) spectroscopy in detection is currently hampered by its inherently low sensitivity and complications resulting from the undesired signal overlap. Here, we report a detection scheme to address these challenges, where analytes are recognized by 19F-labeled probes to induce characteristic shifts of 19F resonances that can be used as "chromatographic" signatures to pin down each low-concentration analyte in complex mixtures. This unique signal transduction mechanism allows detection sensitivity to be enhanced by using massive chemically equivalent 19F atoms, which was achieved through the proper installation of nonafluoro-tert-butoxy groups on probes of high structural symmetry. It is revealed that the binding of an analyte to the probe can be sensed by as many as 72 chemically equivalent 19F atoms, allowing the quantification of analytes at nanomolar concentrations to be routinely performed by NMR. Applications on the detection of trace amounts of prohibited drug molecules and water contaminants were demonstrated. The high sensitivity and robust resolving ability of this approach represent a first step toward extending the application of NMR to scenarios that are now governed by chromatographic and mass spectrometry techniques. The detection scheme also makes possible the highly sensitive non-invasive multi-component analysis that is difficult to achieve by other analytical methods.
Collapse
Affiliation(s)
- Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Siyi Gu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
44
|
Hirashima S, Sugiyama H, Park S. Characterization of 2-Fluoro-2'-deoxyadenosine in Duplex, G-quadruplex and I-motif. Chembiochem 2022; 23:e202200222. [PMID: 35438834 DOI: 10.1002/cbic.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/12/2022]
Abstract
Among various kinds of fluorine-substituted biomolecules, 2-fluoroadenine (2FA) and its derivatives have been actively investigated as therapeutic reagents, radio-sensitizers, and 19F-NMR probe. In spite of their excellent properties, DNA containing 2FA has not been studied well. Toward fundamental understanding and future applications to the development of functional nucleic acids, we characterized 2FA-containing oligonucleotides for canonical right-handed DNA duplex, G-quadruplex, and i-motif structures. Properties of 2FA were similar to native adenine due to the small size of fluorine atom, but it showed unique features caused by high electronegativity. This work provides useful information for future application of 2FA-modified DNA.
Collapse
Affiliation(s)
- Shingo Hirashima
- Kyoto University: Kyoto Daigaku, Chemistry, Kitashirakawa-oiwakecho, Sakyo-ku,, 606-8502, Kyoto, JAPAN
| | - Hiroshi Sugiyama
- Kyoto University: Kyoto Daigaku, Chemistry, Kitashirakawa-oiwakecho, Sakyo-ku, 606-8502, Kyoto, JAPAN
| | - Soyoung Park
- Osaka University: Osaka Daigaku, Immunology Research Frontier Center, 3-1 Ymadaoka Suita, 565-0871, Osaka, JAPAN
| |
Collapse
|
45
|
Quinn CM, Xu S, Hou G, Chen Q, Sail D, Byrd RA, Rozovsky S. 77Se- 13C based dipolar correlation experiments to map selenium sites in microcrystalline proteins. JOURNAL OF BIOMOLECULAR NMR 2022; 76:29-37. [PMID: 35320434 PMCID: PMC9195563 DOI: 10.1007/s10858-022-00390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Sulfur-containing sites in proteins are of great importance for both protein structure and function, including enzymatic catalysis, signaling pathways, and recognition of ligands and protein partners. Selenium-77 is an NMR active spin-1/2 nucleus that shares many physiochemical properties with sulfur and can be readily introduced into proteins at sulfur sites without significant perturbations to the protein structure. The sulfur-containing amino acid methionine is commonly found at protein-protein or protein-ligand binding sites. Its selenium-containing counterpart, selenomethionine, has a broad chemical shift dispersion useful for NMR-based studies of complex systems. Methods such as (1H)-77Se-13C double cross polarization or {77Se}-13C REDOR could be valuable to map the local environment around selenium sites in proteins but have not been demonstrated to date. In this work, we explore these dipolar transfer mechanisms for structural characterization of the GB1 V39SeM variant of the model protein GB1 and demonstrate that 77Se-13C based correlations can be used to map the local environment around selenium sites in proteins. We have found that the general detection limit is ~ 5 Å, but longer range distances up to ~ 7 Å can be observed as well. This study establishes a framework for the future characterization of selenium sites at protein-protein or protein-ligand binding interfaces.
Collapse
Affiliation(s)
- Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Shiping Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Qingqing Chen
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Deepak Sail
- Chemistry and Synthesis Center, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - R. Andrew Byrd
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
46
|
Yuan S, Zhu Y, Dai Y, Wang Y, Jin D, Liu M, Tang L, Arnesano F, Natile G, Liu Y. 19
F NMR Allows the Investigation of the Fate of Platinum(IV) Prodrugs in Physiological Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siming Yuan
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Yang Zhu
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Yi Dai
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Yu Wang
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Duo Jin
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Manman Liu
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Fabio Arnesano
- Dipartimento di Chimica Università di Bari “A. Moro” via E. Orabona 4 70125 Bari Italy
| | - Giovanni Natile
- Dipartimento di Chimica Università di Bari “A. Moro” via E. Orabona 4 70125 Bari Italy
| | - Yangzhong Liu
- Department of Pharmacy, the First Affiliated Hospital of USTC Division of Life Sciences and Medicine Department of Chemistry University of Science and Technology of China Hefei Anhui China
| |
Collapse
|
47
|
Duan P, Zhao H, Yang J, Cao L, Jiang H, Zhang M. Construction of Fluorinated Amino Acid Derivatives via Cobalt-Catalyzed Oxidative Difunctionalization of Cyclic Ethers. Org Lett 2022; 24:608-612. [PMID: 34989577 DOI: 10.1021/acs.orglett.1c04048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Via difunctionalization of the α- and β-sites of cyclic ethers, we herein demonstrate a new synthetic method for the efficient construction of novel fluorinated γ-amino acid esters by employing a CoBr2/m-CPBA catalyst system. Several cyclic ethers were transformed in combination with a vast range of amines and ethyl trifluoropyruvate into the desired products under mild conditions, making this method a practical platform to enrich the library of fluorinated amino acid derivatives from cost-effective and readily available feedstocks.
Collapse
Affiliation(s)
- Peng Duan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| |
Collapse
|
48
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
49
|
Zehra ST, Lan S, Zhang H, Liu J, Yang S, Fang X. Access to enantioenriched molecules with diverse fluorinated tetrasubstituted stereocenters using hydroxy as a kinetic resolution auxiliary group. Org Chem Front 2022. [DOI: 10.1039/d1qo01493e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe in this paper that using secondary OH as the kinetic resolution auxiliary group, a series of previously unavailable fluorinated fully-substituted carbon molecules can be obtained with excellent level of enantioselectivities.
Collapse
Affiliation(s)
- Syeda Tazeen Zehra
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Hao Zhang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
50
|
Kehl A, Hiller M, Hecker F, Tkach I, Dechert S, Bennati M, Meyer A. Resolution of chemical shift anisotropy in 19F ENDOR spectroscopy at 263 GHz/9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107091. [PMID: 34749036 DOI: 10.1016/j.jmr.2021.107091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Pulsed 19F ENDOR spectroscopy provides a selective method for measuring angstrom to nanometer distances in structural biology. Here, the performance of 19F ENDOR at fields of 3.4 T and 9.4 T is compared using model compounds containing one to three 19F atoms. CF3 groups are included in two compounds, for which the possible occurrence of uniaxial rotation might affect the distance distribution. At 9.4 T, pronounced asymmetric features are observed in many of the presented 19F ENDOR spectra. Data analysis by spectral simulations shows that these features arise from the chemical shift anisotropy (CSA) of the 19F nuclei. This asymmetry is also observed at 3.4 T, albeit to a much smaller extent, confirming the physical origin of the effect. The CSA parameters are well consistent with DFT predicted values and can be extracted from simulation of the experimental data in favourable cases, thereby providing additional information about the geometrical and electronic structure of the spin system. The feasibility of resolving the CSA at 9.4 T provides important information for the interpretation of line broadening in ENDOR spectra also at lower fields, which is relevant for developing methods to extract distance distributions from 19F ENDOR spectra.
Collapse
Affiliation(s)
- Annemarie Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Hiller
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Fabian Hecker
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Igor Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sebastian Dechert
- Department of Chemistry, Georg August University of Göttingen, Tammannstr. 4, Göttingen, Germany
| | - Marina Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Department of Chemistry, Georg August University of Göttingen, Tammannstr. 4, Göttingen, Germany.
| | - Andreas Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|