1
|
Türk Z, Leiber F, Schlittenlacher T, Hamburger M, Walkenhorst M. Multiple benefits of herbs: Polygonaceae species in veterinary pharmacology and livestock nutrition. Vet Anim Sci 2025; 27:100416. [PMID: 39720831 PMCID: PMC11667078 DOI: 10.1016/j.vas.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Herbs rich in secondary metabolites may possess beneficial properties in livestock nutrition and health. 49 Polygonaceae species of European mountain regions were included in a qualitative systematic review based on the methodological framework of the PRISMA statement. 174 relevant publications were identified. They comprised 231 in vitro and 163 in vivo experiments with cattle, sheep, goats, poultry, pigs, and rodents. For 16 Polygonaceae species no reports were found. Fagopyrum esculentum and Fagopyrum tataricum showed potential as anti-inflammatory, antioxidative and metabolic modifying herbs and feeds improving intake and nitrogen conversion in broiler as well as milk quality and ruminal biotransformation in dairy cows. Polygonum aviculare was promising as an antimicrobial and anti-inflammatory drug or feed, improving performance and affecting ruminal biotransformation in sheep, and Polygonum bistorta as an anti-inflammatory drug or feed, improving performance in broiler and mitigating methane emissions in ruminants. Rumex obtusifolius showed potential as an antibacterial drug or feed improving ruminal biotransformation and preventing bloating in cows, while Rumex acetosa and Rumex acetosella had antimicrobial and anti-inflammatory properties. Furthermore, Polygonum minus, Polygonum persicaria, Rumex crispus and Rumex patientia possess interesting anti-inflammatory and antimicrobial activities. In conclusion, some Polygonaceae species show relevant properties that might be useful to prevent and treat livestock diseases, combined with nutritional benefits in performance, product quality, lowering ruminal methane and ammonia formation and transferring omega-3 fatty-acids from feed to tissue. The potential of such multifunctional plants for a holistic integration of veterinary, nutritional and ecological perspectives under a one-health approach of livestock management is discussed.
Collapse
Affiliation(s)
- Zafide Türk
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
- University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Florian Leiber
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| | - Theresa Schlittenlacher
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| | - Matthias Hamburger
- University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Michael Walkenhorst
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| |
Collapse
|
2
|
Singh H, Singh T, Singh V, Singh B, Kaur S, Ahmad SF, Al-Mazroua HA, Singh B. Ehretia laevis mitigates paracetamol- induced hepatotoxicity by attenuating oxidative stress and inflammation in rats. Int Immunopharmacol 2024; 143:113565. [PMID: 39504859 DOI: 10.1016/j.intimp.2024.113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Hepatotoxicity is caused due to intake of drug or any chemical above the therapeutic range or as overdose. Current therapies for the management of hepatotoxicity are associated with several side effects. The present study was envisaged to explore the hepatoprotective potential of Ehretia laevis (E. laevis) in paracetamol (PCM) induced hepatotoxicity. All the plant extracts and fractions were evaluated for antioxidant and antiproliferative potential using various in vitro assays. Hepatotoxicity was induced in rats using a standardized single oral dose of PCM (3 g/kg). The aqueous fraction of E. laevis (AFEL) exhibited significant antioxidant and antiproliferative activity as compared to methanol extract of E. laevis (MEEL) in vitro. Moreover, treatment with AFEL (25, 50 and 100 mg/kg) decreased serum hepatic markers, attenuate the oxidative stress, inflammation and histopathological changes. LC-MS analysis of AFEL showed the presence of rutin, quercetin and kaempferol. Rutin was found to be in higher concentration, therefore it was docked on TNF-α. Its overall binding mode supports its capability to make complex with TNF-α. The finding of the study suggested significant antioxidant, antiproliferative, and hepatoprotective potential of E. laevis in paracetamol induced hepatotoxicity which could be attributed to the presence of various polyphenols.
Collapse
Affiliation(s)
- Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India; Khalsa College of Pharmacy, Amritsar 143005, India.
| | - Tanveer Singh
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India.
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
3
|
Balkrishna A, Gohel V, Pathak N, Bhattacharya K, Dev R, Varshney A. Livogrit prevents Amiodarone-induced toxicity in experimental model of human liver (HepG2) cells and Caenorhabditis elegans by regulating redox homeostasis. Drug Chem Toxicol 2024; 47:987-1003. [PMID: 38425274 DOI: 10.1080/01480545.2024.2320189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Treatment with cationic amphiphilic drugs like Amiodarone leads to development of phospholipidosis, a type of lysosomal storage disorder characterized by excessive deposition of phospholipids. Such disorder in liver enhances accumulation of drugs and its metabolites, and dysregulates lipid profiles, which subsequently leads to hepatotoxicity. In the present study, we assessed pharmacological effects of herbal medicine, Livogrit, against hepatic phospholipidosis-induced toxicity. Human liver (HepG2) cells and in vivo model of Caenorhabditis elegans (N2 and CF1553 strains) were used to study effect of Livogrit on Amiodarone-induced phospholipidosis. In HepG2 cells, Livogrit treatment displayed enhanced uptake of acidic pH-based stains and reduced phospholipid accumulation, oxidative stress, AST, ALT, cholesterol levels, and gene expression of SCD-1 and LSS. Protein levels of LPLA2 were also normalized. Livogrit treatment restored Pgp functionality which led to decreased cellular accumulation of Amiodarone as observed by UHPLC analysis. In C. elegans, Livogrit prevented ROS generation, fat-6/7 gene overexpression, and lysosomal trapping of Amiodarone in N2 strain. SOD-3::GFP expression in CF1553 strain normalized by Livogrit treatment. Livogrit regulates phospholipidosis by regulation of redox homeostasis, phospholipid anabolism, and Pgp functionality hindered by lysosomal trapping of Amiodarone. Livogrit could be a potential therapeutic intervention for amelioration of drug-induced phospholipidosis and prevent hepatotoxicity.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Patanjali Yog Peeth (UK) Trust, Glasgow, UK
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Nishit Pathak
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Liu H, Huang Z, Xin T, Dong L, Deng M, Han L, Huang F, Su D. Effects of polysaccharides on colonic targeting and colonic fermentation of ovalbumin-ferulic acid based emulsion. Food Chem 2024; 453:139630. [PMID: 38781895 DOI: 10.1016/j.foodchem.2024.139630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Rutin is a polyphenol with beneficial pharmacological properties. However, its bioavailability is often compromised due to low solubility and poor stability. Encapsulation technologies, such as emulsion systems, have been proven to be promising delivery vehicles for enhancing the bioavailability of bioactive compounds. Thus, this study was proposed and designed to investigate the colonic targeting and colonic fermentation characteristics of rutin-loaded ovalbumin-ferulic acid-polysaccharide (OVA-FA-PS) complex emulsions. The results indicate that OVA-FA-PS emulsion effectively inhibits the degradation of rutin active substances and facilitates its transport of rutin to the colon. The analysis revealed that the OVA-FA-κ-carrageenan emulsion loaded with rutin exhibited superior elasticity and colon targeting properties compared to the OVA-FA-hyaluronic acid or OVA-FA-sodium alginate emulsions loaded with rutin in the composite emulsion. Additionally, it was observed that the rutin loaded within the OVA-FA-κ-carrageenan emulsion underwent degradation and was converted to 4-hydroxybenzoic acid during colonic fermentation.
Collapse
Affiliation(s)
- Hesheng Liu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhenzhen Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ting Xin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lipeng Han
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Zhang Y, Xiong W, Ren Y, Huang J, Wang X, Wang O, Cai S. Preparation of Rutin-Whey Protein Pickering Emulsion and Its Effect on Zebrafish Skeletal Muscle Movement Ability. Nutrients 2024; 16:3050. [PMID: 39339650 PMCID: PMC11435083 DOI: 10.3390/nu16183050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional supplementation enriched with protein and antioxidants has been demonstrated to effectively strengthen skeletal muscle function and mitigate the risk of sarcopenia. Dietary protein has also been a common carrier to establish bioactive delivery system. Therefore, in this study, a Pickering emulsion delivery system for rutin was constructed with whey protein, and its structural characteristics, bioaccessibility, and molecular interactions were investigated. In the in vivo study, zebrafish (n = 10 in each group), which have a high genetic homology to humans, were treated with dexamethasone to induce sarcopenia symptoms and were administered with rutin, whey protein and the Pickering emulsion, respectively, for muscle movement ability evaluation, and zebrafish treated with or without dexamethasone was used as the model and the control groups, respectively. Results showed that the Pickering emulsion was homogeneous in particle size with a rutin encapsulation rate of 71.16 ± 0.15% and loading efficiency of 44.48 ± 0.11%. Rutin in the Pickering emulsion exhibited a significantly higher bioaccessibility than the free form. The interaction forces between rutin and the two components of whey proteins (α-LA and β-LG) were mainly van der Waals forces and hydrogen bonds. After treatment for 96 h, the zebrafish in Picking emulsion groups showed a significantly increased high-speed movement time and frequency, an increased level of ATP, prolonged peripheral motor nerve length, and normalized muscular histological structure compared with those of the model group (p < 0.05). The results of this study developed a new strategy for rutin utilization and provide scientific evidence for sarcopenia prevention with a food-derived resource.
Collapse
Affiliation(s)
- Yiting Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenyun Xiong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yijing Ren
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Huang
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiaoying Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ou Wang
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
Sun Z, Wei Y, Xu Y, Jiao J, Duan X. The use of traditional Chinese medicine in the treatment of non-alcoholic fatty liver disease: A review. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2024; 12:100475. [DOI: 10.1016/j.prmcm.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Kurćubić VS, Stajić SB, Jakovljević V, Živković V, Stanišić N, Mašković PZ, Matejić V, Kurćubić LV. Contemporary Speculations and Insightful Thoughts on Buckwheat-A Functional Pseudocereal as a Smart Biologically Active Supplement. Foods 2024; 13:2491. [PMID: 39200418 PMCID: PMC11353853 DOI: 10.3390/foods13162491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Today, food scientists are interested in more rational use of crops that possess desirable nutritional properties, and buckwheat is one of the functional pseudocereals that represents a rich source of bioactive compounds (BACs) and nutrients, phytochemicals, antimicrobial (AM) agents and antioxidants (AOs), which can be effectively applied in the prevention of malnutrition and celiac disease and treatment of various important health problems. There is ample evidence of the high potential of buckwheat consumption in various forms (food, dietary supplements, home remedies or alone, or in synergy with pharmaceutical drugs) with concrete benefits for human health. Contamination as well as other side-effects of all the aforementioned forms for application in different ways in humans must be seriously considered. This review paper presents an overview of the most important recent research related to buckwheat bioactive compounds (BACs), highlighting their various functions and proven positive effects on human health.
Collapse
Affiliation(s)
- Vladimir S. Kurćubić
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia
| | - Slaviša B. Stajić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (V.J.); (V.Ž.)
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| | - Vladimir Živković
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (V.J.); (V.Ž.)
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| | - Nikola Stanišić
- Institute for Animal Husbandry, Belgrade-Zemun, Highway to Zagreb 16, 11000 Belgrade, Serbia;
| | - Pavle Z. Mašković
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Vesna Matejić
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Luka V. Kurćubić
- Department of Medical Microbiology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| |
Collapse
|
8
|
Zheng SH, Diao YC, Du J, Li JT, Zhao S, Liu MJ, Lin HC, Zeng Y, Wang JY. Genomics and resequencing of Fagopyrum dibotrys from different geographic regions reveals species evolution and genetic diversity. FRONTIERS IN PLANT SCIENCE 2024; 15:1380157. [PMID: 38919820 PMCID: PMC11196786 DOI: 10.3389/fpls.2024.1380157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Fagopyrum dibotrys, belonging to the family Polygonaceae and genus Fagopyrum, is used in traditional Chinese medicine and is rich in beneficial components, such as flavonoids. As its abundant medicinal value has become increasingly recognized, its excessive development poses a considerable challenge to wild germplasm resources, necessitating artificial cultivation and domestication. Considering these factors, a high-quality genome of F. dibotrys was assembled and the evolutionary relationships within Caryophyllales were compared, based on which 58 individual samples of F. dibotrys were re-sequenced. We found that the samples could be categorized into three purebred populations and regions distributed at distinct elevations. Our varieties were cultivated from the parental populations of the subpopulation in central Yunnan. F. dibotrys is speculated to have originated in the high-altitude Tibetan Plateau region, and that its combination with flavonoids can protect plants against ultraviolet radiation; this infers a subpopulation with a high accumulation of flavonoids. This study assembled a high-quality genome and provided a theoretical foundation for the future introduction, domestication, and development of cultivated varieties of F. dibotrys.
Collapse
Affiliation(s)
- Si-hao Zheng
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Yong-chao Diao
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Jie Du
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Jin-tong Li
- China Traditional Chinese Medicine Seed&Seeding, Co., Ltd, Beijing, China
| | - Sha Zhao
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Mei-juan Liu
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Hui-cai Lin
- China Traditional Chinese Medicine Seed&Seeding, Co., Ltd, Beijing, China
| | - Yan Zeng
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Ji-yong Wang
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| |
Collapse
|
9
|
Wei J, Wang S, Huang J, Zhou X, Qian Z, Wu T, Fan Q, Liang Y, Cui G. Network medicine-based analysis of the hepatoprotective effects of Amomum villosum Lour. on alcoholic liver disease in rats. Food Sci Nutr 2024; 12:3759-3773. [PMID: 38726425 PMCID: PMC11077240 DOI: 10.1002/fsn3.4046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
Alcoholic liver disease (ALD) is characterized by high morbidity and mortality, and mainly results from prolonged and excessive alcohol use. Amomum villosum Lour. (A. villosum), a well-known traditional Chinese medicine (TCM), has hepatoprotective properties. However, its ability to combat alcohol-induced liver injury has not been fully explored. The objective of this study was to investigate the hepatoprotective effects of A. villosum in a rat model of alcohol-induced liver disease, thereby establishing a scientific foundation for the potential preventive use of A. villosum in ALD. We established a Chinese liquor (Baijiu)-induced liver injury model in rats. Hematoxylin and eosin (HE) staining, in combination with biochemical tests, was used to evaluate the protective effects of A. villosum on the liver. The integration of network medicine analysis with experimental validation was used to explore the hepatoprotective effects and potential mechanisms of A. villosum in rats. Our findings showed that A. villosum ameliorated alcohol-induced changes in body weight, liver index, hepatic steatosis, inflammation, blood lipid metabolism, and liver function in rats. Network proximity analysis was employed to identify 18 potentially active ingredients of A. villosum for ALD treatment. These potentially active ingredients in the blood were further identified using mass spectrometry (MS). Our results showed that A. villosum plays a hepatoprotective role by modulating the protein levels of estrogen receptor 1 (ESR1), anti-nuclear receptor subfamily 3 group C member 1 (NR3C1), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α). In conclusion, the results of the current study suggested that A. villosum potentially exerts hepatoprotective effects on ALD in rats, possibly through regulating the protein levels of ESR1, NR3C1, IL-6, and TNF-α.
Collapse
Affiliation(s)
- Jing Wei
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Sihua Wang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Junze Huang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Xinhua Zhou
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | | | - Tingbiao Wu
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Qing Fan
- Basic Medical Science DepartmentZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Yongyin Liang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Guozhen Cui
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| |
Collapse
|
10
|
Vieites-Álvarez Y, Reigosa MJ, Sánchez-Moreiras AM. A decade of advances in the study of buckwheat for organic farming and agroecology (2013-2023). FRONTIERS IN PLANT SCIENCE 2024; 15:1354672. [PMID: 38510443 PMCID: PMC10950947 DOI: 10.3389/fpls.2024.1354672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
During the last decade, research has shown the environment and human health benefits of growing buckwheat (Fagopyrum spp.). This comprehensive review aims to summarize the major advancements made in the study of buckwheat from 2013 to 2023, focusing on its agronomic characteristics, nutritional value, and potential applications in sustainable agriculture. The review examines the diverse applications of buckwheat in organic and agroecological farming systems, and discusses the ability of buckwheat to control weeds through allelopathy, competition, and other sustainable farming methods, such as crop rotation, intercropping and green manure, while improving soil health and biodiversity. The review also explores the nutritional value of buckwheat. It delves into the composition of buckwheat grains, emphasizing their high protein content, and the presence of essential amino acids and valuable micronutrients, which is linked to health benefits such as lowering cholesterol levels, controlling diabetes and acting against different types of cancer, among others. Finally, the review concludes by highlighting the gaps in current knowledge, and proposing future research directions to further optimize buckwheat production in organic or agroecological farming systems. It emphasizes the need for interdisciplinary collaboration, and the integration of traditional knowledge with modern scientific approaches to unlock the full potential of buckwheat as a sustainable crop.
Collapse
Affiliation(s)
- Yedra Vieites-Álvarez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| | - Manuel J. Reigosa
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| | - Adela M. Sánchez-Moreiras
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| |
Collapse
|
11
|
Sharma S, Kumar S, Singh RK. A Recent Advance on Phytochemicals, Nutraceutical and Pharmacological Activities of Buckwheat. Comb Chem High Throughput Screen 2024; 27:2654-2666. [PMID: 37818573 DOI: 10.2174/0113862073265824231004115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 10/12/2023]
Abstract
Buckwheat, a member of the Fagopyrum genus in the Polygonaceae family, is an ancient pseudocereal with noteworthy nutraceutical properties that have been relatively less explored. This crop holds great promise for the future due to its gluten-free protein, wellbalanced amino acid profile, and the presence of bioactive flavonoids that promote good health. With its gluten-free nature and a combination of beneficial nutritional components, buckwheat shows significant potential for a variety of health benefits. The objective of the present review aims to explore various nutritional and pharmacological properties of buckwheat. With the help of various search engines such as, Pubmed, Google and Semantic Scholar, research and review papers were carefully investigated and summarized in a comprehensive review. A fascinating spectrum of nutritional and pharmacological activities of common buckwheat and Tartary buckwheat were explored such as antidiabetic, anti-inflammatory, neurological disorders, antiobesity, anticancer, cardiovascular agents and many more. This review provides a concise overview of the current understanding of the chemical composition of both common buckwheat and Tartary buckwheat and the captivating spectrum of pharmacological activity and also underscoring their immense potential for future advancements.
Collapse
Affiliation(s)
- Shweta Sharma
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Sahil Kumar
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Rajesh Kumar Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, 140126, Ropar, Punjab, India
| |
Collapse
|
12
|
Meira TM, da Costa MM, de Simoni Gouveia JJ, Soares RAN, Tavares MRS, Fernandes AWC, Gouveia GV. Action of crude ethanol extract of Hymenaea martiana leaf, gallic acid, and polypyrrole (PPy) against Aeromonas hydrophila. Braz J Microbiol 2023; 54:1191-1202. [PMID: 36807089 PMCID: PMC10235323 DOI: 10.1007/s42770-023-00922-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Pisciculture represents one of the industries with the fastest growth rates worldwide. However, it presents obstacles to its development, such as bacteriosis, which is conventionally treated with antibiotics. The indiscriminate and inappropriate use of antibiotics can lead to bacterial resistance, thus alternatives to the use of antibiotics have been researched. The study aimed to analyze the potential of crude ethanol extract (CEE) from Hymenaea martiana leaf, gallic acid (GA), and polypyrrole (PPy) against Aeromonas hydrophila. Tests were performed to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the compounds individually and in synergy (checkerboard) against A. hydrophila and in silico tests between the compounds evaluated. The CEE of H. martiana leaf and PPy were effective against A. hydrophila with MBC results of 3125 μg/mL for the CEE of H. martiana and 125 μg/mL for PPy. Evaluating the GA, a MIC and MBC of 125 μg/mL was obtained. In the interaction tests (checkerboard, using PPy/CEE and PPy/GA), there was a significant reduction in individual introductions. Thus, for the PPy/CEE tests, we had a reduction of MIC/MBC to 1.95 and 781.25 μg/mL, and for the synergy tests between PPy/GA to 7.8125 and 31.125 μg/mL, respectively. The synergy tests are encouraging, and it is possible to verify a decrease of up to 98% in the introduction of PPy, 75% in CEE for H. martiana and 75.1% for GA, when compared to their individual tests. The tests with GA are encouraging due to GA's effectiveness as an antimicrobial agent and high synergy with polypyrrole, both in vitro results and molecular docking experiments showed the actions at the same activation site in A. hydrophila. In vivo tests evaluating isolated components of CEE from H. martiana in synergy with PPy should be performed, to verify the quality of the interactions and the improvement of the immune responses of the animals. It was evidenced that gallic acid, a substance isolated from the extract, tends to have more promising results. This is relevant since the industry has been developing these compounds for different uses, thus providing easier access to the product. Thus, the present study indicates an efficient alternative in the use of bioactive compounds as substitutes for conventional antimicrobials.
Collapse
|
13
|
Ali YA, Soliman HA, Abdel-Gabbar M, Ahmed NA, Attia KAA, Shalaby FM, El-Nahass ES, Ahmed OM. Rutin and Hesperidin Revoke the Hepatotoxicity Induced by Paclitaxel in Male Wistar Rats via Their Antioxidant, Anti-Inflammatory, and Antiapoptotic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2738351. [PMID: 37275575 PMCID: PMC10238143 DOI: 10.1155/2023/2738351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 06/07/2023]
Abstract
Paclitaxel, one of the most effective chemotherapeutic drugs, is used to treat various cancers but it is exceedingly toxic when used long-term and can harm the liver. This study aimed to see if rutin, hesperidin, and their combination could protect male Wistar rats against paclitaxel (Taxol)-induced hepatotoxicity. Adult male Wistar rats were subdivided into 5 groups (each of six rats). The normal group was orally given the equivalent volume of vehicles for 6 weeks. The paclitaxel-administered control group received intraperitoneal injection of paclitaxel at a dose of 2 mg/Kg body weight twice a week for 6 weeks. Treated paclitaxel-administered groups were given paclitaxel similar to the paclitaxel-administered control group together with oral supplementation of rutin, hesperidin, and their combination at a dose of 10 mg/Kg body weight every other day for 6 weeks. The treatment of paclitaxel-administered rats with rutin and hesperidin significantly reduced paclitaxel-induced increases in serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transferase activities as well as total bilirubin level and liver lipid peroxidation. However, the levels of serum albumin, liver glutathione content, and the activities of liver superoxide dismutase and glutathione peroxidase increased. Furthermore, paclitaxel-induced harmful hepatic histological changes (central vein and portal area blood vessel congestion, fatty changes, and moderate necrotic changes with focal nuclear pyknosis, focal mononuclear infiltration, and Kupffer cell proliferation) were remarkably enhanced by rutin and hesperidin treatments. Moreover, the elevated hepatic proapoptotic mediator (caspase-3) and pro-inflammatory cytokine (tumor necrosis factor-α) expressions were decreased by the three treatments in paclitaxel-administered rats. The cotreatment with rutin and hesperidin was the most effective in restoring the majority of liver function and histological integrity. Therefore, rutin, hesperidin, and their combination may exert hepatic protective effects in paclitaxel-administered rats by improving antioxidant defenses and inhibiting inflammation and apoptosis.
Collapse
Affiliation(s)
- Yasmine A. Ali
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Kandil A. A. Attia
- Clinical Nutrition Department, College of Applied Medical Sciences, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Department of Evaluation of Natural Resources, Environmental Studies and Research Institute, El-Sadat City University, El-Sadat City 32897, Egypt
| | - Fatma M. Shalaby
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
14
|
Li M, Zhang J, Li L, Wang S, Liu Y, Gao M. Effect of enzymatic hydrolysis on volatile flavor compounds of Monascus-fermented tartary buckwheat based on headspace gas chromatography-ion mobility spectrometry. Food Res Int 2023; 163:112180. [PMID: 36596121 DOI: 10.1016/j.foodres.2022.112180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Tartary buckwheat was hydrolyzed with α-amylase, pullulanase, α-amylase and pullulanase double enzymes and fermented by Monascus. The fermentation products were named as enzymolysis-Monascus-fermented tartary buckwheat (EMFTB). The composition and content of volatile flavor compounds in EMFTB were investigated. The results showed that α-amylase and pullulanase hydrolysis reduced starch content and raised protein, flavonoids, Monacolin K and Monascus pigments content of EMFTB. Meanwhile, double enzyme hydrolysis significantly changed the principal components of volatile substances and affected the varieties and content of volatile organic substances in EMFTB using electronic nose and headspace gas chromatography-ion mobility chromatography (HS-GC-IMS). The volatile organic substances and main aroma components increased significantly in EMFTB, including 2-heptanone, 3-methyl-1-butanol, butan-1-ol, 2-methyl-1-propanol and other substances. These results indicate that the amylase hydrolysis plays an important role in improving the flavor quality of EMFTB.
Collapse
Affiliation(s)
- Meng Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China; Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei 434025, China
| | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China; Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei 434025, China.
| |
Collapse
|
15
|
Artabotrys odoratissimus Bark Extract Restores Ethanol Induced Redox Imbalance and Toxicity in Hepatocytes and In Vivo Model. Appl Biochem Biotechnol 2022; 195:3366-3383. [PMID: 36585550 DOI: 10.1007/s12010-022-04275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
Alcohol-induced oxidative stress is a key player in the development of liver diseases, and herbal alternatives are important means of ameliorating the hepatotoxic effects. The study aimed to evaluate the hepatoprotective potentiality of Artabotrys odoratissimus, an important medicinal shrub from the family Annonaceae. The phenolic compounds from bark ethanol extract (BEE) were detected using RP-HPLC. The in vitro hepatoprotective activity against ethanol-induced damage was studied in HepG2 cells with cell viability assays, mitochondrial membrane potential (MMP) assay, reactive oxygen species (ROS) assay, double staining assay and western blotting. The in vivo mice model was used to evaluate the alcohol-induced stress with liver function enzymes, lipid profile and histopathology. All the thirteen phenolic compounds detected with HPLC were docked onto protein targets such as aspartate amino transferase (AST), alkaline phosphatase (ALP) and inducible nitric oxide synthase (NO). The RP-HPLC detected the presence of various phenolics including rutin, chlorogenic acid and catechin, amongst others. Co-administration of BEE with ethanol alleviated cell death, ROS and MMP in HepG2 cells compared to the negative control. The extract also modulated the MAP kinase/caspase-3 pathway, thereby showing protective effects in HepG2 cells. Also, pre-treatment for 14 days with the extract in the mice model before a single toxic dose (5 g/kg body weight) reduced the liver injury by bringing the levels of liver function enzymes, lipid profile and bilirubin to near normal. In silico analysis revealed that rutin showed the best binding affinity with all the target proteins in the study. These results provide evidence that BEE possesses significant hepatoprotective effects against ethanol-induced oxidative stress in hepatic cells and in vivo models, which is further validated with in silico analysis.
Collapse
|
16
|
Valido E, Stoyanov J, Gorreja F, Stojic S, Niehot C, Kiefte-de Jong J, Llanaj E, Muka T, Glisic M. Systematic Review of Human and Animal Evidence on the Role of Buckwheat Consumption on Gastrointestinal Health. Nutrients 2022; 15:1. [PMID: 36615659 PMCID: PMC9823958 DOI: 10.3390/nu15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Buckwheat is a commonly cultivated crop with growing evidence that it is beneficial to gastrointestinal (GI) health. This systematic review summarizes the role of buckwheat in modifying GI health outcomes and microbiomes. METHODS Four medical databases and Google Scholar were systematically searched. Clinical trials, observational studies, animal in vivo, and in vitro studies with human and animal GI-derived samples were included. RESULTS There were 32 studies (one randomized controlled trial [RCT], one non-randomized trial, 3 observational, 9 in vitro, and 18 animal in vivo studies) included. In preclinical studies, buckwheat extracts were observed to have cytotoxic potential against human-derived GI cancer cell lines. Animals fed with buckwheat had lower GI mucosal inflammation, higher alpha diversity in the GI microbiome, and higher levels of fecal short-chain fatty acids. Human evidence studies and clinical trials were limited and predominantly of moderate risk of bias. The majority of in vitro studies with GI-derived samples and in vivo studies were reliable without restrictions in study design. CONCLUSION In vivo and in vitro studies show that buckwheat may have potential GI benefits due to its anti-oxidant and anti-inflammatory potential; however, human evidence remains limited, and its impact on health in humans remains to be elucidated in future trials.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Department of Health Sciences, University of Lucerne, 6003 Lucerne, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Frida Gorreja
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Stevan Stojic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
| | - Christa Niehot
- Literature Searches Support, 3000 GA Dordrecht, The Netherlands
| | - Jessica Kiefte-de Jong
- Department of Public Health and Primary Care, Health Campus The Hague, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erand Llanaj
- ELKH-DE Public Health Research Group of the Hungarian Academy of Sciences, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Marija Glisic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
17
|
Garcia-Manieri JAA, Correa VG, Backes E, de Sá-Nakanishi AB, Bracht L, Comar JF, Corrêa RCG, Peralta RM, Bracht A. A Critical Appraisal of the Most Recent Investigations on the Hepatoprotective Action of Brazilian Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3481. [PMID: 36559593 PMCID: PMC9785989 DOI: 10.3390/plants11243481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Conventional treatments for liver diseases are often burdened by side effects caused by chemicals. For minimizing this problem, the search for medicines based on natural products has increased. The objective of this review was to collect data on the potential hepatoprotective activity of plants of the Brazilian native flora. Special attention was given to the modes of extraction, activity indicators, and identification of the active compounds. The databases were Science direct, Pubmed, and Google Academic. Inclusion criteria were: (a) plants native to Brazil; (b) studies carried out during the last 15 years; (c) high-quality research. A fair number of communications met these criteria. Various parts of plants can be used, e.g., fruit peels, seeds, stem barks, and leaves. An outstanding characteristic of the active extracts is that they were mostly obtained from plant parts with low commercial potential, i.e., by-products or bio-residues. The hepatoprotective activities are exerted by constituents such as flavonoids, phenolic acids, vitamin C, phytosterols, and fructose poly- and oligosaccharides. Several Brazilian plants present excellent perspectives for the obtainment of hepatoprotective formulations. Very important is the economical perspective for the rural producers which may eventually increase their revenue by selling increasingly valued raw materials which otherwise would be wasted.
Collapse
Affiliation(s)
| | - Vanesa Gesser Correa
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Emanueli Backes
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | - Lívia Bracht
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | - Rúbia Carvalho Gomes Corrêa
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-900, Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rosane Marina Peralta
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Adelar Bracht
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| |
Collapse
|
18
|
Selenium and flavonoids in selenium-enriched tartary buckwheat roasted grain tea: Their distribution and correlation to antioxidant activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Cao P, Wu Y, Li Y, Xiang L, Cheng B, Hu Y, Jiang X, Wang Z, Wu S, Si L, Yang Q, Xu J, Huang J. The important role of glycerophospholipid metabolism in the protective effects of polyphenol-enriched Tartary buckwheat extract against alcoholic liver disease. Food Funct 2022; 13:10415-10425. [PMID: 36149348 DOI: 10.1039/d2fo01518h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alcoholic liver disease (ALD) is a mounting public health problem with significant medical, economic and social burdens. Tartary buckwheat (F. tataricum (L.) Gaertn, bitter buckwheat) is a kind of healthy and nutritious food, which has been demonstrated to protect against ALD, but the underlying mechanism has not been fully studied. Herein, we aimed to elucidate the beneficial effects of Tartary buckwheat extract (mainly composed of polyphenols including rutin, quercetin, kaempferol and kaempferol-3-O-rutinoside) in terms of lipid metabolism with the aid of lipidomic analysis. In our study, we employed C57BL/6J mice and a Lieber-DeCarli alcohol liquid diet to construct an ALD model and found that Tartary buckwheat extract was able to prevent ALD-induced histopathological lesions, liver injury and abnormal plasma lipid levels. These beneficial effects might be attributed to the regulation of energy metabolism-related genes (SIRT1, LKB1 and AMPK), lipid synthesis-related genes (ACC, SREBP1c and HMGR) and lipid oxidation-related genes (PPARα, CPT1 and CPT2). In addition, lipidomic profiling and KEGG pathway analysis showed that glycerophospholipid metabolism contributed the most to elucidating the regulatory mechanism of Tartary buckwheat extract. In specific, chronic ethanol intake reduced the level of phosphatidylcholines (PC) and increased the level of phosphatidylethanolamines (PE) in the liver, resulting in a decrease in the PC/PE ratio, which could be all significantly restored by Tartary buckwheat extract intervention, indicating that the Tartary buckwheat extract might regulate PC/PE homeostasis to exert its lipid-lowering effect. Overall, we demonstrated that Tartary buckwheat extract could prevent ALD by modulating hepatic glycerophospholipid metabolism, providing the theoretical basis for its further exploitation as a medical plant or nutritional food.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Yue Wu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Yaping Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Liping Xiang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Bingyu Cheng
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yixin Hu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xin Jiang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhe Wang
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qiang Yang
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Jian Xu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye 435100, Hubei, China.
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
20
|
Anti-inflammatory and Immunomodulatory Properties of Lepidium sativum. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3645038. [PMID: 35937400 PMCID: PMC9348929 DOI: 10.1155/2022/3645038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 12/26/2022]
Abstract
Background Lepidium sativum (garden cress) is a member of the Brassicaceae family that has been utilized for medicinal and culinary purposes in centuries. Anti-inflammatory, antioxidant, immunomodulatory, hepatoprotective, antihypertensive, antiasthmatic, and hypoglycemic properties are found in various portions of the plant. The anti-inflammatory, antioxidant, and immunomodulatory effects of L. sativum were the subject of this review. Methods The required information was gathered by searching the Web of Science, PubMed, and Scopus databases for the terms anti-inflammatory, antioxidant, immunomodulatory, immune system, and Lepidium sativum. Up until February 2022, the search was conducted. Results TNF-, IL-6, IL-1, NO, iNOS, and HO-1 levels were reduced, indicating that L. sativum has anti-inflammatory and immunomodulatory properties. Flavonoids, alkaloids, cyanogenic glycosides, tannins, glucosinolates, sterols, and triterpenes are the key chemical components that contribute to the anti-inflammatory effects. In peritoneal neutrophils, L. sativum reduced oxidative stress by scavenging free radicals, as evidenced by a drop in superoxide anion and an increase in glutathione. Conclusion The anti-inflammatory, antioxidant, and immunomodulatory activities of L. sativum could be explored in clinical trials to treat inflammatory and immune system illnesses.
Collapse
|
21
|
Liu Y, Sui X, Zhao X, Wang S, Yang Q. Antioxidative Activity Evaluation of High Purity and Micronized Tartary Buckwheat Flavonoids Prepared by Antisolvent Recrystallization. Foods 2022; 11:foods11091346. [PMID: 35564069 PMCID: PMC9102898 DOI: 10.3390/foods11091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Tartary buckwheat, a healthy food, is associated with a reduced risk of certain human chronic diseases. However, the bioactive component flavonoids in Tartary buckwheat have poor solubility and low absorption in vivo. To improve these points, 60.00% Tartary buckwheat total flavonoids (TFs) were obtained by ethanol refluxing method, which were purified and micronized by antisolvent recrystallization (ASR) using methanol as a solvent and deionized water as an antisolvent. By using High Performance Liquid Chromatography (HPLC) and electrospray ionized mass spectrometry (ESI-MS), the main flavonoid in pure flavonoids (PF) were rutin (RU), kaempferol-3-O-rutinoside (KA) and quercetin (QU); the content of TF is 99.81% after purification. It is more worthy of our attention that micronized flavonoids contribute more to antioxidant activity because of good solubility. These results provide a theoretical reference for the micronization of other flavonoids.
Collapse
Affiliation(s)
- Yanjie Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
- Correspondence: (X.S.); (X.Z.)
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
- Correspondence: (X.S.); (X.Z.)
| | - Siying Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Qilei Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.L.); (S.W.); (Q.Y.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
22
|
Liu Y, Tan ML, Zhu WJ, Cao YN, Peng LX, Yan ZY, Zhao G. In Vitro Effects of Tartary Buckwheat-Derived Nanovesicles on Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2616-2629. [PMID: 35167751 DOI: 10.1021/acs.jafc.1c07658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Evidence suggests that plant-derived nanovesicles may play a significant role in human health. Tartary buckwheat has several physiological activities; however, its underlying health-promoting mechanism remains unclear. In this study, first, Tartary buckwheat-derived nanovesicles (TBDNs) were collected, their structures were analyzed, and microRNA sequencing was performed. Next, target prediction and functional verification were conducted. Finally, the effects of TBDNs on gut microbiota and short-chain fatty acid levels were evaluated. The average size of TBDNs was 141.8 nm diameter. Through the sequencing analyses, 129 microRNAs, including 11 novel microRNAs were identified. Target gene prediction showed that some microRNAs could target functional genes in Escherichia coli and Lactobacillus rhamnosus-related physiological processes. TBDNs significantly promoted the growth of E. coli and L. rhamnosus, enhanced the diversity of fecal microorganisms and increased the short-chain fatty acid levels. These findings provided a new nutritional perspective for Tartary buckwheat and were conducive to promote the development and utilization of Tartary buckwheat.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Mao-Ling Tan
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Wen-Jing Zhu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
23
|
Muvhulawa N, Dludla PV, Ziqubu K, Mthembu SX, Mthiyane F, Nkambule BB, Mazibuko-Mbeje SE. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. Pharmacol Res 2022; 178:106163. [DOI: 10.1016/j.phrs.2022.106163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/06/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
|
24
|
Štreimikytė P, Urbonavičienė D, Balčiūnaitienė A, Viškelis P, Viškelis J. Optimization of the Multienzyme-Assisted Extraction Procedure of Bioactive Compounds Extracts from Common Buckwheat ( Fagopyrum esculentum M.) and Evaluation of Obtained Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122567. [PMID: 34961038 PMCID: PMC8703388 DOI: 10.3390/plants10122567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 05/28/2023]
Abstract
Optimization of the extraction procedure using a multienzymes cocktail for common buckwheat (Fagopyrum esculentum M.) is important due to the yield, fermentable sugars, oligosaccharides and bioactive compounds for creating higher added value products. This study was undertaken to find out the optimum multienzymes-water extraction on yield and total phenolic compounds for common Buckwheat using response surface methodology (RSM). Three independent variables, time (2, 13, and 24 h), temperature (60 °C, 70 °C, 80 °C), and non-starch polysaccharide (NSP) enzymes mixture (0.10, 0.55, and 1.00 mL), were analyzed to optimize the response variables. NSP hydrolyzing enzymes, cellulase, xylanase, and β-glucanase, were produced by Trichoderma reesei. Estimated optimum conditions for F. esculentum were found: time-2 h, temperature-65 °C, and cellulase activity-8.6 CellG5 Units/mL. Different optimization run samples were collected and lyophilized for further analysis until the hydrophilic property using the water contact angle methodology and rutin content using HPLC was determined. Results indicated NSP enzymes activity did not differ between water contact angles after 13 h of enzymatic water extraction. However, longer fermentation time (24 h) decreased static water contact angle by approximately 3-7° for lyophilized water extract and 2-7° for solid fraction after fermentation. It implies enzymatic hydrolysis during water extraction increased hydrophilic properties in solid fraction and decreased hydrophilicity in water fraction due to the enzymes cleaved glycosidic bonds releasing water-soluble compounds.
Collapse
|
25
|
Liu M, Sun W, Ma Z, Hu Y, Chen H. Tartary buckwheat database (TBD): an integrative platform for gene analysis of and biological information on Tartary buckwheat. J Zhejiang Univ Sci B 2021; 22:954-958. [PMID: 34783225 DOI: 10.1631/jzus.b2100319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rice, wheat, corn, and potatoes are four crops that provide a daily source of nutrition for humans, but there are many problems that have been found with these crops. First, they lack amino acids and minerals which are necessary for balanced nutrition, and they also are grown very widely and as monocultures, which increases the risk of the human food system being destroyed by climate change. Thus, by introducing coarse cereals with good characteristics, we can enrich human food resources, realize agricultural diversification, improve dietary structure, and mitigate risks. Tartary buckwheat (Fagopyrum tataricum) is a widely cultivated edible and medicinal crop with unique nutritional and excellent economic value. It contains flavonoids, such as rutin and quercetin, which are not found in cereal crops. Rutin is a major flavonoid that can enhance blood flow and aid in the use of vitamin C and the production of collagen. In addition, such antioxidants have been shown to effectively reduce cholesterol levels, blood clots, and hypertension, particularly for the prevention of inflammatory liver injury (Middleton et al., 2000; Lee et al., 2013; Suzuki et al., 2014; Huang et al., 2016; Nishimura et al., 2016). Meanwhile, Tartary buckwheat can tolerate poor climate and acidic soils containing high amounts of aluminum, which is toxic to other crops (Wang et al., 2015). The self-pollination of Tartary buckwheat has resulted in a decrease in genomic heterozygosity, which is valuable for breeding and a stable production trait (Wang and Campbell, 2007). Therefore, Tartary buckwheat is an important minor crop, which is expected to become the target of many breeding efforts in the future.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.,Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhaotang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Hu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
26
|
Zhang F, Ma Z, Qiao Y, Wang Z, Chen W, Zheng S, Yu C, Song L, Lou H, Wu J. Transcriptome sequencing and metabolomics analyses provide insights into the flavonoid biosynthesis in Torreya grandis kernels. Food Chem 2021; 374:131558. [PMID: 34794838 DOI: 10.1016/j.foodchem.2021.131558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
The kernel of Torreya grandis (T. grandis) is a rare nut with a variety of bioactive compounds. Flavonoids are a very important class of bioactive compounds with high antioxidant activity in T. grandis kernels. However, the flavonoid compositions which mainly contribute to antioxidant capacity and the molecular basis of flavonoid biosynthesis in T. grandis remain unclear. Here, transcriptome sequencing and metabolomics analysis for kernels were performed. In total, 124 flavonoids were identified. Among them, 9 flavonoids were highly correlated with antioxidant activity. Furthermore, unigenes encoding CHS, DFR and ANS showed significant correlation with the 9 flavonoids. Transient overexpression of TgDFR1 in tobacco leaves resulted in increased antioxidant activity. Moreover, several transcription factors from MYB, bHLH and bZIP families were identified by co-expression assay, suggesting that they may regulate flavonoid biosynthesis. Our findings provide a molecular basis and new insights into the flavonoid biosynthesis in T. grandis kernels.
Collapse
Affiliation(s)
- Feicui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhenmin Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yan Qiao
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
27
|
Li J, Feng S, Qu Y, Gong X, Luo Y, Yang Q, Zhang Y, Dang K, Gao X, Feng B. Identifying the primary meteorological factors affecting the growth and development of Tartary buckwheat and a comprehensive landrace evaluation using a multi-environment phenotypic investigation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6104-6116. [PMID: 33908040 DOI: 10.1002/jsfa.11267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tataricum) is a traditional edible and medicinal crop and has been praised as one of the green foods for humans in the 21st century. However, its production and promotion are restricted by the low yields of current varieties. The interaction of genotype and environment could lead to inconsistent phenotypic performance of genotypes across different environments. Climate change has intensified these effects and poses a substantial threat to crop production. RESULTS In the present study, the effects of meteorological factors on the phenotypic traits of 200 Tartary buckwheat landraces across four macro-environments were investigated. Overall, the phenotypic performance of these Tartary buckwheat landraces was markedly varied across the different environments. Also, the average daily temperature and precipitation had relatively higher impacts on phenotypic performance. The results also revealed the negative impacts of relative humidity on the yield-related traits. Twenty-five Tartary buckwheat landraces were ultimately identified as having good overall phenotypic performance and high yield stability. CONCLUSION Understanding the impacts of meteorological factors on the phenotypic performance of crops can guide appropriate measures and facilitate germplasm selection for yield enhancement in the context of climate change. The landraces selected comprehensively in this study could be used as parents or intermediate materials for breeding high-quality Tartary buckwheat varieties in the future. The methods used could also be extended to other crops for breeding and germplasm innovation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling, China
| | - Shan Feng
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, China
| | - Yang Qu
- Institute of Minor Grain Crops Research, Baoji Academy of Agricultural Sciences, Qishan, China
| | - Xiangwei Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling, China
| | - Yan Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling, China
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling, China
| | - Yuchuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling, China
| | - Ke Dang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling, China
| |
Collapse
|
28
|
Tang H, Tang J, Liu J, Zhou B, Chen Y. Metabolomics analyses reveal anthocyanins-rich accumulation in naturally mutated purple-leaf tea (Camellia sinensis L.). ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1968509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hao Tang
- Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangzhou, People’s Republic of China
| | - Jinchi Tang
- Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangzhou, People’s Republic of China
| | - Jiayu Liu
- Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangzhou, People’s Republic of China
| | - Bo Zhou
- Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangzhou, People’s Republic of China
| | - Yiyong Chen
- Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangzhou, People’s Republic of China
| |
Collapse
|
29
|
Effects of Tartary Buckwheat Bran Flour on Dough Properties and Quality of Steamed Bread. Foods 2021; 10:foods10092052. [PMID: 34574162 PMCID: PMC8467894 DOI: 10.3390/foods10092052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 01/12/2023] Open
Abstract
Steamed bread is a traditional staple food of China. Replacing wheat flour (WF) with Tartary buckwheat is expected to improve the nutritional value of steamed bread. In this study, Tartary buckwheat flour (TBF), Tartary buckwheat bran flour (TBBF), and Tartary buckwheat core flour (TBCF) were prepared, their composition and physicochemical properties were compared. It was found that TBBF had higher protein and rutin contents, so its antioxidant activity and dough rheological properties were obviously superior to those of TBF and TBCF. When TBBF was mixed with WF, its weight proportion in the blend (Wbran) had a significant effect on the dough rheological properties. When Wbran was 30%, the dough had the optimal mixing tolerance, and when Wbran exceeded 30%, it caused dilution effect, weakening the gluten network. With the increase of Wbran, the color of the steamed bread developed by the TBBF–WF blend gradually darkened and yellowed, the specific volume declined, and its hardness, gumminess, and chewiness ascended gradually. The appropriate addition of TBBF (Wbran = 10% and 30%) was beneficial to cell diameter and volume of steamed bread, but the further rise of Wbran would destroy its gas retention ability. The predicted glycemic index (pGI) of steamed bread declined significantly with the increasing Wbran.
Collapse
|
30
|
Skenderidis P, Leontopoulos S, Petrotos K, Mitsagga C, Giavasis I. The In Vitro and In Vivo Synergistic Antimicrobial Activity Assessment of Vacuum Microwave Assisted Aqueous Extracts from Pomegranate and Avocado Fruit Peels and Avocado Seeds Based on a Mixtures Design Model. PLANTS 2021; 10:plants10091757. [PMID: 34579290 PMCID: PMC8471749 DOI: 10.3390/plants10091757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022]
Abstract
The present study aimed to assess the antimicrobial properties of encapsulated lyophilized powdered extracts of pomegranate peels (PP), avocado peels (AP) and avocado seeds (AS) in vitro and in vivo. Minimum Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) methods, optical density measurement, and well diffusion assay were used to determine antimicrobial activity against food borne bacteria (Gram− Escherichia coli, Salmonella typhimurium, Campylobacter jejuni, Pseudomonas putida), (Gram+ Staphylococcus aureus, Listeria monocytogenes, Clostridium perfringens, Lactobacillus plantarum), and fungi (Penicillium expansum and Aspergillus niger) based on a mixture design model. Additionally, the most effective powder was studied in vivo in yogurt, cream cheese, and minced meat burger. The samples that contained high polyphenol content also exhibited higher antioxidant, antimicrobial, and antifungal activity. From the results of the well diffusion, the MIC/MBC, and the cell optical density assays, the antimicrobial activity of the extracts was found to be correlated to the total phenolic content (TPC) of the samples and the type of the microorganism. The pomegranate peels extract presented the higher TPC and antioxidant activity and constitute the highest percentage in the most active antimicrobial mixture. The powders that were tested in vitro showed microbial type-dependent effects in each food model. The results presented here can be further studied in the large-scale industrial production of natural food preservatives.
Collapse
Affiliation(s)
- Prodromos Skenderidis
- Laboratory of Food and Biosystems Engineering, Department of Agrotechnology, University of Thessaly, 41110 Larissa, Greece; (S.L.); (K.P.)
- Correspondence: ; Tel.: +30-6973313565
| | - Stefanos Leontopoulos
- Laboratory of Food and Biosystems Engineering, Department of Agrotechnology, University of Thessaly, 41110 Larissa, Greece; (S.L.); (K.P.)
| | - Konstantinos Petrotos
- Laboratory of Food and Biosystems Engineering, Department of Agrotechnology, University of Thessaly, 41110 Larissa, Greece; (S.L.); (K.P.)
| | - Chrysanthi Mitsagga
- Laboratory of Food Microbiology, Department of Food Technology, University of Thessaly, End of N. Temponera Street, 43100 Karditsa, Greece; (C.M.); (I.G.)
| | - Ioannis Giavasis
- Laboratory of Food Microbiology, Department of Food Technology, University of Thessaly, End of N. Temponera Street, 43100 Karditsa, Greece; (C.M.); (I.G.)
| |
Collapse
|
31
|
Doustimotlagh AH, Taheri S, Mansourian M, Eftekhari M. Extraction and Identification of Two Flavonoids in Phlomoides hyoscyamoides as an Endemic Plant of Iran: The Role of Quercetin in the Activation of the Glutathione Peroxidase, the Improvement of the Hydroxyproline and Protein Oxidation in Bile Duct-Ligated Rats. Curr Comput Aided Drug Des 2021; 16:629-640. [PMID: 31481005 DOI: 10.2174/1573409915666190903163335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/22/2019] [Accepted: 08/02/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cholestatic liver disease, a serious chronic condition that develops progressive hepatic degeneration through free radicals. OBJECTIVE The present study was designed to extract and identify two flavonoids in Phlomoides hyoscyamoides plant, native to Iran and evaluate the role of quercetin identified on the liver injury among bile ductligated rats. METHODS This study was conducted on 25 male Wistar rats within three groups of sham control, mere bile duct-ligated, and bile duct-ligated with quercetin. The bile duct-ligated animals received quercetin at a dose of 50 mg/kg/day for 10 days, followed by biochemical tests, oxidative stress markers, activity of antioxidant enzymes and hematoxylin and eosin staining. Molecular docking was used to explore the interactive behavior of quercetin with glutathione peroxidase. RESULTS According to analyses of the obtained extract, two main active ingredients of P. hyoscyamoides were rutin and quercetin. Bile duct-ligated group showed a significant liver necrosis, a clear increase in plasma and tissue oxidative stress parameters, and a decrease in glutathione peroxidase activity as compared to sham control group. Quercetin injection in bile duct-ligated rats resulted in significant decrease in hydroxyproline, protein carbonyl and histopathologic indexes and significant increase in glutathione peroxidase activity (P-value≤0.05). Based on the molecular docking, the quercetin was able to regulate the glutathione peroxidase activity. CONCLUSION The quercetin acts as an enzyme inducer by renewing the glutathione peroxidase activity and inhibiting the oxidation of proteins and hence decreases the oxidative stress. These results could be a sign of confirming the positive role of quercetin in attenuating the liver damage and degeneration.
Collapse
Affiliation(s)
- Amir H Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran,Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Salman Taheri
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Mahboubeh Mansourian
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran,Department of Pharmacology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdieh Eftekhari
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Zou L, Wu D, Ren G, Hu Y, Peng L, Zhao J, Garcia-Perez P, Carpena M, Prieto MA, Cao H, Cheng KW, Wang M, Simal-Gandara J, John OD, Rengasamy KRR, Zhao G, Xiao J. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat ( Fagopyrum tataricum). Crit Rev Food Sci Nutr 2021; 63:657-673. [PMID: 34278850 DOI: 10.1080/10408398.2021.1952161] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tartary buckwheat belongs to the family Polygonaceae, which is a traditionally edible and medicinal plant. Due to its various bioactive compounds, the consumption of Tartary buckwheat is correlated to a wide range of health benefits, and increasing attention has been paid to its potential as a functional food. This review summarizes the main bioactive compounds and important bioactivities and health benefits of Tartary buckwheat, emphasizing its protective effects on metabolic diseases and relevant molecular mechanisms. Tartary buckwheat contains a wide range of bioactive compounds, such as flavonoids, phenolic acids, triterpenoids, phenylpropanoid glycosides, bioactive polysaccharides, and bioactive proteins and peptides, as well as D-chiro-inositol and its derivatives. Consumption of Tartary buckwheat and Tartary buckwheat-enriched products is linked to multiple health benefits, e.g., antioxidant, anti-inflammatory, antihyperlipidemic, anticancer, antidiabetic, antiobesity, antihypertensive, and hepatoprotective activities. Especially, clinical studies indicate that Tartary buckwheat exhibits remarkable antidiabetic activities. Various tartary buckwheat -based foods presenting major health benefits as fat and blood glucose-lowering agents have been commercialized. Additionally, to address the safety concerns, i.e., allergic reactions, heavy metal and mycotoxin contaminations, the quality control standards for Tartary buckwheat and its products should be drafted and completed in the future.
Collapse
Affiliation(s)
- Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Guixing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Pascual Garcia-Perez
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Maria Carpena
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Miguel A Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Oliver D John
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Hou S, Du W, Hao Y, Han Y, Li H, Liu L, Zhang K, Zhou M, Sun Z. Elucidation of the Regulatory Network of Flavonoid Biosynthesis by Profiling the Metabolome and Transcriptome in Tartary Buckwheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7218-7229. [PMID: 34151566 DOI: 10.1021/acs.jafc.1c00190] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The characteristics of flavonoid metabolism in different Tartary buckwheat (TB) tissues and the related gene regulation network are still unclear at present. One hundred forty-seven flavonoids were identified from six TB tissues using the ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The roadmap of the rutin synthesis pathway was revealed. Through transcriptomic analysis it was revealed that the differentially expressed genes (DEGs) are mainly enriched in the "Phenylpropanoid biosynthesis" pathway. Fifty-two DEGs involved in the "flavonol synthesis" pathway were identified. The weighted gene correlation network analysis revealed four co-expression network modules correlated with six flavonol metabolites. Eventually, 74 genes revealed from MEblue and MElightsteelblue modules were potentially related to flavonol synthesis. Of them, 7 MYB transcript factors had been verified to regulate flavonoid synthesis. Furthermore, overexpressed FtMYB31 enhanced the rutin content in vivo. The present findings provide a dynamic flavonoid metabolism profile and co-expression network related to rutin synthesis and are thus valuable in understanding the molecular mechanisms of rutin synthesis in TB.
Collapse
Affiliation(s)
- Siyu Hou
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Wei Du
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Yanrong Hao
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Hongying Li
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Longlong Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, 030031 Taiyuan, Shanxi, China
| | - Kaixuan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| |
Collapse
|
34
|
Abdulmalek SA, Fessal M, El-Sayed M. Effective amelioration of hepatic inflammation and insulin response in high fat diet-fed rats via regulating AKT/mTOR signaling: Role of Lepidium sativum seed extracts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113439. [PMID: 33017634 DOI: 10.1016/j.jep.2020.113439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity-induced insulin resistance and chronic inflammation appears to be the most frequent cause of diabetes and its related metabolic complications; in this way a new therapeutic approaches are needed to prevent the chronic obesity and insulin resistance. Lepidium sativum has been extensively used in traditional alternative medicine for cough, skin disease, liver disorder, diuretic, gastrointestinal problems, hair loss treatment, milk secretion during lactation as well as antioxidant, antihypertensive, anti-inflammatory, and antidiabetic activities. The hypoglycemic and hypolipidemic effect of Lepidium sativum have been observed by previous studies, but the underlying molecular mechanisms are unclear. AIM OF THE STUDY In this study, we investigated the beneficial effect of Lepidium sativum ethanol and aqueous seed extracts on obesity, oxidative, inflammatory, and insulin sensitivity changes in the liver tissue of high fat diet (HFD)-fed rats. The bioactive constituents responsible for these activities have been identified for both extracts using HPLC and GC-MS. MATERIALS AND METHODS Rats were fed HFD for 10 weeks. The obese rats were treated orally with the Lepidium sativum ethanol extracts (LSEE) at dose 200 and 400 mg/kg body weight (BW) and Lepidium sativum aqueous extracts (LSAE) at dose 200 mg/kg BW daily for 8 weeks. RESULTS The findings of the present study pointed out a significant increase in the hepatic transaminases, lipid profile, leptin, and hepatic oxidative stress with decreased antioxidant capacity of HFD-fed rats. Consistent with this depiction; we determined the up-regulation of liver inflammatory markers with a significant down-regulation of insulin signaling components phospho-insulin receptor (p-IR), p-AKT, p-mammalian target of rapamycin (p-mTOR), and p-p70S6K after consumption of HFD for 10 weeks that indicates a deterioration of insulin sensitivity. Interestingly, the phytochemical screening of LSEE and LSAE exhibited positive results for phenolic, flavonoid, lipid, and some bioactive components as well as the in vitro antioxidant activity of both extracts clearly demonstrated their high antioxidant activities. Notably, LSEE and LSAE displayed a wide range of biological features including anti-obesity, anti-inflammatory, and antioxidant properties. Both extracts significantly decreased high glucose, leptin, lipid profile, liver enzymes levels, and body weight. We also found that LSEE and LSAE significantly alleviated lipid peroxidation and restored the antioxidant enzymes to normal levels. In parallel, the intracellular phosphorylation of classical markers of insulin signaling cascade p-IR/p-AKT/p-mTOR/p-p70S6K was up-regulated in the hepatic tissues of LSEE and LSAE-treated groups. CONCLUSION This study provides evidence that LSEE and LSAE might be one promising dietary supplementation that could safely and effectively prevent the early metabolic alterations and weight gain caused by HFD further regulate the activation of insulin signaling pathway beside their powerful antioxidant and low-toxicity properties.
Collapse
Affiliation(s)
- Shaymaa A Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Marina Fessal
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Mohamed El-Sayed
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
35
|
Dzah CS, Duan Y, Zhang H, Ma H. Effects of pretreatment and type of hydrolysis on the composition, antioxidant potential and HepG2 cytotoxicity of bound polyphenols from Tartary buckwheat (Fagopyrum tataricum L. Gaerth) hulls. Food Res Int 2021; 142:110187. [PMID: 33773660 DOI: 10.1016/j.foodres.2021.110187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
This study investigated the effects of ultrasound assisted-subcritical water (U-SW), subcritical water (SW), ultrasound (U) and hot water (HW) pretreatments and acid hydrolysis (AH) and alkaline hydrolysis (AlkH) on the phenolic composition, antioxidant potential and cytotoxicity of Tartary buckwheat hull extracts. The Folin Ciocalteu assay and HPLC-MS were used to characterize and quantify phenolics of the extracts. The ABTS, FRAP and TEAC assays were used to measure antioxidant activity and the MTT assay was used to measure cytotoxicity of the extracts in HepG2 human liver cancer cells. Results showed that U-SW gave the best AH yield of phenolics (128.45), followed by SW (85.82) and U (64.70), compared to the control, HW (35.82 mgg-1). The same trend was observed for phenols extracted using AlkH. U-SW had the highest antioxidant activity, followed by SW and U regardless of hydrolytic method used. Cytotoxicity followed a similar trend with U-SW and SW being the most cytotoxic to liver cancer cells, followed by U, with the least being HW. The findings suggested that plant materials such as Tartary buckwheat hulls can be pretreated with U-SW, SW and U prior to hydrolytic recovery of bound polyphenols. Also, AH was more efficient than AlkH for phenol extraction, and gave extracts with higher antioxidant activity and cytotoxicity in HepG2 liver carcinoma cells. This application allows for beneficial usage of agricultural biomass and help diversify income sources and products for industry.
Collapse
Affiliation(s)
- Courage Sedem Dzah
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, Ho, HP217, Volta Region, Ghana
| | - Yuqing Duan
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Haihui Zhang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Haile Ma
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
36
|
Sun W, Ma Z, Liu M. Cytochrome P450 family: Genome-wide identification provides insights into the rutin synthesis pathway in Tartary buckwheat and the improvement of agricultural product quality. Int J Biol Macromol 2020; 164:4032-4045. [DOI: 10.1016/j.ijbiomac.2020.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/15/2022]
|
37
|
Ugural A, Akyol A. Can pseudocereals modulate microbiota by functioning as probiotics or prebiotics? Crit Rev Food Sci Nutr 2020; 62:1725-1739. [PMID: 33190507 DOI: 10.1080/10408398.2020.1846493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Amaranth, quinoa, and buckwheat, known as pseudocereals, have been consumed since ancient times and are considered sacred in most cultures. Their grains can be used as cereals for breakfast or mixed with other grains in meals and their health-enhancing effects have been investigated more in recent years. They have an antioxidant effect and their nutrient profiles are enriched with processing techniques such as sprouting and fermentation. Their suitability to different processing techniques and the rapid increase in microbiota researches highlighted the probiotic/prebiotic effects of pseudocereals. Using cultures or naturally fermented amaranth, quinoa and buckwheat exhibited good substrate properties for probiotic bacteria, especially for Lactobacillus strains. Studies have found that they reduce the number of pathogen microorganisms, increase the synthesis of short-chain fatty acids due to their prebiotic effects. Also the number of bacterial colonies do not change during the storage period and their organoleptic properties are revealed. It has been determined that pseudocereals decrease Ruminococcacea, Lachnospiraceae, Helicobacteracea, Clostridium, Escherichia and increase Peptoclostridium, Prevotellaceae, Lactobacillus, Bifidobacterium, Enterococcus, and Eubacteriaceae. Due to these effects, they are considered as good sources for synbiotic formulations to be developed for the treatment of dysbiosis, obesity, Celiac Disease, lactose intolerance, inflammatory bowel diseases and inflammation-mediated chronic disorders.
Collapse
Affiliation(s)
- Aysegul Ugural
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Aslı Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
38
|
Protective Effects of Quercetin on Livers from Mice Exposed to Long-Term Cigarette Smoke. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2196207. [PMID: 33282940 PMCID: PMC7685793 DOI: 10.1155/2020/2196207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/24/2023]
Abstract
Cigarette smoke is highly toxic, and it can promote increased production of reactive species and inflammatory response and leads to liver diseases. Quercetin is a flavonoid that displays antioxidant and anti-inflammatory activities in liver diseases. This study aimed at evaluating the protective effects of quercetin on livers from mice exposed to long-term cigarette smoke exposure. Male C57BL/6 mice were divided into five groups: control (CG), vehicle (VG), quercetin (QG), cigarette smoke (CSG), quercetin, and cigarette smoke (QCSG). CSG and QCSG were exposed to cigarette smoke for sixty consecutive days; at the end of the exposures, all animals were euthanized. Mice that received quercetin daily and were exposed to cigarette smoke showed a reduced influx of inflammatory cells, oxidative stress, inflammatory reaction, and histopathological changes in the liver, compared to CSG. These results suggest that quercetin may be an effective adjuvant for treating damage to the liver due to cigarette smoke exposure.
Collapse
|
39
|
Li HY, Wu CX, Lv QY, Shi TX, Chen QJ, Chen QF. Comparative cellular, physiological and transcriptome analyses reveal the potential easy dehulling mechanism of rice-tartary buckwheat (Fagopyrum Tararicum). BMC PLANT BIOLOGY 2020; 20:505. [PMID: 33148168 PMCID: PMC7640676 DOI: 10.1186/s12870-020-02715-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/21/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Tartary buckwheat has gained popularity in the food marketplace due to its abundant nutrients and high bioactive flavonoid content. However, its difficult dehulling process has severely restricted its food processing industry development. Rice-tartary buckwheat, a rare local variety, is very easily dehulled, but the cellular, physiological and molecular mechanisms responsible for this easy dehulling remains largely unclear. RESULTS In this study, we integrated analyses of the comparative cellular, physiological, transcriptome, and gene coexpression network to insight into the reason that rice-tartary buckwheat is easy to dehull. Compared to normal tartary buckwheat, rice-tartary buckwheat has significantly brittler and thinner hull, and thinner cell wall in hull sclerenchyma cells. Furthermore, the cellulose, hemicellulose, and lignin contents of rice-tartary buckwheat hull were significantly lower than those in all or part of the tested normal tartary buckwheat cultivars, respectively, and the significant difference in cellulose and hemicellulose contents between rice-tartary buckwheat and normal tartary buckwheat began at 10 days after pollination (DAP). Comparative transcriptome analysis identified a total of 9250 differentially expressed genes (DEGs) between the rice- and normal-tartary buckwheat hulls at four different development stages. Weighted gene coexpression network analysis (WGCNA) of all DEGs identified a key module associated with the formation of the hull difference between rice- and normal-tartary buckwheat. In this specific module, many secondary cell wall (SCW) biosynthesis regulatory and structural genes, which involved in cellulose and hemicellulose biosynthesis, were identified as hub genes and displayed coexpression. These identified hub genes of SCW biosynthesis were significantly lower expression in rice-tartary buckwheat hull than in normal tartary buckwheat at the early hull development stages. Among them, the expression of 17 SCW biosynthesis relative-hub genes were further verified by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS Our results showed that the lower expression of SCW biosynthesis regulatory and structural genes in rice-tartary buckwheat hull in the early development stages contributes to its easy dehulling by reducing the content of cell wall chemical components, which further effects the cell wall thickness of hull sclerenchyma cells, and hull thickness and mechanical strength.
Collapse
Affiliation(s)
- Hong-You Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| | - Chao-Xin Wu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qiu-Yu Lv
- School of Big Data and Computer Science, Guizhou Normal University, Guiyang, 550025, China
| | - Tao-Xiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qi-Jiao Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qing-Fu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
40
|
Pharmacokinetics and Protective Effects of Tartary Buckwheat Flour Extracts against Ethanol-Induced Liver Injury in Rats. Antioxidants (Basel) 2020; 9:antiox9100913. [PMID: 32987897 PMCID: PMC7599602 DOI: 10.3390/antiox9100913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/24/2023] Open
Abstract
The grains of Tartary buckwheat (Fagopyrum esculentum) are traditionally consumed on a daily basis and are used in the preparation of diverse processed foods owing to the high concentration of rutin, an antioxidant compound. However, rutin is highly concentrated in hull and bran, but not in edible flour fractions. Rutin-enriched TB flour extracts (TBFEs) were obtained by hydrothermal treatment (autoclaving, boiling, or steaming) and their pharmacokinetic profiles were evaluated following a single-dose oral administration in rats. The antioxidant and protective activities of the extracts against alcoholic liver disease (ALD) were investigated after repetitive oral administration of TBFEs for 28 days prior to ethanol ingestion. The results demonstrated that rutin-enriched TBFEs had better oral absorption and was retained longer in the bloodstream than native TBFE or standard rutin. The activities of antioxidant enzymes and intracellular antioxidant levels increased in ALD rats following TBFE treatments, especially following the administration of rutin-enriched TBFEs. The antioxidant activity of TBFEs consequently contributed toward protecting the liver against injury caused by repetitive ethanol administration, as confirmed by analyzing relative liver weight, liver injury markers, lipid peroxidation, and calcium permeability. These results suggest the promising potential of TBFEs as antioxidant-enriched functional foods for human health.
Collapse
|
41
|
Ryu JY, Choi Y, Hong KH, Chung YS, Cho SK. Effect of Roasting and Brewing on the Antioxidant and Antiproliferative Activities of Tartary Buckwheat. Foods 2020; 9:foods9091331. [PMID: 32967348 PMCID: PMC7555746 DOI: 10.3390/foods9091331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
We evaluated the effect of the roasting and brewing conditions of Tartary buckwheat (TB), which is widely used in infusion teas, on its antioxidant and antiproliferative activities in vitro. TB was roasted at 210 °C for 10 min and brewed at a high temperature for a short time (HTST; 85–90 °C, 3 min) or at room temperature for a long time (RTLT; 25–30 °C, 24 h). Roasted TB (RTB) tea brewed at RTLT had the highest total polyphenol content (TPC) and total flavonoid content (TFC) among the four TB teas for different roasting and brewing conditions. Moreover, RTB brewed at RTLT showed the greatest 2,2-diphenyl-1-picrylhydrazyl-, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)-, and alkyl-scavenging activities. The TB tea brewed at RTLT had higher Fe2+-chelating activity than that brewed at HTST, irrespective of roasting. Moreover, RTB tea brewed at RTLT inhibited the proliferation of human pancreatic and breast cancer cells. Overall, RTB-RTLT displayed the largest effect on antioxidant and antiproliferative effects. Finally, rutin was found to possess the most pronounced effect on the antioxidant and antiproliferative activities of the TB teas. These results indicate that the antioxidant and antiproliferative activities of RTB are enhanced by RTLT brewing.
Collapse
Affiliation(s)
- Ji-yeon Ryu
- School of Biomaterials Sciences and Technology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Korea;
| | - Yoonseong Choi
- Lucy Cavendish College, University of Cambridge, Cambridge CB3 0BU, UK;
| | | | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Korea;
| | - Somi Kim Cho
- School of Biomaterials Sciences and Technology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-3348
| |
Collapse
|
42
|
Niu Q, Dong R, Messia MC, Ren T, Hu X. Selenium in Se-enriched tartary buckwheat (Fagopyrum tataricum L. Gaertn.): Its molecular form and changes during processing. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
The biological activities of the spiderworts (Tradescantia). Food Chem 2020; 317:126411. [PMID: 32087517 DOI: 10.1016/j.foodchem.2020.126411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 11/21/2022]
Abstract
Widely used throughout the world as traditional medicine for treating a variety of diseases ranging from cancer to microbial infections, members of the Tradescantia genus show promise as sources of desirable bioactive compounds. The bioactivity of several noteworthy species has been well-documented in scientific literature, but with nearly seventy-five species, there remains much to explore in this genus. This review aims to discuss all the bioactivity-related studies of Tradescantia plants and the compounds discovered, including their anticancer, antimicrobial, antioxidant, and antidiabetic activities. Gaps in knowledge will also be identified for future research opportunities.
Collapse
|
44
|
Sun W, Ma Z, Chen H, Liu M. Genome-wide investigation of WRKY transcription factors in Tartary buckwheat ( Fagopyrum tataricum) and their potential roles in regulating growth and development. PeerJ 2020; 8:e8727. [PMID: 32185114 PMCID: PMC7060923 DOI: 10.7717/peerj.8727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/10/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The WRKY gene family plays important roles in plant biological functions and has been identified in many plant species. With the publication of the Tartary buckwheat genome, the evolutionary characteristics of the WRKY gene family can be systematically explored and the functions of Fagopyrum tataricum WRKY (FtWRKY) genes in the growth and development of this plant also can be predicted. METHODS In this study, the FtWRKY genes were identified by the BLASTP method, and HMMER, SMART, Pfam and InterPro were used to determine whether the FtWRKY genes contained conserved domains. The phylogenetic trees including FtWRKY and WRKY genes in other plants were constructed by the neighbor-joining (NJ) and maximum likelihood (ML) methods. The intron and exon structures of the FtWRKY genes were analyzed by the gene structure display server, and the motif compositions were analyzed by MEME. Chromosome location information of FtWRKY genes was obtained with gff files and sequencing files, and visualized by Circos, and the collinear relationship was analyzed by Dual synteny plotter software. The expression levels of 26 FtWRKY genes from different groups in roots, leaves, flowers, stems and fruits at the green fruit, discoloration and initial maturity stage were measured through quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS A total of 76 FtWRKY genes identified from the Tartary buckwheat genome were divided into three groups. FtWRKY genes in the same group had similar gene structures and motif compositions. Despite the lack of tandem-duplicated gene pairs, there were 23 pairs of segmental-duplicated gene pairs. The synteny gene pairs of FtWRKY genes and Glycine max WRKY genes were the most. FtWRKY42 was highly expressed in roots and may perform similar functions as its homologous gene AtWRKY75, playing a role in lateral root and hairy root formation. FtWRKY9, FtWRKY42 and FtWRKY60 were highly expressed in fruits and may play an important role in fruit development. CONCLUSION We have identified several candidate FtWRKY genes that may perform critical functions in the development of Tartary buckwheat root and fruit, which need be verified through further research. Our study provides useful information on WRKY genes in regulating growth and development and establishes a foundation for screening WRKY genes to improve Tartary buckwheat quality.
Collapse
Affiliation(s)
- Wenjun Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zhaotang Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Moyang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Eom T, Kim KC, Kim JS. Dendropanax morbifera Leaf Polyphenolic Compounds: Optimal Extraction Using the Response Surface Method and Their Protective Effects against Alcohol-Induced Liver Damage. Antioxidants (Basel) 2020; 9:antiox9020120. [PMID: 32024135 PMCID: PMC7070848 DOI: 10.3390/antiox9020120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
The response surface methodology was used to optimally extract the antioxidant substances from Dendropanax morbifera leaves. The central composite design was used to optimally analyze the effects of ethanol concentration, sample to solvent ratio, extraction temperature, and extraction time on the total flavonoids (TF) content, ferric reducing antioxidant power (FRAP), and Trolox equivalent antioxidant capacity (TEAC). All three parameters were largely influenced by the ethanol concentration and extraction temperature, while TEAC was also influenced by the sample to solvent ratio. The maximum values of TF content, FRAP, and TEAC were achieved under the following extraction conditions: 70% ethanol, 1:10 sample to solvent ratio, 80 °C, and 14 h. The D. morbifera leaf extracts (DMLE) produced under these optimum extraction conditions were investigated to determine their preventive effects on alcohol-induced liver injury. The DMLE was shown to prevent liver injury by scavenging the reactive oxygen species generated by alcohol. In addition, composition analysis of DMLE found high contents of chlorogenic acid and rutin that were determined to inhibit alcoholic liver injury. The findings of this study suggest that DMLE could prove useful as a functional food product supplement to prevent liver injury caused by excessive alcohol consumption.
Collapse
Affiliation(s)
- Taekil Eom
- Subtropical/Tropical Organism Gene Bank, SARI, Jeju National University, Jeju 63243, Korea
| | - Kyeoung Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
46
|
Jia S, Guan T, Zhang X, Liu Y, Liu Y, Zhao X. Serum metabonomics analysis of quercetin against the toxicity induced by cadmium in rats. J Biochem Mol Toxicol 2020; 34:e22448. [PMID: 31967702 DOI: 10.1002/jbt.22448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/28/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
This study aimed to investigate the protective effect of quercetin against the toxicity induced by chronic exposure to low levels of cadmium in rats by an ultra performance liquid chromatography mass spectrometer. Rats were randomly divided into six groups as follows: control group (C), low dose of quercetin group (Q1: 10 mg/kg·bw), high dose of quercetin group (Q2: 50 mg/kg·bw), cadmium chloride group (D), low dose of quercetin plus cadmium chloride group (DQ1), and high dose of quercetin plus cadmium chloride group (DQ2). Cadmium chloride (CdCl2 ) was administered to rats by drinking water ad libitum in a concentration of 40 mg/L. The final amount of CdCl2 ingested was estimated from the water consumption data to be 4.85, 4.91, and 4.89 mg/kg·bw/day, for D, DQ1, and DQ2 groups, respectively. After a 12-week treatment, the serum samples of rats were collected for metabonomics analysis. Ten potential biomarkers were identified for which intensities were significantly increased or reduced as a result of the treatment. These metabolites included isorhamnetin 4'-O-glucuronide, 3-indolepropionic acid, tetracosahexaenoic acid, lysophosphatidylcholine (LysoPC) (20:5), lysoPC (18:3), lysophosphatidylethanolamine (LysoPE) (20:5/0:0), bicyclo-prostaglandin E2, sulpholithocholylglycine, lithocholyltaurine, and glycocholic acid. Results indicated that quercetin exerted a protective effect against cadmium-induced toxicity by regulating lipid and amino acid metabolism, enhancing the antioxidant defense system and protecting liver and kidney function.
Collapse
Affiliation(s)
- Siqi Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Tong Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yajing Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yanli Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
47
|
Li J, Hossain MS, Ma H, Yang Q, Gong X, Yang P, Feng B. Comparative metabolomics reveals differences in flavonoid metabolites among different coloured buckwheat flowers. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Świeca M, Regula J, Suliburska J, Zlotek U, Gawlik-Dziki U, Ferreira IMPLVO. Safeness of Diets Based on Gluten-Free Buckwheat Bread Enriched with Seeds and Nuts-Effect on Oxidative and Biochemical Parameters in Rat Serum. Nutrients 2019; 12:nu12010041. [PMID: 31877881 PMCID: PMC7019513 DOI: 10.3390/nu12010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023] Open
Abstract
Buckwheat breads enriched with seeds (e.g., poppy, carum, amaranth, sunflower, and pumpkin) and nuts can be excellent sources of selected macro- and microelements and bioactive components, such as phenolics, essential oils, unsaturated fatty acids, fiber, and vitamins; however, no studies described their impacts on body biochemical parameters and antioxidant status. The aim of this study was to a determine the safety (the analyses of blood morphological and biochemical parameters) of short-term diets based on buckwheat breads supplemented with the commonly used functional ingredients. Additionally, we confirmed the usefulness of these fortified breads in a reduction of blood cholesterol and triacylglycerols, as well as an improvement of in vivo antioxidant status of Wistar rats. Enriched breads presented an increased phenolic content; however, it has not been translated into an elevation of antioxidant capacities. During short-term in vivo experiments, the studied breads increased the body mass of the rats, except the control buckwheat bread. Compared to the control, the poppy-milk bread markedly lowered (–23%) and egg yolk–carum bread significantly increased (+17%) the total cholesterol concentration in serum. All the fortified breads decreased triacylglycerols’ levels by about 50%. Bread enriched with the poppy–milk, milk-seed, egg yolk–carum, and a mix of additives decreased superoxide dismutase activity by 68%, 66%, 73%, and 71%, respectively. Catalase activity was significantly decreased in the rats fed with carum bread (–62%) and markedly increased in the groups fed with egg yolk–carum bread (+89%), hazel nuts–amaranth bread (+72%), and milk–seeds bread (+65%). The results confirmed the usefulness and safety of functional additives in buckwheat breads.
Collapse
Affiliation(s)
- Michal Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.Ś.); (U.Z.); (U.G.-D.)
| | - Julita Regula
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego Str. 31, 60-624 Poznan, Poland;
- Correspondence: ; Tel.: +48-61-848-73-39
| | - Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego Str. 31, 60-624 Poznan, Poland;
| | - Urszula Zlotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.Ś.); (U.Z.); (U.G.-D.)
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.Ś.); (U.Z.); (U.G.-D.)
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Quıímicas, Faculdade de Farmácia, Universidade do Porto, 4051-401 Porto, Portugal;
| |
Collapse
|
49
|
Jin HR, Yu J, Choi SJ. Hydrothermal Treatment Enhances Antioxidant Activity and Intestinal Absorption of Rutin in Tartary Buckwheat Flour Extracts. Foods 2019; 9:E8. [PMID: 31861857 PMCID: PMC7022688 DOI: 10.3390/foods9010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
Tartary buckwheat (Fagopyrum esculentum) is widely used in the food industry due to its functionality, which is related to its high rutin content. However, rutin is easily converted into quercetin by an endogenous enzyme during processing, resulting in a bitter taste. In this study, rutin-enriched Tartary buckwheat flour extracts (TBFEs) were obtained by hydrothermal treatments (autoclaving, boiling, and steaming), and their antioxidant activity was evaluated in human intestinal cells. The intestinal absorption of the hydrothermally treated TBFEs was also investigated using in vitro models of intestinal barriers and an ex vivo model of intestinal absorption. The results demonstrated that all of the hydrothermally treated TBFEs had increased rutin, total polyphenol, and total flavonoid contents, which enhance the in vitro and intracellular radical scavenging activities. Antioxidant enzyme activity, cellular uptake efficiency, in vitro intestinal transport efficacy, and ex vivo intestinal absorption of the hydrothermally treated TBFEs were also enhanced compared with those of native TBFE or standard rutin. These findings suggest the promising potential of hydrothermally treated TBFEs for a wide range of applications in the functional food industry.
Collapse
Affiliation(s)
| | | | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea; (H.-R.J.); (J.Y.)
| |
Collapse
|
50
|
He X, Li H, Gao R, Zhang C, Liang F, Sheng Y, Zheng S, Xu J, Xu W, Huang K. Mulberry leaf aqueous extract ameliorates blood glucose and enhances energy expenditure in obese C57BL/6J mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|